Properties

Label 980.2.x.m.863.11
Level $980$
Weight $2$
Character 980.863
Analytic conductor $7.825$
Analytic rank $0$
Dimension $72$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [980,2,Mod(67,980)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(980, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 3, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("980.67"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.x (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [72,2,0,0,8,16,0,-4,0,-2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(18\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 863.11
Character \(\chi\) \(=\) 980.863
Dual form 980.2.x.m.67.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.441772 - 1.34344i) q^{2} +(-1.20413 - 0.322645i) q^{3} +(-1.60968 - 1.18699i) q^{4} +(-2.09885 + 0.771256i) q^{5} +(-0.965404 + 1.47514i) q^{6} +(-2.30576 + 1.63813i) q^{8} +(-1.25225 - 0.722989i) q^{9} +(0.108927 + 3.16040i) q^{10} +(-0.824629 + 0.476100i) q^{11} +(1.55528 + 1.94864i) q^{12} +(3.15680 + 3.15680i) q^{13} +(2.77612 - 0.251508i) q^{15} +(1.18211 + 3.82134i) q^{16} +(-2.56885 - 0.688322i) q^{17} +(-1.52450 + 1.36293i) q^{18} +(1.99048 - 3.44760i) q^{19} +(4.29394 + 1.24984i) q^{20} +(0.275315 + 1.31817i) q^{22} +(0.141582 + 0.528392i) q^{23} +(3.30496 - 1.22857i) q^{24} +(3.81033 - 3.23750i) q^{25} +(5.63557 - 2.84640i) q^{26} +(3.91905 + 3.91905i) q^{27} +7.23080i q^{29} +(0.888526 - 3.84067i) q^{30} +(3.41863 - 1.97375i) q^{31} +(5.65597 + 0.100058i) q^{32} +(1.14657 - 0.307222i) q^{33} +(-2.05957 + 3.14702i) q^{34} +(1.15754 + 2.65019i) q^{36} +(0.269180 + 1.00460i) q^{37} +(-3.75232 - 4.19714i) q^{38} +(-2.78267 - 4.81972i) q^{39} +(3.57603 - 5.21652i) q^{40} -3.71449 q^{41} +(8.73324 - 8.73324i) q^{43} +(1.89251 + 0.212459i) q^{44} +(3.18590 + 0.551635i) q^{45} +(0.772411 + 0.0432210i) q^{46} +(3.09794 - 0.830089i) q^{47} +(-0.190479 - 4.98278i) q^{48} +(-2.66610 - 6.54919i) q^{50} +(2.87114 + 1.65765i) q^{51} +(-1.33434 - 8.82853i) q^{52} +(-0.760768 + 2.83923i) q^{53} +(6.99635 - 3.53369i) q^{54} +(1.36358 - 1.63526i) q^{55} +(-3.50914 + 3.50914i) q^{57} +(9.71416 + 3.19436i) q^{58} +(6.30084 + 10.9134i) q^{59} +(-4.76720 - 2.89038i) q^{60} +(-3.01183 + 5.21665i) q^{61} +(-1.14136 - 5.46468i) q^{62} +(2.63307 - 7.55427i) q^{64} +(-9.06036 - 4.19095i) q^{65} +(0.0937861 - 1.67607i) q^{66} +(3.85605 - 14.3910i) q^{67} +(3.31799 + 4.15717i) q^{68} -0.681932i q^{69} +7.60710i q^{71} +(4.07174 - 0.384313i) q^{72} +(-3.80964 + 14.2178i) q^{73} +(1.46853 + 0.0821731i) q^{74} +(-5.63268 + 2.66898i) q^{75} +(-7.29629 + 3.18685i) q^{76} +(-7.70432 + 1.60914i) q^{78} +(-5.34864 + 9.26412i) q^{79} +(-5.42830 - 7.10869i) q^{80} +(-1.28561 - 2.22674i) q^{81} +(-1.64096 + 4.99021i) q^{82} +(5.72446 - 5.72446i) q^{83} +(5.92250 - 0.536560i) q^{85} +(-7.87451 - 15.5907i) q^{86} +(2.33298 - 8.70680i) q^{87} +(1.12148 - 2.44862i) q^{88} +(1.83403 + 1.05888i) q^{89} +(2.14853 - 4.03637i) q^{90} +(0.399294 - 1.01860i) q^{92} +(-4.75329 + 1.27364i) q^{93} +(0.253402 - 4.52861i) q^{94} +(-1.51872 + 8.77117i) q^{95} +(-6.77823 - 1.94535i) q^{96} +(3.08588 - 3.08588i) q^{97} +1.37686 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 2 q^{2} + 8 q^{5} + 16 q^{6} - 4 q^{8} - 2 q^{10} - 10 q^{12} - 28 q^{16} - 4 q^{17} - 20 q^{18} + 56 q^{20} - 16 q^{22} - 16 q^{25} + 4 q^{26} - 32 q^{30} - 38 q^{32} + 64 q^{33} + 16 q^{36} - 4 q^{37}+ \cdots + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.441772 1.34344i 0.312380 0.949957i
\(3\) −1.20413 0.322645i −0.695203 0.186279i −0.106122 0.994353i \(-0.533843\pi\)
−0.589081 + 0.808074i \(0.700510\pi\)
\(4\) −1.60968 1.18699i −0.804838 0.593495i
\(5\) −2.09885 + 0.771256i −0.938633 + 0.344916i
\(6\) −0.965404 + 1.47514i −0.394125 + 0.602224i
\(7\) 0 0
\(8\) −2.30576 + 1.63813i −0.815210 + 0.579166i
\(9\) −1.25225 0.722989i −0.417418 0.240996i
\(10\) 0.108927 + 3.16040i 0.0344457 + 0.999407i
\(11\) −0.824629 + 0.476100i −0.248635 + 0.143549i −0.619139 0.785281i \(-0.712518\pi\)
0.370504 + 0.928831i \(0.379185\pi\)
\(12\) 1.55528 + 1.94864i 0.448970 + 0.562524i
\(13\) 3.15680 + 3.15680i 0.875540 + 0.875540i 0.993069 0.117529i \(-0.0374974\pi\)
−0.117529 + 0.993069i \(0.537497\pi\)
\(14\) 0 0
\(15\) 2.77612 0.251508i 0.716792 0.0649391i
\(16\) 1.18211 + 3.82134i 0.295528 + 0.955334i
\(17\) −2.56885 0.688322i −0.623038 0.166943i −0.0665295 0.997784i \(-0.521193\pi\)
−0.556508 + 0.830842i \(0.687859\pi\)
\(18\) −1.52450 + 1.36293i −0.359329 + 0.321247i
\(19\) 1.99048 3.44760i 0.456646 0.790935i −0.542135 0.840292i \(-0.682384\pi\)
0.998781 + 0.0493567i \(0.0157171\pi\)
\(20\) 4.29394 + 1.24984i 0.960154 + 0.279472i
\(21\) 0 0
\(22\) 0.275315 + 1.31817i 0.0586973 + 0.281034i
\(23\) 0.141582 + 0.528392i 0.0295219 + 0.110177i 0.979115 0.203309i \(-0.0651696\pi\)
−0.949593 + 0.313486i \(0.898503\pi\)
\(24\) 3.30496 1.22857i 0.674623 0.250782i
\(25\) 3.81033 3.23750i 0.762066 0.647500i
\(26\) 5.63557 2.84640i 1.10523 0.558225i
\(27\) 3.91905 + 3.91905i 0.754222 + 0.754222i
\(28\) 0 0
\(29\) 7.23080i 1.34273i 0.741129 + 0.671363i \(0.234291\pi\)
−0.741129 + 0.671363i \(0.765709\pi\)
\(30\) 0.888526 3.84067i 0.162222 0.701207i
\(31\) 3.41863 1.97375i 0.614004 0.354495i −0.160527 0.987031i \(-0.551319\pi\)
0.774531 + 0.632536i \(0.217986\pi\)
\(32\) 5.65597 + 0.100058i 0.999844 + 0.0176879i
\(33\) 1.14657 0.307222i 0.199592 0.0534805i
\(34\) −2.05957 + 3.14702i −0.353213 + 0.539710i
\(35\) 0 0
\(36\) 1.15754 + 2.65019i 0.192924 + 0.441698i
\(37\) 0.269180 + 1.00460i 0.0442530 + 0.165154i 0.984516 0.175294i \(-0.0560877\pi\)
−0.940263 + 0.340449i \(0.889421\pi\)
\(38\) −3.75232 4.19714i −0.608707 0.680867i
\(39\) −2.78267 4.81972i −0.445584 0.771773i
\(40\) 3.57603 5.21652i 0.565419 0.824804i
\(41\) −3.71449 −0.580106 −0.290053 0.957011i \(-0.593673\pi\)
−0.290053 + 0.957011i \(0.593673\pi\)
\(42\) 0 0
\(43\) 8.73324 8.73324i 1.33181 1.33181i 0.428052 0.903754i \(-0.359200\pi\)
0.903754 0.428052i \(-0.140800\pi\)
\(44\) 1.89251 + 0.212459i 0.285307 + 0.0320295i
\(45\) 3.18590 + 0.551635i 0.474926 + 0.0822329i
\(46\) 0.772411 + 0.0432210i 0.113886 + 0.00637258i
\(47\) 3.09794 0.830089i 0.451880 0.121081i −0.0256988 0.999670i \(-0.508181\pi\)
0.477579 + 0.878589i \(0.341514\pi\)
\(48\) −0.190479 4.98278i −0.0274933 0.719202i
\(49\) 0 0
\(50\) −2.66610 6.54919i −0.377044 0.926196i
\(51\) 2.87114 + 1.65765i 0.402040 + 0.232118i
\(52\) −1.33434 8.82853i −0.185039 1.22430i
\(53\) −0.760768 + 2.83923i −0.104500 + 0.389998i −0.998288 0.0584914i \(-0.981371\pi\)
0.893788 + 0.448489i \(0.148038\pi\)
\(54\) 6.99635 3.53369i 0.952082 0.480875i
\(55\) 1.36358 1.63526i 0.183864 0.220498i
\(56\) 0 0
\(57\) −3.50914 + 3.50914i −0.464797 + 0.464797i
\(58\) 9.71416 + 3.19436i 1.27553 + 0.419440i
\(59\) 6.30084 + 10.9134i 0.820300 + 1.42080i 0.905459 + 0.424433i \(0.139527\pi\)
−0.0851594 + 0.996367i \(0.527140\pi\)
\(60\) −4.76720 2.89038i −0.615442 0.373147i
\(61\) −3.01183 + 5.21665i −0.385626 + 0.667923i −0.991856 0.127366i \(-0.959348\pi\)
0.606230 + 0.795289i \(0.292681\pi\)
\(62\) −1.14136 5.46468i −0.144953 0.694015i
\(63\) 0 0
\(64\) 2.63307 7.55427i 0.329134 0.944283i
\(65\) −9.06036 4.19095i −1.12380 0.519823i
\(66\) 0.0937861 1.67607i 0.0115443 0.206310i
\(67\) 3.85605 14.3910i 0.471092 1.75814i −0.164766 0.986333i \(-0.552687\pi\)
0.635858 0.771806i \(-0.280647\pi\)
\(68\) 3.31799 + 4.15717i 0.402365 + 0.504131i
