Properties

Label 550.2.h.d.201.1
Level $550$
Weight $2$
Character 550.201
Analytic conductor $4.392$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [550,2,Mod(201,550)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(550, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("550.201"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 550 = 2 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 550.h (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-1,6,-1,0,-4,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.39177211117\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 110)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 201.1
Root \(0.809017 + 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 550.201
Dual form 550.2.h.d.301.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.809017 + 0.587785i) q^{2} +(0.381966 + 1.17557i) q^{3} +(0.309017 - 0.951057i) q^{4} +(-1.00000 - 0.726543i) q^{6} +(-0.190983 + 0.587785i) q^{7} +(0.309017 + 0.951057i) q^{8} +(1.19098 - 0.865300i) q^{9} +(1.69098 - 2.85317i) q^{11} +1.23607 q^{12} +(1.92705 - 1.40008i) q^{13} +(-0.190983 - 0.587785i) q^{14} +(-0.809017 - 0.587785i) q^{16} +(5.23607 + 3.80423i) q^{17} +(-0.454915 + 1.40008i) q^{18} +(1.11803 + 3.44095i) q^{19} -0.763932 q^{21} +(0.309017 + 3.30220i) q^{22} -4.61803 q^{23} +(-1.00000 + 0.726543i) q^{24} +(-0.736068 + 2.26538i) q^{26} +(4.47214 + 3.24920i) q^{27} +(0.500000 + 0.363271i) q^{28} +(1.38197 - 4.25325i) q^{29} +(-1.61803 + 1.17557i) q^{31} +1.00000 q^{32} +(4.00000 + 0.898056i) q^{33} -6.47214 q^{34} +(-0.454915 - 1.40008i) q^{36} +(-1.73607 + 5.34307i) q^{37} +(-2.92705 - 2.12663i) q^{38} +(2.38197 + 1.73060i) q^{39} +(0.190983 + 0.587785i) q^{41} +(0.618034 - 0.449028i) q^{42} +8.47214 q^{43} +(-2.19098 - 2.48990i) q^{44} +(3.73607 - 2.71441i) q^{46} +(-3.11803 - 9.59632i) q^{47} +(0.381966 - 1.17557i) q^{48} +(5.35410 + 3.88998i) q^{49} +(-2.47214 + 7.60845i) q^{51} +(-0.736068 - 2.26538i) q^{52} +(-5.73607 + 4.16750i) q^{53} -5.52786 q^{54} -0.618034 q^{56} +(-3.61803 + 2.62866i) q^{57} +(1.38197 + 4.25325i) q^{58} +(-3.35410 + 10.3229i) q^{59} +(5.61803 + 4.08174i) q^{61} +(0.618034 - 1.90211i) q^{62} +(0.281153 + 0.865300i) q^{63} +(-0.809017 + 0.587785i) q^{64} +(-3.76393 + 1.62460i) q^{66} -9.23607 q^{67} +(5.23607 - 3.80423i) q^{68} +(-1.76393 - 5.42882i) q^{69} +(-1.61803 - 1.17557i) q^{71} +(1.19098 + 0.865300i) q^{72} +(-0.472136 + 1.45309i) q^{73} +(-1.73607 - 5.34307i) q^{74} +3.61803 q^{76} +(1.35410 + 1.53884i) q^{77} -2.94427 q^{78} +(5.00000 - 3.63271i) q^{79} +(-0.746711 + 2.29814i) q^{81} +(-0.500000 - 0.363271i) q^{82} +(-8.23607 - 5.98385i) q^{83} +(-0.236068 + 0.726543i) q^{84} +(-6.85410 + 4.97980i) q^{86} +5.52786 q^{87} +(3.23607 + 0.726543i) q^{88} +11.3820 q^{89} +(0.454915 + 1.40008i) q^{91} +(-1.42705 + 4.39201i) q^{92} +(-2.00000 - 1.45309i) q^{93} +(8.16312 + 5.93085i) q^{94} +(0.381966 + 1.17557i) q^{96} +(7.47214 - 5.42882i) q^{97} -6.61803 q^{98} +(-0.454915 - 4.86128i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} + 6 q^{3} - q^{4} - 4 q^{6} - 3 q^{7} - q^{8} + 7 q^{9} + 9 q^{11} - 4 q^{12} + q^{13} - 3 q^{14} - q^{16} + 12 q^{17} - 13 q^{18} - 12 q^{21} - q^{22} - 14 q^{23} - 4 q^{24} + 6 q^{26}+ \cdots - 13 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/550\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.809017 + 0.587785i −0.572061 + 0.415627i
\(3\) 0.381966 + 1.17557i 0.220528 + 0.678716i 0.998715 + 0.0506828i \(0.0161398\pi\)
−0.778187 + 0.628033i \(0.783860\pi\)
\(4\) 0.309017 0.951057i 0.154508 0.475528i
\(5\) 0 0
\(6\) −1.00000 0.726543i −0.408248 0.296610i
\(7\) −0.190983 + 0.587785i −0.0721848 + 0.222162i −0.980640 0.195821i \(-0.937263\pi\)
0.908455 + 0.417983i \(0.137263\pi\)
\(8\) 0.309017 + 0.951057i 0.109254 + 0.336249i
\(9\) 1.19098 0.865300i 0.396994 0.288433i
\(10\) 0 0
\(11\) 1.69098 2.85317i 0.509851 0.860263i
\(12\) 1.23607 0.356822
\(13\) 1.92705 1.40008i 0.534468 0.388314i −0.287559 0.957763i \(-0.592844\pi\)
0.822026 + 0.569449i \(0.192844\pi\)
\(14\) −0.190983 0.587785i −0.0510424 0.157092i
\(15\) 0 0
\(16\) −0.809017 0.587785i −0.202254 0.146946i
\(17\) 5.23607 + 3.80423i 1.26993 + 0.922660i 0.999200 0.0399941i \(-0.0127339\pi\)
0.270733 + 0.962654i \(0.412734\pi\)
\(18\) −0.454915 + 1.40008i −0.107225 + 0.330003i
\(19\) 1.11803 + 3.44095i 0.256495 + 0.789409i 0.993532 + 0.113557i \(0.0362244\pi\)
−0.737037 + 0.675852i \(0.763776\pi\)
\(20\) 0 0
\(21\) −0.763932 −0.166704
\(22\) 0.309017 + 3.30220i 0.0658826 + 0.704031i
\(23\) −4.61803 −0.962927 −0.481463 0.876466i \(-0.659895\pi\)
−0.481463 + 0.876466i \(0.659895\pi\)
\(24\) −1.00000 + 0.726543i −0.204124 + 0.148305i
\(25\) 0 0
\(26\) −0.736068 + 2.26538i −0.144355 + 0.444278i
\(27\) 4.47214 + 3.24920i 0.860663 + 0.625308i
\(28\) 0.500000 + 0.363271i 0.0944911 + 0.0686518i
\(29\) 1.38197 4.25325i 0.256625 0.789809i −0.736881 0.676023i \(-0.763702\pi\)
0.993505 0.113787i \(-0.0362980\pi\)
\(30\) 0 0
\(31\) −1.61803 + 1.17557i −0.290607 + 0.211139i −0.723531 0.690292i \(-0.757482\pi\)
0.432923 + 0.901431i \(0.357482\pi\)
\(32\) 1.00000 0.176777
\(33\) 4.00000 + 0.898056i 0.696311 + 0.156331i
\(34\) −6.47214 −1.10996
\(35\) 0 0
\(36\) −0.454915 1.40008i −0.0758192 0.233347i
\(37\) −1.73607 + 5.34307i −0.285408 + 0.878395i 0.700868 + 0.713291i \(0.252796\pi\)
−0.986276 + 0.165104i \(0.947204\pi\)
\(38\) −2.92705 2.12663i −0.474830 0.344984i
\(39\) 2.38197 + 1.73060i 0.381420 + 0.277118i
\(40\) 0 0
\(41\) 0.190983 + 0.587785i 0.0298265 + 0.0917966i 0.964862 0.262759i \(-0.0846323\pi\)
−0.935035 + 0.354555i \(0.884632\pi\)
\(42\) 0.618034 0.449028i 0.0953647 0.0692865i
\(43\) 8.47214 1.29199 0.645994 0.763342i \(-0.276443\pi\)
0.645994 + 0.763342i \(0.276443\pi\)
\(44\) −2.19098 2.48990i −0.330303 0.375366i
\(45\) 0 0
\(46\) 3.73607 2.71441i 0.550853 0.400218i
\(47\) −3.11803 9.59632i −0.454812 1.39977i −0.871356 0.490652i \(-0.836759\pi\)
0.416544 0.909116i \(-0.363241\pi\)
\(48\) 0.381966 1.17557i 0.0551320 0.169679i
\(49\) 5.35410 + 3.88998i 0.764872 + 0.555712i
\(50\) 0 0
\(51\) −2.47214 + 7.60845i −0.346168 + 1.06540i
\(52\) −0.736068 2.26538i −0.102074 0.314152i
\(53\) −5.73607 + 4.16750i −0.787910 + 0.572450i −0.907342 0.420393i \(-0.861892\pi\)
0.119433 + 0.992842i \(0.461892\pi\)
\(54\) −5.52786 −0.752247
\(55\) 0 0
\(56\) −0.618034 −0.0825883
\(57\) −3.61803 + 2.62866i −0.479220 + 0.348174i
\(58\) 1.38197 + 4.25325i 0.181461 + 0.558480i
\(59\) −3.35410 + 10.3229i −0.436667 + 1.34392i 0.454702 + 0.890644i \(0.349746\pi\)
−0.891369 + 0.453279i \(0.850254\pi\)
\(60\) 0 0
\(61\) 5.61803 + 4.08174i 0.719316 + 0.522613i 0.886165 0.463369i \(-0.153360\pi\)
−0.166850 + 0.985982i \(0.553360\pi\)
\(62\) 0.618034 1.90211i 0.0784904 0.241569i
\(63\) 0.281153 + 0.865300i 0.0354219 + 0.109018i
\(64\) −0.809017 + 0.587785i −0.101127 + 0.0734732i
