Properties

Label 6050.2.a.ce.1.1
Level $6050$
Weight $2$
Character 6050.1
Self dual yes
Analytic conductor $48.309$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6050,2,Mod(1,6050)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6050, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6050.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6050 = 2 \cdot 5^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6050.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2,2,2,0,-2,-1,-2,6,0,0,2,7,1,0,2,4,-6,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.3094932229\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 110)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 6050.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -1.23607 q^{3} +1.00000 q^{4} +1.23607 q^{6} +0.618034 q^{7} -1.00000 q^{8} -1.47214 q^{9} -1.23607 q^{12} +2.38197 q^{13} -0.618034 q^{14} +1.00000 q^{16} +6.47214 q^{17} +1.47214 q^{18} +3.61803 q^{19} -0.763932 q^{21} +4.61803 q^{23} +1.23607 q^{24} -2.38197 q^{26} +5.52786 q^{27} +0.618034 q^{28} +4.47214 q^{29} +2.00000 q^{31} -1.00000 q^{32} -6.47214 q^{34} -1.47214 q^{36} +5.61803 q^{37} -3.61803 q^{38} -2.94427 q^{39} +0.618034 q^{41} +0.763932 q^{42} -8.47214 q^{43} -4.61803 q^{46} +10.0902 q^{47} -1.23607 q^{48} -6.61803 q^{49} -8.00000 q^{51} +2.38197 q^{52} -7.09017 q^{53} -5.52786 q^{54} -0.618034 q^{56} -4.47214 q^{57} -4.47214 q^{58} -10.8541 q^{59} -6.94427 q^{61} -2.00000 q^{62} -0.909830 q^{63} +1.00000 q^{64} +9.23607 q^{67} +6.47214 q^{68} -5.70820 q^{69} +2.00000 q^{71} +1.47214 q^{72} +1.52786 q^{73} -5.61803 q^{74} +3.61803 q^{76} +2.94427 q^{78} -6.18034 q^{79} -2.41641 q^{81} -0.618034 q^{82} -10.1803 q^{83} -0.763932 q^{84} +8.47214 q^{86} -5.52786 q^{87} +11.3820 q^{89} +1.47214 q^{91} +4.61803 q^{92} -2.47214 q^{93} -10.0902 q^{94} +1.23607 q^{96} +9.23607 q^{97} +6.61803 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{3} + 2 q^{4} - 2 q^{6} - q^{7} - 2 q^{8} + 6 q^{9} + 2 q^{12} + 7 q^{13} + q^{14} + 2 q^{16} + 4 q^{17} - 6 q^{18} + 5 q^{19} - 6 q^{21} + 7 q^{23} - 2 q^{24} - 7 q^{26} + 20 q^{27}+ \cdots + 11 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −1.23607 −0.713644 −0.356822 0.934172i \(-0.616140\pi\)
−0.356822 + 0.934172i \(0.616140\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 1.23607 0.504623
\(7\) 0.618034 0.233595 0.116797 0.993156i \(-0.462737\pi\)
0.116797 + 0.993156i \(0.462737\pi\)
\(8\) −1.00000 −0.353553
\(9\) −1.47214 −0.490712
\(10\) 0 0
\(11\) 0 0
\(12\) −1.23607 −0.356822
\(13\) 2.38197 0.660639 0.330319 0.943869i \(-0.392844\pi\)
0.330319 + 0.943869i \(0.392844\pi\)
\(14\) −0.618034 −0.165177
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 6.47214 1.56972 0.784862 0.619671i \(-0.212734\pi\)
0.784862 + 0.619671i \(0.212734\pi\)
\(18\) 1.47214 0.346986
\(19\) 3.61803 0.830034 0.415017 0.909814i \(-0.363776\pi\)
0.415017 + 0.909814i \(0.363776\pi\)
\(20\) 0 0
\(21\) −0.763932 −0.166704
\(22\) 0 0
\(23\) 4.61803 0.962927 0.481463 0.876466i \(-0.340105\pi\)
0.481463 + 0.876466i \(0.340105\pi\)
\(24\) 1.23607 0.252311
\(25\) 0 0
\(26\) −2.38197 −0.467142
\(27\) 5.52786 1.06384
\(28\) 0.618034 0.116797
\(29\) 4.47214 0.830455 0.415227 0.909718i \(-0.363702\pi\)
0.415227 + 0.909718i \(0.363702\pi\)
\(30\) 0 0
\(31\) 2.00000 0.359211 0.179605 0.983739i \(-0.442518\pi\)
0.179605 + 0.983739i \(0.442518\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) −6.47214 −1.10996
\(35\) 0 0
\(36\) −1.47214 −0.245356
\(37\) 5.61803 0.923599 0.461800 0.886984i \(-0.347204\pi\)
0.461800 + 0.886984i \(0.347204\pi\)
\(38\) −3.61803 −0.586923
\(39\) −2.94427 −0.471461
\(40\) 0 0
\(41\) 0.618034 0.0965207 0.0482603 0.998835i \(-0.484632\pi\)
0.0482603 + 0.998835i \(0.484632\pi\)
\(42\) 0.763932 0.117877
\(43\) −8.47214 −1.29199 −0.645994 0.763342i \(-0.723557\pi\)
−0.645994 + 0.763342i \(0.723557\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −4.61803 −0.680892
\(47\) 10.0902 1.47180 0.735901 0.677089i \(-0.236759\pi\)
0.735901 + 0.677089i \(0.236759\pi\)
\(48\) −1.23607 −0.178411
\(49\) −6.61803 −0.945433
\(50\) 0 0
\(51\) −8.00000 −1.12022
\(52\) 2.38197 0.330319
\(53\) −7.09017 −0.973910 −0.486955 0.873427i \(-0.661892\pi\)
−0.486955 + 0.873427i \(0.661892\pi\)
\(54\) −5.52786 −0.752247
\(55\) 0 0
\(56\) −0.618034 −0.0825883
\(57\) −4.47214 −0.592349
\(58\) −4.47214 −0.587220
\(59\) −10.8541 −1.41308 −0.706542 0.707671i \(-0.749746\pi\)
−0.706542 + 0.707671i \(0.749746\pi\)
\(60\) 0 0
\(61\) −6.94427 −0.889123 −0.444561 0.895748i \(-0.646640\pi\)
−0.444561 + 0.895748i \(0.646640\pi\)
\(62\) −2.00000 −0.254000
\(63\) −0.909830 −0.114628
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 9.23607 1.12837 0.564183 0.825650i \(-0.309191\pi\)
0.564183 + 0.825650i \(0.309191\pi\)
\(68\) 6.47214 0.784862
