Properties

Label 880.2.cd.a.609.2
Level $880$
Weight $2$
Character 880.609
Analytic conductor $7.027$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [880,2,Mod(49,880)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(880, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 5, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("880.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 880.cd (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.02683537787\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\Q(\zeta_{20})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 110)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 609.2
Root \(0.587785 - 0.809017i\) of defining polynomial
Character \(\chi\) \(=\) 880.609
Dual form 880.2.cd.a.289.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.17557 + 0.381966i) q^{3} +(1.03025 - 1.98459i) q^{5} +(-0.587785 + 0.190983i) q^{7} +(-1.19098 - 0.865300i) q^{9} +(-1.69098 - 2.85317i) q^{11} +(1.40008 - 1.92705i) q^{13} +(1.96917 - 1.93950i) q^{15} +(3.80423 + 5.23607i) q^{17} +(1.11803 - 3.44095i) q^{19} -0.763932 q^{21} -4.61803i q^{23} +(-2.87718 - 4.08924i) q^{25} +(-3.24920 - 4.47214i) q^{27} +(-1.38197 - 4.25325i) q^{29} +(1.61803 + 1.17557i) q^{31} +(-0.898056 - 4.00000i) q^{33} +(-0.226543 + 1.36327i) q^{35} +(5.34307 - 1.73607i) q^{37} +(2.38197 - 1.73060i) q^{39} +(0.190983 - 0.587785i) q^{41} +8.47214i q^{43} +(-2.94427 + 1.47214i) q^{45} +(9.59632 + 3.11803i) q^{47} +(-5.35410 + 3.88998i) q^{49} +(2.47214 + 7.60845i) q^{51} +(-4.16750 + 5.73607i) q^{53} +(-7.40450 + 0.416429i) q^{55} +(2.62866 - 3.61803i) q^{57} +(-3.35410 - 10.3229i) q^{59} +(5.61803 - 4.08174i) q^{61} +(0.865300 + 0.281153i) q^{63} +(-2.38197 - 4.76393i) q^{65} +9.23607i q^{67} +(1.76393 - 5.42882i) q^{69} +(1.61803 - 1.17557i) q^{71} +(-1.45309 + 0.472136i) q^{73} +(-1.82037 - 5.90617i) q^{75} +(1.53884 + 1.35410i) q^{77} +(5.00000 + 3.63271i) q^{79} +(-0.746711 - 2.29814i) q^{81} +(-5.98385 - 8.23607i) q^{83} +(14.3107 - 2.15537i) q^{85} -5.52786i q^{87} -11.3820 q^{89} +(-0.454915 + 1.40008i) q^{91} +(1.45309 + 2.00000i) q^{93} +(-5.67702 - 5.76388i) q^{95} +(-5.42882 + 7.47214i) q^{97} +(-0.454915 + 4.86128i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{5} - 14 q^{9} - 18 q^{11} - 12 q^{15} - 24 q^{21} - 6 q^{25} - 20 q^{29} + 4 q^{31} + 4 q^{35} + 28 q^{39} + 6 q^{41} + 48 q^{45} - 16 q^{49} - 16 q^{51} - 4 q^{55} + 36 q^{61} - 28 q^{65} + 32 q^{69}+ \cdots - 26 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/880\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(321\) \(661\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.17557 + 0.381966i 0.678716 + 0.220528i 0.628033 0.778187i \(-0.283860\pi\)
0.0506828 + 0.998715i \(0.483860\pi\)
\(4\) 0 0
\(5\) 1.03025 1.98459i 0.460741 0.887535i
\(6\) 0 0
\(7\) −0.587785 + 0.190983i −0.222162 + 0.0721848i −0.417983 0.908455i \(-0.637263\pi\)
0.195821 + 0.980640i \(0.437263\pi\)
\(8\) 0 0
\(9\) −1.19098 0.865300i −0.396994 0.288433i
\(10\) 0 0
\(11\) −1.69098 2.85317i −0.509851 0.860263i
\(12\) 0 0
\(13\) 1.40008 1.92705i 0.388314 0.534468i −0.569449 0.822026i \(-0.692844\pi\)
0.957763 + 0.287559i \(0.0928436\pi\)
\(14\) 0 0
\(15\) 1.96917 1.93950i 0.508439 0.500777i
\(16\) 0 0
\(17\) 3.80423 + 5.23607i 0.922660 + 1.26993i 0.962654 + 0.270733i \(0.0872661\pi\)
−0.0399941 + 0.999200i \(0.512734\pi\)
\(18\) 0 0
\(19\) 1.11803 3.44095i 0.256495 0.789409i −0.737037 0.675852i \(-0.763776\pi\)
0.993532 0.113557i \(-0.0362244\pi\)
\(20\) 0 0
\(21\) −0.763932 −0.166704
\(22\) 0 0
\(23\) 4.61803i 0.962927i −0.876466 0.481463i \(-0.840105\pi\)
0.876466 0.481463i \(-0.159895\pi\)
\(24\) 0 0
\(25\) −2.87718 4.08924i −0.575435 0.817848i
\(26\) 0 0
\(27\) −3.24920 4.47214i −0.625308 0.860663i
\(28\) 0 0
\(29\) −1.38197 4.25325i −0.256625 0.789809i −0.993505 0.113787i \(-0.963702\pi\)
0.736881 0.676023i \(-0.236298\pi\)
\(30\) 0 0
\(31\) 1.61803 + 1.17557i 0.290607 + 0.211139i 0.723531 0.690292i \(-0.242518\pi\)
−0.432923 + 0.901431i \(0.642518\pi\)
\(32\) 0 0
\(33\) −0.898056 4.00000i −0.156331 0.696311i
\(34\) 0 0
\(35\) −0.226543 + 1.36327i −0.0382927 + 0.230435i
\(36\) 0 0
\(37\) 5.34307 1.73607i 0.878395 0.285408i 0.165104 0.986276i \(-0.447204\pi\)
0.713291 + 0.700868i \(0.247204\pi\)
\(38\) 0 0
\(39\) 2.38197 1.73060i 0.381420 0.277118i
\(40\) 0 0
\(41\) 0.190983 0.587785i 0.0298265 0.0917966i −0.935035 0.354555i \(-0.884632\pi\)
0.964862 + 0.262759i \(0.0846323\pi\)
\(42\) 0 0
\(43\) 8.47214i 1.29199i 0.763342 + 0.645994i \(0.223557\pi\)
−0.763342 + 0.645994i \(0.776443\pi\)
\(44\) 0 0
\(45\) −2.94427 + 1.47214i −0.438906 + 0.219453i
\(46\) 0 0
\(47\) 9.59632 + 3.11803i 1.39977 + 0.454812i 0.909116 0.416544i \(-0.136759\pi\)
0.490652 + 0.871356i \(0.336759\pi\)
\(48\) 0 0
\(49\) −5.35410 + 3.88998i −0.764872 + 0.555712i
\(50\) 0 0
\(51\) 2.47214 + 7.60845i 0.346168 + 1.06540i
\(52\) 0 0
\(53\) −4.16750 + 5.73607i −0.572450 + 0.787910i −0.992842 0.119433i \(-0.961892\pi\)
0.420393 + 0.907342i \(0.361892\pi\)
\(54\) 0 0
\(55\) −7.40450 + 0.416429i −0.998422 + 0.0561513i
\(56\) 0 0
\(57\) 2.62866 3.61803i 0.348174 0.479220i
\(58\) 0 0
\(59\) −3.35410 10.3229i −0.436667 1.34392i −0.891369 0.453279i \(-0.850254\pi\)
0.454702 0.890644i \(-0.349746\pi\)
\(60\) 0 0
\(61\) 5.61803 4.08174i 0.719316 0.522613i −0.166850 0.985982i \(-0.553360\pi\)
0.886165 + 0.463369i \(0.153360\pi\)
\(62\) 0 0
\(63\) 0.865300 + 0.281153i 0.109018 + 0.0354219i
\(64\) 0 0
\(65\) −2.38197 4.76393i −0.295447 0.590893i
\(66\) 0 0
\(67\) 9.23607i 1.12837i 0.825650 + 0.564183i \(0.190809\pi\)