\(65\) 0 0
\(66\) −3.76393 + 1.62460i −0.463308 + 0.199974i
\(67\) −9.23607 −1.12837 −0.564183 0.825650i \(-0.690809\pi\)
−0.564183 + 0.825650i \(0.690809\pi\)
\(68\) 5.23607 3.80423i 0.634967 0.461330i
\(69\) −1.76393 5.42882i −0.212352 0.653554i
\(70\) 0 0
\(71\) −1.61803 1.17557i −0.192025 0.139515i 0.487619 0.873057i \(-0.337866\pi\)
−0.679644 + 0.733542i \(0.737866\pi\)
\(72\) 1.19098 + 0.865300i 0.140359 + 0.101977i
\(73\) −0.472136 + 1.45309i −0.0552593 + 0.170071i −0.974877 0.222744i \(-0.928499\pi\)
0.919618 + 0.392815i \(0.128499\pi\)
\(74\) −1.73607 5.34307i −0.201814 0.621119i
\(75\) 0 0
\(76\) 3.61803 0.415017
\(77\) 1.35410 + 1.53884i 0.154314 + 0.175367i
\(78\) −2.94427 −0.333373
\(79\) 5.00000 3.63271i 0.562544 0.408712i −0.269845 0.962904i \(-0.586973\pi\)
0.832389 + 0.554192i \(0.186973\pi\)
\(80\) 0 0
\(81\) −0.746711 + 2.29814i −0.0829679 + 0.255349i
\(82\) −0.500000 0.363271i −0.0552158 0.0401166i
\(83\) −8.23607 5.98385i −0.904026 0.656813i 0.0354710 0.999371i \(-0.488707\pi\)
−0.939497 + 0.342557i \(0.888707\pi\)
\(84\) −0.236068 + 0.726543i −0.0257571 + 0.0792723i
\(85\) 0 0
\(86\) −6.85410 + 4.97980i −0.739097 + 0.536985i
\(87\) 5.52786 0.592649
\(88\) 3.23607 + 0.726543i 0.344966 + 0.0774497i
\(89\) 11.3820 1.20649 0.603243 0.797557i \(-0.293875\pi\)
0.603243 + 0.797557i \(0.293875\pi\)
\(90\) 0 0
\(91\) 0.454915 + 1.40008i 0.0476881 + 0.146769i
\(92\) −1.42705 + 4.39201i −0.148780 + 0.457899i
\(93\) −2.00000 1.45309i −0.207390 0.150678i
\(94\) 8.16312 + 5.93085i 0.841961 + 0.611721i
\(95\) 0 0
\(96\) 0.381966 + 1.17557i 0.0389842 + 0.119981i
\(97\) 7.47214 5.42882i 0.758680 0.551214i −0.139825 0.990176i \(-0.544654\pi\)
0.898505 + 0.438963i \(0.144654\pi\)
\(98\) −6.61803 −0.668522
\(99\) −0.454915 4.86128i −0.0457207 0.488577i
\(100\) 0 0
\(101\) 15.9443 11.5842i 1.58651 1.15267i 0.677804 0.735242i \(-0.262932\pi\)
0.908710 0.417428i \(-0.137068\pi\)
\(102\) −2.47214 7.60845i −0.244778 0.753349i
\(103\) −2.11803 + 6.51864i −0.208696 + 0.642301i 0.790845 + 0.612016i \(0.209641\pi\)
−0.999541 + 0.0302843i \(0.990359\pi\)
\(104\) 1.92705 + 1.40008i 0.188963 + 0.137290i
\(105\) 0 0
\(106\) 2.19098 6.74315i 0.212807 0.654953i
\(107\) −4.76393 14.6619i −0.460547 1.41742i −0.864498 0.502636i \(-0.832363\pi\)
0.403951 0.914781i \(-0.367637\pi\)
\(108\) 4.47214 3.24920i 0.430331 0.312654i
\(109\) −5.52786 −0.529473 −0.264737 0.964321i \(-0.585285\pi\)
−0.264737 + 0.964321i \(0.585285\pi\)
\(110\) 0 0
\(111\) −6.94427 −0.659121
\(112\) 0.500000 0.363271i 0.0472456 0.0343259i
\(113\) −2.90983 8.95554i −0.273734 0.842466i −0.989552 0.144179i \(-0.953946\pi\)
0.715818 0.698287i \(-0.246054\pi\)
\(114\) 1.38197 4.25325i 0.129433 0.398354i
\(115\) 0 0
\(116\) −3.61803 2.62866i −0.335926 0.244065i
\(117\) 1.08359 3.33495i 0.100178 0.308317i
\(118\) −3.35410 10.3229i −0.308770 0.950297i
\(119\) −3.23607 + 2.35114i −0.296650 + 0.215529i
\(120\) 0 0
\(121\) −5.28115 9.64932i −0.480105 0.877211i
\(122\) −6.94427 −0.628705
\(123\) −0.618034 + 0.449028i −0.0557262 + 0.0404875i
\(124\) 0.618034 + 1.90211i 0.0555011 + 0.170815i
\(125\) 0 0
\(126\) −0.736068 0.534785i −0.0655741 0.0476424i
\(127\) 2.30902 + 1.67760i 0.204892 + 0.148863i 0.685500 0.728073i \(-0.259584\pi\)
−0.480608 + 0.876936i \(0.659584\pi\)
\(128\) 0.309017 0.951057i 0.0273135 0.0840623i
\(129\) 3.23607 + 9.95959i 0.284920 + 0.876893i
\(130\) 0 0
\(131\) −8.00000 −0.698963 −0.349482 0.936943i \(-0.613642\pi\)
−0.349482 + 0.936943i \(0.613642\pi\)
\(132\) 2.09017 3.52671i 0.181926 0.306961i
\(133\) −2.23607 −0.193892
\(134\) 7.47214 5.42882i 0.645494 0.468979i
\(135\) 0 0
\(136\) −2.00000 + 6.15537i −0.171499 + 0.527818i
\(137\) −17.3262 12.5882i −1.48028 1.07549i −0.977466 0.211092i \(-0.932298\pi\)
−0.502814 0.864394i \(-0.667702\pi\)
\(138\) 4.61803 + 3.35520i 0.393113 + 0.285613i
\(139\) 0.100813 0.310271i 0.00855085 0.0263168i −0.946690 0.322146i \(-0.895596\pi\)
0.955241 + 0.295829i \(0.0955959\pi\)
\(140\) 0 0
\(141\) 10.0902 7.33094i 0.849746 0.617376i
\(142\) 2.00000 0.167836
\(143\) −0.736068 7.86572i −0.0615531 0.657765i
\(144\) −1.47214 −0.122678
\(145\) 0 0
\(146\) −0.472136 1.45309i −0.0390742 0.120258i
\(147\) −2.52786 + 7.77997i −0.208495 + 0.641681i
\(148\) 4.54508 + 3.30220i 0.373604 + 0.271439i
\(149\) −17.5623 12.7598i −1.43876 1.04532i −0.988300 0.152524i \(-0.951260\pi\)
−0.450460 0.892796i \(-0.648740\pi\)
\(150\) 0 0
\(151\) 4.23607 + 13.0373i 0.344726 + 1.06096i 0.961730 + 0.273998i \(0.0883463\pi\)
−0.617004 + 0.786960i \(0.711654\pi\)
\(152\) −2.92705 + 2.12663i −0.237415 + 0.172492i
\(153\) 9.52786 0.770282
\(154\) −2.00000 0.449028i −0.161165 0.0361837i
\(155\) 0 0
\(156\) 2.38197 1.73060i 0.190710 0.138559i
\(157\) −1.89919 5.84510i −0.151572 0.466489i 0.846226 0.532824i \(-0.178869\pi\)
−0.997797 + 0.0663350i \(0.978869\pi\)
\(158\) −1.90983 + 5.87785i −0.151938 + 0.467617i
\(159\) −7.09017 5.15131i −0.562287 0.408525i
\(160\) 0 0
\(161\) 0.881966 2.71441i 0.0695087 0.213926i
\(162\) −0.746711 2.29814i −0.0586672 0.180559i
\(163\) 7.61803 5.53483i 0.596690 0.433521i −0.248012 0.968757i \(-0.579777\pi\)
0.844703 + 0.535236i \(0.179777\pi\)
\(164\) 0.618034 0.0482603
\(165\) 0 0
\(166\) 10.1803 0.790148
\(167\) −10.7812 + 7.83297i −0.834271 + 0.606133i −0.920764 0.390119i \(-0.872434\pi\)
0.0864937 + 0.996252i \(0.472434\pi\)
\(168\) −0.236068 0.726543i −0.0182130 0.0560540i
\(169\) −2.26393 + 6.96767i −0.174149 + 0.535974i
\(170\) 0 0
\(171\) 4.30902 + 3.13068i 0.329519 + 0.239409i
\(172\) 2.61803 8.05748i 0.199623 0.614377i
\(173\) −0.572949 1.76336i −0.0435605 0.134065i 0.926911 0.375281i \(-0.122454\pi\)
−0.970472 + 0.241216i \(0.922454\pi\)
\(174\) −4.47214 + 3.24920i −0.339032 + 0.246321i
\(175\) 0 0
\(176\) −3.04508 + 1.31433i −0.229532 + 0.0990712i
\(177\) −13.4164 −1.00844
\(178\) −9.20820 + 6.69015i −0.690184 + 0.501448i
\(179\) −2.86475 8.81678i −0.214121 0.658997i −0.999215 0.0396200i \(-0.987385\pi\)
0.785094 0.619377i \(-0.212615\pi\)
\(180\) 0 0
\(181\) −16.0902 11.6902i −1.19597 0.868925i −0.202090 0.979367i \(-0.564773\pi\)
−0.993883 + 0.110442i \(0.964773\pi\)
\(182\) −1.19098 0.865300i −0.0882815 0.0641403i
\(183\) −2.65248 + 8.16348i −0.196077 + 0.603462i
\(184\) −1.42705 4.39201i −0.105204 0.323783i
\(185\) 0 0
\(186\) 2.47214 0.181266
\(187\) 19.7082 8.50651i 1.44121 0.622057i
\(188\) −10.0902 −0.735901
\(189\) −2.76393 + 2.00811i −0.201046 + 0.146069i
\(190\) 0 0
\(191\) −2.79837 + 8.61251i −0.202483 + 0.623179i 0.797324 + 0.603551i \(0.206248\pi\)
−0.999807 + 0.0196279i \(0.993752\pi\)
\(192\) −1.00000 0.726543i −0.0721688 0.0524337i
\(193\) 10.7082 + 7.77997i 0.770793 + 0.560014i 0.902202 0.431314i \(-0.141950\pi\)
−0.131408 + 0.991328i \(0.541950\pi\)
\(194\) −2.85410 + 8.78402i −0.204913 + 0.630656i
\(195\) 0 0
\(196\) 5.35410 3.88998i 0.382436 0.277856i