\(69\) −5.70820 −0.687187
\(70\) 0 0
\(71\) 2.00000 0.237356 0.118678 0.992933i \(-0.462134\pi\)
0.118678 + 0.992933i \(0.462134\pi\)
\(72\) 1.47214 0.173493
\(73\) 1.52786 0.178823 0.0894115 0.995995i \(-0.471501\pi\)
0.0894115 + 0.995995i \(0.471501\pi\)
\(74\) −5.61803 −0.653083
\(75\) 0 0
\(76\) 3.61803 0.415017
\(77\) 0 0
\(78\) 2.94427 0.333373
\(79\) −6.18034 −0.695343 −0.347671 0.937616i \(-0.613027\pi\)
−0.347671 + 0.937616i \(0.613027\pi\)
\(80\) 0 0
\(81\) −2.41641 −0.268490
\(82\) −0.618034 −0.0682504
\(83\) −10.1803 −1.11744 −0.558719 0.829357i \(-0.688707\pi\)
−0.558719 + 0.829357i \(0.688707\pi\)
\(84\) −0.763932 −0.0833518
\(85\) 0 0
\(86\) 8.47214 0.913574
\(87\) −5.52786 −0.592649
\(88\) 0 0
\(89\) 11.3820 1.20649 0.603243 0.797557i \(-0.293875\pi\)
0.603243 + 0.797557i \(0.293875\pi\)
\(90\) 0 0
\(91\) 1.47214 0.154322
\(92\) 4.61803 0.481463
\(93\) −2.47214 −0.256349
\(94\) −10.0902 −1.04072
\(95\) 0 0
\(96\) 1.23607 0.126156
\(97\) 9.23607 0.937781 0.468890 0.883256i \(-0.344654\pi\)
0.468890 + 0.883256i \(0.344654\pi\)
\(98\) 6.61803 0.668522
\(99\) 0 0
\(100\) 0 0
\(101\) −19.7082 −1.96104 −0.980520 0.196420i \(-0.937068\pi\)
−0.980520 + 0.196420i \(0.937068\pi\)
\(102\) 8.00000 0.792118
\(103\) 6.85410 0.675355 0.337677 0.941262i \(-0.390359\pi\)
0.337677 + 0.941262i \(0.390359\pi\)
\(104\) −2.38197 −0.233571
\(105\) 0 0
\(106\) 7.09017 0.688658
\(107\) 15.4164 1.49036 0.745180 0.666863i \(-0.232363\pi\)
0.745180 + 0.666863i \(0.232363\pi\)
\(108\) 5.52786 0.531919
\(109\) −5.52786 −0.529473 −0.264737 0.964321i \(-0.585285\pi\)
−0.264737 + 0.964321i \(0.585285\pi\)
\(110\) 0 0
\(111\) −6.94427 −0.659121
\(112\) 0.618034 0.0583987
\(113\) 9.41641 0.885821 0.442911 0.896566i \(-0.353946\pi\)
0.442911 + 0.896566i \(0.353946\pi\)
\(114\) 4.47214 0.418854
\(115\) 0 0
\(116\) 4.47214 0.415227
\(117\) −3.50658 −0.324183
\(118\) 10.8541 0.999201
\(119\) 4.00000 0.366679
\(120\) 0 0
\(121\) 0 0
\(122\) 6.94427 0.628705
\(123\) −0.763932 −0.0688814
\(124\) 2.00000 0.179605
\(125\) 0 0
\(126\) 0.909830 0.0810541
\(127\) 2.85410 0.253261 0.126630 0.991950i \(-0.459584\pi\)
0.126630 + 0.991950i \(0.459584\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 10.4721 0.922020
\(130\) 0 0
\(131\) −8.00000 −0.698963 −0.349482 0.936943i \(-0.613642\pi\)
−0.349482 + 0.936943i \(0.613642\pi\)
\(132\) 0 0
\(133\) 2.23607 0.193892
\(134\) −9.23607 −0.797875
\(135\) 0 0
\(136\) −6.47214 −0.554981
\(137\) −21.4164 −1.82973 −0.914864 0.403763i \(-0.867702\pi\)
−0.914864 + 0.403763i \(0.867702\pi\)
\(138\) 5.70820 0.485915
\(139\) 0.326238 0.0276711 0.0138356 0.999904i \(-0.495596\pi\)
0.0138356 + 0.999904i \(0.495596\pi\)
\(140\) 0 0
\(141\) −12.4721 −1.05034
\(142\) −2.00000 −0.167836
\(143\) 0 0
\(144\) −1.47214 −0.122678
\(145\) 0 0
\(146\) −1.52786 −0.126447
\(147\) 8.18034 0.674703
\(148\) 5.61803 0.461800
\(149\) 21.7082 1.77841 0.889203 0.457513i \(-0.151260\pi\)
0.889203 + 0.457513i \(0.151260\pi\)
\(150\) 0 0
\(151\) 13.7082 1.11556 0.557779 0.829990i \(-0.311654\pi\)
0.557779 + 0.829990i \(0.311654\pi\)
\(152\) −3.61803 −0.293461
\(153\) −9.52786 −0.770282
\(154\) 0 0
\(155\) 0 0
\(156\) −2.94427 −0.235730
\(157\) 6.14590 0.490496 0.245248 0.969460i \(-0.421131\pi\)
0.245248 + 0.969460i \(0.421131\pi\)
\(158\) 6.18034 0.491681
\(159\) 8.76393 0.695025
\(160\) 0 0
\(161\) 2.85410 0.224935
\(162\) 2.41641 0.189851
\(163\) 9.41641 0.737550 0.368775 0.929519i \(-0.379777\pi\)
0.368775 + 0.929519i \(0.379777\pi\)
\(164\) 0.618034 0.0482603
\(165\) 0 0
\(166\) 10.1803 0.790148
\(167\) −13.3262 −1.03122 −0.515608 0.856825i \(-0.672434\pi\)
−0.515608 + 0.856825i \(0.672434\pi\)
\(168\) 0.763932 0.0589386
\(169\) −7.32624 −0.563557
\(170\) 0 0
\(171\) −5.32624 −0.407308
\(172\) −8.47214 −0.645994
\(173\) 1.85410 0.140965 0.0704824 0.997513i \(-0.477546\pi\)
0.0704824 + 0.997513i \(0.477546\pi\)
\(174\) 5.52786 0.419066
\(175\) 0 0
\(176\) 0 0
\(177\) 13.4164 1.00844
\(178\) −11.3820 −0.853114
\(179\) −9.27051 −0.692910 −0.346455 0.938067i \(-0.612615\pi\)
−0.346455 + 0.938067i \(0.612615\pi\)
\(180\) 0 0
\(181\) 19.8885 1.47830 0.739152 0.673539i \(-0.235227\pi\)
0.739152 + 0.673539i \(0.235227\pi\)
\(182\) −1.47214 −0.109122
\(183\) 8.58359 0.634517
\(184\) −4.61803 −0.340446
\(185\) 0 0
\(186\) 2.47214 0.181266
\(187\) 0 0
\(188\) 10.0902 0.735901
\(189\) 3.41641 0.248507
\(190\) 0 0
\(191\) −9.05573 −0.655249 −0.327625 0.944808i \(-0.606248\pi\)
−0.327625 + 0.944808i \(0.606248\pi\)
\(192\) −1.23607 −0.0892055
\(193\) 13.2361 0.952753 0.476377 0.879241i \(-0.341950\pi\)
0.476377 + 0.879241i \(0.341950\pi\)
\(194\) −9.23607 −0.663111
\(195\) 0 0
\(196\) −6.61803 −0.472717
\(197\) −26.2148 −1.86773 −0.933863 0.357631i \(-0.883585\pi\)
−0.933863 + 0.357631i \(0.883585\pi\)
\(198\) 0 0