\(69\) 0.681932i 0.0820949i
\(70\) 0 0
\(71\) 7.60710i 0.902797i 0.892322 + 0.451399i \(0.149075\pi\)
−0.892322 + 0.451399i \(0.850925\pi\)
\(72\) 4.07174 0.384313i 0.479860 0.0452917i
\(73\) −3.80964 + 14.2178i −0.445885 + 1.66406i 0.267705 + 0.963501i \(0.413735\pi\)
−0.713590 + 0.700564i \(0.752932\pi\)
\(74\) 1.46853 + 0.0821731i 0.170713 + 0.00955243i
\(75\) −5.63268 + 2.66898i −0.650406 + 0.308187i
\(76\) −7.29629 + 3.18685i −0.836942 + 0.365557i
\(77\) 0 0
\(78\) −7.70432 + 1.60914i −0.872343 + 0.182199i
\(79\) −5.34864 + 9.26412i −0.601769 + 1.04230i 0.390784 + 0.920483i \(0.372204\pi\)
−0.992553 + 0.121813i \(0.961129\pi\)
\(80\) −5.42830 7.10869i −0.606903 0.794776i
\(81\) −1.28561 2.22674i −0.142846 0.247416i
\(82\) −1.64096 + 4.99021i −0.181213 + 0.551076i
\(83\) 5.72446 5.72446i 0.628341 0.628341i −0.319309 0.947651i \(-0.603451\pi\)
0.947651 + 0.319309i \(0.103451\pi\)
\(84\) 0 0
\(85\) 5.92250 0.536560i 0.642386 0.0581981i
\(86\) −7.87451 15.5907i −0.849130 1.68119i
\(87\) 2.33298 8.70680i 0.250122 0.933467i
\(88\) 1.12148 2.44862i 0.119551 0.261024i
\(89\) 1.83403 + 1.05888i 0.194407 + 0.112241i 0.594044 0.804433i \(-0.297531\pi\)
−0.399637 + 0.916673i \(0.630864\pi\)
\(90\) 2.14853 4.03637i 0.226475 0.425471i
\(91\) 0 0
\(92\) 0.399294 1.01860i 0.0416293 0.106196i
\(93\) −4.75329 + 1.27364i −0.492893 + 0.132070i
\(94\) 0.253402 4.52861i 0.0261365 0.467090i
\(95\) −1.51872 + 8.77117i −0.155817 + 0.899903i
\(96\) −6.77823 1.94535i −0.691800 0.198547i
\(97\) 3.08588 3.08588i 0.313324 0.313324i −0.532872 0.846196i \(-0.678887\pi\)
0.846196 + 0.532872i \(0.178887\pi\)
\(98\) 0 0
\(99\) 1.37686 0.138379
\(100\) −9.97627 + 0.688506i −0.997627 + 0.0688506i
\(101\) −0.715074 1.23854i −0.0711525 0.123240i 0.828254 0.560353i \(-0.189334\pi\)
−0.899407 + 0.437113i \(0.856001\pi\)
\(102\) 3.49535 3.12491i 0.346091 0.309412i
\(103\) 2.63366 + 9.82894i 0.259502 + 0.968474i 0.965530 + 0.260291i \(0.0838184\pi\)
−0.706028 + 0.708183i \(0.749515\pi\)
\(104\) −12.4501 2.10758i −1.22083 0.206666i
\(105\) 0 0
\(106\) 3.47825 + 2.27634i 0.337838 + 0.221097i
\(107\) 0.0388547 0.0104111i 0.00375622 0.00100648i −0.256940 0.966427i \(-0.582714\pi\)
0.260697 + 0.965421i \(0.416048\pi\)
\(108\) −1.65653 10.9603i −0.159400 1.05465i
\(109\) 5.44983 3.14646i 0.521999 0.301376i −0.215753 0.976448i \(-0.569221\pi\)
0.737752 + 0.675072i \(0.235887\pi\)
\(110\) −1.59449 2.55430i −0.152029 0.243543i
\(111\) 1.29651i 0.123059i
\(112\) 0 0
\(113\) 10.8513 + 10.8513i 1.02081 + 1.02081i 0.999779 + 0.0210265i \(0.00669344\pi\)
0.0210265 + 0.999779i \(0.493307\pi\)
\(114\) 3.16409 + 6.26456i 0.296344 + 0.586730i
\(115\) −0.704685 0.999818i −0.0657122 0.0932335i
\(116\) 8.58288 11.6392i 0.796900 1.08068i
\(117\) −1.67078 6.23545i −0.154464 0.576468i
\(118\) 17.4450 3.64360i 1.60595 0.335420i
\(119\) 0 0
\(120\) −5.98907 + 5.12756i −0.546725 + 0.468080i
\(121\) −5.04666 + 8.74107i −0.458787 + 0.794643i
\(122\) 5.67772 + 6.35079i 0.514037 + 0.574974i
\(123\) 4.47272 + 1.19846i 0.403292 + 0.108062i
\(124\) −7.84570 0.880785i −0.704565 0.0790968i
\(125\) −5.50036 + 9.73376i −0.491967 + 0.870614i
\(126\) 0 0
\(127\) 1.22418 + 1.22418i 0.108629 + 0.108629i 0.759332 0.650703i \(-0.225526\pi\)
−0.650703 + 0.759332i \(0.725526\pi\)
\(128\) −8.98551 6.87464i −0.794214 0.607638i
\(129\) −13.3337 + 7.69820i −1.17396 + 0.677788i
\(130\) −9.63291 + 10.3206i −0.844862 + 0.905179i
\(131\) −1.12982 0.652300i −0.0987126 0.0569918i 0.449831 0.893114i \(-0.351484\pi\)
−0.548544 + 0.836122i \(0.684818\pi\)
\(132\) −2.21027 0.866437i −0.192380 0.0754137i
\(133\) 0 0
\(134\) −17.6300 11.5379i −1.52300 0.996724i
\(135\) −11.2481 5.20290i −0.968081 0.447794i
\(136\) 7.05072 2.62100i 0.604594 0.224749i
\(137\) −1.12037 0.300203i −0.0957198 0.0256480i 0.210641 0.977563i \(-0.432445\pi\)
−0.306361 + 0.951915i \(0.599111\pi\)
\(138\) −0.916136 0.301258i −0.0779867 0.0256448i
\(139\) −17.4513 −1.48020 −0.740099 0.672498i \(-0.765221\pi\)
−0.740099 + 0.672498i \(0.765221\pi\)
\(140\) 0 0
\(141\) −3.99813 −0.336704
\(142\) 10.2197 + 3.36060i 0.857619 + 0.282015i
\(143\) −4.10614 1.10024i −0.343373 0.0920065i
\(144\) 1.28248 5.63993i 0.106873 0.469994i
\(145\) −5.57680 15.1763i −0.463128 1.26033i
\(146\) 17.4178 + 11.3990i 1.44151 + 0.943392i
\(147\) 0 0
\(148\) 0.759151 1.93659i 0.0624018 0.159186i
\(149\) 9.70894 + 5.60546i 0.795387 + 0.459217i 0.841856 0.539703i \(-0.181463\pi\)
−0.0464684 + 0.998920i \(0.514797\pi\)
\(150\) 1.09726 + 8.74627i 0.0895910 + 0.714130i
\(151\) −13.0081 + 7.51022i −1.05858 + 0.611173i −0.925040 0.379870i \(-0.875969\pi\)
−0.133543 + 0.991043i \(0.542635\pi\)
\(152\) 1.05806 + 11.2100i 0.0858200 + 0.909252i
\(153\) 2.71920 + 2.71920i 0.219835 + 0.219835i
\(154\) 0 0
\(155\) −5.65292 + 6.77924i −0.454054 + 0.544521i
\(156\) −1.24177 + 11.0612i −0.0994209 + 0.885604i
\(157\) 7.27171 + 1.94845i 0.580345 + 0.155503i 0.537037 0.843559i \(-0.319544\pi\)
0.0433084 + 0.999062i \(0.486210\pi\)
\(158\) 10.0829 + 11.2782i 0.802155 + 0.897247i
\(159\) 1.83212 3.17333i 0.145297 0.251662i
\(160\) −11.9482 + 4.15220i −0.944587 + 0.328260i
\(161\) 0 0
\(162\) −3.55944 + 0.743432i −0.279656 + 0.0584095i
\(163\) 1.72089 + 6.42243i 0.134790 + 0.503044i 0.999999 + 0.00163153i \(0.000519334\pi\)
−0.865208 + 0.501412i \(0.832814\pi\)
\(164\) 5.97913 + 4.40906i 0.466891 + 0.344290i
\(165\) −2.16953 + 1.52911i −0.168897 + 0.119041i
\(166\) −5.16158 10.2194i −0.400616 0.793179i
\(167\) −5.93258 5.93258i −0.459077 0.459077i 0.439276 0.898352i \(-0.355235\pi\)
−0.898352 + 0.439276i \(0.855235\pi\)
\(168\) 0 0
\(169\) 6.93083i 0.533141i
\(170\) 1.89556 8.19358i 0.145382 0.628419i
\(171\) −4.98516 + 2.87818i −0.381225 + 0.220100i
\(172\) −24.4239 + 3.69142i −1.86231 + 0.281468i
\(173\) −2.13818 + 0.572923i −0.162563 + 0.0435585i −0.339182 0.940721i \(-0.610150\pi\)
0.176620 + 0.984279i \(0.443484\pi\)
\(174\) −10.6664 6.98064i −0.808621 0.529201i
\(175\) 0 0
\(176\) −2.79414 2.58838i −0.210616 0.195106i
\(177\) −4.06587 15.1740i −0.305610 1.14055i
\(178\) 2.23276 1.99613i 0.167353 0.149616i
\(179\) 8.23493 + 14.2633i 0.615507 + 1.06609i 0.990295 + 0.138980i \(0.0443822\pi\)
−0.374788 + 0.927111i \(0.622284\pi\)
\(180\) −4.47348 4.66958i −0.333433 0.348050i
\(181\) 5.97636 0.444219 0.222110 0.975022i \(-0.428706\pi\)
0.222110 + 0.975022i \(0.428706\pi\)
\(182\) 0 0
\(183\) 5.30976 5.30976i 0.392508 0.392508i
\(184\) −1.19203 0.986415i −0.0878775 0.0727195i
\(185\) −1.33977 1.90089i −0.0985018 0.139756i
\(186\) −0.388806 + 6.94843i −0.0285086 + 0.509483i
\(187\) 2.44606 0.655419i 0.178873 0.0479290i
\(188\) −5.97198 2.34104i −0.435551 0.170738i
\(189\) 0 0
\(190\) 11.1126 + 5.91516i 0.806195 + 0.429131i
\(191\) 6.96830 + 4.02315i 0.504209 + 0.291105i 0.730450 0.682966i \(-0.239310\pi\)
−0.226241 + 0.974071i \(0.572644\pi\)
\(192\) −5.60790 + 8.24675i −0.404715 + 0.595158i
\(193\) −3.76831 + 14.0635i −0.271249 + 1.01231i 0.687065 + 0.726596i \(0.258899\pi\)
−0.958314 + 0.285718i \(0.907768\pi\)
\(194\) −2.78245 5.50896i −0.199768 0.395520i
\(195\) 9.55764 + 7.96972i 0.684437 + 0.570723i
\(196\) 0 0
\(197\) 16.4919 16.4919i 1.17500 1.17500i 0.194001 0.981001i \(-0.437854\pi\)
0.981001 0.194001i \(-0.0621465\pi\)
\(198\) 0.608257 1.84973i 0.0432269 0.131455i
\(199\) 4.82793 + 8.36222i 0.342243 + 0.592782i 0.984849 0.173415i \(-0.0554801\pi\)
−0.642606 + 0.766197i \(0.722147\pi\)