−0.825650 + 0.564183i \(0.809191\pi\)
\(68\) 0 0
\(69\) 1.76393 5.42882i 0.212352 0.653554i
\(70\) 0 0
\(71\) 1.61803 1.17557i 0.192025 0.139515i −0.487619 0.873057i \(-0.662134\pi\)
0.679644 + 0.733542i \(0.262134\pi\)
\(72\) 0 0
\(73\) −1.45309 + 0.472136i −0.170071 + 0.0552593i −0.392815 0.919618i \(-0.628499\pi\)
0.222744 + 0.974877i \(0.428499\pi\)
\(74\) 0 0
\(75\) −1.82037 5.90617i −0.210199 0.681986i
\(76\) 0 0
\(77\) 1.53884 + 1.35410i 0.175367 + 0.154314i
\(78\) 0 0
\(79\) 5.00000 + 3.63271i 0.562544 + 0.408712i 0.832389 0.554192i \(-0.186973\pi\)
−0.269845 + 0.962904i \(0.586973\pi\)
\(80\) 0 0
\(81\) −0.746711 2.29814i −0.0829679 0.255349i
\(82\) 0 0
\(83\) −5.98385 8.23607i −0.656813 0.904026i 0.342557 0.939497i \(-0.388707\pi\)
−0.999371 + 0.0354710i \(0.988707\pi\)
\(84\) 0 0
\(85\) 14.3107 2.15537i 1.55222 0.233782i
\(86\) 0 0
\(87\) 5.52786i 0.592649i
\(88\) 0 0
\(89\) −11.3820 −1.20649 −0.603243 0.797557i \(-0.706125\pi\)
−0.603243 + 0.797557i \(0.706125\pi\)
\(90\) 0 0
\(91\) −0.454915 + 1.40008i −0.0476881 + 0.146769i
\(92\) 0 0
\(93\) 1.45309 + 2.00000i 0.150678 + 0.207390i
\(94\) 0 0
\(95\) −5.67702 5.76388i −0.582450 0.591361i
\(96\) 0 0
\(97\) −5.42882 + 7.47214i −0.551214 + 0.758680i −0.990176 0.139825i \(-0.955346\pi\)
0.438963 + 0.898505i \(0.355346\pi\)
\(98\) 0 0
\(99\) −0.454915 + 4.86128i −0.0457207 + 0.488577i
\(100\) 0 0
\(101\) 15.9443 + 11.5842i 1.58651 + 1.15267i 0.908710 + 0.417428i \(0.137068\pi\)
0.677804 + 0.735242i \(0.262932\pi\)
\(102\) 0 0
\(103\) 6.51864 2.11803i 0.642301 0.208696i 0.0302843 0.999541i \(-0.490359\pi\)
0.612016 + 0.790845i \(0.290359\pi\)
\(104\) 0 0
\(105\) −0.787040 + 1.51609i −0.0768072 + 0.147955i
\(106\) 0 0
\(107\) 14.6619 + 4.76393i 1.41742 + 0.460547i 0.914781 0.403951i \(-0.132363\pi\)
0.502636 + 0.864498i \(0.332363\pi\)
\(108\) 0 0
\(109\) 5.52786 0.529473 0.264737 0.964321i \(-0.414715\pi\)
0.264737 + 0.964321i \(0.414715\pi\)
\(110\) 0 0
\(111\) 6.94427 0.659121
\(112\) 0 0
\(113\) 8.95554 + 2.90983i 0.842466 + 0.273734i 0.698287 0.715818i \(-0.253946\pi\)
0.144179 + 0.989552i \(0.453946\pi\)
\(114\) 0 0
\(115\) −9.16489 4.75772i −0.854631 0.443660i
\(116\) 0 0
\(117\) −3.33495 + 1.08359i −0.308317 + 0.100178i
\(118\) 0 0
\(119\) −3.23607 2.35114i −0.296650 0.215529i
\(120\) 0 0
\(121\) −5.28115 + 9.64932i −0.480105 + 0.877211i
\(122\) 0 0
\(123\) 0.449028 0.618034i 0.0404875 0.0557262i
\(124\) 0 0
\(125\) −11.0797 + 1.49707i −0.990995 + 0.133902i
\(126\) 0 0
\(127\) −1.67760 2.30902i −0.148863 0.204892i 0.728073 0.685500i \(-0.240416\pi\)
−0.876936 + 0.480608i \(0.840416\pi\)
\(128\) 0 0
\(129\) −3.23607 + 9.95959i −0.284920 + 0.876893i
\(130\) 0 0
\(131\) 8.00000 0.698963 0.349482 0.936943i \(-0.386358\pi\)
0.349482 + 0.936943i \(0.386358\pi\)
\(132\) 0 0
\(133\) 2.23607i 0.193892i
\(134\) 0 0
\(135\) −12.2228 + 1.84090i −1.05197 + 0.158440i
\(136\) 0 0
\(137\) −12.5882 17.3262i −1.07549 1.48028i −0.864394 0.502814i \(-0.832298\pi\)
−0.211092 0.977466i \(-0.567702\pi\)
\(138\) 0 0
\(139\) 0.100813 + 0.310271i 0.00855085 + 0.0263168i 0.955241 0.295829i \(-0.0955959\pi\)
−0.946690 + 0.322146i \(0.895596\pi\)
\(140\) 0 0
\(141\) 10.0902 + 7.33094i 0.849746 + 0.617376i
\(142\) 0 0
\(143\) −7.86572 0.736068i −0.657765 0.0615531i
\(144\) 0 0
\(145\) −9.86472 1.63928i −0.819221 0.136135i
\(146\) 0 0
\(147\) −7.77997 + 2.52786i −0.641681 + 0.208495i
\(148\) 0 0
\(149\) 17.5623 12.7598i 1.43876 1.04532i 0.450460 0.892796i \(-0.351260\pi\)
0.988300 0.152524i \(-0.0487401\pi\)
\(150\) 0 0
\(151\) −4.23607 + 13.0373i −0.344726 + 1.06096i 0.617004 + 0.786960i \(0.288346\pi\)
−0.961730 + 0.273998i \(0.911654\pi\)
\(152\) 0 0
\(153\) 9.52786i 0.770282i
\(154\) 0 0
\(155\) 4.00000 2.00000i 0.321288 0.160644i
\(156\) 0 0
\(157\) −5.84510 1.89919i −0.466489 0.151572i 0.0663350 0.997797i \(-0.478869\pi\)
−0.532824 + 0.846226i \(0.678869\pi\)
\(158\) 0 0
\(159\) −7.09017 + 5.15131i −0.562287 + 0.408525i
\(160\) 0 0
\(161\) 0.881966 + 2.71441i 0.0695087 + 0.213926i
\(162\) 0 0
\(163\) −5.53483 + 7.61803i −0.433521 + 0.596690i −0.968757 0.248012i \(-0.920223\pi\)
0.535236 + 0.844703i \(0.320223\pi\)
\(164\) 0 0
\(165\) −8.86357 2.33872i −0.690028 0.182069i
\(166\) 0 0
\(167\) −7.83297 + 10.7812i −0.606133 + 0.834271i −0.996252 0.0864937i \(-0.972434\pi\)
0.390119 + 0.920764i \(0.372434\pi\)
\(168\) 0 0
\(169\) 2.26393 + 6.96767i 0.174149 + 0.535974i
\(170\) 0 0
\(171\) −4.30902 + 3.13068i −0.329519 + 0.239409i
\(172\) 0 0
\(173\) 1.76336 + 0.572949i 0.134065 + 0.0435605i 0.375281 0.926911i \(-0.377546\pi\)
−0.241216 + 0.970472i \(0.577546\pi\)
\(174\) 0 0
\(175\) 2.47214 + 1.85410i 0.186876 + 0.140157i
\(176\) 0 0
\(177\) 13.4164i 1.00844i
\(178\) 0 0
\(179\) −2.86475 + 8.81678i −0.214121 + 0.658997i 0.785094 + 0.619377i \(0.212615\pi\)
−0.999215 + 0.0396200i \(0.987385\pi\)
\(180\) 0 0
\(181\) −16.0902 + 11.6902i −1.19597 + 0.868925i −0.993883 0.110442i \(-0.964773\pi\)
−0.202090 + 0.979367i \(0.564773\pi\)
\(182\) 0 0
\(183\) 8.16348 2.65248i 0.603462 0.196077i
\(184\) 0 0
\(185\) 2.05931 12.3924i 0.151403 0.911105i
\(186\) 0 0
\(187\) 8.50651 19.7082i 0.622057 1.44121i
\(188\) 0 0
\(189\) 2.76393 + 2.00811i 0.201046 + 0.146069i
\(190\) 0 0
\(191\) 2.79837 + 8.61251i 0.202483 + 0.623179i 0.999807 + 0.0196279i \(0.00624817\pi\)
−0.797324 + 0.603551i \(0.793752\pi\)
\(192\) 0 0
\(193\) −7.77997 10.7082i −0.560014 0.770793i 0.431314 0.902202i \(-0.358050\pi\)
−0.991328 + 0.131408i \(0.958050\pi\)
\(194\) 0 0
\(195\) −0.980509 6.51017i −0.0702157 0.466203i
\(196\) 0 0
\(197\) 26.2148i 1.86773i 0.357631 + 0.933863i \(0.383585\pi\)