\(199\) −5.52786 −0.391860 −0.195930 0.980618i \(-0.562773\pi\)
−0.195930 + 0.980618i \(0.562773\pi\)
\(200\) 0 0
\(201\) −11.4164 −0.805251
\(202\) 19.7082 1.38666
\(203\) 2.76393 0.193990
\(204\) −8.00000 −0.560112
\(205\) 0 0
\(206\) −6.85410 −0.477548
\(207\) −6.79837 −0.472520
\(208\) 2.38197 0.165160
\(209\) 0 0
\(210\) 0 0
\(211\) 26.4721 1.82242 0.911208 0.411945i \(-0.135151\pi\)
0.911208 + 0.411945i \(0.135151\pi\)
\(212\) −7.09017 −0.486955
\(213\) −2.47214 −0.169388
\(214\) −15.4164 −1.05384
\(215\) 0 0
\(216\) −5.52786 −0.376124
\(217\) 1.23607 0.0839098
\(218\) 5.52786 0.374394
\(219\) −1.88854 −0.127616
\(220\) 0 0
\(221\) 15.4164 1.03702
\(222\) 6.94427 0.466069
\(223\) 19.0902 1.27837 0.639186 0.769052i \(-0.279271\pi\)
0.639186 + 0.769052i \(0.279271\pi\)
\(224\) −0.618034 −0.0412941
\(225\) 0 0
\(226\) −9.41641 −0.626370
\(227\) 12.0000 0.796468 0.398234 0.917284i \(-0.369623\pi\)
0.398234 + 0.917284i \(0.369623\pi\)
\(228\) −4.47214 −0.296174
\(229\) −7.23607 −0.478173 −0.239086 0.970998i \(-0.576848\pi\)
−0.239086 + 0.970998i \(0.576848\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −4.47214 −0.293610
\(233\) −19.1246 −1.25289 −0.626447 0.779464i \(-0.715492\pi\)
−0.626447 + 0.779464i \(0.715492\pi\)
\(234\) 3.50658 0.229232
\(235\) 0 0
\(236\) −10.8541 −0.706542
\(237\) 7.63932 0.496227
\(238\) −4.00000 −0.259281
\(239\) 7.23607 0.468062 0.234031 0.972229i \(-0.424808\pi\)
0.234031 + 0.972229i \(0.424808\pi\)
\(240\) 0 0
\(241\) −4.90983 −0.316270 −0.158135 0.987418i \(-0.550548\pi\)
−0.158135 + 0.987418i \(0.550548\pi\)
\(242\) 0 0
\(243\) −13.5967 −0.872232
\(244\) −6.94427 −0.444561
\(245\) 0 0
\(246\) 0.763932 0.0487065
\(247\) 8.61803 0.548352
\(248\) −2.00000 −0.127000
\(249\) 12.5836 0.797453
\(250\) 0 0
\(251\) 6.79837 0.429110 0.214555 0.976712i \(-0.431170\pi\)
0.214555 + 0.976712i \(0.431170\pi\)
\(252\) −0.909830 −0.0573139
\(253\) 0 0
\(254\) −2.85410 −0.179082
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 20.9443 1.30647 0.653234 0.757156i \(-0.273412\pi\)
0.653234 + 0.757156i \(0.273412\pi\)
\(258\) −10.4721 −0.651967
\(259\) 3.47214 0.215748
\(260\) 0 0
\(261\) −6.58359 −0.407514
\(262\) 8.00000 0.494242
\(263\) 5.14590 0.317310 0.158655 0.987334i \(-0.449284\pi\)
0.158655 + 0.987334i \(0.449284\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −2.23607 −0.137102
\(267\) −14.0689 −0.861002
\(268\) 9.23607 0.564183
\(269\) 22.3607 1.36335 0.681677 0.731653i \(-0.261251\pi\)
0.681677 + 0.731653i \(0.261251\pi\)
\(270\) 0 0
\(271\) −1.41641 −0.0860407 −0.0430203 0.999074i \(-0.513698\pi\)
−0.0430203 + 0.999074i \(0.513698\pi\)
\(272\) 6.47214 0.392431
\(273\) −1.81966 −0.110131
\(274\) 21.4164 1.29381
\(275\) 0 0
\(276\) −5.70820 −0.343594
\(277\) −0.0344419 −0.00206941 −0.00103471 0.999999i \(-0.500329\pi\)
−0.00103471 + 0.999999i \(0.500329\pi\)
\(278\) −0.326238 −0.0195665
\(279\) −2.94427 −0.176269
\(280\) 0 0
\(281\) −9.05573 −0.540219 −0.270110 0.962830i \(-0.587060\pi\)
−0.270110 + 0.962830i \(0.587060\pi\)
\(282\) 12.4721 0.742705
\(283\) −0.180340 −0.0107201 −0.00536005 0.999986i \(-0.501706\pi\)
−0.00536005 + 0.999986i \(0.501706\pi\)
\(284\) 2.00000 0.118678
\(285\) 0 0
\(286\) 0 0
\(287\) 0.381966 0.0225467
\(288\) 1.47214 0.0867464
\(289\) 24.8885 1.46403
\(290\) 0 0
\(291\) −11.4164 −0.669242
\(292\) 1.52786 0.0894115
\(293\) −29.8541 −1.74410 −0.872048 0.489421i \(-0.837208\pi\)
−0.872048 + 0.489421i \(0.837208\pi\)
\(294\) −8.18034 −0.477087
\(295\) 0 0
\(296\) −5.61803 −0.326542
\(297\) 0 0
\(298\) −21.7082 −1.25752
\(299\) 11.0000 0.636146
\(300\) 0 0
\(301\) −5.23607 −0.301802
\(302\) −13.7082 −0.788818
\(303\) 24.3607 1.39948
\(304\) 3.61803 0.207508
\(305\) 0 0
\(306\) 9.52786 0.544672
\(307\) −15.2361 −0.869568 −0.434784 0.900535i \(-0.643175\pi\)
−0.434784 + 0.900535i \(0.643175\pi\)
\(308\) 0 0
\(309\) −8.47214 −0.481963
\(310\) 0 0
\(311\) −4.18034 −0.237045 −0.118523 0.992951i \(-0.537816\pi\)
−0.118523 + 0.992951i \(0.537816\pi\)
\(312\) 2.94427 0.166687
\(313\) 11.5279 0.651593 0.325797 0.945440i \(-0.394368\pi\)
0.325797 + 0.945440i \(0.394368\pi\)
\(314\) −6.14590 −0.346833
\(315\) 0 0
\(316\) −6.18034 −0.347671
\(317\) −14.3820 −0.807772 −0.403886 0.914809i \(-0.632341\pi\)
−0.403886 + 0.914809i \(0.632341\pi\)
\(318\) −8.76393 −0.491457
\(319\) 0 0
\(320\) 0 0
\(321\) −19.0557 −1.06359
\(322\) −2.85410 −0.159053
\(323\) 23.4164 1.30292
\(324\) −2.41641 −0.134245
\(325\) 0 0
\(326\) −9.41641 −0.521527
\(327\) 6.83282 0.377856
\(328\) −0.618034 −0.0341252
\(329\) 6.23607 0.343806
\(330\) 0 0
\(331\) −6.09017 −0.334746 −0.167373 0.985894i \(-0.553528\pi\)
−0.167373 + 0.985894i \(0.553528\pi\)
\(332\) −10.1803 −0.558719
\(333\) −8.27051 −0.453221
\(334\) 13.3262 0.729179
\(335\) 0 0
\(336\) −0.763932 −0.0416759