\(197\) 26.2148 1.86773 0.933863 0.357631i \(-0.116415\pi\)
0.933863 + 0.357631i \(0.116415\pi\)
\(198\) 3.22542 + 3.66547i 0.229221 + 0.260494i
\(199\) −5.52786 −0.391860 −0.195930 0.980618i \(-0.562773\pi\)
−0.195930 + 0.980618i \(0.562773\pi\)
\(200\) 0 0
\(201\) −3.52786 10.8576i −0.248836 0.765840i
\(202\) −6.09017 + 18.7436i −0.428503 + 1.31880i
\(203\) 2.23607 + 1.62460i 0.156941 + 0.114024i
\(204\) 6.47214 + 4.70228i 0.453140 + 0.329226i
\(205\) 0 0
\(206\) −2.11803 6.51864i −0.147570 0.454175i
\(207\) −5.50000 + 3.99598i −0.382276 + 0.277740i
\(208\) −2.38197 −0.165160
\(209\) 11.7082 + 2.62866i 0.809873 + 0.181828i
\(210\) 0 0
\(211\) −21.4164 + 15.5599i −1.47437 + 1.07119i −0.495048 + 0.868866i \(0.664849\pi\)
−0.979319 + 0.202324i \(0.935151\pi\)
\(212\) 2.19098 + 6.74315i 0.150477 + 0.463122i
\(213\) 0.763932 2.35114i 0.0523438 0.161098i
\(214\) 12.4721 + 9.06154i 0.852578 + 0.619434i
\(215\) 0 0
\(216\) −1.70820 + 5.25731i −0.116229 + 0.357715i
\(217\) −0.381966 1.17557i −0.0259295 0.0798029i
\(218\) 4.47214 3.24920i 0.302891 0.220063i
\(219\) −1.88854 −0.127616
\(220\) 0 0
\(221\) 15.4164 1.03702
\(222\) 5.61803 4.08174i 0.377058 0.273948i
\(223\) −5.89919 18.1558i −0.395039 1.21580i −0.928931 0.370252i \(-0.879271\pi\)
0.533893 0.845552i \(-0.320729\pi\)
\(224\) −0.190983 + 0.587785i −0.0127606 + 0.0392731i
\(225\) 0 0
\(226\) 7.61803 + 5.53483i 0.506744 + 0.368171i
\(227\) −3.70820 + 11.4127i −0.246122 + 0.757486i 0.749328 + 0.662199i \(0.230377\pi\)
−0.995450 + 0.0952867i \(0.969623\pi\)
\(228\) 1.38197 + 4.25325i 0.0915229 + 0.281679i
\(229\) 5.85410 4.25325i 0.386850 0.281063i −0.377314 0.926086i \(-0.623152\pi\)
0.764163 + 0.645023i \(0.223152\pi\)
\(230\) 0 0
\(231\) −1.29180 + 2.17963i −0.0849939 + 0.143409i
\(232\) 4.47214 0.293610
\(233\) −15.4721 + 11.2412i −1.01361 + 0.736433i −0.964964 0.262383i \(-0.915492\pi\)
−0.0486494 + 0.998816i \(0.515492\pi\)
\(234\) 1.08359 + 3.33495i 0.0708366 + 0.218013i
\(235\) 0 0
\(236\) 8.78115 + 6.37988i 0.571604 + 0.415295i
\(237\) 6.18034 + 4.49028i 0.401456 + 0.291675i
\(238\) 1.23607 3.80423i 0.0801224 0.246591i
\(239\) 2.23607 + 6.88191i 0.144639 + 0.445154i 0.996964 0.0778584i \(-0.0248082\pi\)
−0.852325 + 0.523012i \(0.824808\pi\)
\(240\) 0 0
\(241\) −4.90983 −0.316270 −0.158135 0.987418i \(-0.550548\pi\)
−0.158135 + 0.987418i \(0.550548\pi\)
\(242\) 9.94427 + 4.70228i 0.639242 + 0.302274i
\(243\) 13.5967 0.872232
\(244\) 5.61803 4.08174i 0.359658 0.261307i
\(245\) 0 0
\(246\) 0.236068 0.726543i 0.0150511 0.0463227i
\(247\) 6.97214 + 5.06555i 0.443626 + 0.322313i
\(248\) −1.61803 1.17557i −0.102745 0.0746488i
\(249\) 3.88854 11.9677i 0.246426 0.758423i
\(250\) 0 0
\(251\) −5.50000 + 3.99598i −0.347157 + 0.252224i −0.747675 0.664064i \(-0.768830\pi\)
0.400518 + 0.916289i \(0.368830\pi\)
\(252\) 0.909830 0.0573139
\(253\) −7.80902 + 13.1760i −0.490949 + 0.828370i
\(254\) −2.85410 −0.179082
\(255\) 0 0
\(256\) 0.309017 + 0.951057i 0.0193136 + 0.0594410i
\(257\) −6.47214 + 19.9192i −0.403721 + 1.24252i 0.518238 + 0.855236i \(0.326588\pi\)
−0.921959 + 0.387288i \(0.873412\pi\)
\(258\) −8.47214 6.15537i −0.527452 0.383216i
\(259\) −2.80902 2.04087i −0.174544 0.126814i
\(260\) 0 0
\(261\) −2.03444 6.26137i −0.125929 0.387569i
\(262\) 6.47214 4.70228i 0.399850 0.290508i
\(263\) −5.14590 −0.317310 −0.158655 0.987334i \(-0.550716\pi\)
−0.158655 + 0.987334i \(0.550716\pi\)
\(264\) 0.381966 + 4.08174i 0.0235084 + 0.251214i
\(265\) 0 0
\(266\) 1.80902 1.31433i 0.110918 0.0805866i
\(267\) 4.34752 + 13.3803i 0.266064 + 0.818861i
\(268\) −2.85410 + 8.78402i −0.174342 + 0.536570i
\(269\) −18.0902 13.1433i −1.10298 0.801360i −0.121434 0.992600i \(-0.538749\pi\)
−0.981543 + 0.191240i \(0.938749\pi\)
\(270\) 0 0
\(271\) −0.437694 + 1.34708i −0.0265880 + 0.0818295i −0.963470 0.267816i \(-0.913698\pi\)
0.936882 + 0.349646i \(0.113698\pi\)
\(272\) −2.00000 6.15537i −0.121268 0.373224i
\(273\) −1.47214 + 1.06957i −0.0890977 + 0.0647333i
\(274\) 21.4164 1.29381
\(275\) 0 0
\(276\) −5.70820 −0.343594
\(277\) −0.0278640 + 0.0202444i −0.00167419 + 0.00121637i −0.588622 0.808408i \(-0.700329\pi\)
0.586948 + 0.809625i \(0.300329\pi\)
\(278\) 0.100813 + 0.310271i 0.00604637 + 0.0186088i
\(279\) −0.909830 + 2.80017i −0.0544701 + 0.167642i
\(280\) 0 0
\(281\) 7.32624 + 5.32282i 0.437047 + 0.317533i 0.784460 0.620179i \(-0.212940\pi\)
−0.347414 + 0.937712i \(0.612940\pi\)
\(282\) −3.85410 + 11.8617i −0.229508 + 0.706354i
\(283\) 0.0557281 + 0.171513i 0.00331269 + 0.0101954i 0.952699 0.303915i \(-0.0982938\pi\)
−0.949387 + 0.314110i \(0.898294\pi\)
\(284\) −1.61803 + 1.17557i −0.0960127 + 0.0697573i
\(285\) 0 0
\(286\) 5.21885 + 5.93085i 0.308597 + 0.350699i
\(287\) −0.381966 −0.0225467
\(288\) 1.19098 0.865300i 0.0701793 0.0509883i
\(289\) 7.69098 + 23.6704i 0.452411 + 1.39238i
\(290\) 0 0
\(291\) 9.23607 + 6.71040i 0.541428 + 0.393370i
\(292\) 1.23607 + 0.898056i 0.0723354 + 0.0525547i
\(293\) 9.22542 28.3929i 0.538955 1.65873i −0.195990 0.980606i \(-0.562792\pi\)
0.734945 0.678127i \(-0.237208\pi\)
\(294\) −2.52786 7.77997i −0.147428 0.453737i
\(295\) 0 0
\(296\) −5.61803 −0.326542
\(297\) 16.8328 7.26543i 0.976739 0.421583i
\(298\) 21.7082 1.25752
\(299\) −8.89919 + 6.46564i −0.514653 + 0.373917i
\(300\) 0 0
\(301\) −1.61803 + 4.97980i −0.0932619 + 0.287031i
\(302\) −11.0902 8.05748i −0.638168 0.463656i
\(303\) 19.7082 + 14.3188i 1.13221 + 0.822596i
\(304\) 1.11803 3.44095i 0.0641236 0.197352i
\(305\) 0 0
\(306\) −7.70820 + 5.60034i −0.440649 + 0.320150i
\(307\) 15.2361 0.869568 0.434784 0.900535i \(-0.356825\pi\)
0.434784 + 0.900535i \(0.356825\pi\)
\(308\) 1.88197 0.812299i 0.107235 0.0462850i
\(309\) −8.47214 −0.481963
\(310\) 0 0
\(311\) −1.29180 3.97574i −0.0732510 0.225444i 0.907727 0.419561i \(-0.137816\pi\)
−0.980978 + 0.194117i \(0.937816\pi\)
\(312\) −0.909830 + 2.80017i −0.0515090 + 0.158528i
\(313\) 9.32624 + 6.77591i 0.527150 + 0.382997i 0.819291 0.573378i \(-0.194368\pi\)
−0.292141 + 0.956375i \(0.594368\pi\)
\(314\) 4.97214 + 3.61247i 0.280594 + 0.203863i
\(315\) 0 0
\(316\) −1.90983 5.87785i −0.107436 0.330655i
\(317\) −11.6353 + 8.45351i −0.653501 + 0.474796i −0.864462 0.502698i \(-0.832341\pi\)
0.210961 + 0.977494i \(0.432341\pi\)
\(318\) 8.76393 0.491457
\(319\) −9.79837 11.1352i −0.548604 0.623449i
\(320\) 0 0
\(321\) 15.4164 11.2007i 0.860460 0.625161i
\(322\) 0.881966 + 2.71441i 0.0491500 + 0.151268i
\(323\) −7.23607 + 22.2703i −0.402626 + 1.23915i
\(324\) 1.95492 + 1.42033i 0.108606 + 0.0789072i
\(325\) 0 0
\(326\) −2.90983 + 8.95554i −0.161161 + 0.496001i
\(327\) −2.11146 6.49839i −0.116764 0.359362i
\(328\) −0.500000 + 0.363271i −0.0276079 + 0.0200583i
\(329\) 6.23607 0.343806
\(330\) 0 0
\(331\) −6.09017 −0.334746 −0.167373 0.985894i \(-0.553528\pi\)
−0.167373 + 0.985894i \(0.553528\pi\)
\(332\) −8.23607 + 5.98385i −0.452013 + 0.328407i