−0.357631 + 0.933863i \(0.616415\pi\)
\(198\) 0 0
\(199\) −5.52786 −0.391860 −0.195930 0.980618i \(-0.562773\pi\)
−0.195930 + 0.980618i \(0.562773\pi\)
\(200\) 0 0
\(201\) −3.52786 + 10.8576i −0.248836 + 0.765840i
\(202\) 0 0
\(203\) 1.62460 + 2.23607i 0.114024 + 0.156941i
\(204\) 0 0
\(205\) −0.969751 0.984587i −0.0677304 0.0687666i
\(206\) 0 0
\(207\) −3.99598 + 5.50000i −0.277740 + 0.382276i
\(208\) 0 0
\(209\) −11.7082 + 2.62866i −0.809873 + 0.181828i
\(210\) 0 0
\(211\) 21.4164 + 15.5599i 1.47437 + 1.07119i 0.979319 + 0.202324i \(0.0648494\pi\)
0.495048 + 0.868866i \(0.335151\pi\)
\(212\) 0 0
\(213\) 2.35114 0.763932i 0.161098 0.0523438i
\(214\) 0 0
\(215\) 16.8137 + 8.72841i 1.14668 + 0.595272i
\(216\) 0 0
\(217\) −1.17557 0.381966i −0.0798029 0.0259295i
\(218\) 0 0
\(219\) −1.88854 −0.127616
\(220\) 0 0
\(221\) 15.4164 1.03702
\(222\) 0 0
\(223\) −18.1558 5.89919i −1.21580 0.395039i −0.370252 0.928931i \(-0.620729\pi\)
−0.845552 + 0.533893i \(0.820729\pi\)
\(224\) 0 0
\(225\) −0.111750 + 7.35983i −0.00744999 + 0.490655i
\(226\) 0 0
\(227\) −11.4127 + 3.70820i −0.757486 + 0.246122i −0.662199 0.749328i \(-0.730377\pi\)
−0.0952867 + 0.995450i \(0.530377\pi\)
\(228\) 0 0
\(229\) −5.85410 4.25325i −0.386850 0.281063i 0.377314 0.926086i \(-0.376848\pi\)
−0.764163 + 0.645023i \(0.776848\pi\)
\(230\) 0 0
\(231\) 1.29180 + 2.17963i 0.0849939 + 0.143409i
\(232\) 0 0
\(233\) −11.2412 + 15.4721i −0.736433 + 1.01361i 0.262383 + 0.964964i \(0.415492\pi\)
−0.998816 + 0.0486494i \(0.984508\pi\)
\(234\) 0 0
\(235\) 16.0746 15.8324i 1.04859 1.03279i
\(236\) 0 0
\(237\) 4.49028 + 6.18034i 0.291675 + 0.401456i
\(238\) 0 0
\(239\) 2.23607 6.88191i 0.144639 0.445154i −0.852325 0.523012i \(-0.824808\pi\)
0.996964 + 0.0778584i \(0.0248082\pi\)
\(240\) 0 0
\(241\) −4.90983 −0.316270 −0.158135 0.987418i \(-0.550548\pi\)
−0.158135 + 0.987418i \(0.550548\pi\)
\(242\) 0 0
\(243\) 13.5967i 0.872232i
\(244\) 0 0
\(245\) 2.20395 + 14.6333i 0.140805 + 0.934889i
\(246\) 0 0
\(247\) −5.06555 6.97214i −0.322313 0.443626i
\(248\) 0 0
\(249\) −3.88854 11.9677i −0.246426 0.758423i
\(250\) 0 0
\(251\) 5.50000 + 3.99598i 0.347157 + 0.252224i 0.747675 0.664064i \(-0.231170\pi\)
−0.400518 + 0.916289i \(0.631170\pi\)
\(252\) 0 0
\(253\) −13.1760 + 7.80902i −0.828370 + 0.490949i
\(254\) 0 0
\(255\) 17.6466 + 2.93243i 1.10507 + 0.183636i
\(256\) 0 0
\(257\) 19.9192 6.47214i 1.24252 0.403721i 0.387288 0.921959i \(-0.373412\pi\)
0.855236 + 0.518238i \(0.173412\pi\)
\(258\) 0 0
\(259\) −2.80902 + 2.04087i −0.174544 + 0.126814i
\(260\) 0 0
\(261\) −2.03444 + 6.26137i −0.125929 + 0.387569i
\(262\) 0 0
\(263\) 5.14590i 0.317310i −0.987334 0.158655i \(-0.949284\pi\)
0.987334 0.158655i \(-0.0507157\pi\)
\(264\) 0 0
\(265\) 7.09017 + 14.1803i 0.435546 + 0.871091i
\(266\) 0 0
\(267\) −13.3803 4.34752i −0.818861 0.266064i
\(268\) 0 0
\(269\) 18.0902 13.1433i 1.10298 0.801360i 0.121434 0.992600i \(-0.461251\pi\)
0.981543 + 0.191240i \(0.0612508\pi\)
\(270\) 0 0
\(271\) 0.437694 + 1.34708i 0.0265880 + 0.0818295i 0.963470 0.267816i \(-0.0863020\pi\)
−0.936882 + 0.349646i \(0.886302\pi\)
\(272\) 0 0
\(273\) −1.06957 + 1.47214i −0.0647333 + 0.0890977i
\(274\) 0 0
\(275\) −6.80203 + 15.1239i −0.410178 + 0.912005i
\(276\) 0 0
\(277\) 0.0202444 0.0278640i 0.00121637 0.00167419i −0.808408 0.588622i \(-0.799671\pi\)
0.809625 + 0.586948i \(0.199671\pi\)
\(278\) 0 0
\(279\) −0.909830 2.80017i −0.0544701 0.167642i
\(280\) 0 0
\(281\) 7.32624 5.32282i 0.437047 0.317533i −0.347414 0.937712i \(-0.612940\pi\)
0.784460 + 0.620179i \(0.212940\pi\)
\(282\) 0 0
\(283\) 0.171513 + 0.0557281i 0.0101954 + 0.00331269i 0.314110 0.949387i \(-0.398294\pi\)
−0.303915 + 0.952699i \(0.598294\pi\)
\(284\) 0 0
\(285\) −4.47214 8.94427i −0.264906 0.529813i
\(286\) 0 0
\(287\) 0.381966i 0.0225467i
\(288\) 0 0
\(289\) −7.69098 + 23.6704i −0.452411 + 1.39238i
\(290\) 0 0
\(291\) −9.23607 + 6.71040i −0.541428 + 0.393370i
\(292\) 0 0
\(293\) 28.3929 9.22542i 1.65873 0.538955i 0.678127 0.734945i \(-0.262792\pi\)
0.980606 + 0.195990i \(0.0627919\pi\)
\(294\) 0 0
\(295\) −23.9422 3.97861i −1.39397 0.231644i
\(296\) 0 0
\(297\) −7.26543 + 16.8328i −0.421583 + 0.976739i
\(298\) 0 0
\(299\) −8.89919 6.46564i −0.514653 0.373917i
\(300\) 0 0
\(301\) −1.61803 4.97980i −0.0932619 0.287031i
\(302\) 0 0
\(303\) 14.3188 + 19.7082i 0.822596 + 1.13221i
\(304\) 0 0
\(305\) −2.31260 15.3547i −0.132419 0.879207i
\(306\) 0 0
\(307\) 15.2361i 0.869568i −0.900535 0.434784i \(-0.856825\pi\)
0.900535 0.434784i \(-0.143175\pi\)
\(308\) 0 0
\(309\) 8.47214 0.481963
\(310\) 0 0
\(311\) 1.29180 3.97574i 0.0732510 0.225444i −0.907727 0.419561i \(-0.862184\pi\)
0.980978 + 0.194117i \(0.0621842\pi\)
\(312\) 0 0
\(313\) −6.77591 9.32624i −0.382997 0.527150i 0.573378 0.819291i \(-0.305632\pi\)
−0.956375 + 0.292141i \(0.905632\pi\)
\(314\) 0 0
\(315\) 1.44945 1.42761i 0.0816671 0.0804365i
\(316\) 0 0
\(317\) 8.45351 11.6353i 0.474796 0.653501i −0.502698 0.864462i \(-0.667659\pi\)
0.977494 + 0.210961i \(0.0676593\pi\)
\(318\) 0 0
\(319\) −9.79837 + 11.1352i −0.548604 + 0.623449i
\(320\) 0 0
\(321\) 15.4164 + 11.2007i 0.860460 + 0.625161i
\(322\) 0 0
\(323\) 22.2703 7.23607i 1.23915 0.402626i
\(324\) 0 0
\(325\) −11.9085 0.180815i −0.660562 0.0100298i
\(326\) 0 0
\(327\) 6.49839 + 2.11146i 0.359362 + 0.116764i
\(328\) 0 0
\(329\) −6.23607 −0.343806
\(330\) 0 0
\(331\) 6.09017 0.334746 0.167373 0.985894i \(-0.446472\pi\)
0.167373 + 0.985894i \(0.446472\pi\)
\(332\) 0 0
\(333\) −7.86572 2.55573i −0.431039 0.140053i
\(334\) 0 0
\(335\) 18.3298 + 9.51545i 1.00146 + 0.519884i
\(336\) 0 0