\(337\) −1.81966 −0.0991232 −0.0495616 0.998771i \(-0.515782\pi\)
−0.0495616 + 0.998771i \(0.515782\pi\)
\(338\) 7.32624 0.398495
\(339\) −11.6393 −0.632161
\(340\) 0 0
\(341\) 0 0
\(342\) 5.32624 0.288010
\(343\) −8.41641 −0.454443
\(344\) 8.47214 0.456787
\(345\) 0 0
\(346\) −1.85410 −0.0996771
\(347\) 2.65248 0.142392 0.0711962 0.997462i \(-0.477318\pi\)
0.0711962 + 0.997462i \(0.477318\pi\)
\(348\) −5.52786 −0.296325
\(349\) −7.23607 −0.387338 −0.193669 0.981067i \(-0.562039\pi\)
−0.193669 + 0.981067i \(0.562039\pi\)
\(350\) 0 0
\(351\) 13.1672 0.702812
\(352\) 0 0
\(353\) 16.0000 0.851594 0.425797 0.904819i \(-0.359994\pi\)
0.425797 + 0.904819i \(0.359994\pi\)
\(354\) −13.4164 −0.713074
\(355\) 0 0
\(356\) 11.3820 0.603243
\(357\) −4.94427 −0.261679
\(358\) 9.27051 0.489962
\(359\) −32.3607 −1.70793 −0.853966 0.520329i \(-0.825809\pi\)
−0.853966 + 0.520329i \(0.825809\pi\)
\(360\) 0 0
\(361\) −5.90983 −0.311044
\(362\) −19.8885 −1.04532
\(363\) 0 0
\(364\) 1.47214 0.0771609
\(365\) 0 0
\(366\) −8.58359 −0.448672
\(367\) 29.8885 1.56017 0.780085 0.625674i \(-0.215176\pi\)
0.780085 + 0.625674i \(0.215176\pi\)
\(368\) 4.61803 0.240732
\(369\) −0.909830 −0.0473639
\(370\) 0 0
\(371\) −4.38197 −0.227500
\(372\) −2.47214 −0.128174
\(373\) −6.56231 −0.339783 −0.169892 0.985463i \(-0.554342\pi\)
−0.169892 + 0.985463i \(0.554342\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −10.0902 −0.520361
\(377\) 10.6525 0.548630
\(378\) −3.41641 −0.175721
\(379\) 32.0344 1.64550 0.822749 0.568404i \(-0.192439\pi\)
0.822749 + 0.568404i \(0.192439\pi\)
\(380\) 0 0
\(381\) −3.52786 −0.180738
\(382\) 9.05573 0.463331
\(383\) −22.2148 −1.13512 −0.567561 0.823331i \(-0.692113\pi\)
−0.567561 + 0.823331i \(0.692113\pi\)
\(384\) 1.23607 0.0630778
\(385\) 0 0
\(386\) −13.2361 −0.673698
\(387\) 12.4721 0.633994
\(388\) 9.23607 0.468890
\(389\) 25.1246 1.27387 0.636934 0.770918i \(-0.280202\pi\)
0.636934 + 0.770918i \(0.280202\pi\)
\(390\) 0 0
\(391\) 29.8885 1.51153
\(392\) 6.61803 0.334261
\(393\) 9.88854 0.498811
\(394\) 26.2148 1.32068
\(395\) 0 0
\(396\) 0 0
\(397\) 12.3262 0.618636 0.309318 0.950959i \(-0.399899\pi\)
0.309318 + 0.950959i \(0.399899\pi\)
\(398\) 5.52786 0.277087
\(399\) −2.76393 −0.138370
\(400\) 0 0
\(401\) 0.0901699 0.00450287 0.00225144 0.999997i \(-0.499283\pi\)
0.00225144 + 0.999997i \(0.499283\pi\)
\(402\) 11.4164 0.569399
\(403\) 4.76393 0.237308
\(404\) −19.7082 −0.980520
\(405\) 0 0
\(406\) −2.76393 −0.137172
\(407\) 0 0
\(408\) 8.00000 0.396059
\(409\) 25.9787 1.28456 0.642282 0.766468i \(-0.277988\pi\)
0.642282 + 0.766468i \(0.277988\pi\)
\(410\) 0 0
\(411\) 26.4721 1.30577
\(412\) 6.85410 0.337677
\(413\) −6.70820 −0.330089
\(414\) 6.79837 0.334122
\(415\) 0 0
\(416\) −2.38197 −0.116785
\(417\) −0.403252 −0.0197473
\(418\) 0 0
\(419\) 35.9787 1.75768 0.878838 0.477121i \(-0.158320\pi\)
0.878838 + 0.477121i \(0.158320\pi\)
\(420\) 0 0
\(421\) 2.00000 0.0974740 0.0487370 0.998812i \(-0.484480\pi\)
0.0487370 + 0.998812i \(0.484480\pi\)
\(422\) −26.4721 −1.28864
\(423\) −14.8541 −0.722231
\(424\) 7.09017 0.344329
\(425\) 0 0
\(426\) 2.47214 0.119775
\(427\) −4.29180 −0.207695
\(428\) 15.4164 0.745180
\(429\) 0 0
\(430\) 0 0
\(431\) 28.1803 1.35740 0.678700 0.734416i \(-0.262544\pi\)
0.678700 + 0.734416i \(0.262544\pi\)
\(432\) 5.52786 0.265959
\(433\) −7.41641 −0.356410 −0.178205 0.983993i \(-0.557029\pi\)
−0.178205 + 0.983993i \(0.557029\pi\)
\(434\) −1.23607 −0.0593332
\(435\) 0 0
\(436\) −5.52786 −0.264737
\(437\) 16.7082 0.799262
\(438\) 1.88854 0.0902381
\(439\) −6.18034 −0.294972 −0.147486 0.989064i \(-0.547118\pi\)
−0.147486 + 0.989064i \(0.547118\pi\)
\(440\) 0 0
\(441\) 9.74265 0.463936
\(442\) −15.4164 −0.733284
\(443\) −0.180340 −0.00856821 −0.00428410 0.999991i \(-0.501364\pi\)
−0.00428410 + 0.999991i \(0.501364\pi\)
\(444\) −6.94427 −0.329561
\(445\) 0 0
\(446\) −19.0902 −0.903946
\(447\) −26.8328 −1.26915
\(448\) 0.618034 0.0291994
\(449\) −20.8541 −0.984166 −0.492083 0.870548i \(-0.663764\pi\)
−0.492083 + 0.870548i \(0.663764\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 9.41641 0.442911
\(453\) −16.9443 −0.796111
\(454\) −12.0000 −0.563188
\(455\) 0 0
\(456\) 4.47214 0.209427
\(457\) 8.18034 0.382660 0.191330 0.981526i \(-0.438720\pi\)
0.191330 + 0.981526i \(0.438720\pi\)
\(458\) 7.23607 0.338119
\(459\) 35.7771 1.66993
\(460\) 0 0
\(461\) −9.70820 −0.452156 −0.226078 0.974109i \(-0.572590\pi\)
−0.226078 + 0.974109i \(0.572590\pi\)
\(462\) 0 0
\(463\) 1.32624 0.0616355 0.0308178 0.999525i \(-0.490189\pi\)
0.0308178 + 0.999525i \(0.490189\pi\)
\(464\) 4.47214 0.207614
\(465\) 0 0
\(466\) 19.1246 0.885931
\(467\) −18.6525 −0.863134 −0.431567 0.902081i \(-0.642039\pi\)
−0.431567 + 0.902081i \(0.642039\pi\)
\(468\) −3.50658 −0.162092
\(469\) 5.70820 0.263580
\(470\) 0 0