\(333\) 2.55573 + 7.86572i 0.140053 + 0.431039i
\(334\) 4.11803 12.6740i 0.225329 0.693491i
\(335\) 0 0
\(336\) 0.618034 + 0.449028i 0.0337165 + 0.0244965i
\(337\) 0.562306 1.73060i 0.0306308 0.0942718i −0.934572 0.355773i \(-0.884218\pi\)
0.965203 + 0.261501i \(0.0842176\pi\)
\(338\) −2.26393 6.96767i −0.123142 0.378991i
\(339\) 9.41641 6.84142i 0.511429 0.371575i
\(340\) 0 0
\(341\) 0.618034 + 6.60440i 0.0334684 + 0.357648i
\(342\) −5.32624 −0.288010
\(343\) −6.80902 + 4.94704i −0.367652 + 0.267115i
\(344\) 2.61803 + 8.05748i 0.141155 + 0.434430i
\(345\) 0 0
\(346\) 1.50000 + 1.08981i 0.0806405 + 0.0585888i
\(347\) 2.14590 + 1.55909i 0.115198 + 0.0836961i 0.643893 0.765116i \(-0.277318\pi\)
−0.528695 + 0.848812i \(0.677318\pi\)
\(348\) 1.70820 5.25731i 0.0915693 0.281821i
\(349\) −2.23607 6.88191i −0.119694 0.368380i 0.873203 0.487356i \(-0.162039\pi\)
−0.992897 + 0.118976i \(0.962039\pi\)
\(350\) 0 0
\(351\) 13.1672 0.702812
\(352\) 1.69098 2.85317i 0.0901297 0.152074i
\(353\) −16.0000 −0.851594 −0.425797 0.904819i \(-0.640006\pi\)
−0.425797 + 0.904819i \(0.640006\pi\)
\(354\) 10.8541 7.88597i 0.576889 0.419134i
\(355\) 0 0
\(356\) 3.51722 10.8249i 0.186412 0.573718i
\(357\) −4.00000 2.90617i −0.211702 0.153811i
\(358\) 7.50000 + 5.44907i 0.396387 + 0.287992i
\(359\) −10.0000 + 30.7768i −0.527780 + 1.62434i 0.230973 + 0.972960i \(0.425809\pi\)
−0.758753 + 0.651379i \(0.774191\pi\)
\(360\) 0 0
\(361\) 4.78115 3.47371i 0.251640 0.182827i
\(362\) 19.8885 1.04532
\(363\) 9.32624 9.89408i 0.489501 0.519305i
\(364\) 1.47214 0.0771609
\(365\) 0 0
\(366\) −2.65248 8.16348i −0.138647 0.426712i
\(367\) −9.23607 + 28.4257i −0.482119 + 1.48381i 0.353992 + 0.935248i \(0.384824\pi\)
−0.836111 + 0.548561i \(0.815176\pi\)
\(368\) 3.73607 + 2.71441i 0.194756 + 0.141499i
\(369\) 0.736068 + 0.534785i 0.0383182 + 0.0278398i
\(370\) 0 0
\(371\) −1.35410 4.16750i −0.0703015 0.216366i
\(372\) −2.00000 + 1.45309i −0.103695 + 0.0753390i
\(373\) 6.56231 0.339783 0.169892 0.985463i \(-0.445658\pi\)
0.169892 + 0.985463i \(0.445658\pi\)
\(374\) −10.9443 + 18.4661i −0.565915 + 0.954859i
\(375\) 0 0
\(376\) 8.16312 5.93085i 0.420981 0.305860i
\(377\) −3.29180 10.1311i −0.169536 0.521779i
\(378\) 1.05573 3.24920i 0.0543008 0.167121i
\(379\) −25.9164 18.8294i −1.33124 0.967200i −0.999718 0.0237512i \(-0.992439\pi\)
−0.331519 0.943449i \(-0.607561\pi\)
\(380\) 0 0
\(381\) −1.09017 + 3.35520i −0.0558511 + 0.171892i
\(382\) −2.79837 8.61251i −0.143177 0.440654i
\(383\) −17.9721 + 13.0575i −0.918333 + 0.667208i −0.943109 0.332485i \(-0.892113\pi\)
0.0247753 + 0.999693i \(0.492113\pi\)
\(384\) 1.23607 0.0630778
\(385\) 0 0
\(386\) −13.2361 −0.673698
\(387\) 10.0902 7.33094i 0.512912 0.372652i
\(388\) −2.85410 8.78402i −0.144895 0.445941i
\(389\) 7.76393 23.8949i 0.393647 1.21152i −0.536363 0.843987i \(-0.680202\pi\)
0.930010 0.367534i \(-0.119798\pi\)
\(390\) 0 0
\(391\) −24.1803 17.5680i −1.22285 0.888454i
\(392\) −2.04508 + 6.29412i −0.103292 + 0.317901i
\(393\) −3.05573 9.40456i −0.154141 0.474398i
\(394\) −21.2082 + 15.4087i −1.06845 + 0.776277i
\(395\) 0 0
\(396\) −4.76393 1.06957i −0.239397 0.0537479i
\(397\) −12.3262 −0.618636 −0.309318 0.950959i \(-0.600101\pi\)
−0.309318 + 0.950959i \(0.600101\pi\)
\(398\) 4.47214 3.24920i 0.224168 0.162868i
\(399\) −0.854102 2.62866i −0.0427586 0.131597i
\(400\) 0 0
\(401\) −0.0729490 0.0530006i −0.00364290 0.00264672i 0.585962 0.810338i \(-0.300717\pi\)
−0.589605 + 0.807692i \(0.700717\pi\)
\(402\) 9.23607 + 6.71040i 0.460653 + 0.334684i
\(403\) −1.47214 + 4.53077i −0.0733323 + 0.225694i
\(404\) −6.09017 18.7436i −0.302997 0.932530i
\(405\) 0 0
\(406\) −2.76393 −0.137172
\(407\) 12.3090 + 13.9883i 0.610135 + 0.693376i
\(408\) −8.00000 −0.396059
\(409\) −21.0172 + 15.2699i −1.03923 + 0.755048i −0.970136 0.242562i \(-0.922012\pi\)
−0.0690987 + 0.997610i \(0.522012\pi\)
\(410\) 0 0
\(411\) 8.18034 25.1765i 0.403506 1.24187i
\(412\) 5.54508 + 4.02874i 0.273187 + 0.198482i
\(413\) −5.42705 3.94298i −0.267048 0.194022i
\(414\) 2.10081 6.46564i 0.103249 0.317769i
\(415\) 0 0
\(416\) 1.92705 1.40008i 0.0944814 0.0686448i
\(417\) 0.403252 0.0197473
\(418\) −11.0172 + 4.75528i −0.538870 + 0.232588i
\(419\) 35.9787 1.75768 0.878838 0.477121i \(-0.158320\pi\)
0.878838 + 0.477121i \(0.158320\pi\)
\(420\) 0 0
\(421\) 0.618034 + 1.90211i 0.0301211 + 0.0927033i 0.964987 0.262298i \(-0.0844804\pi\)
−0.934866 + 0.355001i \(0.884480\pi\)
\(422\) 8.18034 25.1765i 0.398213 1.22557i
\(423\) −12.0172 8.73102i −0.584297 0.424517i
\(424\) −5.73607 4.16750i −0.278568 0.202392i
\(425\) 0 0
\(426\) 0.763932 + 2.35114i 0.0370126 + 0.113913i
\(427\) −3.47214 + 2.52265i −0.168028 + 0.122080i
\(428\) −15.4164 −0.745180
\(429\) 8.96556 3.86974i 0.432861 0.186833i
\(430\) 0 0
\(431\) −22.7984 + 16.5640i −1.09816 + 0.797859i −0.980758 0.195225i \(-0.937456\pi\)
−0.117401 + 0.993085i \(0.537456\pi\)
\(432\) −1.70820 5.25731i −0.0821860 0.252942i
\(433\) 2.29180 7.05342i 0.110137 0.338966i −0.880765 0.473554i \(-0.842971\pi\)
0.990902 + 0.134588i \(0.0429710\pi\)
\(434\) 1.00000 + 0.726543i 0.0480015 + 0.0348752i
\(435\) 0 0
\(436\) −1.70820 + 5.25731i −0.0818081 + 0.251780i
\(437\) −5.16312 15.8904i −0.246985 0.760143i
\(438\) 1.52786 1.11006i 0.0730042 0.0530406i
\(439\) −6.18034 −0.294972 −0.147486 0.989064i \(-0.547118\pi\)
−0.147486 + 0.989064i \(0.547118\pi\)
\(440\) 0 0
\(441\) 9.74265 0.463936
\(442\) −12.4721 + 9.06154i −0.593239 + 0.431013i
\(443\) 0.0557281 + 0.171513i 0.00264772 + 0.00814885i 0.952372 0.304940i \(-0.0986363\pi\)
−0.949724 + 0.313089i \(0.898636\pi\)
\(444\) −2.14590 + 6.60440i −0.101840 + 0.313431i
\(445\) 0 0
\(446\) 15.4443 + 11.2209i 0.731307 + 0.531326i
\(447\) 8.29180 25.5195i 0.392188 1.20703i
\(448\) −0.190983 0.587785i −0.00902310 0.0277702i
\(449\) 16.8713 12.2577i 0.796207 0.578478i −0.113592 0.993527i \(-0.536236\pi\)
0.909799 + 0.415049i \(0.136236\pi\)
\(450\) 0 0
\(451\) 2.00000 + 0.449028i 0.0941763 + 0.0211439i
\(452\) −9.41641 −0.442911
\(453\) −13.7082 + 9.95959i −0.644068 + 0.467943i
\(454\) −3.70820 11.4127i −0.174035 0.535624i
\(455\) 0 0
\(456\) −3.61803 2.62866i −0.169430 0.123098i
\(457\) 6.61803 + 4.80828i 0.309579 + 0.224922i 0.731716 0.681610i \(-0.238720\pi\)
−0.422137 + 0.906532i \(0.638720\pi\)
\(458\) −2.23607 + 6.88191i −0.104485 + 0.321571i
\(459\) 11.0557 + 34.0260i 0.516037 + 1.58820i
\(460\) 0 0
\(461\) −9.70820 −0.452156 −0.226078 0.974109i \(-0.572590\pi\)
−0.226078 + 0.974109i \(0.572590\pi\)
\(462\) −0.236068 2.52265i −0.0109829 0.117365i
\(463\) −1.32624 −0.0616355 −0.0308178 0.999525i \(-0.509811\pi\)
−0.0308178 + 0.999525i \(0.509811\pi\)
\(464\) −3.61803 + 2.62866i −0.167963 + 0.122032i
\(465\) 0 0
\(466\) 5.90983 18.1886i 0.273768 0.842570i
\(467\) −15.0902 10.9637i −0.698290 0.507337i 0.181085 0.983467i \(-0.442039\pi\)
