Properties

Label 980.2.k.j.883.1
Level $980$
Weight $2$
Character 980.883
Analytic conductor $7.825$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [980,2,Mod(687,980)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(980, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("980.687"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36,-2,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 883.1
Character \(\chi\) \(=\) 980.883
Dual form 980.2.k.j.687.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.38434 + 0.289136i) q^{2} +(0.881483 - 0.881483i) q^{3} +(1.83280 - 0.800525i) q^{4} +(1.71735 + 1.43203i) q^{5} +(-0.965404 + 1.47514i) q^{6} +(-2.30576 + 1.63813i) q^{8} +1.44598i q^{9} +(-2.79145 - 1.48587i) q^{10} -0.952199i q^{11} +(0.909933 - 2.32123i) q^{12} +(3.15680 + 3.15680i) q^{13} +(2.77612 - 0.251508i) q^{15} +(2.71832 - 2.93441i) q^{16} +(1.88053 - 1.88053i) q^{17} +(-0.418084 - 2.00173i) q^{18} -3.98095 q^{19} +(4.29394 + 1.24984i) q^{20} +(0.275315 + 1.31817i) q^{22} +(0.386810 - 0.386810i) q^{23} +(-0.588506 + 3.47647i) q^{24} +(0.898593 + 4.91859i) q^{25} +(-5.28284 - 3.45735i) q^{26} +(3.91905 + 3.91905i) q^{27} +7.23080i q^{29} +(-3.77038 + 1.15085i) q^{30} +3.94749i q^{31} +(-2.91464 + 4.84818i) q^{32} +(-0.839347 - 0.839347i) q^{33} +(-2.05957 + 3.14702i) q^{34} +(1.15754 + 2.65019i) q^{36} +(0.735415 - 0.735415i) q^{37} +(5.51099 - 1.15104i) q^{38} +5.56534 q^{39} +(-6.30565 - 0.488671i) q^{40} -3.71449 q^{41} +(8.73324 - 8.73324i) q^{43} +(-0.762260 - 1.74519i) q^{44} +(-2.07068 + 2.48325i) q^{45} +(-0.423636 + 0.647317i) q^{46} +(-2.26785 - 2.26785i) q^{47} +(-0.190479 - 4.98278i) q^{48} +(-2.66610 - 6.54919i) q^{50} -3.31531i q^{51} +(8.31290 + 3.25869i) q^{52} +(-2.07846 - 2.07846i) q^{53} +(-6.55844 - 4.29217i) q^{54} +(1.36358 - 1.63526i) q^{55} +(-3.50914 + 3.50914i) q^{57} +(-2.09068 - 10.0099i) q^{58} -12.6017 q^{59} +(4.88674 - 2.68332i) q^{60} +6.02367 q^{61} +(-1.14136 - 5.46468i) q^{62} +(2.63307 - 7.55427i) q^{64} +(0.900712 + 9.94198i) q^{65} +(1.40463 + 0.919257i) q^{66} +(10.5349 + 10.5349i) q^{67} +(1.94122 - 4.95205i) q^{68} -0.681932i q^{69} +7.60710i q^{71} +(-2.36870 - 3.33408i) q^{72} +(-10.4081 - 10.4081i) q^{73} +(-0.805430 + 1.23070i) q^{74} +(5.12775 + 3.54356i) q^{75} +(-7.29629 + 3.18685i) q^{76} +(-7.70432 + 1.60914i) q^{78} +10.6973 q^{79} +(8.87046 - 1.14670i) q^{80} +2.57122 q^{81} +(5.14212 - 1.07399i) q^{82} +(5.72446 - 5.72446i) q^{83} +(5.92250 - 0.536560i) q^{85} +(-9.56469 + 14.6149i) q^{86} +(6.37382 + 6.37382i) q^{87} +(1.55982 + 2.19554i) q^{88} -2.11775i q^{89} +(2.14853 - 4.03637i) q^{90} +(0.399294 - 1.01860i) q^{92} +(3.47965 + 3.47965i) q^{93} +(3.79519 + 2.48376i) q^{94} +(-6.83669 - 5.70083i) q^{95} +(1.70439 + 6.84279i) q^{96} +(3.08588 - 3.08588i) q^{97} +1.37686 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 2 q^{2} - 8 q^{5} + 8 q^{6} - 2 q^{8} + 2 q^{10} + 10 q^{12} + 28 q^{16} + 4 q^{17} + 20 q^{18} + 28 q^{20} - 8 q^{22} + 16 q^{25} - 4 q^{26} + 32 q^{30} + 38 q^{32} - 64 q^{33} + 8 q^{36} + 4 q^{37}+ \cdots + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.38434 + 0.289136i −0.978877 + 0.204450i