\(471\) −7.59675 −0.350040
\(472\) 10.8541 0.499601
\(473\) 0 0
\(474\) −7.63932 −0.350886
\(475\) 0 0
\(476\) 4.00000 0.183340
\(477\) 10.4377 0.477909
\(478\) −7.23607 −0.330970
\(479\) −27.2361 −1.24445 −0.622224 0.782839i \(-0.713771\pi\)
−0.622224 + 0.782839i \(0.713771\pi\)
\(480\) 0 0
\(481\) 13.3820 0.610165
\(482\) 4.90983 0.223637
\(483\) −3.52786 −0.160523
\(484\) 0 0
\(485\) 0 0
\(486\) 13.5967 0.616761
\(487\) 40.9443 1.85536 0.927681 0.373374i \(-0.121799\pi\)
0.927681 + 0.373374i \(0.121799\pi\)
\(488\) 6.94427 0.314352
\(489\) −11.6393 −0.526348
\(490\) 0 0
\(491\) 26.2705 1.18557 0.592786 0.805360i \(-0.298028\pi\)
0.592786 + 0.805360i \(0.298028\pi\)
\(492\) −0.763932 −0.0344407
\(493\) 28.9443 1.30358
\(494\) −8.61803 −0.387744
\(495\) 0 0
\(496\) 2.00000 0.0898027
\(497\) 1.23607 0.0554452
\(498\) −12.5836 −0.563884
\(499\) −0.326238 −0.0146044 −0.00730221 0.999973i \(-0.502324\pi\)
−0.00730221 + 0.999973i \(0.502324\pi\)
\(500\) 0 0
\(501\) 16.4721 0.735921
\(502\) −6.79837 −0.303426
\(503\) 12.3820 0.552085 0.276042 0.961145i \(-0.410977\pi\)
0.276042 + 0.961145i \(0.410977\pi\)
\(504\) 0.909830 0.0405271
\(505\) 0 0
\(506\) 0 0
\(507\) 9.05573 0.402179
\(508\) 2.85410 0.126630
\(509\) −11.7082 −0.518957 −0.259479 0.965749i \(-0.583551\pi\)
−0.259479 + 0.965749i \(0.583551\pi\)
\(510\) 0 0
\(511\) 0.944272 0.0417721
\(512\) −1.00000 −0.0441942
\(513\) 20.0000 0.883022
\(514\) −20.9443 −0.923812
\(515\) 0 0
\(516\) 10.4721 0.461010
\(517\) 0 0
\(518\) −3.47214 −0.152557
\(519\) −2.29180 −0.100599
\(520\) 0 0
\(521\) −31.0902 −1.36209 −0.681043 0.732244i \(-0.738473\pi\)
−0.681043 + 0.732244i \(0.738473\pi\)
\(522\) 6.58359 0.288156
\(523\) 1.12461 0.0491758 0.0245879 0.999698i \(-0.492173\pi\)
0.0245879 + 0.999698i \(0.492173\pi\)
\(524\) −8.00000 −0.349482
\(525\) 0 0
\(526\) −5.14590 −0.224372
\(527\) 12.9443 0.563861
\(528\) 0 0
\(529\) −1.67376 −0.0727723
\(530\) 0 0
\(531\) 15.9787 0.693417
\(532\) 2.23607 0.0969458
\(533\) 1.47214 0.0637653
\(534\) 14.0689 0.608820
\(535\) 0 0
\(536\) −9.23607 −0.398937
\(537\) 11.4590 0.494492
\(538\) −22.3607 −0.964037
\(539\) 0 0
\(540\) 0 0
\(541\) 15.8197 0.680140 0.340070 0.940400i \(-0.389549\pi\)
0.340070 + 0.940400i \(0.389549\pi\)
\(542\) 1.41641 0.0608399
\(543\) −24.5836 −1.05498
\(544\) −6.47214 −0.277491
\(545\) 0 0
\(546\) 1.81966 0.0778743
\(547\) 19.8885 0.850373 0.425186 0.905106i \(-0.360209\pi\)
0.425186 + 0.905106i \(0.360209\pi\)
\(548\) −21.4164 −0.914864
\(549\) 10.2229 0.436303
\(550\) 0 0
\(551\) 16.1803 0.689306
\(552\) 5.70820 0.242957
\(553\) −3.81966 −0.162428
\(554\) 0.0344419 0.00146329
\(555\) 0 0
\(556\) 0.326238 0.0138356
\(557\) −10.5623 −0.447539 −0.223770 0.974642i \(-0.571836\pi\)
−0.223770 + 0.974642i \(0.571836\pi\)
\(558\) 2.94427 0.124641
\(559\) −20.1803 −0.853537
\(560\) 0 0
\(561\) 0 0
\(562\) 9.05573 0.381993
\(563\) 45.5967 1.92167 0.960837 0.277115i \(-0.0893781\pi\)
0.960837 + 0.277115i \(0.0893781\pi\)
\(564\) −12.4721 −0.525172
\(565\) 0 0
\(566\) 0.180340 0.00758025
\(567\) −1.49342 −0.0627178
\(568\) −2.00000 −0.0839181
\(569\) 5.85410 0.245417 0.122708 0.992443i \(-0.460842\pi\)
0.122708 + 0.992443i \(0.460842\pi\)
\(570\) 0 0
\(571\) 44.6869 1.87009 0.935045 0.354530i \(-0.115359\pi\)
0.935045 + 0.354530i \(0.115359\pi\)
\(572\) 0 0
\(573\) 11.1935 0.467615
\(574\) −0.381966 −0.0159430
\(575\) 0 0
\(576\) −1.47214 −0.0613390
\(577\) 17.5279 0.729695 0.364847 0.931067i \(-0.381121\pi\)
0.364847 + 0.931067i \(0.381121\pi\)
\(578\) −24.8885 −1.03523
\(579\) −16.3607 −0.679927
\(580\) 0 0
\(581\) −6.29180 −0.261028
\(582\) 11.4164 0.473225
\(583\) 0 0
\(584\) −1.52786 −0.0632235
\(585\) 0 0
\(586\) 29.8541 1.23326
\(587\) −24.1803 −0.998029 −0.499015 0.866594i \(-0.666305\pi\)
−0.499015 + 0.866594i \(0.666305\pi\)
\(588\) 8.18034 0.337352
\(589\) 7.23607 0.298157
\(590\) 0 0
\(591\) 32.4033 1.33289
\(592\) 5.61803 0.230900
\(593\) −6.11146 −0.250967 −0.125484 0.992096i \(-0.540048\pi\)
−0.125484 + 0.992096i \(0.540048\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 21.7082 0.889203
\(597\) 6.83282 0.279649
\(598\) −11.0000 −0.449823
\(599\) −6.18034 −0.252522 −0.126261 0.991997i \(-0.540298\pi\)
−0.126261 + 0.991997i \(0.540298\pi\)
\(600\) 0 0
\(601\) 0.0901699 0.00367811 0.00183905 0.999998i \(-0.499415\pi\)
0.00183905 + 0.999998i \(0.499415\pi\)
\(602\) 5.23607 0.213406
\(603\) −13.5967 −0.553702
\(604\) 13.7082 0.557779
\(605\) 0 0
\(606\) −24.3607 −0.989585
\(607\) −33.5279 −1.36085 −0.680427 0.732816i \(-0.738206\pi\)
−0.680427 + 0.732816i \(0.738206\pi\)
\(608\) −3.61803 −0.146731
\(609\) −3.41641 −0.138440
\(610\) 0 0
\(611\) 24.0344 0.972329
\(612\) −9.52786 −0.385141
\(613\) 6.00000 0.242338 0.121169 0.992632i \(-0.461336\pi\)
0.121169 + 0.992632i \(0.461336\pi\)
\(614\) 15.2361 0.614878