−0.879375 + 0.476130i \(0.842039\pi\)
\(468\) −2.83688 2.06111i −0.131135 0.0952751i
\(469\) 1.76393 5.42882i 0.0814508 0.250680i
\(470\) 0 0
\(471\) 6.14590 4.46526i 0.283188 0.205748i
\(472\) −10.8541 −0.499601
\(473\) 14.3262 24.1724i 0.658721 1.11145i
\(474\) −7.63932 −0.350886
\(475\) 0 0
\(476\) 1.23607 + 3.80423i 0.0566551 + 0.174366i
\(477\) −3.22542 + 9.92684i −0.147682 + 0.454519i
\(478\) −5.85410 4.25325i −0.267760 0.194539i
\(479\) 22.0344 + 16.0090i 1.00678 + 0.731468i 0.963531 0.267596i \(-0.0862294\pi\)
0.0432482 + 0.999064i \(0.486229\pi\)
\(480\) 0 0
\(481\) 4.13525 + 12.7270i 0.188551 + 0.580302i
\(482\) 3.97214 2.88593i 0.180926 0.131450i
\(483\) 3.52786 0.160523
\(484\) −10.8090 + 2.04087i −0.491319 + 0.0927668i
\(485\) 0 0
\(486\) −11.0000 + 7.99197i −0.498970 + 0.362523i
\(487\) −12.6525 38.9403i −0.573338 1.76455i −0.641769 0.766898i \(-0.721799\pi\)
0.0684303 0.997656i \(-0.478201\pi\)
\(488\) −2.14590 + 6.60440i −0.0971402 + 0.298967i
\(489\) 9.41641 + 6.84142i 0.425825 + 0.309380i
\(490\) 0 0
\(491\) 8.11803 24.9847i 0.366362 1.12755i −0.582762 0.812643i \(-0.698028\pi\)
0.949124 0.314903i \(-0.101972\pi\)
\(492\) 0.236068 + 0.726543i 0.0106428 + 0.0327551i
\(493\) 23.4164 17.0130i 1.05462 0.766228i
\(494\) −8.61803 −0.387744
\(495\) 0 0
\(496\) 2.00000 0.0898027
\(497\) 1.00000 0.726543i 0.0448561 0.0325899i
\(498\) 3.88854 + 11.9677i 0.174250 + 0.536286i
\(499\) −0.100813 + 0.310271i −0.00451301 + 0.0138896i −0.953288 0.302064i \(-0.902324\pi\)
0.948775 + 0.315954i \(0.102324\pi\)
\(500\) 0 0
\(501\) −13.3262 9.68208i −0.595372 0.432563i
\(502\) 2.10081 6.46564i 0.0937639 0.288576i
\(503\) −3.82624 11.7759i −0.170604 0.525064i 0.828802 0.559542i \(-0.189023\pi\)
−0.999405 + 0.0344785i \(0.989023\pi\)
\(504\) −0.736068 + 0.534785i −0.0327871 + 0.0238212i
\(505\) 0 0
\(506\) −1.42705 15.2497i −0.0634402 0.677930i
\(507\) −9.05573 −0.402179
\(508\) 2.30902 1.67760i 0.102446 0.0744314i
\(509\) −3.61803 11.1352i −0.160367 0.493557i 0.838298 0.545212i \(-0.183551\pi\)
−0.998665 + 0.0516541i \(0.983551\pi\)
\(510\) 0 0
\(511\) −0.763932 0.555029i −0.0337944 0.0245530i
\(512\) −0.809017 0.587785i −0.0357538 0.0259767i
\(513\) −6.18034 + 19.0211i −0.272869 + 0.839803i
\(514\) −6.47214 19.9192i −0.285474 0.878598i
\(515\) 0 0
\(516\) 10.4721 0.461010
\(517\) −32.6525 7.33094i −1.43605 0.322414i
\(518\) 3.47214 0.152557
\(519\) 1.85410 1.34708i 0.0813860 0.0591304i
\(520\) 0 0
\(521\) −9.60739 + 29.5685i −0.420907 + 1.29542i 0.485952 + 0.873986i \(0.338473\pi\)
−0.906859 + 0.421434i \(0.861527\pi\)
\(522\) 5.32624 + 3.86974i 0.233123 + 0.169374i
\(523\) 0.909830 + 0.661030i 0.0397841 + 0.0289048i 0.607500 0.794320i \(-0.292173\pi\)
−0.567716 + 0.823225i \(0.692173\pi\)
\(524\) −2.47214 + 7.60845i −0.107996 + 0.332377i
\(525\) 0 0
\(526\) 4.16312 3.02468i 0.181521 0.131882i
\(527\) −12.9443 −0.563861
\(528\) −2.70820 3.07768i −0.117859 0.133939i
\(529\) −1.67376 −0.0727723
\(530\) 0 0
\(531\) 4.93769 + 15.1967i 0.214278 + 0.659479i
\(532\) −0.690983 + 2.12663i −0.0299579 + 0.0922010i
\(533\) 1.19098 + 0.865300i 0.0515872 + 0.0374803i
\(534\) −11.3820 8.26948i −0.492546 0.357856i
\(535\) 0 0
\(536\) −2.85410 8.78402i −0.123278 0.379412i
\(537\) 9.27051 6.73542i 0.400052 0.290655i
\(538\) 22.3607 0.964037
\(539\) 20.1525 8.69827i 0.868029 0.374661i
\(540\) 0 0
\(541\) −12.7984 + 9.29856i −0.550245 + 0.399776i −0.827876 0.560911i \(-0.810451\pi\)
0.277631 + 0.960688i \(0.410451\pi\)
\(542\) −0.437694 1.34708i −0.0188006 0.0578622i
\(543\) 7.59675 23.3804i 0.326008 1.00335i
\(544\) 5.23607 + 3.80423i 0.224495 + 0.163105i
\(545\) 0 0
\(546\) 0.562306 1.73060i 0.0240645 0.0740628i
\(547\) −6.14590 18.9151i −0.262780 0.808753i −0.992197 0.124683i \(-0.960209\pi\)
0.729417 0.684069i \(-0.239791\pi\)
\(548\) −17.3262 + 12.5882i −0.740140 + 0.537743i
\(549\) 10.2229 0.436303
\(550\) 0 0
\(551\) 16.1803 0.689306
\(552\) 4.61803 3.35520i 0.196557 0.142807i
\(553\) 1.18034 + 3.63271i 0.0501932 + 0.154479i
\(554\) 0.0106431 0.0327561i 0.000452183 0.00139168i
\(555\) 0 0
\(556\) −0.263932 0.191758i −0.0111932 0.00813234i
\(557\) 3.26393 10.0453i 0.138297 0.425635i −0.857791 0.513999i \(-0.828164\pi\)
0.996088 + 0.0883634i \(0.0281637\pi\)
\(558\) −0.909830 2.80017i −0.0385162 0.118541i
\(559\) 16.3262 11.8617i 0.690526 0.501697i
\(560\) 0 0
\(561\) 17.5279 + 19.9192i 0.740027 + 0.840989i
\(562\) −9.05573 −0.381993
\(563\) 36.8885 26.8011i 1.55467 1.12953i 0.614450 0.788956i \(-0.289378\pi\)
0.940217 0.340575i \(-0.110622\pi\)
\(564\) −3.85410 11.8617i −0.162287 0.499468i
\(565\) 0 0
\(566\) −0.145898 0.106001i −0.00613255 0.00445556i
\(567\) −1.20820 0.877812i −0.0507398 0.0368646i
\(568\) 0.618034 1.90211i 0.0259321 0.0798109i
\(569\) 1.80902 + 5.56758i 0.0758379 + 0.233405i 0.981788 0.189979i \(-0.0608420\pi\)
−0.905950 + 0.423384i \(0.860842\pi\)
\(570\) 0 0
\(571\) 44.6869 1.87009 0.935045 0.354530i \(-0.115359\pi\)
0.935045 + 0.354530i \(0.115359\pi\)
\(572\) −7.70820 1.73060i −0.322296 0.0723600i
\(573\) −11.1935 −0.467615
\(574\) 0.309017 0.224514i 0.0128981 0.00937103i
\(575\) 0 0
\(576\) −0.454915 + 1.40008i −0.0189548 + 0.0583369i
\(577\) 14.1803 + 10.3026i 0.590335 + 0.428904i 0.842435 0.538797i \(-0.181121\pi\)
−0.252100 + 0.967701i \(0.581121\pi\)
\(578\) −20.1353 14.6291i −0.837516 0.608491i
\(579\) −5.05573 + 15.5599i −0.210109 + 0.646649i
\(580\) 0 0
\(581\) 5.09017 3.69822i 0.211176 0.153428i
\(582\) −11.4164 −0.473225
\(583\) 2.19098 + 23.4131i 0.0907412 + 0.969673i
\(584\) −1.52786 −0.0632235
\(585\) 0 0
\(586\) 9.22542 + 28.3929i 0.381099 + 1.17290i
\(587\) 7.47214 22.9969i 0.308408 0.949182i −0.669975 0.742383i \(-0.733695\pi\)
0.978383 0.206799i \(-0.0663046\pi\)
\(588\) 6.61803 + 4.80828i 0.272923 + 0.198290i
\(589\) −5.85410 4.25325i −0.241214 0.175252i
\(590\) 0 0
\(591\) 10.0132 + 30.8173i 0.411886 + 1.26766i
\(592\) 4.54508 3.30220i 0.186802 0.135719i
\(593\) 6.11146 0.250967 0.125484 0.992096i \(-0.459952\pi\)
0.125484 + 0.992096i \(0.459952\pi\)
\(594\) −9.34752 + 15.7719i −0.383534 + 0.647130i
\(595\) 0 0
\(596\) −17.5623 + 12.7598i −0.719380 + 0.522660i
\(597\) −2.11146 6.49839i −0.0864161 0.265962i
\(598\) 3.39919 10.4616i 0.139003 0.427808i
\(599\) 5.00000 + 3.63271i 0.204294 + 0.148429i 0.685228 0.728328i \(-0.259702\pi\)
−0.480934 + 0.876757i \(0.659702\pi\)
\(600\) 0 0
\(601\) 0.0278640 0.0857567i 0.00113660 0.00349809i −0.950487 0.310766i \(-0.899415\pi\)
0.951623 + 0.307267i \(0.0994146\pi\)
\(602\) −1.61803 4.97980i −0.0659461 0.202961i
\(603\) −11.0000 + 7.99197i −0.447955 + 0.325458i
\(604\) 13.7082 0.557779
\(605\) 0 0
\(606\) −24.3607 −0.989585
\(607\) −27.1246 + 19.7072i −1.10095 + 0.799890i −0.981215 0.192916i \(-0.938206\pi\)
−0.119739 + 0.992805i \(0.538206\pi\)
\(608\) 1.11803 + 3.44095i 0.0453423 + 0.139549i
\(609\) −1.05573 + 3.24920i −0.0427803 + 0.131664i