\(337\) −1.73060 + 0.562306i −0.0942718 + 0.0306308i −0.355773 0.934572i \(-0.615782\pi\)
0.261501 + 0.965203i \(0.415782\pi\)
\(338\) 0 0
\(339\) 9.41641 + 6.84142i 0.511429 + 0.371575i
\(340\) 0 0
\(341\) 0.618034 6.60440i 0.0334684 0.357648i
\(342\) 0 0
\(343\) 4.94704 6.80902i 0.267115 0.367652i
\(344\) 0 0
\(345\) −8.95669 9.09372i −0.482212 0.489589i
\(346\) 0 0
\(347\) −1.55909 2.14590i −0.0836961 0.115198i 0.765116 0.643893i \(-0.222682\pi\)
−0.848812 + 0.528695i \(0.822682\pi\)
\(348\) 0 0
\(349\) 2.23607 6.88191i 0.119694 0.368380i −0.873203 0.487356i \(-0.837961\pi\)
0.992897 + 0.118976i \(0.0379612\pi\)
\(350\) 0 0
\(351\) −13.1672 −0.702812
\(352\) 0 0
\(353\) 16.0000i 0.851594i 0.904819 + 0.425797i \(0.140006\pi\)
−0.904819 + 0.425797i \(0.859994\pi\)
\(354\) 0 0
\(355\) −0.666045 4.42226i −0.0353500 0.234709i
\(356\) 0 0
\(357\) −2.90617 4.00000i −0.153811 0.211702i
\(358\) 0 0
\(359\) −10.0000 30.7768i −0.527780 1.62434i −0.758753 0.651379i \(-0.774191\pi\)
0.230973 0.972960i \(-0.425809\pi\)
\(360\) 0 0
\(361\) 4.78115 + 3.47371i 0.251640 + 0.182827i
\(362\) 0 0
\(363\) −9.89408 + 9.32624i −0.519305 + 0.489501i
\(364\) 0 0
\(365\) −0.560044 + 3.37019i −0.0293140 + 0.176404i
\(366\) 0 0
\(367\) −28.4257 + 9.23607i −1.48381 + 0.482119i −0.935248 0.353992i \(-0.884824\pi\)
−0.548561 + 0.836111i \(0.684824\pi\)
\(368\) 0 0
\(369\) −0.736068 + 0.534785i −0.0383182 + 0.0278398i
\(370\) 0 0
\(371\) 1.35410 4.16750i 0.0703015 0.216366i
\(372\) 0 0
\(373\) 6.56231i 0.339783i −0.985463 0.169892i \(-0.945658\pi\)
0.985463 0.169892i \(-0.0543418\pi\)
\(374\) 0 0
\(375\) −13.5967 2.47214i −0.702133 0.127661i
\(376\) 0 0
\(377\) −10.1311 3.29180i −0.521779 0.169536i
\(378\) 0 0
\(379\) −25.9164 + 18.8294i −1.33124 + 0.967200i −0.331519 + 0.943449i \(0.607561\pi\)
−0.999718 + 0.0237512i \(0.992439\pi\)
\(380\) 0 0
\(381\) −1.09017 3.35520i −0.0558511 0.171892i
\(382\) 0 0
\(383\) 13.0575 17.9721i 0.667208 0.918333i −0.332485 0.943109i \(-0.607887\pi\)
0.999693 + 0.0247753i \(0.00788704\pi\)
\(384\) 0 0
\(385\) 4.27272 1.65890i 0.217758 0.0845456i
\(386\) 0 0
\(387\) 7.33094 10.0902i 0.372652 0.512912i
\(388\) 0 0
\(389\) −7.76393 23.8949i −0.393647 1.21152i −0.930010 0.367534i \(-0.880202\pi\)
0.536363 0.843987i \(-0.319798\pi\)
\(390\) 0 0
\(391\) 24.1803 17.5680i 1.22285 0.888454i
\(392\) 0 0
\(393\) 9.40456 + 3.05573i 0.474398 + 0.154141i
\(394\) 0 0
\(395\) 12.3607 6.18034i 0.621933 0.310967i
\(396\) 0 0
\(397\) 12.3262i 0.618636i −0.950959 0.309318i \(-0.899899\pi\)
0.950959 0.309318i \(-0.100101\pi\)
\(398\) 0 0
\(399\) −0.854102 + 2.62866i −0.0427586 + 0.131597i
\(400\) 0 0
\(401\) −0.0729490 + 0.0530006i −0.00364290 + 0.00264672i −0.589605 0.807692i \(-0.700717\pi\)
0.585962 + 0.810338i \(0.300717\pi\)
\(402\) 0 0
\(403\) 4.53077 1.47214i 0.225694 0.0733323i
\(404\) 0 0
\(405\) −5.33016 0.885743i −0.264858 0.0440129i
\(406\) 0 0
\(407\) −13.9883 12.3090i −0.693376 0.610135i
\(408\) 0 0
\(409\) 21.0172 + 15.2699i 1.03923 + 0.755048i 0.970136 0.242562i \(-0.0779877\pi\)
0.0690987 + 0.997610i \(0.477988\pi\)
\(410\) 0 0
\(411\) −8.18034 25.1765i −0.403506 1.24187i
\(412\) 0 0
\(413\) 3.94298 + 5.42705i 0.194022 + 0.267048i
\(414\) 0 0
\(415\) −22.5101 + 3.39028i −1.10498 + 0.166422i
\(416\) 0 0
\(417\) 0.403252i 0.0197473i
\(418\) 0 0
\(419\) 35.9787 1.75768 0.878838 0.477121i \(-0.158320\pi\)
0.878838 + 0.477121i \(0.158320\pi\)
\(420\) 0 0
\(421\) 0.618034 1.90211i 0.0301211 0.0927033i −0.934866 0.355001i \(-0.884480\pi\)
0.964987 + 0.262298i \(0.0844804\pi\)
\(422\) 0 0
\(423\) −8.73102 12.0172i −0.424517 0.584297i
\(424\) 0 0
\(425\) 10.4661 30.6215i 0.507680 1.48536i
\(426\) 0 0
\(427\) −2.52265 + 3.47214i −0.122080 + 0.168028i
\(428\) 0 0
\(429\) −8.96556 3.86974i −0.432861 0.186833i
\(430\) 0 0
\(431\) 22.7984 + 16.5640i 1.09816 + 0.797859i 0.980758 0.195225i \(-0.0625438\pi\)
0.117401 + 0.993085i \(0.462544\pi\)
\(432\) 0 0
\(433\) 7.05342 2.29180i 0.338966 0.110137i −0.134588 0.990902i \(-0.542971\pi\)
0.473554 + 0.880765i \(0.342971\pi\)
\(434\) 0 0
\(435\) −10.9705 5.69507i −0.525997 0.273058i
\(436\) 0 0
\(437\) −15.8904 5.16312i −0.760143 0.246985i
\(438\) 0 0
\(439\) −6.18034 −0.294972 −0.147486 0.989064i \(-0.547118\pi\)
−0.147486 + 0.989064i \(0.547118\pi\)
\(440\) 0 0
\(441\) 9.74265 0.463936
\(442\) 0 0
\(443\) 0.171513 + 0.0557281i 0.00814885 + 0.00264772i 0.313089 0.949724i \(-0.398636\pi\)
−0.304940 + 0.952372i \(0.598636\pi\)
\(444\) 0 0
\(445\) −11.7263 + 22.5885i −0.555878 + 1.07080i
\(446\) 0 0
\(447\) 25.5195 8.29180i 1.20703 0.392188i
\(448\) 0 0
\(449\) −16.8713 12.2577i −0.796207 0.578478i 0.113592 0.993527i \(-0.463764\pi\)
−0.909799 + 0.415049i \(0.863764\pi\)
\(450\) 0 0
\(451\) −2.00000 + 0.449028i −0.0941763 + 0.0211439i
\(452\) 0 0
\(453\) −9.95959 + 13.7082i −0.467943 + 0.644068i
\(454\) 0 0
\(455\) 2.30991 + 2.34525i 0.108290 + 0.109947i
\(456\) 0 0
\(457\) 4.80828 + 6.61803i 0.224922 + 0.309579i 0.906532 0.422137i \(-0.138720\pi\)
−0.681610 + 0.731716i \(0.738720\pi\)
\(458\) 0 0
\(459\) 11.0557 34.0260i 0.516037 1.58820i
\(460\) 0 0
\(461\) −9.70820 −0.452156 −0.226078 0.974109i \(-0.572590\pi\)
−0.226078 + 0.974109i \(0.572590\pi\)
\(462\) 0 0
\(463\) 1.32624i 0.0616355i −0.999525 0.0308178i \(-0.990189\pi\)
0.999525 0.0308178i \(-0.00981115\pi\)
\(464\) 0 0
\(465\) 5.46621 0.823277i 0.253490 0.0381786i
\(466\) 0 0
\(467\) 10.9637 + 15.0902i 0.507337 + 0.698290i 0.983467 0.181085i \(-0.0579609\pi\)
−0.476130 + 0.879375i \(0.657961\pi\)
\(468\) 0 0
\(469\) −1.76393 5.42882i −0.0814508 0.250680i
\(470\) 0 0
\(471\) −6.14590 4.46526i −0.283188 0.205748i