\(200\) −3.48226 + 13.7067i −0.246233 + 0.969211i
\(201\) −9.28636 + 16.0844i −0.655009 + 1.13451i
\(202\) −1.97981 + 0.413507i −0.139299 + 0.0290943i
\(203\) 0 0
\(204\) −2.65399 6.07630i −0.185816 0.425426i
\(205\) 7.79615 2.86482i 0.544507 0.200088i
\(206\) 14.3681 + 0.803980i 1.00107 + 0.0560159i
\(207\) 0.204725 0.764042i 0.0142293 0.0531046i
\(208\) −8.33151 + 15.7949i −0.577687 + 1.09518i
\(209\) 3.79066i 0.262205i
\(210\) 0 0
\(211\) 10.4344i 0.718333i −0.933274 0.359166i \(-0.883061\pi\)
0.933274 0.359166i \(-0.116939\pi\)
\(212\) 4.59472 3.66721i 0.315567 0.251865i
\(213\) 2.45439 9.15992i 0.168172 0.627628i
\(214\) 0.00317820 0.0567984i 0.000217258 0.00388266i
\(215\) −11.5942 + 25.0653i −0.790716 + 1.70944i
\(216\) −15.4563 2.61649i −1.05167 0.178029i
\(217\) 0 0
\(218\) −1.81951 8.71155i −0.123233 0.590020i
\(219\) 9.17459 15.8909i 0.619961 1.07380i
\(220\) −4.13595 + 1.01369i −0.278846 + 0.0683429i
\(221\) −5.93647 10.2823i −0.399330 0.691660i
\(222\) −1.74179 0.572761i −0.116901 0.0384412i
\(223\) 10.7262 10.7262i 0.718279 0.718279i −0.249973 0.968253i \(-0.580422\pi\)
0.968253 + 0.249973i \(0.0804218\pi\)
\(224\) 0 0
\(225\) −7.11217 + 1.29934i −0.474145 + 0.0866230i
\(226\) 19.3719 9.78431i 1.28860 0.650843i
\(227\) −2.59397 + 9.68083i −0.172168 + 0.642539i 0.824849 + 0.565353i \(0.191260\pi\)
−0.997017 + 0.0771860i \(0.975406\pi\)
\(228\) 9.81389 1.48327i 0.649941 0.0982316i
\(229\) 14.7989 + 8.54416i 0.977940 + 0.564614i 0.901647 0.432472i \(-0.142359\pi\)
0.0762921 + 0.997086i \(0.475692\pi\)
\(230\) −1.65451 + 0.505012i −0.109095 + 0.0332995i
\(231\) 0 0
\(232\) −11.8450 16.6725i −0.777661 1.09460i
\(233\) 1.81156 0.485407i 0.118680 0.0318001i −0.198990 0.980001i \(-0.563766\pi\)
0.317670 + 0.948201i \(0.397100\pi\)
\(234\) −9.11508 0.510043i −0.595871 0.0333425i
\(235\) −5.86188 + 4.13153i −0.382387 + 0.269512i
\(236\) 2.81175 25.0460i 0.183029 1.63036i
\(237\) 9.42947 9.42947i 0.612510 0.612510i
\(238\) 0 0
\(239\) −15.2182 −0.984385 −0.492193 0.870486i \(-0.663804\pi\)
−0.492193 + 0.870486i \(0.663804\pi\)
\(240\) 4.24279 + 10.3112i 0.273871 + 0.665584i
\(241\) −6.58780 11.4104i −0.424357 0.735008i 0.572003 0.820252i \(-0.306167\pi\)
−0.996360 + 0.0852432i \(0.972833\pi\)
\(242\) 9.51365 + 10.6415i 0.611561 + 0.684058i
\(243\) −3.47383 12.9645i −0.222846 0.831673i
\(244\) 11.0402 4.82210i 0.706775 0.308703i
\(245\) 0 0
\(246\) 3.58599 5.47940i 0.228634 0.349354i
\(247\) 17.1670 4.59987i 1.09231 0.292683i
\(248\) −4.64929 + 10.1511i −0.295230 + 0.644598i
\(249\) −8.73995 + 5.04601i −0.553872 + 0.319778i
\(250\) 10.6468 + 11.6895i 0.673366 + 0.739310i
\(251\) 14.7048i 0.928161i 0.885793 + 0.464080i \(0.153615\pi\)
−0.885793 + 0.464080i \(0.846385\pi\)
\(252\) 0 0
\(253\) −0.368320 0.368320i −0.0231561 0.0231561i
\(254\) 2.18543 1.10381i 0.137126 0.0692592i
\(255\) −7.30457 1.26478i −0.457430 0.0792035i
\(256\) −13.2052 + 9.03450i −0.825326 + 0.564656i
\(257\) −3.42109 12.7677i −0.213402 0.796426i −0.986723 0.162412i \(-0.948073\pi\)
0.773321 0.634014i \(-0.218594\pi\)
\(258\) 4.45165 + 21.3139i 0.277148 + 1.32694i
\(259\) 0 0
\(260\) 9.60963 + 17.5006i 0.595964 + 1.08534i
\(261\) 5.22778 9.05478i 0.323592 0.560477i
\(262\) −1.37545 + 1.22968i −0.0849755 + 0.0759697i
\(263\) 10.2083 + 2.73529i 0.629468 + 0.168665i 0.559428 0.828879i \(-0.311021\pi\)
0.0700398 + 0.997544i \(0.477687\pi\)
\(264\) −2.14044 + 2.58661i −0.131735 + 0.159195i
\(265\) −0.593033 6.54585i −0.0364298 0.402108i
\(266\) 0 0
\(267\) −1.86676 1.86676i −0.114244 0.114244i
\(268\) −23.2889 + 18.5877i −1.42260 + 1.13543i
\(269\) 10.5625 6.09826i 0.644007 0.371818i −0.142149 0.989845i \(-0.545401\pi\)
0.786156 + 0.618027i \(0.212068\pi\)
\(270\) −11.9589 + 12.8127i −0.727794 + 0.779754i
\(271\) 5.70012 + 3.29096i 0.346257 + 0.199912i 0.663036 0.748588i \(-0.269268\pi\)
−0.316778 + 0.948500i \(0.602601\pi\)
\(272\) −0.406362 10.6301i −0.0246393 0.644546i
\(273\) 0 0
\(274\) −0.898253 + 1.37253i −0.0542655 + 0.0829178i
\(275\) −1.60073 + 4.48383i −0.0965278 + 0.270385i
\(276\) −0.809446 + 1.09769i −0.0487229 + 0.0660731i
\(277\) 3.96687 + 1.06292i 0.238346 + 0.0638646i 0.376015 0.926614i \(-0.377294\pi\)
−0.137669 + 0.990478i \(0.543961\pi\)
\(278\) −7.70948 + 23.4448i −0.462384 + 1.40613i
\(279\) −5.70799 −0.341728
\(280\) 0 0
\(281\) −32.2773 −1.92550 −0.962752 0.270386i \(-0.912849\pi\)
−0.962752 + 0.270386i \(0.912849\pi\)
\(282\) −1.76626 + 5.37126i −0.105179 + 0.319854i
\(283\) 18.8626 + 5.05423i 1.12127 + 0.300443i 0.771396 0.636355i \(-0.219559\pi\)
0.349872 + 0.936798i \(0.386225\pi\)
\(284\) 9.02955 12.2450i 0.535805 0.726605i
\(285\) 4.65870 10.0716i 0.275958 0.596590i
\(286\) −3.29208 + 5.03032i −0.194665 + 0.297449i
\(287\) 0 0
\(288\) −7.01036 4.21450i −0.413090 0.248342i
\(289\) −8.59722 4.96361i −0.505719 0.291977i
\(290\) −22.8522 + 0.787629i −1.34193 + 0.0462512i
\(291\) −4.71144 + 2.72015i −0.276190 + 0.159458i
\(292\) 23.0086 18.3640i 1.34648 1.07467i
\(293\) −12.6859 12.6859i −0.741121 0.741121i 0.231673 0.972794i \(-0.425580\pi\)
−0.972794 + 0.231673i \(0.925580\pi\)
\(294\) 0 0
\(295\) −21.6415 18.0460i −1.26002 1.05068i
\(296\) −2.26632 1.87540i −0.131727 0.109006i
\(297\) −5.09762 1.36590i −0.295794 0.0792577i
\(298\) 11.8197 10.5671i 0.684699 0.612134i
\(299\) −1.22108 + 2.11498i −0.0706170 + 0.122312i
\(300\) 12.2348 + 2.38974i 0.706379 + 0.137972i
\(301\) 0 0
\(302\) 4.34295 + 20.7934i 0.249909 + 1.19653i
\(303\) 0.461430 + 1.72208i 0.0265085 + 0.0989309i
\(304\) 15.5274 + 3.53082i 0.890559 + 0.202506i
\(305\) 2.29801 13.2718i 0.131584 0.759944i
\(306\) 4.85436 2.45183i 0.277505 0.140162i
\(307\) −9.98091 9.98091i −0.569640 0.569640i 0.362387 0.932028i \(-0.381962\pi\)
−0.932028 + 0.362387i \(0.881962\pi\)
\(308\) 0 0
\(309\) 12.6850i 0.721626i
\(310\) 6.61021 + 10.5892i 0.375435 + 0.601429i
\(311\) −12.0711 + 6.96926i −0.684490 + 0.395190i −0.801544 0.597935i \(-0.795988\pi\)
0.117055 + 0.993125i \(0.462655\pi\)
\(312\) 14.3115 + 6.55476i 0.810229 + 0.371090i
\(313\) 4.74109 1.27037i 0.267982 0.0718056i −0.122326 0.992490i \(-0.539035\pi\)
0.390308 + 0.920684i \(0.372369\pi\)
\(314\) 5.83006 8.90835i 0.329009 0.502727i
\(315\) 0 0
\(316\) 19.6060 8.56345i 1.10292 0.481732i
\(317\) 8.90414 + 33.2307i 0.500106 + 1.86642i 0.499312 + 0.866423i \(0.333586\pi\)
0.000794747 1.00000i \(0.499747\pi\)
\(318\) −3.45381 3.86324i −0.193680 0.216640i
\(319\) −3.44258 5.96272i −0.192747 0.333848i
\(320\) 0.299865 + 17.8860i 0.0167630 + 0.999859i
\(321\) −0.0501451 −0.00279883
\(322\) 0 0
\(323\) −7.48630 + 7.48630i −0.416549 + 0.416549i
\(324\) −0.573704 + 5.11034i −0.0318724 + 0.283908i
\(325\) 22.2486 + 1.80831i 1.23413 + 0.100307i
\(326\) 9.38841 + 0.525337i 0.519976 + 0.0290957i
\(327\) −7.57748 + 2.03038i −0.419035 + 0.112280i
\(328\) 8.56473 6.08482i 0.472908 0.335978i
\(329\) 0 0
\(330\) 1.09584 + 3.59015i 0.0603239 + 0.197631i
\(331\) −11.2201 6.47792i −0.616712 0.356059i 0.158876 0.987299i \(-0.449213\pi\)
−0.775588 + 0.631240i \(0.782546\pi\)
\(332\) −16.0094 + 2.41965i −0.878630 + 0.132796i
\(333\) 0.389229 1.45262i 0.0213296 0.0796032i
\(334\) −10.5909 + 5.34924i −0.579510 + 0.292697i
\(335\) 3.00587 + 33.1785i 0.164228 + 1.81274i
\(336\) 0 0
\(337\) 7.43071 7.43071i 0.404776 0.404776i −0.475136 0.879912i \(-0.657601\pi\)
0.879912 + 0.475136i \(0.157601\pi\)
\(338\) 9.31117 + 3.06184i 0.506461 + 0.166542i
\(339\) −9.56524 16.5675i −0.519513 0.899822i