\(3\) 0.881483 0.881483i 0.508924 0.508924i −0.405272 0.914196i \(-0.632823\pi\)
0.914196 + 0.405272i \(0.132823\pi\)
\(4\) 1.83280 0.800525i 0.916400 0.400263i
\(5\) 1.71735 + 1.43203i 0.768023 + 0.640422i
\(6\) −0.965404 + 1.47514i −0.394125 + 0.602224i
\(7\) 0 0
\(8\) −2.30576 + 1.63813i −0.815210 + 0.579166i
\(9\) 1.44598i 0.481992i
\(10\) −2.79145 1.48587i −0.882734 0.469872i
\(11\) 0.952199i 0.287099i −0.989643 0.143549i \(-0.954148\pi\)
0.989643 0.143549i \(-0.0458516\pi\)
\(12\) 0.909933 2.32123i 0.262675 0.670082i
\(13\) 3.15680 + 3.15680i 0.875540 + 0.875540i 0.993069 0.117529i \(-0.0374974\pi\)
−0.117529 + 0.993069i \(0.537497\pi\)
\(14\) 0 0
\(15\) 2.77612 0.251508i 0.716792 0.0649391i
\(16\) 2.71832 2.93441i 0.679580 0.733602i
\(17\) 1.88053 1.88053i 0.456095 0.456095i −0.441276 0.897371i \(-0.645474\pi\)
0.897371 + 0.441276i \(0.145474\pi\)
\(18\) −0.418084 2.00173i −0.0985433 0.471811i
\(19\) −3.98095 −0.913293 −0.456646 0.889648i \(-0.650950\pi\)
−0.456646 + 0.889648i \(0.650950\pi\)
\(20\) 4.29394 + 1.24984i 0.960154 + 0.279472i
\(21\) 0 0
\(22\) 0.275315 + 1.31817i 0.0586973 + 0.281034i
\(23\) 0.386810 0.386810i 0.0806554 0.0806554i −0.665628 0.746284i \(-0.731836\pi\)
0.746284 + 0.665628i \(0.231836\pi\)
\(24\) −0.588506 + 3.47647i −0.120128 + 0.709631i
\(25\) 0.898593 + 4.91859i 0.179719 + 0.983718i
\(26\) −5.28284 3.45735i −1.03605 0.678042i
\(27\) 3.91905 + 3.91905i 0.754222 + 0.754222i
\(28\) 0 0
\(29\) 7.23080i 1.34273i 0.741129 + 0.671363i \(0.234291\pi\)
−0.741129 + 0.671363i \(0.765709\pi\)
\(30\) −3.77038 + 1.15085i −0.688374 + 0.210115i
\(31\) 3.94749i 0.708991i 0.935058 + 0.354495i \(0.115347\pi\)
−0.935058 + 0.354495i \(0.884653\pi\)
\(32\) −2.91464 + 4.84818i −0.515240 + 0.857046i
\(33\) −0.839347 0.839347i −0.146112 0.146112i
\(34\) −2.05957 + 3.14702i −0.353213 + 0.539710i
\(35\) 0 0
\(36\) 1.15754 + 2.65019i 0.192924 + 0.441698i
\(37\) 0.735415 0.735415i 0.120901 0.120901i −0.644067 0.764969i \(-0.722754\pi\)
0.764969 + 0.644067i \(0.222754\pi\)
\(38\) 5.51099 1.15104i 0.894001 0.186723i
\(39\) 5.56534 0.891167
\(40\) −6.30565 0.488671i −0.997011 0.0772656i
\(41\) −3.71449 −0.580106 −0.290053 0.957011i \(-0.593673\pi\)
−0.290053 + 0.957011i \(0.593673\pi\)
\(42\) 0 0
\(43\) 8.73324 8.73324i 1.33181 1.33181i 0.428052 0.903754i \(-0.359200\pi\)
0.903754 0.428052i \(-0.140800\pi\)
\(44\) −0.762260 1.74519i −0.114915 0.263097i
\(45\) −2.07068 + 2.48325i −0.308679 + 0.370181i
\(46\) −0.423636 + 0.647317i −0.0624617 + 0.0954417i
\(47\) −2.26785 2.26785i −0.330799 0.330799i 0.522091 0.852890i \(-0.325152\pi\)
−0.852890 + 0.522091i \(0.825152\pi\)
\(48\) −0.190479 4.98278i −0.0274933 0.719202i
\(49\) 0 0
\(50\) −2.66610 6.54919i −0.377044 0.926196i
\(51\) 3.31531i 0.464236i
\(52\) 8.31290 + 3.25869i 1.15279 + 0.451899i