\(472\) 0 0
\(473\) 24.1724 14.3262i 1.11145 0.658721i
\(474\) 0 0
\(475\) −17.2877 + 5.32832i −0.793212 + 0.244480i
\(476\) 0 0
\(477\) 9.92684 3.22542i 0.454519 0.147682i
\(478\) 0 0
\(479\) 22.0344 16.0090i 1.00678 0.731468i 0.0432482 0.999064i \(-0.486229\pi\)
0.963531 + 0.267596i \(0.0862294\pi\)
\(480\) 0 0
\(481\) 4.13525 12.7270i 0.188551 0.580302i
\(482\) 0 0
\(483\) 3.52786i 0.160523i
\(484\) 0 0
\(485\) 9.23607 + 18.4721i 0.419388 + 0.838776i
\(486\) 0 0
\(487\) 38.9403 + 12.6525i 1.76455 + 0.573338i 0.997656 0.0684303i \(-0.0217991\pi\)
0.766898 + 0.641769i \(0.221799\pi\)
\(488\) 0 0
\(489\) −9.41641 + 6.84142i −0.425825 + 0.309380i
\(490\) 0 0
\(491\) −8.11803 24.9847i −0.366362 1.12755i −0.949124 0.314903i \(-0.898028\pi\)
0.582762 0.812643i \(-0.301972\pi\)
\(492\) 0 0
\(493\) 17.0130 23.4164i 0.766228 1.05462i
\(494\) 0 0
\(495\) 9.17897 + 5.91115i 0.412564 + 0.265686i
\(496\) 0 0
\(497\) −0.726543 + 1.00000i −0.0325899 + 0.0448561i
\(498\) 0 0
\(499\) −0.100813 0.310271i −0.00451301 0.0138896i 0.948775 0.315954i \(-0.102324\pi\)
−0.953288 + 0.302064i \(0.902324\pi\)
\(500\) 0 0
\(501\) −13.3262 + 9.68208i −0.595372 + 0.432563i
\(502\) 0 0
\(503\) −11.7759 3.82624i −0.525064 0.170604i 0.0344785 0.999405i \(-0.489023\pi\)
−0.559542 + 0.828802i \(0.689023\pi\)
\(504\) 0 0
\(505\) 39.4164 19.7082i 1.75401 0.877004i
\(506\) 0 0
\(507\) 9.05573i 0.402179i
\(508\) 0 0
\(509\) 3.61803 11.1352i 0.160367 0.493557i −0.838298 0.545212i \(-0.816449\pi\)
0.998665 + 0.0516541i \(0.0164493\pi\)
\(510\) 0 0
\(511\) 0.763932 0.555029i 0.0337944 0.0245530i
\(512\) 0 0
\(513\) −19.0211 + 6.18034i −0.839803 + 0.272869i
\(514\) 0 0
\(515\) 2.51240 15.1189i 0.110709 0.666219i
\(516\) 0 0
\(517\) −7.33094 32.6525i −0.322414 1.43605i
\(518\) 0 0
\(519\) 1.85410 + 1.34708i 0.0813860 + 0.0591304i
\(520\) 0 0
\(521\) −9.60739 29.5685i −0.420907 1.29542i −0.906859 0.421434i \(-0.861527\pi\)
0.485952 0.873986i \(-0.338473\pi\)
\(522\) 0 0
\(523\) 0.661030 + 0.909830i 0.0289048 + 0.0397841i 0.823225 0.567716i \(-0.192173\pi\)
−0.794320 + 0.607500i \(0.792173\pi\)
\(524\) 0 0
\(525\) 2.19797 + 3.12390i 0.0959271 + 0.136338i
\(526\) 0 0
\(527\) 12.9443i 0.563861i
\(528\) 0 0
\(529\) 1.67376 0.0727723
\(530\) 0 0
\(531\) −4.93769 + 15.1967i −0.214278 + 0.659479i
\(532\) 0 0
\(533\) −0.865300 1.19098i −0.0374803 0.0515872i
\(534\) 0 0
\(535\) 24.5598 24.1897i 1.06181 1.04581i
\(536\) 0 0
\(537\) −6.73542 + 9.27051i −0.290655 + 0.400052i
\(538\) 0 0
\(539\) 20.1525 + 8.69827i 0.868029 + 0.374661i
\(540\) 0 0
\(541\) −12.7984 9.29856i −0.550245 0.399776i 0.277631 0.960688i \(-0.410451\pi\)
−0.827876 + 0.560911i \(0.810451\pi\)
\(542\) 0 0
\(543\) −23.3804 + 7.59675i −1.00335 + 0.326008i
\(544\) 0 0
\(545\) 5.69507 10.9705i 0.243950 0.469926i
\(546\) 0 0
\(547\) 18.9151 + 6.14590i 0.808753 + 0.262780i 0.684069 0.729417i \(-0.260209\pi\)
0.124683 + 0.992197i \(0.460209\pi\)
\(548\) 0 0
\(549\) −10.2229 −0.436303
\(550\) 0 0
\(551\) −16.1803 −0.689306
\(552\) 0 0
\(553\) −3.63271 1.18034i −0.154479 0.0501932i
\(554\) 0 0
\(555\) 7.15433 13.7815i 0.303684 0.584993i
\(556\) 0 0
\(557\) −10.0453 + 3.26393i −0.425635 + 0.138297i −0.513999 0.857791i \(-0.671836\pi\)
0.0883634 + 0.996088i \(0.471836\pi\)
\(558\) 0 0
\(559\) 16.3262 + 11.8617i 0.690526 + 0.501697i
\(560\) 0 0
\(561\) 17.5279 19.9192i 0.740027 0.840989i
\(562\) 0 0
\(563\) −26.8011 + 36.8885i −1.12953 + 1.55467i −0.340575 + 0.940217i \(0.610622\pi\)
−0.788956 + 0.614450i \(0.789378\pi\)
\(564\) 0 0
\(565\) 15.0012 14.7752i 0.631107 0.621597i
\(566\) 0 0
\(567\) 0.877812 + 1.20820i 0.0368646 + 0.0507398i
\(568\) 0 0
\(569\) −1.80902 + 5.56758i −0.0758379 + 0.233405i −0.981788 0.189979i \(-0.939158\pi\)
0.905950 + 0.423384i \(0.139158\pi\)
\(570\) 0 0
\(571\) −44.6869 −1.87009 −0.935045 0.354530i \(-0.884641\pi\)
−0.935045 + 0.354530i \(0.884641\pi\)
\(572\) 0 0
\(573\) 11.1935i 0.467615i
\(574\) 0 0
\(575\) −18.8842 + 13.2869i −0.787527 + 0.554102i
\(576\) 0 0
\(577\) 10.3026 + 14.1803i 0.428904 + 0.590335i 0.967701 0.252100i \(-0.0811212\pi\)
−0.538797 + 0.842435i \(0.681121\pi\)
\(578\) 0 0
\(579\) −5.05573 15.5599i −0.210109 0.646649i
\(580\) 0 0
\(581\) 5.09017 + 3.69822i 0.211176 + 0.153428i
\(582\) 0 0
\(583\) 23.4131 + 2.19098i 0.969673 + 0.0907412i
\(584\) 0 0
\(585\) −1.28535 + 7.73488i −0.0531426 + 0.319798i
\(586\) 0 0
\(587\) 22.9969 7.47214i 0.949182 0.308408i 0.206799 0.978383i \(-0.433695\pi\)
0.742383 + 0.669975i \(0.233695\pi\)
\(588\) 0 0
\(589\) 5.85410 4.25325i 0.241214 0.175252i
\(590\) 0 0
\(591\) −10.0132 + 30.8173i −0.411886 + 1.26766i
\(592\) 0 0
\(593\) 6.11146i 0.250967i −0.992096 0.125484i \(-0.959952\pi\)
0.992096 0.125484i \(-0.0400483\pi\)
\(594\) 0 0
\(595\) −8.00000 + 4.00000i −0.327968 + 0.163984i
\(596\) 0 0
\(597\) −6.49839 2.11146i −0.265962 0.0864161i
\(598\) 0 0
\(599\) 5.00000 3.63271i 0.204294 0.148429i −0.480934 0.876757i \(-0.659702\pi\)
0.685228 + 0.728328i \(0.259702\pi\)
\(600\) 0 0
\(601\) 0.0278640 + 0.0857567i 0.00113660 + 0.00349809i 0.951623 0.307267i \(-0.0994146\pi\)
−0.950487 + 0.310766i \(0.899415\pi\)
\(602\) 0 0
\(603\) 7.99197 11.0000i 0.325458 0.447955i
\(604\) 0 0
\(605\) 13.7090 + 20.4221i 0.557351 + 0.830277i
\(606\) 0 0
\(607\) −19.7072 + 27.1246i −0.799890 + 1.10095i 0.192916 + 0.981215i \(0.438206\pi\)
−0.992805 + 0.119739i \(0.961794\pi\)
\(608\) 0 0
\(609\) 1.05573 + 3.24920i 0.0427803 + 0.131664i
\(610\) 0 0
\(611\) 19.4443 14.1271i 0.786631 0.571521i
\(612\) 0 0
\(613\) 5.70634 + 1.85410i 0.230477 + 0.0748865i 0.421979 0.906606i \(-0.361336\pi\)
−0.191502 + 0.981492i \(0.561336\pi\)