\(340\) −10.1702 6.16626i −0.551556 0.334412i
\(341\) −1.87940 + 3.25522i −0.101775 + 0.176280i
\(342\) 1.66437 + 7.96877i 0.0899989 + 0.430902i
\(343\) 0 0
\(344\) −5.83059 + 34.4429i −0.314364 + 1.85704i
\(345\) 0.525944 + 1.43127i 0.0283159 + 0.0770571i
\(346\) −0.174897 + 3.12562i −0.00940251 + 0.168034i
\(347\) −2.37153 + 8.85066i −0.127310 + 0.475128i −0.999911 0.0133050i \(-0.995765\pi\)
0.872601 + 0.488433i \(0.162431\pi\)
\(348\) −14.0902 + 11.2459i −0.755315 + 0.602844i
\(349\) 19.9513i 1.06797i −0.845495 0.533984i \(-0.820694\pi\)
0.845495 0.533984i \(-0.179306\pi\)
\(350\) 0 0
\(351\) 24.7434i 1.32070i
\(352\) −4.71171 + 2.61029i −0.251135 + 0.139129i
\(353\) −0.641552 + 2.39430i −0.0341464 + 0.127436i −0.980895 0.194537i \(-0.937679\pi\)
0.946749 + 0.321973i \(0.104346\pi\)
\(354\) −22.1816 1.24119i −1.17894 0.0659687i
\(355\) −5.86703 15.9662i −0.311389 0.847396i
\(356\) −1.69532 3.88142i −0.0898516 0.205715i
\(357\) 0 0
\(358\) 22.7999 4.76203i 1.20501 0.251681i
\(359\) 7.94645 13.7637i 0.419398 0.726418i −0.576481 0.817110i \(-0.695575\pi\)
0.995879 + 0.0906921i \(0.0289079\pi\)
\(360\) −8.24957 + 3.94697i −0.434790 + 0.208024i
\(361\) 1.57601 + 2.72973i 0.0829481 + 0.143670i
\(362\) 2.64019 8.02889i 0.138765 0.421989i
\(363\) 8.89708 8.89708i 0.466976 0.466976i
\(364\) 0 0
\(365\) −2.96969 32.7792i −0.155441 1.71574i
\(366\) −4.78765 9.47905i −0.250255 0.495478i
\(367\) 2.78634 10.3988i 0.145446 0.542812i −0.854289 0.519798i \(-0.826007\pi\)
0.999735 0.0230136i \(-0.00732610\pi\)
\(368\) −1.85180 + 1.16565i −0.0965316 + 0.0607638i
\(369\) 4.65148 + 2.68553i 0.242147 + 0.139803i
\(370\) −3.14560 + 0.960146i −0.163532 + 0.0499156i
\(371\) 0 0
\(372\) 9.16305 + 3.59195i 0.475082 + 0.186234i
\(373\) 14.2618 3.82144i 0.738448 0.197867i 0.130060 0.991506i \(-0.458483\pi\)
0.608388 + 0.793640i \(0.291816\pi\)
\(374\) 0.200081 3.57568i 0.0103459 0.184894i
\(375\) 9.76368 9.94602i 0.504194 0.513610i
\(376\) −5.78331 + 6.98880i −0.298251 + 0.360420i
\(377\) −22.8262 + 22.8262i −1.17561 + 1.17561i
\(378\) 0 0
\(379\) 26.4563 1.35897 0.679483 0.733691i \(-0.262204\pi\)
0.679483 + 0.733691i \(0.262204\pi\)
\(380\) 12.8559 12.3160i 0.659495 0.631799i
\(381\) −1.07909 1.86905i −0.0552837 0.0957542i
\(382\) 8.48327 7.58420i 0.434042 0.388041i
\(383\) −7.60437 28.3799i −0.388565 1.45015i −0.832470 0.554071i \(-0.813074\pi\)
0.443904 0.896074i \(-0.353593\pi\)
\(384\) 8.60163 + 11.1771i 0.438950 + 0.570377i
\(385\) 0 0
\(386\) 17.2288 + 11.2754i 0.876922 + 0.573901i
\(387\) −17.2503 + 4.62219i −0.876880 + 0.234959i
\(388\) −8.63018 + 1.30436i −0.438131 + 0.0662189i
\(389\) −8.09963 + 4.67632i −0.410667 + 0.237099i −0.691076 0.722782i \(-0.742863\pi\)
0.280409 + 0.959881i \(0.409530\pi\)
\(390\) 14.9291 9.31935i 0.755967 0.471903i
\(391\) 1.45481i 0.0735731i
\(392\) 0 0
\(393\) 1.14998 + 1.14998i 0.0580090 + 0.0580090i
\(394\) −14.8703 29.4416i −0.749155 1.48325i
\(395\) 4.08098 23.5692i 0.205336 1.18589i
\(396\) −2.21629 1.63432i −0.111373 0.0821275i
\(397\) 4.59912 + 17.1641i 0.230823 + 0.861443i 0.979987 + 0.199059i \(0.0637886\pi\)
−0.749164 + 0.662384i \(0.769545\pi\)
\(398\) 13.3670 2.79186i 0.670028 0.139943i
\(399\) 0 0
\(400\) 16.8758 + 10.7335i 0.843790 + 0.536673i
\(401\) −3.07671 + 5.32902i −0.153644 + 0.266118i −0.932564 0.361004i \(-0.882434\pi\)
0.778921 + 0.627122i \(0.215767\pi\)
\(402\) 17.5061 + 19.5813i 0.873124 + 0.976629i
\(403\) 17.0227 + 4.56121i 0.847960 + 0.227210i
\(404\) −0.319102 + 2.84244i −0.0158759 + 0.141417i
\(405\) 4.41569 + 3.68206i 0.219417 + 0.182963i
\(406\) 0 0
\(407\) −0.700261 0.700261i −0.0347107 0.0347107i
\(408\) −9.33562 + 0.881145i −0.462182 + 0.0436232i
\(409\) −5.66917 + 3.27310i −0.280322 + 0.161844i −0.633569 0.773686i \(-0.718411\pi\)
0.353247 + 0.935530i \(0.385078\pi\)
\(410\) −0.404608 11.7393i −0.0199822 0.579762i
\(411\) 1.25221 + 0.722965i 0.0617670 + 0.0356612i
\(412\) 7.42751 18.9475i 0.365927 0.933478i
\(413\) 0 0
\(414\) −0.936005 0.612568i −0.0460022 0.0301061i
\(415\) −7.59975 + 16.4298i −0.373057 + 0.806508i
\(416\) 17.5389 + 18.1707i 0.859917 + 0.890890i
\(417\) 21.0136 + 5.63057i 1.02904 + 0.275730i
\(418\) 5.09253 + 1.67460i 0.249084 + 0.0819076i
\(419\) −17.7908 −0.869139 −0.434569 0.900638i \(-0.643099\pi\)
−0.434569 + 0.900638i \(0.643099\pi\)
\(420\) 0 0
\(421\) −16.4678 −0.802591 −0.401295 0.915949i \(-0.631440\pi\)
−0.401295 + 0.915949i \(0.631440\pi\)
\(422\) −14.0180 4.60961i −0.682385 0.224392i
\(423\) −4.47954 1.20029i −0.217803 0.0583601i
\(424\) −2.89687 7.79281i −0.140684 0.378452i
\(425\) −12.0166 + 5.69392i −0.582891 + 0.276196i
\(426\) −11.2215 7.34393i −0.543686 0.355815i
\(427\) 0 0
\(428\) −0.0749013 0.0293616i −0.00362049 0.00141925i
\(429\) 4.58934 + 2.64965i 0.221575 + 0.127926i
\(430\) 28.5518 + 26.6492i 1.37689 + 1.28514i
\(431\) 13.1055 7.56644i 0.631268 0.364463i −0.149975 0.988690i \(-0.547919\pi\)
0.781243 + 0.624227i \(0.214586\pi\)
\(432\) −10.3433 + 19.6088i −0.497640 + 0.943427i
\(433\) 5.45382 + 5.45382i 0.262094 + 0.262094i 0.825904 0.563811i \(-0.190665\pi\)
−0.563811 + 0.825904i \(0.690665\pi\)
\(434\) 0 0
\(435\) 1.81860 + 20.0736i 0.0871953 + 0.962454i
\(436\) −12.5073 1.40411i −0.598990 0.0672446i
\(437\) 2.10350 + 0.563632i 0.100624 + 0.0269622i
\(438\) −17.2954 19.3457i −0.826405 0.924371i
\(439\) 12.8732 22.2970i 0.614402 1.06418i −0.376087 0.926585i \(-0.622730\pi\)
0.990489 0.137592i \(-0.0439362\pi\)
\(440\) −0.465312 + 6.00423i −0.0221829 + 0.286241i
\(441\) 0 0
\(442\) −16.4362 + 3.43289i −0.781790 + 0.163286i
\(443\) −4.47481 16.7002i −0.212605 0.793452i −0.986996 0.160745i \(-0.948610\pi\)
0.774391 0.632707i \(-0.218056\pi\)
\(444\) −1.53894 + 2.08696i −0.0730351 + 0.0990428i
\(445\) −4.66601 0.807916i −0.221190 0.0382989i
\(446\) −9.67150 19.1486i −0.457959 0.906711i
\(447\) −9.88223 9.88223i −0.467413 0.467413i
\(448\) 0 0
\(449\) 11.0999i 0.523839i 0.965090 + 0.261919i \(0.0843555\pi\)
−0.965090 + 0.261919i \(0.915645\pi\)
\(450\) −1.39636 + 10.1288i −0.0658250 + 0.477476i
\(451\) 3.06308 1.76847i 0.144235 0.0832739i
\(452\) −4.58670 30.3475i −0.215740 1.42743i
\(453\) 18.0865 4.84627i 0.849779 0.227698i
\(454\) 11.8597 + 7.76157i 0.556603 + 0.364268i
\(455\) 0 0
\(456\) 2.34281 13.8397i 0.109712 0.648101i
\(457\) −5.49672 20.5140i −0.257126 0.959606i −0.966896 0.255172i \(-0.917868\pi\)
0.709770 0.704434i \(-0.248799\pi\)
\(458\) 18.0163 16.1069i 0.841847 0.752627i
\(459\) −7.36989 12.7650i −0.343997 0.595821i
\(460\) −0.0524592 + 2.44584i −0.00244592 + 0.114038i
\(461\) 8.61652 0.401311 0.200656 0.979662i \(-0.435693\pi\)
0.200656 + 0.979662i \(0.435693\pi\)
\(462\) 0 0
\(463\) 1.63340 1.63340i 0.0759103 0.0759103i −0.668132 0.744043i \(-0.732906\pi\)
0.744043 + 0.668132i \(0.232906\pi\)
\(464\) −27.6313 + 8.54761i −1.28275 + 0.396813i
\(465\) 8.99413 6.33918i 0.417093 0.293972i
\(466\) 0.148181 2.64817i 0.00686435 0.122674i
\(467\) 24.6125 6.59489i 1.13893 0.305175i 0.360409 0.932794i \(-0.382637\pi\)
0.778521 + 0.627619i \(0.215970\pi\)
\(468\) −4.71199 + 12.0203i −0.217812 + 0.555637i
\(469\) 0 0
\(470\) 2.96086 + 9.70030i 0.136574 + 0.447441i
\(471\) −8.12741 4.69236i −0.374491 0.216213i
\(472\) −32.4058 14.8421i −1.49160 0.683161i
\(473\) −3.04379 + 11.3596i −0.139953 + 0.522313i
\(474\) −8.50228 16.8336i −0.390523 0.773194i
\(475\) −3.57726 19.5807i −0.164136 0.898423i
\(476\) 0 0
\(477\) 3.00540 3.00540i 0.137608 0.137608i