\(615\) 0 0
\(616\) 0 0
\(617\) −9.05573 −0.364570 −0.182285 0.983246i \(-0.558349\pi\)
−0.182285 + 0.983246i \(0.558349\pi\)
\(618\) 8.47214 0.340799
\(619\) −7.43769 −0.298946 −0.149473 0.988766i \(-0.547758\pi\)
−0.149473 + 0.988766i \(0.547758\pi\)
\(620\) 0 0
\(621\) 25.5279 1.02440
\(622\) 4.18034 0.167616
\(623\) 7.03444 0.281829
\(624\) −2.94427 −0.117865
\(625\) 0 0
\(626\) −11.5279 −0.460746
\(627\) 0 0
\(628\) 6.14590 0.245248
\(629\) 36.3607 1.44980
\(630\) 0 0
\(631\) 27.1246 1.07981 0.539907 0.841725i \(-0.318459\pi\)
0.539907 + 0.841725i \(0.318459\pi\)
\(632\) 6.18034 0.245841
\(633\) −32.7214 −1.30056
\(634\) 14.3820 0.571181
\(635\) 0 0
\(636\) 8.76393 0.347513
\(637\) −15.7639 −0.624590
\(638\) 0 0
\(639\) −2.94427 −0.116474
\(640\) 0 0
\(641\) 30.7426 1.21426 0.607131 0.794602i \(-0.292320\pi\)
0.607131 + 0.794602i \(0.292320\pi\)
\(642\) 19.0557 0.752070
\(643\) −20.8328 −0.821566 −0.410783 0.911733i \(-0.634745\pi\)
−0.410783 + 0.911733i \(0.634745\pi\)
\(644\) 2.85410 0.112467
\(645\) 0 0
\(646\) −23.4164 −0.921306
\(647\) 27.7771 1.09203 0.546015 0.837775i \(-0.316144\pi\)
0.546015 + 0.837775i \(0.316144\pi\)
\(648\) 2.41641 0.0949255
\(649\) 0 0
\(650\) 0 0
\(651\) −1.52786 −0.0598817
\(652\) 9.41641 0.368775
\(653\) 29.2148 1.14326 0.571631 0.820511i \(-0.306311\pi\)
0.571631 + 0.820511i \(0.306311\pi\)
\(654\) −6.83282 −0.267184
\(655\) 0 0
\(656\) 0.618034 0.0241302
\(657\) −2.24922 −0.0877506
\(658\) −6.23607 −0.243107
\(659\) −11.3820 −0.443378 −0.221689 0.975117i \(-0.571157\pi\)
−0.221689 + 0.975117i \(0.571157\pi\)
\(660\) 0 0
\(661\) −5.88854 −0.229038 −0.114519 0.993421i \(-0.536533\pi\)
−0.114519 + 0.993421i \(0.536533\pi\)
\(662\) 6.09017 0.236701
\(663\) −19.0557 −0.740063
\(664\) 10.1803 0.395074
\(665\) 0 0
\(666\) 8.27051 0.320476
\(667\) 20.6525 0.799667
\(668\) −13.3262 −0.515608
\(669\) −23.5967 −0.912303
\(670\) 0 0
\(671\) 0 0
\(672\) 0.763932 0.0294693
\(673\) 2.18034 0.0840459 0.0420230 0.999117i \(-0.486620\pi\)
0.0420230 + 0.999117i \(0.486620\pi\)
\(674\) 1.81966 0.0700907
\(675\) 0 0
\(676\) −7.32624 −0.281778
\(677\) 16.4721 0.633076 0.316538 0.948580i \(-0.397480\pi\)
0.316538 + 0.948580i \(0.397480\pi\)
\(678\) 11.6393 0.447005
\(679\) 5.70820 0.219061
\(680\) 0 0
\(681\) −14.8328 −0.568395
\(682\) 0 0
\(683\) 15.5967 0.596793 0.298396 0.954442i \(-0.403548\pi\)
0.298396 + 0.954442i \(0.403548\pi\)
\(684\) −5.32624 −0.203654
\(685\) 0 0
\(686\) 8.41641 0.321340
\(687\) 8.94427 0.341245
\(688\) −8.47214 −0.322997
\(689\) −16.8885 −0.643402
\(690\) 0 0
\(691\) 39.1591 1.48968 0.744840 0.667243i \(-0.232526\pi\)
0.744840 + 0.667243i \(0.232526\pi\)
\(692\) 1.85410 0.0704824
\(693\) 0 0
\(694\) −2.65248 −0.100687
\(695\) 0 0
\(696\) 5.52786 0.209533
\(697\) 4.00000 0.151511
\(698\) 7.23607 0.273889
\(699\) 23.6393 0.894121
\(700\) 0 0
\(701\) −26.5410 −1.00244 −0.501220 0.865320i \(-0.667115\pi\)
−0.501220 + 0.865320i \(0.667115\pi\)
\(702\) −13.1672 −0.496963
\(703\) 20.3262 0.766619
\(704\) 0 0
\(705\) 0 0
\(706\) −16.0000 −0.602168
\(707\) −12.1803 −0.458089
\(708\) 13.4164 0.504219
\(709\) −4.47214 −0.167955 −0.0839773 0.996468i \(-0.526762\pi\)
−0.0839773 + 0.996468i \(0.526762\pi\)
\(710\) 0 0
\(711\) 9.09830 0.341213
\(712\) −11.3820 −0.426557
\(713\) 9.23607 0.345893
\(714\) 4.94427 0.185035
\(715\) 0 0
\(716\) −9.27051 −0.346455
\(717\) −8.94427 −0.334030
\(718\) 32.3607 1.20769
\(719\) 19.5967 0.730835 0.365418 0.930844i \(-0.380926\pi\)
0.365418 + 0.930844i \(0.380926\pi\)
\(720\) 0 0
\(721\) 4.23607 0.157759
\(722\) 5.90983 0.219941
\(723\) 6.06888 0.225704
\(724\) 19.8885 0.739152
\(725\) 0 0
\(726\) 0 0
\(727\) −31.7426 −1.17727 −0.588635 0.808399i \(-0.700334\pi\)
−0.588635 + 0.808399i \(0.700334\pi\)
\(728\) −1.47214 −0.0545610
\(729\) 24.0557 0.890953
\(730\) 0 0
\(731\) −54.8328 −2.02806
\(732\) 8.58359 0.317259
\(733\) 9.41641 0.347803 0.173901 0.984763i \(-0.444363\pi\)
0.173901 + 0.984763i \(0.444363\pi\)
\(734\) −29.8885 −1.10321
\(735\) 0 0
\(736\) −4.61803 −0.170223
\(737\) 0 0
\(738\) 0.909830 0.0334913
\(739\) 8.61803 0.317020 0.158510 0.987357i \(-0.449331\pi\)
0.158510 + 0.987357i \(0.449331\pi\)
\(740\) 0 0
\(741\) −10.6525 −0.391328
\(742\) 4.38197 0.160867
\(743\) 15.6738 0.575015 0.287507 0.957778i \(-0.407173\pi\)
0.287507 + 0.957778i \(0.407173\pi\)
\(744\) 2.47214 0.0906329
\(745\) 0 0
\(746\) 6.56231 0.240263
\(747\) 14.9868 0.548340
\(748\) 0 0
\(749\) 9.52786 0.348141
\(750\) 0 0
\(751\) −23.1246 −0.843829 −0.421915 0.906636i \(-0.638642\pi\)
−0.421915 + 0.906636i \(0.638642\pi\)
\(752\) 10.0902 0.367951
\(753\) −8.40325 −0.306232
\(754\) −10.6525 −0.387940
\(755\) 0 0
\(756\) 3.41641 0.124254
\(757\) 7.72949 0.280933 0.140467 0.990085i \(-0.455140\pi\)
0.140467 + 0.990085i \(0.455140\pi\)
\(758\) −32.0344 −1.16354