\(614\) 0 0
\(615\) −0.763932 1.52786i −0.0308047 0.0616094i
\(616\) 0 0
\(617\) 9.05573i 0.364570i 0.983246 + 0.182285i \(0.0583493\pi\)
−0.983246 + 0.182285i \(0.941651\pi\)
\(618\) 0 0
\(619\) −2.29837 + 7.07367i −0.0923794 + 0.284315i −0.986562 0.163388i \(-0.947758\pi\)
0.894182 + 0.447703i \(0.147758\pi\)
\(620\) 0 0
\(621\) −20.6525 + 15.0049i −0.828755 + 0.602126i
\(622\) 0 0
\(623\) 6.69015 2.17376i 0.268035 0.0870899i
\(624\) 0 0
\(625\) −8.44373 + 23.5309i −0.337749 + 0.941236i
\(626\) 0 0
\(627\) −14.7679 1.38197i −0.589772 0.0551904i
\(628\) 0 0
\(629\) 29.4164 + 21.3723i 1.17291 + 0.852168i
\(630\) 0 0
\(631\) −8.38197 25.7970i −0.333681 1.02696i −0.967368 0.253375i \(-0.918459\pi\)
0.633687 0.773589i \(-0.281541\pi\)
\(632\) 0 0
\(633\) 19.2331 + 26.4721i 0.764448 + 1.05217i
\(634\) 0 0
\(635\) −6.31079 + 0.950480i −0.250436 + 0.0377187i
\(636\) 0 0
\(637\) 15.7639i 0.624590i
\(638\) 0 0
\(639\) −2.94427 −0.116474
\(640\) 0 0
\(641\) 9.50000 29.2380i 0.375227 1.15483i −0.568098 0.822961i \(-0.692320\pi\)
0.943325 0.331870i \(-0.107680\pi\)
\(642\) 0 0
\(643\) −12.2452 16.8541i −0.482904 0.664661i 0.496155 0.868234i \(-0.334745\pi\)
−0.979060 + 0.203573i \(0.934745\pi\)
\(644\) 0 0
\(645\) 16.4317 + 16.6831i 0.646999 + 0.656897i
\(646\) 0 0
\(647\) 16.3270 22.4721i 0.641879 0.883471i −0.356835 0.934167i \(-0.616144\pi\)
0.998714 + 0.0506966i \(0.0161442\pi\)
\(648\) 0 0
\(649\) −23.7812 + 27.0256i −0.933492 + 1.06085i
\(650\) 0 0
\(651\) −1.23607 0.898056i −0.0484453 0.0351976i
\(652\) 0 0
\(653\) −27.7849 + 9.02786i −1.08731 + 0.353288i −0.797205 0.603708i \(-0.793689\pi\)
−0.290102 + 0.956996i \(0.593689\pi\)
\(654\) 0 0
\(655\) 8.24199 15.8767i 0.322041 0.620354i
\(656\) 0 0
\(657\) 2.13914 + 0.695048i 0.0834558 + 0.0271164i
\(658\) 0 0
\(659\) −11.3820 −0.443378 −0.221689 0.975117i \(-0.571157\pi\)
−0.221689 + 0.975117i \(0.571157\pi\)
\(660\) 0 0
\(661\) −5.88854 −0.229038 −0.114519 0.993421i \(-0.536533\pi\)
−0.114519 + 0.993421i \(0.536533\pi\)
\(662\) 0 0
\(663\) 18.1231 + 5.88854i 0.703842 + 0.228692i
\(664\) 0 0
\(665\) 4.43767 + 2.30371i 0.172086 + 0.0893339i
\(666\) 0 0
\(667\) −19.6417 + 6.38197i −0.760529 + 0.247111i
\(668\) 0 0
\(669\) −19.0902 13.8698i −0.738069 0.536238i
\(670\) 0 0
\(671\) −21.1459 9.12705i −0.816328 0.352346i
\(672\) 0 0
\(673\) 1.28157 1.76393i 0.0494010 0.0679946i −0.783602 0.621263i \(-0.786620\pi\)
0.833003 + 0.553269i \(0.186620\pi\)
\(674\) 0 0
\(675\) −8.93912 + 26.1539i −0.344067 + 1.00666i
\(676\) 0 0
\(677\) 9.68208 + 13.3262i 0.372113 + 0.512169i 0.953474 0.301477i \(-0.0974796\pi\)
−0.581361 + 0.813646i \(0.697480\pi\)
\(678\) 0 0
\(679\) 1.76393 5.42882i 0.0676935 0.208339i
\(680\) 0 0
\(681\) −14.8328 −0.568395
\(682\) 0 0
\(683\) 15.5967i 0.596793i −0.954442 0.298396i \(-0.903548\pi\)
0.954442 0.298396i \(-0.0964518\pi\)
\(684\) 0 0
\(685\) −47.3545 + 7.13215i −1.80932 + 0.272505i
\(686\) 0 0
\(687\) −5.25731 7.23607i −0.200579 0.276073i
\(688\) 0 0
\(689\) 5.21885 + 16.0620i 0.198822 + 0.611912i
\(690\) 0 0
\(691\) 31.6803 + 23.0171i 1.20518 + 0.875612i 0.994784 0.102005i \(-0.0325256\pi\)
0.210393 + 0.977617i \(0.432526\pi\)
\(692\) 0 0
\(693\) −0.661030 2.94427i −0.0251105 0.111844i
\(694\) 0 0
\(695\) 0.719622 + 0.119584i 0.0272968 + 0.00453607i
\(696\) 0 0
\(697\) 3.80423 1.23607i 0.144095 0.0468194i
\(698\) 0 0
\(699\) −19.1246 + 13.8948i −0.723359 + 0.525551i
\(700\) 0 0
\(701\) −8.20163 + 25.2420i −0.309771 + 0.953378i 0.668082 + 0.744087i \(0.267115\pi\)
−0.977854 + 0.209290i \(0.932885\pi\)
\(702\) 0 0
\(703\) 20.3262i 0.766619i
\(704\) 0 0
\(705\) 24.9443 12.4721i 0.939456 0.469728i
\(706\) 0 0
\(707\) −11.5842 3.76393i −0.435668 0.141557i
\(708\) 0 0
\(709\) −3.61803 + 2.62866i −0.135878 + 0.0987212i −0.653648 0.756799i \(-0.726762\pi\)
0.517770 + 0.855520i \(0.326762\pi\)
\(710\) 0 0
\(711\) −2.81153 8.65300i −0.105441 0.324513i
\(712\) 0 0
\(713\) 5.42882 7.47214i 0.203311 0.279834i
\(714\) 0 0
\(715\) −9.56444 + 14.8519i −0.357690 + 0.555429i
\(716\) 0 0
\(717\) 5.25731 7.23607i 0.196338 0.270236i
\(718\) 0 0
\(719\) 6.05573 + 18.6376i 0.225841 + 0.695066i 0.998205 + 0.0598864i \(0.0190738\pi\)
−0.772365 + 0.635179i \(0.780926\pi\)
\(720\) 0 0
\(721\) −3.42705 + 2.48990i −0.127630 + 0.0927287i
\(722\) 0 0
\(723\) −5.77185 1.87539i −0.214657 0.0697464i
\(724\) 0 0
\(725\) −13.4164 + 17.8885i −0.498273 + 0.664364i
\(726\) 0 0
\(727\) 31.7426i 1.17727i −0.808399 0.588635i \(-0.799666\pi\)
0.808399 0.588635i \(-0.200334\pi\)
\(728\) 0 0
\(729\) −7.43363 + 22.8784i −0.275320 + 0.847347i
\(730\) 0 0
\(731\) −44.3607 + 32.2299i −1.64074 + 1.19207i
\(732\) 0 0
\(733\) −8.95554 + 2.90983i −0.330780 + 0.107477i −0.469699 0.882827i \(-0.655637\pi\)
0.138918 + 0.990304i \(0.455637\pi\)
\(734\) 0 0
\(735\) −2.99853 + 18.0444i −0.110603 + 0.665576i
\(736\) 0 0
\(737\) 26.3521 15.6180i 0.970691 0.575298i
\(738\) 0 0
\(739\) −6.97214 5.06555i −0.256474 0.186339i 0.452117 0.891959i \(-0.350669\pi\)
−0.708591 + 0.705619i \(0.750669\pi\)
\(740\) 0 0
\(741\) −3.29180 10.1311i −0.120927 0.372175i
\(742\) 0 0
\(743\) 9.21281 + 12.6803i 0.337985 + 0.465197i 0.943852 0.330370i \(-0.107173\pi\)
−0.605867 + 0.795566i \(0.707173\pi\)
\(744\) 0 0
\(745\) −7.22932 47.9997i −0.264862 1.75857i
\(746\) 0 0
\(747\) 14.9868i 0.548340i
\(748\) 0 0
\(749\) −9.52786 −0.348141
\(750\) 0 0
\(751\) 7.14590 21.9928i 0.260758 0.802529i −0.731883 0.681430i \(-0.761358\pi\)
0.992640 0.121099i \(-0.0386418\pi\)
\(752\) 0 0
\(753\) 4.93931 + 6.79837i 0.179998 + 0.247747i
\(754\) 0 0
\(755\) 21.5094 + 21.8385i 0.782808 + 0.794784i