\(478\) −6.72298 + 20.4448i −0.307502 + 0.935124i
\(479\) −4.63924 8.03541i −0.211972 0.367147i 0.740359 0.672211i \(-0.234655\pi\)
−0.952332 + 0.305064i \(0.901322\pi\)
\(480\) 15.7268 1.14475i 0.717828 0.0522504i
\(481\) −2.32156 + 4.02106i −0.105854 + 0.183345i
\(482\) −18.2395 + 3.80954i −0.830787 + 0.173520i
\(483\) 0 0
\(484\) 18.4990 8.07996i 0.840865 0.367271i
\(485\) −4.09679 + 8.85680i −0.186026 + 0.402167i
\(486\) −18.9517 1.06046i −0.859666 0.0481034i
\(487\) 4.60932 17.2022i 0.208868 0.779506i −0.779368 0.626567i \(-0.784459\pi\)
0.988236 0.152939i \(-0.0488738\pi\)
\(488\) −1.60097 16.9621i −0.0724727 0.767839i
\(489\) 8.28866i 0.374826i
\(490\) 0 0
\(491\) 2.49970i 0.112810i −0.998408 0.0564049i \(-0.982036\pi\)
0.998408 0.0564049i \(-0.0179638\pi\)
\(492\) −5.77707 7.23821i −0.260450 0.326324i
\(493\) 4.97711 18.5748i 0.224158 0.836569i
\(494\) 1.40421 25.0949i 0.0631784 1.12907i
\(495\) −2.88982 + 1.06191i −0.129888 + 0.0477293i
\(496\) 11.5836 + 10.7305i 0.520117 + 0.481816i
\(497\) 0 0
\(498\) 2.91797 + 13.9708i 0.130757 + 0.626047i
\(499\) 3.26199 5.64993i 0.146027 0.252926i −0.783729 0.621103i \(-0.786685\pi\)
0.929756 + 0.368178i \(0.120018\pi\)
\(500\) 20.4077 9.13933i 0.912658 0.408723i
\(501\) 5.22947 + 9.05770i 0.233635 + 0.404668i
\(502\) 19.7551 + 6.49618i 0.881713 + 0.289938i
\(503\) −14.6078 + 14.6078i −0.651327 + 0.651327i −0.953313 0.301985i \(-0.902351\pi\)
0.301985 + 0.953313i \(0.402351\pi\)
\(504\) 0 0
\(505\) 2.45607 + 2.04801i 0.109294 + 0.0911353i
\(506\) −0.657529 + 0.332103i −0.0292308 + 0.0147638i
\(507\) 2.23620 8.34561i 0.0993131 0.370641i
\(508\) −0.517445 3.42363i −0.0229579 0.151899i
\(509\) 29.8459 + 17.2316i 1.32290 + 0.763775i 0.984190 0.177116i \(-0.0566769\pi\)
0.338708 + 0.940892i \(0.390010\pi\)
\(510\) −4.92611 + 9.25452i −0.218132 + 0.409797i
\(511\) 0 0
\(512\) 6.30364 + 21.7316i 0.278584 + 0.960412i
\(513\) 21.3121 5.71056i 0.940953 0.252128i
\(514\) −18.6640 1.04436i −0.823233 0.0460648i
\(515\) −13.1083 18.5982i −0.577620 0.819536i
\(516\) 30.6006 + 3.43532i 1.34711 + 0.151232i
\(517\) −2.15944 + 2.15944i −0.0949721 + 0.0949721i
\(518\) 0 0
\(519\) 2.75949 0.121128
\(520\) 27.7563 5.17871i 1.21720 0.227101i
\(521\) −16.9526 29.3627i −0.742705 1.28640i −0.951259 0.308392i \(-0.900209\pi\)
0.208555 0.978011i \(-0.433124\pi\)
\(522\) −9.85510 11.0234i −0.431346 0.482480i
\(523\) 4.77618 + 17.8250i 0.208848 + 0.779431i 0.988242 + 0.152897i \(0.0488604\pi\)
−0.779394 + 0.626534i \(0.784473\pi\)
\(524\) 1.04437 + 2.39107i 0.0456233 + 0.104455i
\(525\) 0 0
\(526\) 8.18443 12.5058i 0.356858 0.545280i
\(527\) −10.1405 + 2.71715i −0.441728 + 0.118361i
\(528\) 2.52937 + 4.01825i 0.110077 + 0.174872i
\(529\) 19.6594 11.3504i 0.854758 0.493495i
\(530\) −9.05596 2.09506i −0.393366 0.0910038i
\(531\) 18.2217i 0.790756i
\(532\) 0 0
\(533\) −11.7259 11.7259i −0.507906 0.507906i
\(534\) −3.33257 + 1.68321i −0.144214 + 0.0728394i
\(535\) −0.0735205 + 0.0518182i −0.00317857 + 0.00224030i
\(536\) 14.6832 + 39.4989i 0.634216 + 1.70609i
\(537\) −5.31392 19.8318i −0.229312 0.855806i
\(538\) −3.52645 16.8842i −0.152036 0.727928i
\(539\) 0 0
\(540\) 11.9300 + 21.7263i 0.513385 + 0.934953i
\(541\) −1.59149 + 2.75655i −0.0684236 + 0.118513i −0.898208 0.439572i \(-0.855130\pi\)
0.829784 + 0.558085i \(0.188464\pi\)
\(542\) 6.93937 6.20392i 0.298071 0.266481i
\(543\) −7.19630 1.92824i −0.308823 0.0827488i
\(544\) −14.4605 4.15016i −0.619988 0.177937i
\(545\) −9.01164 + 10.8072i −0.386016 + 0.462928i
\(546\) 0 0
\(547\) −15.6791 15.6791i −0.670391 0.670391i 0.287415 0.957806i \(-0.407204\pi\)
−0.957806 + 0.287415i \(0.907204\pi\)
\(548\) 1.44710 + 1.81310i 0.0618169 + 0.0774517i
\(549\) 7.54315 4.35504i 0.321934 0.185869i
\(550\) 5.31661 + 4.13132i 0.226701 + 0.176160i
\(551\) 24.9289 + 14.3927i 1.06201 + 0.613151i
\(552\) 1.11709 + 1.57237i 0.0475466 + 0.0669246i
\(553\) 0 0
\(554\) 3.18042 4.85969i 0.135123 0.206469i
\(555\) 0.999942 + 2.72118i 0.0424452 + 0.115508i
\(556\) 28.0909 + 20.7145i 1.19132 + 0.878490i
\(557\) −20.6171 5.52434i −0.873575 0.234074i −0.205942 0.978564i \(-0.566026\pi\)
−0.667633 + 0.744491i \(0.732692\pi\)
\(558\) −2.52163 + 7.66835i −0.106749 + 0.324627i
\(559\) 55.1382 2.33210
\(560\) 0 0
\(561\) −3.15683 −0.133282
\(562\) −14.2592 + 43.3627i −0.601488 + 1.82915i
\(563\) −13.1487 3.52319i −0.554153 0.148485i −0.0291340 0.999576i \(-0.509275\pi\)
−0.525019 + 0.851091i \(0.675942\pi\)
\(564\) 6.43570 + 4.74574i 0.270992 + 0.199832i
\(565\) −31.1444 14.4061i −1.31025 0.606070i
\(566\) 15.1231 23.1081i 0.635669 0.971305i
\(567\) 0 0
\(568\) −12.4614 17.5402i −0.522869 0.735969i
\(569\) 20.3421 + 11.7445i 0.852787 + 0.492357i 0.861590 0.507605i \(-0.169469\pi\)
−0.00880335 + 0.999961i \(0.502802\pi\)
\(570\) −11.4725 10.7080i −0.480531 0.448511i
\(571\) −23.4830 + 13.5579i −0.982734 + 0.567382i −0.903094 0.429442i \(-0.858710\pi\)
−0.0796395 + 0.996824i \(0.525377\pi\)
\(572\) 5.30359 + 6.64498i 0.221754 + 0.277840i
\(573\) −7.09267 7.09267i −0.296301 0.296301i
\(574\) 0 0
\(575\) 2.25014 + 1.55497i 0.0938374 + 0.0648469i
\(576\) −8.75892 + 7.55617i −0.364955 + 0.314841i
\(577\) 26.9522 + 7.22183i 1.12204 + 0.300649i 0.771707 0.635978i \(-0.219403\pi\)
0.350329 + 0.936627i \(0.386070\pi\)
\(578\) −10.4663 + 9.35709i −0.435342 + 0.389204i
\(579\) 9.07505 15.7184i 0.377146 0.653236i
\(580\) −9.03732 + 31.0486i −0.375254 + 1.28922i
\(581\) 0 0
\(582\) 1.57299 + 7.53124i 0.0652024 + 0.312180i
\(583\) −0.724403 2.70351i −0.0300017 0.111968i
\(584\) −14.5064 39.0235i −0.600280 1.61480i
\(585\) 8.31585 + 11.7987i 0.343818 + 0.487815i
\(586\) −22.6471 + 11.4385i −0.935544 + 0.472522i
\(587\) 22.8296 + 22.8296i 0.942280 + 0.942280i 0.998423 0.0561427i \(-0.0178802\pi\)
−0.0561427 + 0.998423i \(0.517880\pi\)
\(588\) 0 0
\(589\) 15.7148i 0.647516i
\(590\) −33.8043 + 21.1019i −1.39170 + 0.868753i
\(591\) −25.1794 + 14.5374i −1.03574 + 0.597987i
\(592\) −3.52069 + 2.21617i −0.144700 + 0.0910842i
\(593\) 36.8872 9.88391i 1.51478 0.405883i 0.596759 0.802421i \(-0.296455\pi\)
0.918019 + 0.396537i \(0.129788\pi\)
\(594\) −4.08700 + 6.24494i −0.167691 + 0.256233i
\(595\) 0 0
\(596\) −8.97462 20.5474i −0.367615 0.841653i
\(597\) −3.11542 11.6269i −0.127506 0.475857i
\(598\) 2.30191 + 2.57479i 0.0941321 + 0.105291i
\(599\) −14.4801 25.0802i −0.591640 1.02475i −0.994012 0.109274i \(-0.965147\pi\)
0.402372 0.915476i \(-0.368186\pi\)
\(600\) 8.61549 15.3811i 0.351726 0.627930i
\(601\) 8.88262 0.362330 0.181165 0.983453i \(-0.442013\pi\)
0.181165 + 0.983453i \(0.442013\pi\)
\(602\) 0 0
\(603\) −15.2333 + 15.2333i −0.620347 + 0.620347i
\(604\) 29.8534 + 3.35144i 1.21472 + 0.136368i
\(605\) 3.85057 22.2384i 0.156548 0.904121i
\(606\) 2.51736 + 0.140861i 0.102261 + 0.00572210i
\(607\) −44.3709 + 11.8891i −1.80096 + 0.482565i −0.994127 0.108218i \(-0.965485\pi\)
−0.806830 + 0.590783i \(0.798819\pi\)
\(608\) 11.6030 19.3004i 0.470565 0.782734i
\(609\) 0 0
\(610\) −16.8148 8.95037i −0.680810 0.362390i
\(611\) 12.4000 + 7.15915i 0.501651 + 0.289628i
\(612\) −1.14937 7.60470i −0.0464605 0.307402i
\(613\) 0.0600047 0.223941i 0.00242357 0.00904487i −0.964703 0.263339i \(-0.915176\pi\)
0.967127 + 0.254294i \(0.0818430\pi\)
\(614\) −17.8181 + 8.99949i −0.719078 + 0.363190i
\(615\) −10.3119 + 0.934224i −0.415815 + 0.0376716i
\(616\) 0 0
\(617\) −27.1038 + 27.1038i −1.09116 + 1.09116i −0.0957517 + 0.995405i \(0.530525\pi\)