\(759\) 0 0
\(760\) 0 0
\(761\) −10.3607 −0.375574 −0.187787 0.982210i \(-0.560132\pi\)
−0.187787 + 0.982210i \(0.560132\pi\)
\(762\) 3.52786 0.127801
\(763\) −3.41641 −0.123682
\(764\) −9.05573 −0.327625
\(765\) 0 0
\(766\) 22.2148 0.802653
\(767\) −25.8541 −0.933538
\(768\) −1.23607 −0.0446028
\(769\) −37.0344 −1.33550 −0.667748 0.744387i \(-0.732742\pi\)
−0.667748 + 0.744387i \(0.732742\pi\)
\(770\) 0 0
\(771\) −25.8885 −0.932353
\(772\) 13.2361 0.476377
\(773\) −39.4508 −1.41895 −0.709474 0.704731i \(-0.751068\pi\)
−0.709474 + 0.704731i \(0.751068\pi\)
\(774\) −12.4721 −0.448302
\(775\) 0 0
\(776\) −9.23607 −0.331556
\(777\) −4.29180 −0.153967
\(778\) −25.1246 −0.900761
\(779\) 2.23607 0.0801154
\(780\) 0 0
\(781\) 0 0
\(782\) −29.8885 −1.06881
\(783\) 24.7214 0.883469
\(784\) −6.61803 −0.236358
\(785\) 0 0
\(786\) −9.88854 −0.352713
\(787\) −18.6525 −0.664889 −0.332444 0.943123i \(-0.607873\pi\)
−0.332444 + 0.943123i \(0.607873\pi\)
\(788\) −26.2148 −0.933863
\(789\) −6.36068 −0.226446
\(790\) 0 0
\(791\) 5.81966 0.206923
\(792\) 0 0
\(793\) −16.5410 −0.587389
\(794\) −12.3262 −0.437442
\(795\) 0 0
\(796\) −5.52786 −0.195930
\(797\) 5.61803 0.199001 0.0995005 0.995038i \(-0.468276\pi\)
0.0995005 + 0.995038i \(0.468276\pi\)
\(798\) 2.76393 0.0978421
\(799\) 65.3050 2.31032
\(800\) 0 0
\(801\) −16.7558 −0.592037
\(802\) −0.0901699 −0.00318401
\(803\) 0 0
\(804\) −11.4164 −0.402626
\(805\) 0 0
\(806\) −4.76393 −0.167802
\(807\) −27.6393 −0.972950
\(808\) 19.7082 0.693332
\(809\) −2.56231 −0.0900859 −0.0450429 0.998985i \(-0.514342\pi\)
−0.0450429 + 0.998985i \(0.514342\pi\)
\(810\) 0 0
\(811\) −42.1459 −1.47994 −0.739971 0.672638i \(-0.765161\pi\)
−0.739971 + 0.672638i \(0.765161\pi\)
\(812\) 2.76393 0.0969950
\(813\) 1.75078 0.0614024
\(814\) 0 0
\(815\) 0 0
\(816\) −8.00000 −0.280056
\(817\) −30.6525 −1.07239
\(818\) −25.9787 −0.908324
\(819\) −2.16718 −0.0757275
\(820\) 0 0
\(821\) 2.65248 0.0925720 0.0462860 0.998928i \(-0.485261\pi\)
0.0462860 + 0.998928i \(0.485261\pi\)
\(822\) −26.4721 −0.923322
\(823\) 6.45085 0.224862 0.112431 0.993660i \(-0.464136\pi\)
0.112431 + 0.993660i \(0.464136\pi\)
\(824\) −6.85410 −0.238774
\(825\) 0 0
\(826\) 6.70820 0.233408
\(827\) 8.83282 0.307147 0.153574 0.988137i \(-0.450922\pi\)
0.153574 + 0.988137i \(0.450922\pi\)
\(828\) −6.79837 −0.236260
\(829\) −25.5279 −0.886619 −0.443310 0.896369i \(-0.646196\pi\)
−0.443310 + 0.896369i \(0.646196\pi\)
\(830\) 0 0
\(831\) 0.0425725 0.00147682
\(832\) 2.38197 0.0825798
\(833\) −42.8328 −1.48407
\(834\) 0.403252 0.0139635
\(835\) 0 0
\(836\) 0 0
\(837\) 11.0557 0.382142
\(838\) −35.9787 −1.24286
\(839\) −7.23607 −0.249817 −0.124908 0.992168i \(-0.539864\pi\)
−0.124908 + 0.992168i \(0.539864\pi\)
\(840\) 0 0
\(841\) −9.00000 −0.310345
\(842\) −2.00000 −0.0689246
\(843\) 11.1935 0.385524
\(844\) 26.4721 0.911208
\(845\) 0 0
\(846\) 14.8541 0.510695
\(847\) 0 0
\(848\) −7.09017 −0.243477
\(849\) 0.222912 0.00765033
\(850\) 0 0
\(851\) 25.9443 0.889358
\(852\) −2.47214 −0.0846940
\(853\) 5.27051 0.180459 0.0902294 0.995921i \(-0.471240\pi\)
0.0902294 + 0.995921i \(0.471240\pi\)
\(854\) 4.29180 0.146862
\(855\) 0 0
\(856\) −15.4164 −0.526922
\(857\) 8.18034 0.279435 0.139718 0.990191i \(-0.455381\pi\)
0.139718 + 0.990191i \(0.455381\pi\)
\(858\) 0 0
\(859\) 8.61803 0.294044 0.147022 0.989133i \(-0.453031\pi\)
0.147022 + 0.989133i \(0.453031\pi\)
\(860\) 0 0
\(861\) −0.472136 −0.0160904
\(862\) −28.1803 −0.959826
\(863\) 23.0344 0.784102 0.392051 0.919944i \(-0.371766\pi\)
0.392051 + 0.919944i \(0.371766\pi\)
\(864\) −5.52786 −0.188062
\(865\) 0 0
\(866\) 7.41641 0.252020
\(867\) −30.7639 −1.04480
\(868\) 1.23607 0.0419549
\(869\) 0 0
\(870\) 0 0
\(871\) 22.0000 0.745442
\(872\) 5.52786 0.187197
\(873\) −13.5967 −0.460180
\(874\) −16.7082 −0.565163
\(875\) 0 0
\(876\) −1.88854 −0.0638080
\(877\) −51.8673 −1.75143 −0.875716 0.482826i \(-0.839610\pi\)
−0.875716 + 0.482826i \(0.839610\pi\)
\(878\) 6.18034 0.208576
\(879\) 36.9017 1.24466
\(880\) 0 0
\(881\) 6.79837 0.229043 0.114522 0.993421i \(-0.463467\pi\)
0.114522 + 0.993421i \(0.463467\pi\)
\(882\) −9.74265 −0.328052
\(883\) 14.2918 0.480957 0.240479 0.970654i \(-0.422696\pi\)
0.240479 + 0.970654i \(0.422696\pi\)
\(884\) 15.4164 0.518510
\(885\) 0 0
\(886\) 0.180340 0.00605864
\(887\) 39.1591 1.31483 0.657416 0.753528i \(-0.271649\pi\)
0.657416 + 0.753528i \(0.271649\pi\)
\(888\) 6.94427 0.233035
\(889\) 1.76393 0.0591604
\(890\) 0 0
\(891\) 0 0
\(892\) 19.0902 0.639186
\(893\) 36.5066 1.22165
\(894\) 26.8328 0.897424
\(895\) 0 0
\(896\) −0.618034 −0.0206471
\(897\) −13.5967 −0.453982
\(898\) 20.8541 0.695910
\(899\) 8.94427 0.298308
\(900\) 0 0
\(901\) −45.8885 −1.52877
\(902\) 0 0
\(903\) 6.47214 0.215379
\(904\) −9.41641 −0.313185
\(905\) 0 0
\(906\) 16.9443 0.562936