\(610\) 0 0
\(611\) −19.4443 14.1271i −0.786631 0.571521i
\(612\) 2.94427 9.06154i 0.119015 0.366291i
\(613\) −1.85410 5.70634i −0.0748865 0.230477i 0.906606 0.421979i \(-0.138664\pi\)
−0.981492 + 0.191502i \(0.938664\pi\)
\(614\) −12.3262 + 8.95554i −0.497446 + 0.361416i
\(615\) 0 0
\(616\) −1.04508 + 1.76336i −0.0421077 + 0.0710476i
\(617\) 9.05573 0.364570 0.182285 0.983246i \(-0.441651\pi\)
0.182285 + 0.983246i \(0.441651\pi\)
\(618\) 6.85410 4.97980i 0.275712 0.200317i
\(619\) −2.29837 7.07367i −0.0923794 0.284315i 0.894182 0.447703i \(-0.147758\pi\)
−0.986562 + 0.163388i \(0.947758\pi\)
\(620\) 0 0
\(621\) −20.6525 15.0049i −0.828755 0.602126i
\(622\) 3.38197 + 2.45714i 0.135604 + 0.0985224i
\(623\) −2.17376 + 6.69015i −0.0870899 + 0.268035i
\(624\) −0.909830 2.80017i −0.0364224 0.112096i
\(625\) 0 0
\(626\) −11.5279 −0.460746
\(627\) 1.38197 + 14.7679i 0.0551904 + 0.589772i
\(628\) −6.14590 −0.245248
\(629\) −29.4164 + 21.3723i −1.17291 + 0.852168i
\(630\) 0 0
\(631\) 8.38197 25.7970i 0.333681 1.02696i −0.633687 0.773589i \(-0.718459\pi\)
0.967368 0.253375i \(-0.0815406\pi\)
\(632\) 5.00000 + 3.63271i 0.198889 + 0.144502i
\(633\) −26.4721 19.2331i −1.05217 0.764448i
\(634\) 4.44427 13.6781i 0.176505 0.543225i
\(635\) 0 0
\(636\) −7.09017 + 5.15131i −0.281144 + 0.204263i
\(637\) 15.7639 0.624590
\(638\) 14.4721 + 3.24920i 0.572957 + 0.128637i
\(639\) −2.94427 −0.116474
\(640\) 0 0
\(641\) 9.50000 + 29.2380i 0.375227 + 1.15483i 0.943325 + 0.331870i \(0.107680\pi\)
−0.568098 + 0.822961i \(0.692320\pi\)
\(642\) −5.88854 + 18.1231i −0.232402 + 0.715261i
\(643\) −16.8541 12.2452i −0.664661 0.482904i 0.203573 0.979060i \(-0.434745\pi\)
−0.868234 + 0.496155i \(0.834745\pi\)
\(644\) −2.30902 1.67760i −0.0909880 0.0661067i
\(645\) 0 0
\(646\) −7.23607 22.2703i −0.284699 0.876214i
\(647\) 22.4721 16.3270i 0.883471 0.641879i −0.0506966 0.998714i \(-0.516144\pi\)
0.934167 + 0.356835i \(0.116144\pi\)
\(648\) −2.41641 −0.0949255
\(649\) 23.7812 + 27.0256i 0.933492 + 1.06085i
\(650\) 0 0
\(651\) 1.23607 0.898056i 0.0484453 0.0351976i
\(652\) −2.90983 8.95554i −0.113958 0.350726i
\(653\) −9.02786 + 27.7849i −0.353288 + 1.08731i 0.603708 + 0.797205i \(0.293689\pi\)
−0.956996 + 0.290102i \(0.906311\pi\)
\(654\) 5.52786 + 4.01623i 0.216157 + 0.157047i
\(655\) 0 0
\(656\) 0.190983 0.587785i 0.00745663 0.0229492i
\(657\) 0.695048 + 2.13914i 0.0271164 + 0.0834558i
\(658\) −5.04508 + 3.66547i −0.196678 + 0.142895i
\(659\) −11.3820 −0.443378 −0.221689 0.975117i \(-0.571157\pi\)
−0.221689 + 0.975117i \(0.571157\pi\)
\(660\) 0 0
\(661\) −5.88854 −0.229038 −0.114519 0.993421i \(-0.536533\pi\)
−0.114519 + 0.993421i \(0.536533\pi\)
\(662\) 4.92705 3.57971i 0.191495 0.139129i
\(663\) 5.88854 + 18.1231i 0.228692 + 0.703842i
\(664\) 3.14590 9.68208i 0.122085 0.375738i
\(665\) 0 0
\(666\) −6.69098 4.86128i −0.259270 0.188371i
\(667\) −6.38197 + 19.6417i −0.247111 + 0.760529i
\(668\) 4.11803 + 12.6740i 0.159332 + 0.490372i
\(669\) 19.0902 13.8698i 0.738069 0.536238i
\(670\) 0 0
\(671\) 21.1459 9.12705i 0.816328 0.352346i
\(672\) −0.763932 −0.0294693
\(673\) 1.76393 1.28157i 0.0679946 0.0494010i −0.553269 0.833003i \(-0.686620\pi\)
0.621263 + 0.783602i \(0.286620\pi\)
\(674\) 0.562306 + 1.73060i 0.0216592 + 0.0666602i
\(675\) 0 0
\(676\) 5.92705 + 4.30625i 0.227963 + 0.165625i
\(677\) 13.3262 + 9.68208i 0.512169 + 0.372113i 0.813646 0.581361i \(-0.197480\pi\)
−0.301477 + 0.953474i \(0.597480\pi\)
\(678\) −3.59675 + 11.0697i −0.138132 + 0.425127i
\(679\) 1.76393 + 5.42882i 0.0676935 + 0.208339i
\(680\) 0 0
\(681\) −14.8328 −0.568395
\(682\) −4.38197 4.97980i −0.167794 0.190686i
\(683\) −15.5967 −0.596793 −0.298396 0.954442i \(-0.596452\pi\)
−0.298396 + 0.954442i \(0.596452\pi\)
\(684\) 4.30902 3.13068i 0.164759 0.119705i
\(685\) 0 0
\(686\) 2.60081 8.00448i 0.0992995 0.305612i
\(687\) 7.23607 + 5.25731i 0.276073 + 0.200579i
\(688\) −6.85410 4.97980i −0.261310 0.189853i
\(689\) −5.21885 + 16.0620i −0.198822 + 0.611912i
\(690\) 0 0
\(691\) −31.6803 + 23.0171i −1.20518 + 0.875612i −0.994784 0.102005i \(-0.967474\pi\)
−0.210393 + 0.977617i \(0.567474\pi\)
\(692\) −1.85410 −0.0704824
\(693\) 2.94427 + 0.661030i 0.111844 + 0.0251105i
\(694\) −2.65248 −0.100687
\(695\) 0 0
\(696\) 1.70820 + 5.25731i 0.0647493 + 0.199278i
\(697\) −1.23607 + 3.80423i −0.0468194 + 0.144095i
\(698\) 5.85410 + 4.25325i 0.221581 + 0.160988i
\(699\) −19.1246 13.8948i −0.723359 0.525551i
\(700\) 0 0
\(701\) −8.20163 25.2420i −0.309771 0.953378i −0.977854 0.209290i \(-0.932885\pi\)
0.668082 0.744087i \(-0.267115\pi\)
\(702\) −10.6525 + 7.73948i −0.402052 + 0.292108i
\(703\) −20.3262 −0.766619
\(704\) 0.309017 + 3.30220i 0.0116465 + 0.124456i
\(705\) 0 0
\(706\) 12.9443 9.40456i 0.487164 0.353945i
\(707\) 3.76393 + 11.5842i 0.141557 + 0.435668i
\(708\) −4.14590 + 12.7598i −0.155812 + 0.479541i
\(709\) 3.61803 + 2.62866i 0.135878 + 0.0987212i 0.653648 0.756799i \(-0.273238\pi\)
−0.517770 + 0.855520i \(0.673238\pi\)
\(710\) 0 0
\(711\) 2.81153 8.65300i 0.105441 0.324513i
\(712\) 3.51722 + 10.8249i 0.131813 + 0.405680i
\(713\) 7.47214 5.42882i 0.279834 0.203311i
\(714\) 4.94427 0.185035
\(715\) 0 0
\(716\) −9.27051 −0.346455
\(717\) −7.23607 + 5.25731i −0.270236 + 0.196338i
\(718\) −10.0000 30.7768i −0.373197 1.14858i
\(719\) 6.05573 18.6376i 0.225841 0.695066i −0.772365 0.635179i \(-0.780926\pi\)
0.998205 0.0598864i \(-0.0190738\pi\)
\(720\) 0 0
\(721\) −3.42705 2.48990i −0.127630 0.0927287i
\(722\) −1.82624 + 5.62058i −0.0679655 + 0.209176i
\(723\) −1.87539 5.77185i −0.0697464 0.214657i
\(724\) −16.0902 + 11.6902i −0.597986 + 0.434463i
\(725\) 0 0
\(726\) −1.72949 + 13.4863i −0.0641874 + 0.500524i
\(727\) 31.7426 1.17727 0.588635 0.808399i \(-0.299666\pi\)
0.588635 + 0.808399i \(0.299666\pi\)
\(728\) −1.19098 + 0.865300i −0.0441408 + 0.0320701i
\(729\) 7.43363 + 22.8784i 0.275320 + 0.847347i
\(730\) 0 0
\(731\) 44.3607 + 32.2299i 1.64074 + 1.19207i
\(732\) 6.94427 + 5.04531i 0.256668 + 0.186480i
\(733\) −2.90983 + 8.95554i −0.107477 + 0.330780i −0.990304 0.138918i \(-0.955637\pi\)
0.882827 + 0.469699i \(0.155637\pi\)
\(734\) −9.23607 28.4257i −0.340909 1.04921i
\(735\) 0 0
\(736\) −4.61803 −0.170223
\(737\) −15.6180 + 26.3521i −0.575298 + 0.970691i
\(738\) −0.909830 −0.0334913
\(739\) −6.97214 + 5.06555i −0.256474 + 0.186339i −0.708591 0.705619i \(-0.750669\pi\)
0.452117 + 0.891959i \(0.350669\pi\)
\(740\) 0 0
\(741\) −3.29180 + 10.1311i −0.120927 + 0.372175i
\(742\) 3.54508 + 2.57565i 0.130144 + 0.0945553i
\(743\) 12.6803 + 9.21281i 0.465197 + 0.337985i 0.795566 0.605867i \(-0.207173\pi\)
−0.330370 + 0.943852i \(0.607173\pi\)
\(744\) 0.763932 2.35114i 0.0280071 0.0861970i
\(745\) 0 0
\(746\) −5.30902 + 3.85723i −0.194377 + 0.141223i
\(747\) −14.9868 −0.548340
\(748\) −2.00000 21.3723i −0.0731272 0.781448i
\(749\) 9.52786 0.348141