−0.995405 + 0.0957517i \(0.969475\pi\)
\(618\) −17.0416 5.60389i −0.685514 0.225421i
\(619\) −7.14970 12.3836i −0.287371 0.497741i 0.685811 0.727780i \(-0.259448\pi\)
−0.973181 + 0.230039i \(0.926115\pi\)
\(620\) 17.1463 4.20241i 0.688610 0.168773i
\(621\) −1.51593 + 2.62566i −0.0608320 + 0.105364i
\(622\) 4.03012 + 19.2957i 0.161593 + 0.773685i
\(623\) 0 0
\(624\) 15.1284 16.3310i 0.605619 0.653762i
\(625\) 4.03719 24.6719i 0.161488 0.986875i
\(626\) 0.387808 6.93059i 0.0154999 0.277002i
\(627\) 1.22304 4.56444i 0.0488434 0.182286i
\(628\) −9.39230 11.7678i −0.374794 0.469587i
\(629\) 2.76594i 0.110285i
\(630\) 0 0
\(631\) 30.7128i 1.22266i 0.791377 + 0.611328i \(0.209364\pi\)
−0.791377 + 0.611328i \(0.790636\pi\)
\(632\) −2.84313 30.1226i −0.113094 1.19821i
\(633\) −3.36660 + 12.5643i −0.133810 + 0.499387i
\(634\) 48.5771 + 2.71818i 1.92924 + 0.107953i
\(635\) −3.51353 1.62521i −0.139430 0.0644946i
\(636\) −6.71584 + 2.93332i −0.266300 + 0.116314i
\(637\) 0 0
\(638\) −9.53141 + 1.99075i −0.377352 + 0.0788144i
\(639\) 5.49985 9.52602i 0.217571 0.376843i
\(640\) 24.1613 + 7.49869i 0.955060 + 0.296412i
\(641\) −20.7752 35.9837i −0.820572 1.42127i −0.905257 0.424864i \(-0.860322\pi\)
0.0846851 0.996408i \(-0.473012\pi\)
\(642\) −0.0221527 + 0.0673670i −0.000874296 + 0.00265876i
\(643\) −12.5692 + 12.5692i −0.495681 + 0.495681i −0.910090 0.414410i \(-0.863988\pi\)
0.414410 + 0.910090i \(0.363988\pi\)
\(644\) 0 0
\(645\) 22.0481 26.4410i 0.868142 1.04111i
\(646\) 6.75018 + 13.3646i 0.265582 + 0.525825i
\(647\) −9.22084 + 34.4127i −0.362509 + 1.35290i 0.508258 + 0.861205i \(0.330290\pi\)
−0.870767 + 0.491696i \(0.836377\pi\)
\(648\) 6.61200 + 3.02834i 0.259744 + 0.118964i
\(649\) −10.3917 5.99966i −0.407910 0.235507i
\(650\) 12.2582 29.0909i 0.480805 1.14104i
\(651\) 0 0
\(652\) 4.85329 12.3807i 0.190070 0.484866i
\(653\) −12.7132 + 3.40648i −0.497505 + 0.133306i −0.498842 0.866693i \(-0.666241\pi\)
0.00133684 + 0.999999i \(0.499574\pi\)
\(654\) −0.619816 + 11.0769i −0.0242367 + 0.433140i
\(655\) 2.87441 + 0.497701i 0.112312 + 0.0194468i
\(656\) −4.39095 14.1943i −0.171438 0.554195i
\(657\) 15.0499 15.0499i 0.587153 0.587153i
\(658\) 0 0
\(659\) 10.3786 0.404294 0.202147 0.979355i \(-0.435208\pi\)
0.202147 + 0.979355i \(0.435208\pi\)
\(660\) 5.30727 + 0.113832i 0.206585 + 0.00443092i
\(661\) 11.5282 + 19.9675i 0.448397 + 0.776646i 0.998282 0.0585946i \(-0.0186619\pi\)
−0.549885 + 0.835240i \(0.685329\pi\)
\(662\) −13.6594 + 12.2118i −0.530889 + 0.474624i
\(663\) 3.83074 + 14.2965i 0.148774 + 0.555231i
\(664\) −3.82184 + 22.5767i −0.148316 + 0.876144i
\(665\) 0 0
\(666\) −1.77956 1.16463i −0.0689567 0.0451286i
\(667\) −3.82069 + 1.02375i −0.147938 + 0.0396398i
\(668\) 2.50762 + 16.5914i 0.0970228 + 0.641942i
\(669\) −16.3765 + 9.45496i −0.633151 + 0.365550i
\(670\) 45.9013 + 10.6191i 1.77332 + 0.410252i
\(671\) 5.73573i 0.221425i
\(672\) 0 0
\(673\) 27.9624 + 27.9624i 1.07787 + 1.07787i 0.996700 + 0.0811716i \(0.0258662\pi\)
0.0811716 + 0.996700i \(0.474134\pi\)
\(674\) −6.70005 13.2654i −0.258076 0.510964i
\(675\) 27.6208 + 2.24494i 1.06312 + 0.0864079i
\(676\) 8.22682 11.1564i 0.316416 0.429092i
\(677\) 8.86132 + 33.0709i 0.340568 + 1.27102i 0.897705 + 0.440597i \(0.145233\pi\)
−0.557137 + 0.830421i \(0.688100\pi\)
\(678\) −26.4831 + 5.53131i −1.01708 + 0.212429i
\(679\) 0 0
\(680\) −12.7769 + 10.9390i −0.489973 + 0.419492i
\(681\) 6.24694 10.8200i 0.239383 0.414624i
\(682\) 3.54293 + 3.96293i 0.135666 + 0.151748i
\(683\) −1.86138 0.498756i −0.0712239 0.0190844i 0.223031 0.974811i \(-0.428405\pi\)
−0.294255 + 0.955727i \(0.595072\pi\)
\(684\) 11.4409 + 1.28439i 0.437452 + 0.0491099i
\(685\) 2.58302 0.234014i 0.0986922 0.00894120i
\(686\) 0 0
\(687\) −15.0630 15.0630i −0.574691 0.574691i
\(688\) 43.6963 + 23.0490i 1.66591 + 0.878734i
\(689\) −11.3645 + 6.56128i −0.432952 + 0.249965i
\(690\) 2.15518 0.0742808i 0.0820462 0.00282782i
\(691\) 30.8812 + 17.8293i 1.17478 + 0.678257i 0.954800 0.297248i \(-0.0960688\pi\)
0.219976 + 0.975505i \(0.429402\pi\)
\(692\) 4.12182 + 1.61577i 0.156688 + 0.0614225i
\(693\) 0 0
\(694\) 10.8427 + 7.09598i 0.411582 + 0.269360i
\(695\) 36.6276 13.4594i 1.38936 0.510544i
\(696\) 8.88357 + 23.8975i 0.336731 + 0.905833i
\(697\) 9.54198 + 2.55677i 0.361428 + 0.0968444i
\(698\) −26.8034 8.81390i −1.01452 0.333611i
\(699\) −2.33797 −0.0884301
\(700\) 0 0
\(701\) 33.6504 1.27096 0.635479 0.772119i \(-0.280803\pi\)
0.635479 + 0.772119i \(0.280803\pi\)
\(702\) 33.2413 + 10.9309i 1.25461 + 0.412561i
\(703\) 3.99924 + 1.07159i 0.150834 + 0.0404159i
\(704\) 1.42528 + 7.48307i 0.0537173 + 0.282029i
\(705\) 8.39147 3.08359i 0.316041 0.116135i
\(706\) 2.93319 + 1.91962i 0.110392 + 0.0722460i
\(707\) 0 0
\(708\) −11.4667 + 29.2514i −0.430944 + 1.09934i
\(709\) 7.92917 + 4.57791i 0.297786 + 0.171927i 0.641448 0.767167i \(-0.278334\pi\)
−0.343662 + 0.939093i \(0.611667\pi\)
\(710\) −24.0415 + 0.828619i −0.902261 + 0.0310975i
\(711\) 13.3957 7.73401i 0.502378 0.290048i
\(712\) −5.96341 + 0.562858i −0.223488 + 0.0210940i
\(713\) 1.52693 + 1.52693i 0.0571839 + 0.0571839i
\(714\) 0 0
\(715\) 9.46674 0.857657i 0.354036 0.0320745i
\(716\) 3.67484 32.7341i 0.137335 1.22333i
\(717\) 18.3247 + 4.91009i 0.684348 + 0.183370i
\(718\) −14.9802 16.7560i −0.559055 0.625328i
\(719\) 6.67322 11.5584i 0.248869 0.431054i −0.714343 0.699796i \(-0.753274\pi\)
0.963212 + 0.268742i \(0.0866078\pi\)
\(720\) 1.65811 + 12.8265i 0.0617939 + 0.478015i
\(721\) 0 0
\(722\) 4.36348 0.911364i 0.162392 0.0339175i
\(723\) 4.25104 + 15.8651i 0.158098 + 0.590029i
\(724\) −9.62000 7.09387i −0.357524 0.263642i
\(725\) 23.4097 + 27.5517i 0.869414 + 1.02324i
\(726\) −8.02224 15.8832i −0.297733 0.589481i
\(727\) −6.15934 6.15934i −0.228437 0.228437i 0.583602 0.812040i \(-0.301643\pi\)
−0.812040 + 0.583602i \(0.801643\pi\)
\(728\) 0 0
\(729\) 24.4454i 0.905384i
\(730\) −45.3488 10.4913i −1.67844 0.388300i
\(731\) −28.4457 + 16.4231i −1.05210 + 0.607431i
\(732\) −14.8496 + 2.24436i −0.548857 + 0.0829540i
\(733\) 9.92223 2.65865i 0.366486 0.0981996i −0.0708761 0.997485i \(-0.522580\pi\)
0.437362 + 0.899286i \(0.355913\pi\)
\(734\) −12.7392 8.33717i −0.470213 0.307731i
\(735\) 0 0
\(736\) 0.747914 + 3.00273i 0.0275685 + 0.110682i
\(737\) 3.67173 + 13.7031i 0.135250 + 0.504760i
\(738\) 5.66275 5.06261i 0.208449 0.186357i
\(739\) 21.8583 + 37.8597i 0.804070 + 1.39269i 0.916917 + 0.399078i \(0.130670\pi\)
−0.112847 + 0.993612i \(0.535997\pi\)
\(740\) −0.0997371 + 4.65010i −0.00366641 + 0.170941i
\(741\) −22.1553 −0.813897
\(742\) 0 0
\(743\) 26.0186 26.0186i 0.954529 0.954529i −0.0444813 0.999010i \(-0.514164\pi\)
0.999010 + 0.0444813i \(0.0141635\pi\)
\(744\) 8.87356 10.7232i 0.325320 0.393132i
\(745\) −24.7008 4.27693i −0.904969 0.156694i
\(746\) 1.16658 20.8481i 0.0427114 0.763304i
\(747\) −11.3072 + 3.02975i −0.413709 + 0.110853i
\(748\) −4.71534 1.84843i −0.172410 0.0675854i
\(749\) 0 0
\(750\) −9.04860 17.5108i −0.330408 0.639405i
\(751\) 7.30460 + 4.21731i 0.266548 + 0.153892i 0.627318 0.778763i \(-0.284153\pi\)
−0.360770 + 0.932655i \(0.617486\pi\)
\(752\) 6.83416 + 10.8570i 0.249216 + 0.395914i
\(753\) 4.74444 17.7065i 0.172897 0.645260i
\(754\) 20.5817 + 40.7497i 0.749542 + 1.48402i
\(755\) 21.5097 25.7954i 0.782818 0.938790i
\(756\) 0 0
\(757\) 3.33081 3.33081i 0.121060 0.121060i −0.643981 0.765041i \(-0.722718\pi\)
0.765041 + 0.643981i \(0.222718\pi\)
\(758\) 11.6876 35.5425i 0.424514 1.29096i