\(756\) 0 0
\(757\) −4.54328 + 6.25329i −0.165128 + 0.227280i −0.883560 0.468318i \(-0.844860\pi\)
0.718432 + 0.695597i \(0.244860\pi\)
\(758\) 0 0
\(759\) −18.4721 + 4.14725i −0.670496 + 0.150536i
\(760\) 0 0
\(761\) 8.38197 + 6.08985i 0.303846 + 0.220757i 0.729251 0.684246i \(-0.239868\pi\)
−0.425405 + 0.905003i \(0.639868\pi\)
\(762\) 0 0
\(763\) −3.24920 + 1.05573i −0.117629 + 0.0382199i
\(764\) 0 0
\(765\) −18.9089 9.81607i −0.683652 0.354901i
\(766\) 0 0
\(767\) −24.5887 7.98936i −0.887847 0.288479i
\(768\) 0 0
\(769\) 37.0344 1.33550 0.667748 0.744387i \(-0.267258\pi\)
0.667748 + 0.744387i \(0.267258\pi\)
\(770\) 0 0
\(771\) 25.8885 0.932353
\(772\) 0 0
\(773\) −37.5200 12.1910i −1.34950 0.438479i −0.456976 0.889479i \(-0.651068\pi\)
−0.892524 + 0.451000i \(0.851068\pi\)
\(774\) 0 0
\(775\) 0.151820 9.99885i 0.00545353 0.359169i
\(776\) 0 0
\(777\) −4.08174 + 1.32624i −0.146432 + 0.0475785i
\(778\) 0 0
\(779\) −1.80902 1.31433i −0.0648148 0.0470907i
\(780\) 0 0
\(781\) −6.09017 2.62866i −0.217923 0.0940607i
\(782\) 0 0
\(783\) −14.5309 + 20.0000i −0.519290 + 0.714742i
\(784\) 0 0
\(785\) −9.79101 + 9.64347i −0.349456 + 0.344190i
\(786\) 0 0
\(787\) 10.9637 + 15.0902i 0.390812 + 0.537906i 0.958408 0.285400i \(-0.0921266\pi\)
−0.567596 + 0.823307i \(0.692127\pi\)
\(788\) 0 0
\(789\) 1.96556 6.04937i 0.0699757 0.215363i
\(790\) 0 0
\(791\) −5.81966 −0.206923
\(792\) 0 0
\(793\) 16.5410i 0.587389i
\(794\) 0 0
\(795\) 2.91859 + 19.3782i 0.103512 + 0.687274i
\(796\) 0 0
\(797\) 3.30220 + 4.54508i 0.116970 + 0.160995i 0.863487 0.504371i \(-0.168276\pi\)
−0.746517 + 0.665366i \(0.768276\pi\)
\(798\) 0 0
\(799\) 20.1803 + 62.1087i 0.713929 + 2.19725i
\(800\) 0 0
\(801\) 13.5557 + 9.84881i 0.478968 + 0.347991i
\(802\) 0 0
\(803\) 3.80423 + 3.34752i 0.134248 + 0.118132i
\(804\) 0 0
\(805\) 6.29563 + 1.04618i 0.221892 + 0.0368730i
\(806\) 0 0
\(807\) 26.2866 8.54102i 0.925331 0.300658i
\(808\) 0 0
\(809\) −2.07295 + 1.50609i −0.0728810 + 0.0529512i −0.623629 0.781720i \(-0.714342\pi\)
0.550748 + 0.834671i \(0.314342\pi\)
\(810\) 0 0
\(811\) 13.0238 40.0831i 0.457327 1.40751i −0.411053 0.911611i \(-0.634839\pi\)
0.868381 0.495898i \(-0.165161\pi\)
\(812\) 0 0
\(813\) 1.75078i 0.0614024i
\(814\) 0 0
\(815\) 9.41641 + 18.8328i 0.329842 + 0.659685i
\(816\) 0 0
\(817\) 29.1522 + 9.47214i 1.01991 + 0.331388i
\(818\) 0 0
\(819\) 1.75329 1.27384i 0.0612649 0.0445115i
\(820\) 0 0
\(821\) 0.819660 + 2.52265i 0.0286063 + 0.0880412i 0.964340 0.264665i \(-0.0852614\pi\)
−0.935734 + 0.352706i \(0.885261\pi\)
\(822\) 0 0
\(823\) −3.79171 + 5.21885i −0.132171 + 0.181918i −0.869973 0.493100i \(-0.835864\pi\)
0.737802 + 0.675017i \(0.235864\pi\)
\(824\) 0 0
\(825\) −13.7731 + 15.1811i −0.479517 + 0.528537i
\(826\) 0 0
\(827\) 5.19180 7.14590i 0.180537 0.248487i −0.709152 0.705056i \(-0.750922\pi\)
0.889688 + 0.456569i \(0.150922\pi\)
\(828\) 0 0
\(829\) 7.88854 + 24.2784i 0.273980 + 0.843225i 0.989487 + 0.144619i \(0.0461958\pi\)
−0.715507 + 0.698606i \(0.753804\pi\)
\(830\) 0 0
\(831\) 0.0344419 0.0250235i 0.00119477 0.000868055i
\(832\) 0 0
\(833\) −40.7364 13.2361i −1.41143 0.458603i
\(834\) 0 0
\(835\) 13.3262 + 26.6525i 0.461173 + 0.922347i
\(836\) 0 0
\(837\) 11.0557i 0.382142i
\(838\) 0 0
\(839\) −2.23607 + 6.88191i −0.0771976 + 0.237590i −0.982207 0.187802i \(-0.939864\pi\)
0.905009 + 0.425392i \(0.139864\pi\)
\(840\) 0 0
\(841\) 7.28115 5.29007i 0.251074 0.182416i
\(842\) 0 0
\(843\) 10.6456 3.45898i 0.366656 0.119134i
\(844\) 0 0
\(845\) 16.1604 + 2.68546i 0.555933 + 0.0923826i
\(846\) 0 0
\(847\) 1.26133 6.68034i 0.0433397 0.229539i
\(848\) 0 0
\(849\) 0.180340 + 0.131025i 0.00618925 + 0.00449675i
\(850\) 0 0
\(851\) −8.01722 24.6745i −0.274827 0.845830i
\(852\) 0 0
\(853\) −3.09793 4.26393i −0.106071 0.145994i 0.752682 0.658385i \(-0.228760\pi\)
−0.858753 + 0.512391i \(0.828760\pi\)
\(854\) 0 0
\(855\) 1.77376 + 11.7770i 0.0606612 + 0.402765i
\(856\) 0 0
\(857\) 8.18034i 0.279435i −0.990191 0.139718i \(-0.955381\pi\)
0.990191 0.139718i \(-0.0446195\pi\)
\(858\) 0 0
\(859\) 8.61803 0.294044 0.147022 0.989133i \(-0.453031\pi\)
0.147022 + 0.989133i \(0.453031\pi\)
\(860\) 0 0
\(861\) −0.145898 + 0.449028i −0.00497219 + 0.0153028i
\(862\) 0 0
\(863\) 13.5393 + 18.6353i 0.460883 + 0.634351i 0.974692 0.223554i \(-0.0717658\pi\)
−0.513808 + 0.857905i \(0.671766\pi\)
\(864\) 0 0
\(865\) 2.95376 2.90925i 0.100431 0.0989176i
\(866\) 0 0
\(867\) −18.0826 + 24.8885i −0.614117 + 0.845259i
\(868\) 0 0
\(869\) 1.90983 20.4087i 0.0647865 0.692318i
\(870\) 0 0
\(871\) 17.7984 + 12.9313i 0.603075 + 0.438160i
\(872\) 0 0
\(873\) 12.9313 4.20163i 0.437657 0.142203i
\(874\) 0 0
\(875\) 6.22654 2.99598i 0.210496 0.101283i
\(876\) 0 0
\(877\) 49.3287 + 16.0279i 1.66571 + 0.541223i 0.982057 0.188583i \(-0.0603896\pi\)
0.683654 + 0.729806i \(0.260390\pi\)
\(878\) 0 0
\(879\) 36.9017 1.24466
\(880\) 0 0
\(881\) 6.79837 0.229043 0.114522 0.993421i \(-0.463467\pi\)
0.114522 + 0.993421i \(0.463467\pi\)
\(882\) 0 0
\(883\) −13.5923 4.41641i −0.457418 0.148624i 0.0712400 0.997459i \(-0.477304\pi\)
−0.528657 + 0.848835i \(0.677304\pi\)
\(884\) 0 0
\(885\) −26.6260 13.8222i −0.895024 0.464629i
\(886\) 0 0
\(887\) −37.2425 + 12.1008i −1.25048 + 0.406306i −0.858093 0.513495i \(-0.828351\pi\)
−0.392387 + 0.919800i \(0.628351\pi\)
\(888\) 0 0
\(889\) 1.42705 + 1.03681i 0.0478618 + 0.0347736i
\(890\) 0 0
\(891\) −5.29431 + 6.01661i −0.177366 + 0.201564i
\(892\) 0 0
\(893\) 21.4580 29.5344i 0.718066 0.988332i
\(894\) 0 0
\(895\) 14.5463 + 14.7688i 0.486228 + 0.493667i
\(896\) 0 0
\(897\) −7.99197 11.0000i −0.266844 0.367279i