\(750\) 0 0
\(751\) −7.14590 21.9928i −0.260758 0.802529i −0.992640 0.121099i \(-0.961358\pi\)
0.731883 0.681430i \(-0.238642\pi\)
\(752\) −3.11803 + 9.59632i −0.113703 + 0.349942i
\(753\) −6.79837 4.93931i −0.247747 0.179998i
\(754\) 8.61803 + 6.26137i 0.313850 + 0.228026i
\(755\) 0 0
\(756\) 1.05573 + 3.24920i 0.0383965 + 0.118172i
\(757\) 6.25329 4.54328i 0.227280 0.165128i −0.468318 0.883560i \(-0.655140\pi\)
0.695597 + 0.718432i \(0.255140\pi\)
\(758\) 32.0344 1.16354
\(759\) −18.4721 4.14725i −0.670496 0.150536i
\(760\) 0 0
\(761\) 8.38197 6.08985i 0.303846 0.220757i −0.425405 0.905003i \(-0.639868\pi\)
0.729251 + 0.684246i \(0.239868\pi\)
\(762\) −1.09017 3.35520i −0.0394927 0.121546i
\(763\) 1.05573 3.24920i 0.0382199 0.117629i
\(764\) 7.32624 + 5.32282i 0.265054 + 0.192573i
\(765\) 0 0
\(766\) 6.86475 21.1275i 0.248033 0.763368i
\(767\) 7.98936 + 24.5887i 0.288479 + 0.887847i
\(768\) −1.00000 + 0.726543i −0.0360844 + 0.0262168i
\(769\) −37.0344 −1.33550 −0.667748 0.744387i \(-0.732742\pi\)
−0.667748 + 0.744387i \(0.732742\pi\)
\(770\) 0 0
\(771\) −25.8885 −0.932353
\(772\) 10.7082 7.77997i 0.385397 0.280007i
\(773\) 12.1910 + 37.5200i 0.438479 + 1.34950i 0.889479 + 0.456976i \(0.151068\pi\)
−0.451000 + 0.892524i \(0.648932\pi\)
\(774\) −3.85410 + 11.8617i −0.138533 + 0.426360i
\(775\) 0 0
\(776\) 7.47214 + 5.42882i 0.268234 + 0.194883i
\(777\) 1.32624 4.08174i 0.0475785 0.146432i
\(778\) 7.76393 + 23.8949i 0.278350 + 0.856675i
\(779\) −1.80902 + 1.31433i −0.0648148 + 0.0470907i
\(780\) 0 0
\(781\) −6.09017 + 2.62866i −0.217923 + 0.0940607i
\(782\) 29.8885 1.06881
\(783\) 20.0000 14.5309i 0.714742 0.519290i
\(784\) −2.04508 6.29412i −0.0730387 0.224790i
\(785\) 0 0
\(786\) 8.00000 + 5.81234i 0.285351 + 0.207319i
\(787\) −15.0902 10.9637i −0.537906 0.390812i 0.285400 0.958408i \(-0.407873\pi\)
−0.823307 + 0.567596i \(0.807873\pi\)
\(788\) 8.10081 24.9317i 0.288580 0.888156i
\(789\) −1.96556 6.04937i −0.0699757 0.215363i
\(790\) 0 0
\(791\) 5.81966 0.206923
\(792\) 4.48278 1.93487i 0.159289 0.0687526i
\(793\) 16.5410 0.587389
\(794\) 9.97214 7.24518i 0.353898 0.257122i
\(795\) 0 0
\(796\) −1.70820 + 5.25731i −0.0605457 + 0.186340i
\(797\) 4.54508 + 3.30220i 0.160995 + 0.116970i 0.665366 0.746517i \(-0.268276\pi\)
−0.504371 + 0.863487i \(0.668276\pi\)
\(798\) 2.23607 + 1.62460i 0.0791559 + 0.0575102i
\(799\) 20.1803 62.1087i 0.713929 2.19725i
\(800\) 0 0
\(801\) 13.5557 9.84881i 0.478968 0.347991i
\(802\) 0.0901699 0.00318401
\(803\) 3.34752 + 3.80423i 0.118132 + 0.134248i
\(804\) −11.4164 −0.402626
\(805\) 0 0
\(806\) −1.47214 4.53077i −0.0518538 0.159590i
\(807\) 8.54102 26.2866i 0.300658 0.925331i
\(808\) 15.9443 + 11.5842i 0.560918 + 0.407530i
\(809\) 2.07295 + 1.50609i 0.0728810 + 0.0529512i 0.623629 0.781720i \(-0.285658\pi\)
−0.550748 + 0.834671i \(0.685658\pi\)
\(810\) 0 0
\(811\) −13.0238 40.0831i −0.457327 1.40751i −0.868381 0.495898i \(-0.834839\pi\)
0.411053 0.911611i \(-0.365161\pi\)
\(812\) 2.23607 1.62460i 0.0784706 0.0570122i
\(813\) −1.75078 −0.0614024
\(814\) −18.1803 4.08174i −0.637221 0.143065i
\(815\) 0 0
\(816\) 6.47214 4.70228i 0.226570 0.164613i
\(817\) 9.47214 + 29.1522i 0.331388 + 1.01991i
\(818\) 8.02786 24.7072i 0.280688 0.863868i
\(819\) 1.75329 + 1.27384i 0.0612649 + 0.0445115i
\(820\) 0 0
\(821\) 0.819660 2.52265i 0.0286063 0.0880412i −0.935734 0.352706i \(-0.885261\pi\)
0.964340 + 0.264665i \(0.0852614\pi\)
\(822\) 8.18034 + 25.1765i 0.285322 + 0.878131i
\(823\) 5.21885 3.79171i 0.181918 0.132171i −0.493100 0.869973i \(-0.664136\pi\)
0.675017 + 0.737802i \(0.264136\pi\)
\(824\) −6.85410 −0.238774
\(825\) 0 0
\(826\) 6.70820 0.233408
\(827\) 7.14590 5.19180i 0.248487 0.180537i −0.456569 0.889688i \(-0.650922\pi\)
0.705056 + 0.709152i \(0.250922\pi\)
\(828\) 2.10081 + 6.46564i 0.0730083 + 0.224696i
\(829\) −7.88854 + 24.2784i −0.273980 + 0.843225i 0.715507 + 0.698606i \(0.246196\pi\)
−0.989487 + 0.144619i \(0.953804\pi\)
\(830\) 0 0
\(831\) −0.0344419 0.0250235i −0.00119477 0.000868055i
\(832\) −0.736068 + 2.26538i −0.0255186 + 0.0785381i
\(833\) 13.2361 + 40.7364i 0.458603 + 1.41143i
\(834\) −0.326238 + 0.237026i −0.0112967 + 0.00820753i
\(835\) 0 0
\(836\) 6.11803 10.3229i 0.211597 0.357024i
\(837\) −11.0557 −0.382142
\(838\) −29.1074 + 21.1478i −1.00550 + 0.730537i
\(839\) −2.23607 6.88191i −0.0771976 0.237590i 0.905009 0.425392i \(-0.139864\pi\)
−0.982207 + 0.187802i \(0.939864\pi\)
\(840\) 0 0
\(841\) 7.28115 + 5.29007i 0.251074 + 0.182416i
\(842\) −1.61803 1.17557i −0.0557611 0.0405128i
\(843\) −3.45898 + 10.6456i −0.119134 + 0.366656i
\(844\) 8.18034 + 25.1765i 0.281579 + 0.866611i
\(845\) 0 0
\(846\) 14.8541 0.510695
\(847\) 6.68034 1.26133i 0.229539 0.0433397i
\(848\) 7.09017 0.243477
\(849\) −0.180340 + 0.131025i −0.00618925 + 0.00449675i
\(850\) 0 0
\(851\) 8.01722 24.6745i 0.274827 0.845830i
\(852\) −2.00000 1.45309i −0.0685189 0.0497819i
\(853\) 4.26393 + 3.09793i 0.145994 + 0.106071i 0.658385 0.752682i \(-0.271240\pi\)
−0.512391 + 0.858753i \(0.671240\pi\)
\(854\) 1.32624 4.08174i 0.0453829 0.139674i
\(855\) 0 0
\(856\) 12.4721 9.06154i 0.426289 0.309717i
\(857\) −8.18034 −0.279435 −0.139718 0.990191i \(-0.544619\pi\)
−0.139718 + 0.990191i \(0.544619\pi\)
\(858\) −4.97871 + 8.40051i −0.169970 + 0.286789i
\(859\) 8.61803 0.294044 0.147022 0.989133i \(-0.453031\pi\)
0.147022 + 0.989133i \(0.453031\pi\)
\(860\) 0 0
\(861\) −0.145898 0.449028i −0.00497219 0.0153028i
\(862\) 8.70820 26.8011i 0.296603 0.912849i
\(863\) 18.6353 + 13.5393i 0.634351 + 0.460883i 0.857905 0.513808i \(-0.171766\pi\)
−0.223554 + 0.974692i \(0.571766\pi\)
\(864\) 4.47214 + 3.24920i 0.152145 + 0.110540i
\(865\) 0 0
\(866\) 2.29180 + 7.05342i 0.0778784 + 0.239685i
\(867\) −24.8885 + 18.0826i −0.845259 + 0.614117i
\(868\) −1.23607 −0.0419549
\(869\) −1.90983 20.4087i −0.0647865 0.692318i
\(870\) 0 0
\(871\) −17.7984 + 12.9313i −0.603075 + 0.438160i
\(872\) −1.70820 5.25731i −0.0578471 0.178035i
\(873\) 4.20163 12.9313i 0.142203 0.437657i
\(874\) 13.5172 + 9.82084i 0.457227 + 0.332195i
\(875\) 0 0
\(876\) −0.583592 + 1.79611i −0.0197178 + 0.0606850i
\(877\) 16.0279 + 49.3287i 0.541223 + 1.66571i 0.729806 + 0.683654i \(0.239610\pi\)
−0.188583 + 0.982057i \(0.560390\pi\)
\(878\) 5.00000 3.63271i 0.168742 0.122598i
\(879\) 36.9017 1.24466
\(880\) 0 0
\(881\) 6.79837 0.229043 0.114522 0.993421i \(-0.463467\pi\)
0.114522 + 0.993421i \(0.463467\pi\)
\(882\) −7.88197 + 5.72658i −0.265400 + 0.192824i
\(883\) −4.41641 13.5923i −0.148624 0.457418i 0.848835 0.528657i \(-0.177304\pi\)
−0.997459 + 0.0712400i \(0.977304\pi\)
\(884\) 4.76393 14.6619i 0.160228 0.493132i
\(885\) 0 0
\(886\) −0.145898 0.106001i −0.00490154 0.00356118i
\(887\) −12.1008 + 37.2425i −0.406306 + 1.25048i 0.513495 + 0.858093i \(0.328351\pi\)
−0.919800 + 0.392387i \(0.871649\pi\)
\(888\) −2.14590 6.60440i −0.0720116 0.221629i