\(759\) 0.324667 + 0.562340i 0.0117847 + 0.0204117i
\(760\) −10.8665 22.7121i −0.394169 0.823853i
\(761\) −17.2317 + 29.8462i −0.624649 + 1.08192i 0.363959 + 0.931415i \(0.381425\pi\)
−0.988609 + 0.150509i \(0.951909\pi\)
\(762\) −2.98767 + 0.624010i −0.108232 + 0.0226055i
\(763\) 0 0
\(764\) −6.44127 14.7473i −0.233037 0.533537i
\(765\) −7.80440 3.60999i −0.282169 0.130520i
\(766\) −41.4862 2.32140i −1.49896 0.0838755i
\(767\) −14.5609 + 54.3419i −0.525763 + 1.96217i
\(768\) 18.8157 6.61809i 0.678953 0.238810i
\(769\) 18.7498i 0.676135i 0.941122 + 0.338067i \(0.109773\pi\)
−0.941122 + 0.338067i \(0.890227\pi\)
\(770\) 0 0
\(771\) 16.4777i 0.593431i
\(772\) 22.7590 18.1648i 0.819114 0.653764i
\(773\) −11.5075 + 42.9466i −0.413896 + 1.54468i 0.373140 + 0.927775i \(0.378281\pi\)
−0.787036 + 0.616907i \(0.788386\pi\)
\(774\) −1.41102 + 25.2167i −0.0507181 + 0.906395i
\(775\) 6.63610 18.5884i 0.238376 0.667716i
\(776\) −2.06023 + 12.1704i −0.0739581 + 0.436891i
\(777\) 0 0
\(778\) 2.70418 + 12.9472i 0.0969497 + 0.464181i
\(779\) −7.39361 + 12.8061i −0.264903 + 0.458826i
\(780\) −5.92473 24.1735i −0.212139 0.865549i
\(781\) −3.62174 6.27304i −0.129596 0.224467i
\(782\) −1.95446 0.642695i −0.0698913 0.0229827i
\(783\) −28.3379 + 28.3379i −1.01271 + 1.01271i
\(784\) 0 0
\(785\) −16.7650 + 1.51885i −0.598367 + 0.0542102i
\(786\) 2.05297 1.03691i 0.0732269 0.0369852i
\(787\) 0.279451 1.04293i 0.00996136 0.0371763i −0.960766 0.277359i \(-0.910541\pi\)
0.970728 + 0.240183i \(0.0772074\pi\)
\(788\) −46.1224 + 6.97092i −1.64304 + 0.248329i
\(789\) −11.4095 6.58729i −0.406189 0.234514i
\(790\) −29.8610 15.8947i −1.06240 0.565510i
\(791\) 0 0
\(792\) −3.17471 + 2.25547i −0.112808 + 0.0801447i
\(793\) −25.9757 + 6.96017i −0.922424 + 0.247163i
\(794\) 25.0908 + 1.40398i 0.890439 + 0.0498253i
\(795\) −1.39790 + 8.07338i −0.0495783 + 0.286333i
\(796\) 2.15447 19.1912i 0.0763630 0.680213i
\(797\) 13.9414 13.9414i 0.493829 0.493829i −0.415681 0.909510i \(-0.636457\pi\)
0.909510 + 0.415681i \(0.136457\pi\)
\(798\) 0 0
\(799\) −8.52950 −0.301752
\(800\) 21.8750 17.9299i 0.773399 0.633919i
\(801\) −1.53111 2.65196i −0.0540992 0.0937025i
\(802\) 5.80002 + 6.48759i 0.204806 + 0.229085i
\(803\) −3.62754 13.5382i −0.128013 0.477751i
\(804\) 34.0401 14.8679i 1.20050 0.524352i
\(805\) 0 0
\(806\) 13.6479 20.8540i 0.480726 0.734550i
\(807\) −14.6862 + 3.93515i −0.516978 + 0.138524i
\(808\) 3.67768 + 1.68440i 0.129380 + 0.0592571i
\(809\) −4.37439 + 2.52555i −0.153795 + 0.0887937i −0.574923 0.818208i \(-0.694968\pi\)
0.421127 + 0.907001i \(0.361635\pi\)
\(810\) 6.89736 4.30559i 0.242348 0.151283i
\(811\) 21.1629i 0.743131i 0.928407 + 0.371565i \(0.121179\pi\)
−0.928407 + 0.371565i \(0.878821\pi\)
\(812\) 0 0
\(813\) −5.80185 5.80185i −0.203480 0.203480i
\(814\) −1.25012 + 0.631405i −0.0438165 + 0.0221307i
\(815\) −8.56522 12.1525i −0.300027 0.425682i
\(816\) −2.94044 + 12.9311i −0.102936 + 0.452680i
\(817\) −12.7255 47.4920i −0.445207 1.66154i
\(818\) 1.89274 + 9.06216i 0.0661781 + 0.316851i
\(819\) 0 0
\(820\) −15.9498 4.64251i −0.556991 0.162124i
\(821\) −21.3620 + 37.0001i −0.745540 + 1.29131i 0.204402 + 0.978887i \(0.434475\pi\)
−0.949942 + 0.312426i \(0.898858\pi\)
\(822\) 1.52445 1.36289i 0.0531714 0.0475362i
\(823\) 4.61152 + 1.23565i 0.160748 + 0.0430722i 0.338295 0.941040i \(-0.390150\pi\)
−0.177548 + 0.984112i \(0.556816\pi\)
\(824\) −22.1736 18.3489i −0.772456 0.639215i
\(825\) 3.37417 4.88263i 0.117474 0.169992i
\(826\) 0 0
\(827\) −6.21884 6.21884i −0.216250 0.216250i 0.590666 0.806916i \(-0.298865\pi\)
−0.806916 + 0.590666i \(0.798865\pi\)
\(828\) −1.23645 + 0.986854i −0.0429696 + 0.0342956i
\(829\) −33.7077 + 19.4612i −1.17072 + 0.675915i −0.953849 0.300286i \(-0.902918\pi\)
−0.216869 + 0.976201i \(0.569585\pi\)
\(830\) 18.7151 + 17.4681i 0.649612 + 0.606325i
\(831\) −4.43367 2.55978i −0.153802 0.0887978i
\(832\) 32.1594 15.5353i 1.11493 0.538588i
\(833\) 0 0
\(834\) 16.8475 25.7431i 0.583383 0.891410i
\(835\) 17.0271 + 7.87605i 0.589248 + 0.272562i
\(836\) 4.49947 6.10173i 0.155617 0.211033i
\(837\) 21.1330 + 5.66257i 0.730464 + 0.195727i
\(838\) −7.85948 + 23.9009i −0.271501 + 0.825645i
\(839\) 15.0742 0.520418 0.260209 0.965552i \(-0.416209\pi\)
0.260209 + 0.965552i \(0.416209\pi\)
\(840\) 0 0
\(841\) −23.2844 −0.802910
\(842\) −7.27500 + 22.1235i −0.250713 + 0.762427i
\(843\) 38.8660 + 10.4141i 1.33862 + 0.358681i
\(844\) −12.3855 + 16.7960i −0.426327 + 0.578141i
\(845\) −5.34545 14.5468i −0.183889 0.500424i
\(846\) −3.59146 + 5.48776i −0.123477 + 0.188673i
\(847\) 0 0
\(848\) −11.7489 + 0.449132i −0.403461 + 0.0154233i
\(849\) −21.0823 12.1719i −0.723543 0.417738i
\(850\) 2.34087 + 18.6590i 0.0802910 + 0.640000i
\(851\) −0.492709 + 0.284465i −0.0168898 + 0.00975135i
\(852\) −14.8235 + 11.8312i −0.507845 + 0.405329i
\(853\) 14.0097 + 14.0097i 0.479684 + 0.479684i 0.905031 0.425346i \(-0.139848\pi\)
−0.425346 + 0.905031i \(0.639848\pi\)
\(854\) 0 0
\(855\) 8.24327 9.88570i 0.281914 0.338084i
\(856\) −0.0725349 + 0.0876544i −0.00247919 + 0.00299597i
\(857\) −34.4324 9.22615i −1.17619 0.315159i −0.382776 0.923841i \(-0.625032\pi\)
−0.793414 + 0.608682i \(0.791698\pi\)
\(858\) 5.58710 4.99497i 0.190740 0.170525i
\(859\) −26.2004 + 45.3805i −0.893947 + 1.54836i −0.0588442 + 0.998267i \(0.518742\pi\)
−0.835103 + 0.550094i \(0.814592\pi\)
\(860\) 48.4151 26.5848i 1.65094 0.906536i
\(861\) 0 0
\(862\) −4.37546 20.9491i −0.149029 0.713528i
\(863\) −1.36585 5.09743i −0.0464941 0.173518i 0.938775 0.344532i \(-0.111962\pi\)
−0.985269 + 0.171014i \(0.945296\pi\)
\(864\) 21.7739 + 22.5582i 0.740763 + 0.767444i
\(865\) 4.04584 2.85156i 0.137563 0.0969559i
\(866\) 9.73623 4.91755i 0.330851 0.167105i
\(867\) 8.75067 + 8.75067i 0.297188 + 0.297188i
\(868\) 0 0
\(869\) 10.1859i 0.345535i
\(870\) 27.7711 + 6.42475i 0.941529 + 0.217819i
\(871\) 57.6023 33.2567i 1.95178 1.12686i
\(872\) −7.41169 + 16.1825i −0.250992 + 0.548009i
\(873\) −6.09536 + 1.63325i −0.206297 + 0.0552771i
\(874\) 1.68647 2.57694i 0.0570458 0.0871662i
\(875\) 0 0
\(876\) −33.6304 + 14.6890i −1.13627 + 0.496295i
\(877\) −2.89005 10.7858i −0.0975901 0.364211i 0.899809 0.436283i \(-0.143705\pi\)
−0.997399 + 0.0720722i \(0.977039\pi\)
\(878\) −24.2677 27.1445i −0.818995 0.916083i
\(879\) 11.1824 + 19.3685i 0.377174 + 0.653285i
\(880\) 7.86078 + 3.27762i 0.264987 + 0.110488i
\(881\) −22.0701 −0.743561 −0.371781 0.928321i \(-0.621253\pi\)
−0.371781 + 0.928321i \(0.621253\pi\)
\(882\) 0 0
\(883\) 5.32169 5.32169i 0.179089 0.179089i −0.611869 0.790959i \(-0.709582\pi\)
0.790959 + 0.611869i \(0.209582\pi\)
\(884\) −2.64915 + 23.5976i −0.0891005 + 0.793674i
\(885\) 20.2367 + 28.7122i 0.680250 + 0.965149i
\(886\) −24.4127 1.36603i −0.820159 0.0458928i
\(887\) 4.89193 1.31079i 0.164255 0.0440120i −0.175754 0.984434i \(-0.556236\pi\)
0.340009 + 0.940422i \(0.389570\pi\)
\(888\) 2.12385 + 2.98944i 0.0712718 + 0.100319i
\(889\) 0 0
\(890\) −3.14670 + 5.91161i −0.105478 + 0.198157i
\(891\) 2.12030 + 1.22416i 0.0710327 + 0.0410108i
\(892\) −29.9976 + 4.53382i −1.00439 + 0.151803i
\(893\) 3.30454 12.3327i 0.110582 0.412699i
\(894\) −17.6419 + 8.91052i −0.590033 + 0.298012i
\(895\) −28.2845 23.5853i −0.945448 0.788369i
\(896\) 0 0
\(897\) 2.15273 2.15273i 0.0718774 0.0718774i
\(898\) 14.9121 + 4.90364i 0.497625 + 0.163637i
\(899\) 14.2718 + 24.7194i 0.475990 + 0.824439i
\(900\) 12.9906 + 6.35054i 0.433020 + 0.211685i