\(898\) 0 0
\(899\) 2.76393 8.50651i 0.0921823 0.283708i
\(900\) 0 0
\(901\) −45.8885 −1.52877
\(902\) 0 0
\(903\) 6.47214i 0.215379i
\(904\) 0 0
\(905\) 6.62333 + 43.9762i 0.220167 + 1.46182i
\(906\) 0 0
\(907\) −17.3310 23.8541i −0.575467 0.792062i 0.417722 0.908575i \(-0.362829\pi\)
−0.993189 + 0.116512i \(0.962829\pi\)
\(908\) 0 0
\(909\) −8.96556 27.5932i −0.297369 0.915207i
\(910\) 0 0
\(911\) −19.5623 14.2128i −0.648128 0.470893i 0.214505 0.976723i \(-0.431186\pi\)
−0.862633 + 0.505830i \(0.831186\pi\)
\(912\) 0 0
\(913\) −13.3803 + 31.0000i −0.442823 + 1.02595i
\(914\) 0 0
\(915\) 3.14635 18.9339i 0.104015 0.625934i
\(916\) 0 0
\(917\) −4.70228 + 1.52786i −0.155283 + 0.0504545i
\(918\) 0 0
\(919\) −8.09017 + 5.87785i −0.266870 + 0.193892i −0.713170 0.700991i \(-0.752741\pi\)
0.446300 + 0.894883i \(0.352741\pi\)
\(920\) 0 0
\(921\) 5.81966 17.9111i 0.191764 0.590190i
\(922\) 0 0
\(923\) 4.76393i 0.156807i
\(924\) 0 0
\(925\) −22.4721 16.8541i −0.738879 0.554159i
\(926\) 0 0
\(927\) −9.59632 3.11803i −0.315185 0.102410i
\(928\) 0 0
\(929\) −5.26393 + 3.82447i −0.172704 + 0.125477i −0.670779 0.741657i \(-0.734040\pi\)
0.498075 + 0.867134i \(0.334040\pi\)
\(930\) 0 0
\(931\) 7.39919 + 22.7724i 0.242499 + 0.746334i
\(932\) 0 0
\(933\) 3.03719 4.18034i 0.0994333 0.136858i
\(934\) 0 0
\(935\) −30.3488 37.1863i −0.992513 1.21612i
\(936\) 0 0
\(937\) −31.3319 + 43.1246i −1.02357 + 1.40882i −0.113895 + 0.993493i \(0.536333\pi\)
−0.909672 + 0.415327i \(0.863667\pi\)
\(938\) 0 0
\(939\) −4.40325 13.5518i −0.143695 0.442247i
\(940\) 0 0
\(941\) −16.0902 + 11.6902i −0.524525 + 0.381089i −0.818306 0.574783i \(-0.805086\pi\)
0.293781 + 0.955873i \(0.405086\pi\)
\(942\) 0 0
\(943\) −2.71441 0.881966i −0.0883934 0.0287208i
\(944\) 0 0
\(945\) 6.83282 3.41641i 0.222272 0.111136i
\(946\) 0 0
\(947\) 28.0000i 0.909878i −0.890523 0.454939i \(-0.849661\pi\)
0.890523 0.454939i \(-0.150339\pi\)
\(948\) 0 0
\(949\) −1.12461 + 3.46120i −0.0365064 + 0.112355i
\(950\) 0 0
\(951\) 14.3820 10.4491i 0.466367 0.338836i
\(952\) 0 0
\(953\) 6.43288 2.09017i 0.208381 0.0677072i −0.202966 0.979186i \(-0.565058\pi\)
0.411348 + 0.911478i \(0.365058\pi\)
\(954\) 0 0
\(955\) 19.9753 + 3.31941i 0.646386 + 0.107414i
\(956\) 0 0
\(957\) −15.7719 + 9.34752i −0.509834 + 0.302163i
\(958\) 0 0
\(959\) 10.7082 + 7.77997i 0.345786 + 0.251228i
\(960\) 0 0
\(961\) −8.34346 25.6785i −0.269144 0.828340i
\(962\) 0 0
\(963\) −13.3398 18.3607i −0.429870 0.591665i
\(964\) 0 0
\(965\) −29.2667 + 4.40791i −0.942127 + 0.141896i
\(966\) 0 0
\(967\) 44.5623i 1.43303i 0.697573 + 0.716514i \(0.254263\pi\)
−0.697573 + 0.716514i \(0.745737\pi\)
\(968\) 0 0
\(969\) 28.9443 0.929824
\(970\) 0 0
\(971\) 10.8647 33.4382i 0.348666 1.07308i −0.610925 0.791688i \(-0.709202\pi\)
0.959592 0.281396i \(-0.0907975\pi\)
\(972\) 0 0
\(973\) −0.118513 0.163119i −0.00379935 0.00522935i
\(974\) 0 0
\(975\) −13.9302 4.76119i −0.446122 0.152480i
\(976\) 0 0
\(977\) −5.19180 + 7.14590i −0.166100 + 0.228618i −0.883951 0.467580i \(-0.845126\pi\)
0.717851 + 0.696197i \(0.245126\pi\)
\(978\) 0 0
\(979\) 19.2467 + 32.4747i 0.615128 + 1.03790i
\(980\) 0 0
\(981\) −6.58359 4.78326i −0.210198 0.152718i
\(982\) 0 0
\(983\) −21.1275 + 6.86475i −0.673863 + 0.218951i −0.625907 0.779898i \(-0.715271\pi\)
−0.0479565 + 0.998849i \(0.515271\pi\)
\(984\) 0 0
\(985\) 52.0255 + 27.0077i 1.65767 + 0.860538i
\(986\) 0 0
\(987\) −7.33094 2.38197i −0.233346 0.0758188i
\(988\) 0 0
\(989\) 39.1246 1.24409
\(990\) 0 0
\(991\) −35.8197 −1.13785 −0.568925 0.822390i \(-0.692640\pi\)
−0.568925 + 0.822390i \(0.692640\pi\)
\(992\) 0 0
\(993\) 7.15942 + 2.32624i 0.227197 + 0.0738209i
\(994\) 0 0
\(995\) −5.69507 + 10.9705i −0.180546 + 0.347789i
\(996\) 0 0
\(997\) −25.6255 + 8.32624i −0.811569 + 0.263695i −0.685262 0.728297i \(-0.740312\pi\)
−0.126307 + 0.991991i \(0.540312\pi\)
\(998\) 0 0
\(999\) −25.1246 18.2541i −0.794908 0.577534i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 880.2.cd.a.609.2 8
4.3 odd 2 110.2.j.a.59.2 yes 8
5.4 even 2 inner 880.2.cd.a.609.1 8
11.3 even 5 inner 880.2.cd.a.289.1 8
12.11 even 2 990.2.ba.b.829.1 8
20.3 even 4 550.2.h.d.301.1 4
20.7 even 4 550.2.h.e.301.1 4
20.19 odd 2 110.2.j.a.59.1 8
44.3 odd 10 110.2.j.a.69.1 yes 8
44.27 odd 10 1210.2.b.f.969.3 4
44.39 even 10 1210.2.b.g.969.1 4
55.14 even 10 inner 880.2.cd.a.289.2 8
60.59 even 2 990.2.ba.b.829.2 8
132.47 even 10 990.2.ba.b.289.2 8
220.3 even 20 550.2.h.d.201.1 4
220.27 even 20 6050.2.a.ce.1.1 2
220.39 even 10 1210.2.b.g.969.4 4
220.47 even 20 550.2.h.e.201.1 4
220.83 odd 20 6050.2.a.bv.1.2 2
220.127 odd 20 6050.2.a.ct.1.1 2
220.159 odd 10 1210.2.b.f.969.2 4
220.179 odd 10 110.2.j.a.69.2 yes 8
220.203 even 20 6050.2.a.cl.1.2 2
660.179 even 10 990.2.ba.b.289.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
110.2.j.a.59.1 8 20.19 odd 2
110.2.j.a.59.2 yes 8 4.3 odd 2
110.2.j.a.69.1 yes 8 44.3 odd 10
110.2.j.a.69.2 yes 8 220.179 odd 10
550.2.h.d.201.1 4 220.3 even 20
550.2.h.d.301.1 4 20.3 even 4
550.2.h.e.201.1 4 220.47 even 20
550.2.h.e.301.1 4 20.7 even 4
880.2.cd.a.289.1 8 11.3 even 5 inner
880.2.cd.a.289.2 8 55.14 even 10 inner
880.2.cd.a.609.1 8 5.4 even 2 inner
880.2.cd.a.609.2 8 1.1 even 1 trivial
990.2.ba.b.289.1 8 660.179 even 10
990.2.ba.b.289.2 8 132.47 even 10
990.2.ba.b.829.1 8 12.11 even 2
990.2.ba.b.829.2 8 60.59 even 2
1210.2.b.f.969.2 4 220.159 odd 10
1210.2.b.f.969.3 4 44.27 odd 10
1210.2.b.g.969.1 4 44.39 even 10
1210.2.b.g.969.4 4 220.39 even 10
6050.2.a.bv.1.2 2 220.83 odd 20
6050.2.a.ce.1.1 2 220.27 even 20
6050.2.a.cl.1.2 2 220.203 even 20
6050.2.a.ct.1.1 2 220.127 odd 20