\(889\) −1.42705 + 1.03681i −0.0478618 + 0.0347736i
\(890\) 0 0
\(891\) 5.29431 + 6.01661i 0.177366 + 0.201564i
\(892\) −19.0902 −0.639186
\(893\) 29.5344 21.4580i 0.988332 0.718066i
\(894\) 8.29180 + 25.5195i 0.277319 + 0.853501i
\(895\) 0 0
\(896\) 0.500000 + 0.363271i 0.0167038 + 0.0121360i
\(897\) −11.0000 7.99197i −0.367279 0.266844i
\(898\) −6.44427 + 19.8334i −0.215048 + 0.661850i
\(899\) 2.76393 + 8.50651i 0.0921823 + 0.283708i
\(900\) 0 0
\(901\) −45.8885 −1.52877
\(902\) −1.88197 + 0.812299i −0.0626626 + 0.0270466i
\(903\) −6.47214 −0.215379
\(904\) 7.61803 5.53483i 0.253372 0.184086i
\(905\) 0 0
\(906\) 5.23607 16.1150i 0.173957 0.535384i
\(907\) 23.8541 + 17.3310i 0.792062 + 0.575467i 0.908575 0.417722i \(-0.137171\pi\)
−0.116512 + 0.993189i \(0.537171\pi\)
\(908\) 9.70820 + 7.05342i 0.322178 + 0.234076i
\(909\) 8.96556 27.5932i 0.297369 0.915207i
\(910\) 0 0
\(911\) 19.5623 14.2128i 0.648128 0.470893i −0.214505 0.976723i \(-0.568814\pi\)
0.862633 + 0.505830i \(0.168814\pi\)
\(912\) 4.47214 0.148087
\(913\) −31.0000 + 13.3803i −1.02595 + 0.442823i
\(914\) −8.18034 −0.270582
\(915\) 0 0
\(916\) −2.23607 6.88191i −0.0738818 0.227385i
\(917\) 1.52786 4.70228i 0.0504545 0.155283i
\(918\) −28.9443 21.0292i −0.955303 0.694068i
\(919\) −8.09017 5.87785i −0.266870 0.193892i 0.446300 0.894883i \(-0.352741\pi\)
−0.713170 + 0.700991i \(0.752741\pi\)
\(920\) 0 0
\(921\) 5.81966 + 17.9111i 0.191764 + 0.590190i
\(922\) 7.85410 5.70634i 0.258661 0.187928i
\(923\) −4.76393 −0.156807
\(924\) 1.67376 + 1.90211i 0.0550627 + 0.0625749i
\(925\) 0 0
\(926\) 1.07295 0.779543i 0.0352593 0.0256174i
\(927\) 3.11803 + 9.59632i 0.102410 + 0.315185i
\(928\) 1.38197 4.25325i 0.0453653 0.139620i
\(929\) 5.26393 + 3.82447i 0.172704 + 0.125477i 0.670779 0.741657i \(-0.265960\pi\)
−0.498075 + 0.867134i \(0.665960\pi\)
\(930\) 0 0
\(931\) −7.39919 + 22.7724i −0.242499 + 0.746334i
\(932\) 5.90983 + 18.1886i 0.193583 + 0.595787i
\(933\) 4.18034 3.03719i 0.136858 0.0994333i
\(934\) 18.6525 0.610328
\(935\) 0 0
\(936\) 3.50658 0.114616
\(937\) 43.1246 31.3319i 1.40882 1.02357i 0.415327 0.909672i \(-0.363667\pi\)
0.993493 0.113895i \(-0.0363328\pi\)
\(938\) 1.76393 + 5.42882i 0.0575944 + 0.177257i
\(939\) −4.40325 + 13.5518i −0.143695 + 0.442247i
\(940\) 0 0
\(941\) −16.0902 11.6902i −0.524525 0.381089i 0.293781 0.955873i \(-0.405086\pi\)
−0.818306 + 0.574783i \(0.805086\pi\)
\(942\) −2.34752 + 7.22494i −0.0764865 + 0.235401i
\(943\) −0.881966 2.71441i −0.0287208 0.0883934i
\(944\) 8.78115 6.37988i 0.285802 0.207647i
\(945\) 0 0
\(946\) 2.61803 + 27.9767i 0.0851196 + 0.909600i
\(947\) 28.0000 0.909878 0.454939 0.890523i \(-0.349661\pi\)
0.454939 + 0.890523i \(0.349661\pi\)
\(948\) 6.18034 4.49028i 0.200728 0.145838i
\(949\) 1.12461 + 3.46120i 0.0365064 + 0.112355i
\(950\) 0 0
\(951\) −14.3820 10.4491i −0.466367 0.338836i
\(952\) −3.23607 2.35114i −0.104882 0.0762009i
\(953\) 2.09017 6.43288i 0.0677072 0.208381i −0.911478 0.411348i \(-0.865058\pi\)
0.979186 + 0.202966i \(0.0650582\pi\)
\(954\) −3.22542 9.92684i −0.104427 0.321393i
\(955\) 0 0
\(956\) 7.23607 0.234031
\(957\) 9.34752 15.7719i 0.302163 0.509834i
\(958\) −27.2361 −0.879957
\(959\) 10.7082 7.77997i 0.345786 0.251228i
\(960\) 0 0
\(961\) −8.34346 + 25.6785i −0.269144 + 0.828340i
\(962\) −10.8262 7.86572i −0.349052 0.253601i
\(963\) −18.3607 13.3398i −0.591665 0.429870i
\(964\) −1.51722 + 4.66953i −0.0488664 + 0.150395i
\(965\) 0 0
\(966\) −2.85410 + 2.07363i −0.0918292 + 0.0667178i
\(967\) −44.5623 −1.43303 −0.716514 0.697573i \(-0.754263\pi\)
−0.716514 + 0.697573i \(0.754263\pi\)
\(968\) 7.54508 8.00448i 0.242508 0.257274i
\(969\) −28.9443 −0.929824
\(970\) 0 0
\(971\) −10.8647 33.4382i −0.348666 1.07308i −0.959592 0.281396i \(-0.909202\pi\)
0.610925 0.791688i \(-0.290798\pi\)
\(972\) 4.20163 12.9313i 0.134767 0.414771i
\(973\) 0.163119 + 0.118513i 0.00522935 + 0.00379935i
\(974\) 33.1246 + 24.0664i 1.06138 + 0.771138i
\(975\) 0 0
\(976\) −2.14590 6.60440i −0.0686885 0.211402i
\(977\) 7.14590 5.19180i 0.228618 0.166100i −0.467580 0.883951i \(-0.654874\pi\)
0.696197 + 0.717851i \(0.254874\pi\)
\(978\) −11.6393 −0.372184
\(979\) 19.2467 32.4747i 0.615128 1.03790i
\(980\) 0 0
\(981\) −6.58359 + 4.78326i −0.210198 + 0.152718i
\(982\) 8.11803 + 24.9847i 0.259057 + 0.797295i
\(983\) 6.86475 21.1275i 0.218951 0.673863i −0.779898 0.625907i \(-0.784729\pi\)
0.998849 0.0479565i \(-0.0152709\pi\)
\(984\) −0.618034 0.449028i −0.0197022 0.0143145i
\(985\) 0 0
\(986\) −8.94427 + 27.5276i −0.284844 + 0.876659i
\(987\) 2.38197 + 7.33094i 0.0758188 + 0.233346i
\(988\) 6.97214 5.06555i 0.221813 0.161157i
\(989\) −39.1246 −1.24409
\(990\) 0 0
\(991\) 35.8197 1.13785 0.568925 0.822390i \(-0.307360\pi\)
0.568925 + 0.822390i \(0.307360\pi\)
\(992\) −1.61803 + 1.17557i −0.0513726 + 0.0373244i
\(993\) −2.32624 7.15942i −0.0738209 0.227197i
\(994\) −0.381966 + 1.17557i −0.0121152 + 0.0372868i
\(995\) 0 0
\(996\) −10.1803 7.39645i −0.322576 0.234365i
\(997\) 8.32624 25.6255i 0.263695 0.811569i −0.728297 0.685262i \(-0.759688\pi\)
0.991991 0.126307i \(-0.0403123\pi\)
\(998\) −0.100813 0.310271i −0.00319118 0.00982145i
\(999\) −25.1246 + 18.2541i −0.794908 + 0.577534i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 550.2.h.d.201.1 4
5.2 odd 4 110.2.j.a.69.1 yes 8
5.3 odd 4 110.2.j.a.69.2 yes 8
5.4 even 2 550.2.h.e.201.1 4
11.2 odd 10 6050.2.a.bv.1.2 2
11.4 even 5 inner 550.2.h.d.301.1 4
11.9 even 5 6050.2.a.cl.1.2 2
15.2 even 4 990.2.ba.b.289.2 8
15.8 even 4 990.2.ba.b.289.1 8
20.3 even 4 880.2.cd.a.289.2 8
20.7 even 4 880.2.cd.a.289.1 8
55.2 even 20 1210.2.b.g.969.1 4
55.4 even 10 550.2.h.e.301.1 4
55.9 even 10 6050.2.a.ce.1.1 2
55.13 even 20 1210.2.b.g.969.4 4
55.24 odd 10 6050.2.a.ct.1.1 2
55.37 odd 20 110.2.j.a.59.2 yes 8
55.42 odd 20 1210.2.b.f.969.3 4
55.48 odd 20 110.2.j.a.59.1 8
55.53 odd 20 1210.2.b.f.969.2 4
165.92 even 20 990.2.ba.b.829.1 8
165.158 even 20 990.2.ba.b.829.2 8
220.103 even 20 880.2.cd.a.609.1 8
220.147 even 20 880.2.cd.a.609.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
110.2.j.a.59.1 8 55.48 odd 20
110.2.j.a.59.2 yes 8 55.37 odd 20
110.2.j.a.69.1 yes 8 5.2 odd 4
110.2.j.a.69.2 yes 8 5.3 odd 4
550.2.h.d.201.1 4 1.1 even 1 trivial
550.2.h.d.301.1 4 11.4 even 5 inner
550.2.h.e.201.1 4 5.4 even 2
550.2.h.e.301.1 4 55.4 even 10
880.2.cd.a.289.1 8 20.7 even 4
880.2.cd.a.289.2 8 20.3 even 4
880.2.cd.a.609.1 8 220.103 even 20
880.2.cd.a.609.2 8 220.147 even 20
990.2.ba.b.289.1 8 15.8 even 4
990.2.ba.b.289.2 8 15.2 even 4
990.2.ba.b.829.1 8 165.92 even 20
990.2.ba.b.829.2 8 165.158 even 20
1210.2.b.f.969.2 4 55.53 odd 20
1210.2.b.f.969.3 4 55.42 odd 20
1210.2.b.g.969.1 4 55.2 even 20
1210.2.b.g.969.4 4 55.13 even 20
6050.2.a.bv.1.2 2 11.2 odd 10
6050.2.a.ce.1.1 2 55.9 even 10
6050.2.a.cl.1.2 2 11.9 even 5
6050.2.a.ct.1.1 2 55.24 odd 10