\(901\) 3.90860 6.76989i 0.130214 0.225538i
\(902\) −1.02265 4.89633i −0.0340507 0.163030i
\(903\) 0 0
\(904\) −42.7964 7.24469i −1.42339 0.240955i
\(905\) −12.5435 + 4.60930i −0.416959 + 0.153218i
\(906\) 1.47943 26.4392i 0.0491507 0.878382i
\(907\) 0.876735 3.27202i 0.0291115 0.108646i −0.949841 0.312732i \(-0.898756\pi\)
0.978953 + 0.204087i \(0.0654224\pi\)
\(908\) 15.6665 12.5040i 0.519911 0.414959i
\(909\) 2.06796i 0.0685899i
\(910\) 0 0
\(911\) 31.5983i 1.04690i −0.852057 0.523449i \(-0.824645\pi\)
0.852057 0.523449i \(-0.175355\pi\)
\(912\) −17.5578 9.26140i −0.581397 0.306676i
\(913\) −1.99514 + 7.44597i −0.0660295 + 0.246426i
\(914\) −29.9877 1.67799i −0.991905 0.0555030i
\(915\) −7.04919 + 15.2396i −0.233039 + 0.503804i
\(916\) −13.6796 31.3195i −0.451988 1.03482i
\(917\) 0 0
\(918\) −20.4049 + 4.26180i −0.673462 + 0.140660i
\(919\) −23.1351 + 40.0712i −0.763157 + 1.32183i 0.178058 + 0.984020i \(0.443018\pi\)
−0.941215 + 0.337807i \(0.890315\pi\)
\(920\) 3.26267 + 1.15098i 0.107567 + 0.0379466i
\(921\) 8.79800 + 15.2386i 0.289904 + 0.502128i
\(922\) 3.80653 11.5758i 0.125362 0.381229i
\(923\) −24.0141 + 24.0141i −0.790435 + 0.790435i
\(924\) 0 0
\(925\) 4.27804 + 2.95637i 0.140661 + 0.0972047i
\(926\) −1.47279 2.91596i −0.0483987 0.0958244i
\(927\) 3.80821 14.2124i 0.125078 0.466797i
\(928\) −0.723497 + 40.8972i −0.0237499 + 1.34251i
\(929\) −37.0594 21.3962i −1.21588 0.701987i −0.251844 0.967768i \(-0.581037\pi\)
−0.964034 + 0.265780i \(0.914370\pi\)
\(930\) −4.54297 14.8836i −0.148970 0.488051i
\(931\) 0 0
\(932\) −3.49220 1.36896i −0.114391 0.0448418i
\(933\) 16.7837 4.49719i 0.549475 0.147231i
\(934\) 2.01323 35.9789i 0.0658750 1.17727i
\(935\) −4.62841 + 3.26216i −0.151365 + 0.106684i
\(936\) 14.0669 + 11.6405i 0.459791 + 0.380482i
\(937\) −18.9957 + 18.9957i −0.620561 + 0.620561i −0.945675 0.325114i \(-0.894597\pi\)
0.325114 + 0.945675i \(0.394597\pi\)
\(938\) 0 0
\(939\) −6.11875 −0.199678
\(940\) 14.3398 + 0.307566i 0.467713 + 0.0100317i
\(941\) −10.8404 18.7762i −0.353388 0.612086i 0.633453 0.773781i \(-0.281637\pi\)
−0.986841 + 0.161696i \(0.948304\pi\)
\(942\) −9.89437 + 8.84575i −0.322376 + 0.288210i
\(943\) −0.525906 1.96271i −0.0171258 0.0639145i
\(944\) −34.2554 + 36.9785i −1.11492 + 1.20355i
\(945\) 0 0
\(946\) 13.9163 + 9.10749i 0.452457 + 0.296110i
\(947\) 14.8363 3.97536i 0.482114 0.129182i −0.00957300 0.999954i \(-0.503047\pi\)
0.491687 + 0.870772i \(0.336381\pi\)
\(948\) −26.3711 + 3.98571i −0.856493 + 0.129450i
\(949\) −56.9090 + 32.8564i −1.84735 + 1.06657i
\(950\) −27.8858 3.84435i −0.904736 0.124727i
\(951\) 42.8869i 1.39070i
\(952\) 0 0
\(953\) 22.0087 + 22.0087i 0.712931 + 0.712931i 0.967147 0.254216i \(-0.0818174\pi\)
−0.254216 + 0.967147i \(0.581817\pi\)
\(954\) −2.70988 5.36528i −0.0877357 0.173708i
\(955\) −17.7283 3.06964i −0.573674 0.0993311i
\(956\) 24.4964 + 18.0639i 0.792271 + 0.584228i
\(957\) 2.22146 + 8.29061i 0.0718096 + 0.267997i
\(958\) −12.8446 + 2.68274i −0.414990 + 0.0866755i
\(959\) 0 0
\(960\) 5.40976 21.6338i 0.174599 0.698228i
\(961\) −7.70864 + 13.3518i −0.248666 + 0.430702i
\(962\) 4.37647 + 4.89527i 0.141103 + 0.157830i
\(963\) −0.0561830 0.0150542i −0.00181047 0.000485114i
\(964\) −2.93981 + 26.1867i −0.0946848 + 0.843417i
\(965\) −2.93747 32.4235i −0.0945604 1.04375i
\(966\) 0 0
\(967\) 16.9281 + 16.9281i 0.544372 + 0.544372i 0.924807 0.380435i \(-0.124226\pi\)
−0.380435 + 0.924807i \(0.624226\pi\)
\(968\) −2.68261 28.4219i −0.0862223 0.913514i
\(969\) 11.4299 6.59904i 0.367180 0.211992i
\(970\) 10.0888 + 9.41649i 0.323931 + 0.302345i
\(971\) −32.1198 18.5444i −1.03077 0.595118i −0.113568 0.993530i \(-0.536228\pi\)
−0.917206 + 0.398412i \(0.869561\pi\)
\(972\) −9.79698 + 24.9920i −0.314238 + 0.801620i
\(973\) 0 0
\(974\) −21.0739 13.7918i −0.675251 0.441918i
\(975\) −26.2067 9.35584i −0.839287 0.299627i
\(976\) −23.4949 5.34256i −0.752053 0.171011i
\(977\) −22.5762 6.04928i −0.722277 0.193534i −0.121090 0.992642i \(-0.538639\pi\)
−0.601188 + 0.799108i \(0.705306\pi\)
\(978\) −11.1353 3.66170i −0.356069 0.117088i
\(979\) −2.01652 −0.0644484
\(980\) 0 0
\(981\) −9.09942 −0.290522
\(982\) −3.35820 1.10430i −0.107165 0.0352395i
\(983\) 19.2069 + 5.14648i 0.612606 + 0.164147i 0.551764 0.834000i \(-0.313955\pi\)
0.0608417 + 0.998147i \(0.480622\pi\)
\(984\) −12.2763 + 4.56353i −0.391353 + 0.145480i
\(985\) −21.8946 + 47.3336i −0.697619 + 1.50817i
\(986\) −22.7555 14.8923i −0.724682 0.474268i
\(987\) 0 0
\(988\) −33.0932 12.9727i −1.05284 0.412716i
\(989\) 5.85104 + 3.37810i 0.186052 + 0.107417i
\(990\) 0.149977 + 4.35142i 0.00476658 + 0.138297i
\(991\) 19.5362 11.2792i 0.620586 0.358296i −0.156511 0.987676i \(-0.550025\pi\)
0.777097 + 0.629380i \(0.216691\pi\)
\(992\) 19.5332 10.8214i 0.620178 0.343580i
\(993\) 11.4204 + 11.4204i 0.362414 + 0.362414i
\(994\) 0 0
\(995\) −16.5825 13.8275i −0.525701 0.438360i
\(996\) 20.0581 + 2.25178i 0.635564 + 0.0713505i
\(997\) 16.6372 + 4.45792i 0.526905 + 0.141184i 0.512459 0.858712i \(-0.328735\pi\)
0.0144466 + 0.999896i \(0.495401\pi\)
\(998\) −6.14930 6.87827i −0.194653 0.217728i
\(999\) −2.88213 + 4.99199i −0.0911865 + 0.157940i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 980.2.x.m.863.11 72
4.3 odd 2 inner 980.2.x.m.863.5 72
5.2 odd 4 inner 980.2.x.m.667.17 72
7.2 even 3 980.2.k.j.883.1 36
7.3 odd 6 140.2.w.b.123.14 yes 72
7.4 even 3 inner 980.2.x.m.263.14 72
7.5 odd 6 980.2.k.k.883.1 36
7.6 odd 2 140.2.w.b.23.11 yes 72
20.7 even 4 inner 980.2.x.m.667.14 72
28.3 even 6 140.2.w.b.123.17 yes 72
28.11 odd 6 inner 980.2.x.m.263.17 72
28.19 even 6 980.2.k.k.883.8 36
28.23 odd 6 980.2.k.j.883.8 36
28.27 even 2 140.2.w.b.23.5 72
35.2 odd 12 980.2.k.j.687.8 36
35.3 even 12 700.2.be.e.207.14 72
35.12 even 12 980.2.k.k.687.8 36
35.13 even 4 700.2.be.e.107.2 72
35.17 even 12 140.2.w.b.67.5 yes 72
35.24 odd 6 700.2.be.e.543.5 72
35.27 even 4 140.2.w.b.107.17 yes 72
35.32 odd 12 inner 980.2.x.m.67.5 72
35.34 odd 2 700.2.be.e.443.8 72
140.3 odd 12 700.2.be.e.207.8 72
140.27 odd 4 140.2.w.b.107.14 yes 72
140.47 odd 12 980.2.k.k.687.1 36
140.59 even 6 700.2.be.e.543.2 72
140.67 even 12 inner 980.2.x.m.67.11 72
140.83 odd 4 700.2.be.e.107.5 72
140.87 odd 12 140.2.w.b.67.11 yes 72
140.107 even 12 980.2.k.j.687.1 36
140.139 even 2 700.2.be.e.443.14 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.w.b.23.5 72 28.27 even 2
140.2.w.b.23.11 yes 72 7.6 odd 2
140.2.w.b.67.5 yes 72 35.17 even 12
140.2.w.b.67.11 yes 72 140.87 odd 12
140.2.w.b.107.14 yes 72 140.27 odd 4
140.2.w.b.107.17 yes 72 35.27 even 4
140.2.w.b.123.14 yes 72 7.3 odd 6
140.2.w.b.123.17 yes 72 28.3 even 6
700.2.be.e.107.2 72 35.13 even 4
700.2.be.e.107.5 72 140.83 odd 4
700.2.be.e.207.8 72 140.3 odd 12
700.2.be.e.207.14 72 35.3 even 12
700.2.be.e.443.8 72 35.34 odd 2
700.2.be.e.443.14 72 140.139 even 2
700.2.be.e.543.2 72 140.59 even 6
700.2.be.e.543.5 72 35.24 odd 6
980.2.k.j.687.1 36 140.107 even 12
980.2.k.j.687.8 36 35.2 odd 12
980.2.k.j.883.1 36 7.2 even 3
980.2.k.j.883.8 36 28.23 odd 6
980.2.k.k.687.1 36 140.47 odd 12
980.2.k.k.687.8 36 35.12 even 12
980.2.k.k.883.1 36 7.5 odd 6
980.2.k.k.883.8 36 28.19 even 6
980.2.x.m.67.5 72 35.32 odd 12 inner
980.2.x.m.67.11 72 140.67 even 12 inner
980.2.x.m.263.14 72 7.4 even 3 inner
980.2.x.m.263.17 72 28.11 odd 6 inner
980.2.x.m.667.14 72 20.7 even 4 inner
980.2.x.m.667.17 72 5.2 odd 4 inner
980.2.x.m.863.5 72 4.3 odd 2 inner
980.2.x.m.863.11 72 1.1 even 1 trivial