\(907\) 29.4853 0.979043 0.489522 0.871991i \(-0.337171\pi\)
0.489522 + 0.871991i \(0.337171\pi\)
\(908\) 12.0000 0.398234
\(909\) 29.0132 0.962306
\(910\) 0 0
\(911\) −24.1803 −0.801130 −0.400565 0.916268i \(-0.631186\pi\)
−0.400565 + 0.916268i \(0.631186\pi\)
\(912\) −4.47214 −0.148087
\(913\) 0 0
\(914\) −8.18034 −0.270582
\(915\) 0 0
\(916\) −7.23607 −0.239086
\(917\) −4.94427 −0.163274
\(918\) −35.7771 −1.18082
\(919\) 10.0000 0.329870 0.164935 0.986304i \(-0.447259\pi\)
0.164935 + 0.986304i \(0.447259\pi\)
\(920\) 0 0
\(921\) 18.8328 0.620562
\(922\) 9.70820 0.319723
\(923\) 4.76393 0.156807
\(924\) 0 0
\(925\) 0 0
\(926\) −1.32624 −0.0435829
\(927\) −10.0902 −0.331405
\(928\) −4.47214 −0.146805
\(929\) −6.50658 −0.213474 −0.106737 0.994287i \(-0.534040\pi\)
−0.106737 + 0.994287i \(0.534040\pi\)
\(930\) 0 0
\(931\) −23.9443 −0.784742
\(932\) −19.1246 −0.626447
\(933\) 5.16718 0.169166
\(934\) 18.6525 0.610328
\(935\) 0 0
\(936\) 3.50658 0.114616
\(937\) 53.3050 1.74140 0.870698 0.491817i \(-0.163667\pi\)
0.870698 + 0.491817i \(0.163667\pi\)
\(938\) −5.70820 −0.186379
\(939\) −14.2492 −0.465006
\(940\) 0 0
\(941\) 19.8885 0.648348 0.324174 0.945997i \(-0.394914\pi\)
0.324174 + 0.945997i \(0.394914\pi\)
\(942\) 7.59675 0.247515
\(943\) 2.85410 0.0929423
\(944\) −10.8541 −0.353271
\(945\) 0 0
\(946\) 0 0
\(947\) −28.0000 −0.909878 −0.454939 0.890523i \(-0.650339\pi\)
−0.454939 + 0.890523i \(0.650339\pi\)
\(948\) 7.63932 0.248114
\(949\) 3.63932 0.118137
\(950\) 0 0
\(951\) 17.7771 0.576462
\(952\) −4.00000 −0.129641
\(953\) −6.76393 −0.219105 −0.109553 0.993981i \(-0.534942\pi\)
−0.109553 + 0.993981i \(0.534942\pi\)
\(954\) −10.4377 −0.337933
\(955\) 0 0
\(956\) 7.23607 0.234031
\(957\) 0 0
\(958\) 27.2361 0.879957
\(959\) −13.2361 −0.427415
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) −13.3820 −0.431452
\(963\) −22.6950 −0.731338
\(964\) −4.90983 −0.158135
\(965\) 0 0
\(966\) 3.52786 0.113507
\(967\) 44.5623 1.43303 0.716514 0.697573i \(-0.245737\pi\)
0.716514 + 0.697573i \(0.245737\pi\)
\(968\) 0 0
\(969\) −28.9443 −0.929824
\(970\) 0 0
\(971\) −35.1591 −1.12831 −0.564154 0.825670i \(-0.690798\pi\)
−0.564154 + 0.825670i \(0.690798\pi\)
\(972\) −13.5967 −0.436116
\(973\) 0.201626 0.00646384
\(974\) −40.9443 −1.31194
\(975\) 0 0
\(976\) −6.94427 −0.222281
\(977\) 8.83282 0.282587 0.141293 0.989968i \(-0.454874\pi\)
0.141293 + 0.989968i \(0.454874\pi\)
\(978\) 11.6393 0.372184
\(979\) 0 0
\(980\) 0 0
\(981\) 8.13777 0.259819
\(982\) −26.2705 −0.838326
\(983\) −22.2148 −0.708541 −0.354271 0.935143i \(-0.615271\pi\)
−0.354271 + 0.935143i \(0.615271\pi\)
\(984\) 0.763932 0.0243533
\(985\) 0 0
\(986\) −28.9443 −0.921773
\(987\) −7.70820 −0.245355
\(988\) 8.61803 0.274176
\(989\) −39.1246 −1.24409
\(990\) 0 0
\(991\) 35.8197 1.13785 0.568925 0.822390i \(-0.307360\pi\)
0.568925 + 0.822390i \(0.307360\pi\)
\(992\) −2.00000 −0.0635001
\(993\) 7.52786 0.238890
\(994\) −1.23607 −0.0392057
\(995\) 0 0
\(996\) 12.5836 0.398726
\(997\) −26.9443 −0.853334 −0.426667 0.904409i \(-0.640312\pi\)
−0.426667 + 0.904409i \(0.640312\pi\)
\(998\) 0.326238 0.0103269
\(999\) 31.0557 0.982560
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6050.2.a.ce.1.1 2
5.2 odd 4 1210.2.b.f.969.2 4
5.3 odd 4 1210.2.b.f.969.3 4
5.4 even 2 6050.2.a.cl.1.2 2
11.5 even 5 550.2.h.e.201.1 4
11.9 even 5 550.2.h.e.301.1 4
11.10 odd 2 6050.2.a.ct.1.1 2
55.9 even 10 550.2.h.d.301.1 4
55.27 odd 20 110.2.j.a.69.2 yes 8
55.32 even 4 1210.2.b.g.969.4 4
55.38 odd 20 110.2.j.a.69.1 yes 8
55.42 odd 20 110.2.j.a.59.1 8
55.43 even 4 1210.2.b.g.969.1 4
55.49 even 10 550.2.h.d.201.1 4
55.53 odd 20 110.2.j.a.59.2 yes 8
55.54 odd 2 6050.2.a.bv.1.2 2
165.38 even 20 990.2.ba.b.289.2 8
165.53 even 20 990.2.ba.b.829.1 8
165.137 even 20 990.2.ba.b.289.1 8
165.152 even 20 990.2.ba.b.829.2 8
220.27 even 20 880.2.cd.a.289.2 8
220.163 even 20 880.2.cd.a.609.2 8
220.203 even 20 880.2.cd.a.289.1 8
220.207 even 20 880.2.cd.a.609.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
110.2.j.a.59.1 8 55.42 odd 20
110.2.j.a.59.2 yes 8 55.53 odd 20
110.2.j.a.69.1 yes 8 55.38 odd 20
110.2.j.a.69.2 yes 8 55.27 odd 20
550.2.h.d.201.1 4 55.49 even 10
550.2.h.d.301.1 4 55.9 even 10
550.2.h.e.201.1 4 11.5 even 5
550.2.h.e.301.1 4 11.9 even 5
880.2.cd.a.289.1 8 220.203 even 20
880.2.cd.a.289.2 8 220.27 even 20
880.2.cd.a.609.1 8 220.207 even 20
880.2.cd.a.609.2 8 220.163 even 20
990.2.ba.b.289.1 8 165.137 even 20
990.2.ba.b.289.2 8 165.38 even 20
990.2.ba.b.829.1 8 165.53 even 20
990.2.ba.b.829.2 8 165.152 even 20
1210.2.b.f.969.2 4 5.2 odd 4
1210.2.b.f.969.3 4 5.3 odd 4
1210.2.b.g.969.1 4 55.43 even 4
1210.2.b.g.969.4 4 55.32 even 4
6050.2.a.bv.1.2 2 55.54 odd 2
6050.2.a.ce.1.1 2 1.1 even 1 trivial
6050.2.a.cl.1.2 2 5.4 even 2
6050.2.a.ct.1.1 2 11.10 odd 2