\(53\) −2.07846 2.07846i −0.285498 0.285498i 0.549799 0.835297i \(-0.314704\pi\)
−0.835297 + 0.549799i \(0.814704\pi\)
\(54\) −6.55844 4.29217i −0.892491 0.584090i
\(55\) 1.36358 1.63526i 0.183864 0.220498i
\(56\) 0 0
\(57\) −3.50914 + 3.50914i −0.464797 + 0.464797i
\(58\) −2.09068 10.0099i −0.274520 1.31436i
\(59\) −12.6017 −1.64060 −0.820300 0.571934i \(-0.806193\pi\)
−0.820300 + 0.571934i \(0.806193\pi\)
\(60\) 4.88674 2.68332i 0.630876 0.346415i
\(61\) 6.02367 0.771251 0.385626 0.922655i \(-0.373986\pi\)
0.385626 + 0.922655i \(0.373986\pi\)
\(62\) −1.14136 5.46468i −0.144953 0.694015i
\(63\) 0 0
\(64\) 2.63307 7.55427i 0.329134 0.944283i
\(65\) 0.900712 + 9.94198i 0.111720 + 1.23315i
\(66\) 1.40463 + 0.919257i 0.172898 + 0.113153i
\(67\) 10.5349 + 10.5349i 1.28705 + 1.28705i 0.936572 + 0.350475i \(0.113980\pi\)
0.350475 + 0.936572i \(0.386020\pi\)
\(68\) 1.94122 4.95205i 0.235408 0.600524i
\(69\) 0.681932i 0.0820949i
\(70\) 0 0
\(71\) 7.60710i 0.902797i 0.892322 + 0.451399i \(0.149075\pi\)
−0.892322 + 0.451399i \(0.850925\pi\)
\(72\) −2.36870 3.33408i −0.279154 0.392925i
\(73\) −10.4081 10.4081i −1.21818 1.21818i −0.968269 0.249911i \(-0.919599\pi\)
−0.249911 0.968269i \(-0.580401\pi\)
\(74\) −0.805430 + 1.23070i −0.0936293 + 0.143066i
\(75\) 5.12775 + 3.54356i 0.592101 + 0.409175i
\(76\) −7.29629 + 3.18685i −0.836942 + 0.365557i
\(77\) 0 0
\(78\) −7.70432 + 1.60914i −0.872343 + 0.182199i
\(79\) 10.6973 1.20354 0.601769 0.798670i \(-0.294463\pi\)
0.601769 + 0.798670i \(0.294463\pi\)
\(80\) 8.87046 1.14670i 0.991748 0.128205i
\(81\) 2.57122 0.285691
\(82\) 5.14212 1.07399i 0.567853 0.118603i
\(83\) 5.72446 5.72446i 0.628341 0.628341i −0.319309 0.947651i \(-0.603451\pi\)
0.947651 + 0.319309i \(0.103451\pi\)
\(84\) 0 0
\(85\) 5.92250 0.536560i 0.642386 0.0581981i
\(86\) −9.56469 + 14.6149i −1.03139 + 1.57596i
\(87\) 6.37382 + 6.37382i 0.683345 + 0.683345i
\(88\) 1.55982 + 2.19554i 0.166278 + 0.234046i
\(89\) 2.11775i 0.224481i −0.993681 0.112241i \(-0.964197\pi\)
0.993681 0.112241i \(-0.0358028\pi\)
\(90\) 2.14853 4.03637i 0.226475 0.425471i
\(91\) 0 0
\(92\) 0.399294 1.01860i 0.0416293 0.106196i
\(93\) 3.47965 + 3.47965i 0.360823 + 0.360823i
\(94\) 3.79519 + 2.48376i 0.391444 + 0.256180i
\(95\) −6.83669 5.70083i −0.701430 0.584893i
\(96\) 1.70439 + 6.84279i 0.173953 + 0.698389i
\(97\) 3.08588 3.08588i 0.313324 0.313324i −0.532872 0.846196i \(-0.678887\pi\)
0.846196 + 0.532872i \(0.178887\pi\)
\(98\) 0 0
\(99\) 1.37686 0.138379
\(100\) 5.58440 + 8.29545i 0.558440 + 0.829545i
\(101\) 1.43015 0.142305 0.0711525 0.997465i \(-0.477332\pi\)
0.0711525 + 0.997465i \(0.477332\pi\)
\(102\) 0.958575 + 4.58952i 0.0949130 + 0.454430i
\(103\) 7.19528 7.19528i 0.708972 0.708972i −0.257347 0.966319i \(-0.582848\pi\)
0.966319 + 0.257347i \(0.0828483\pi\)
\(104\) −12.4501 2.10758i −1.22083 0.206666i
\(105\) 0 0
\(106\) 3.47825 + 2.27634i 0.337838 + 0.221097i
\(107\) −0.0284436 0.0284436i −0.00274975 0.00274975i 0.705731 0.708480i \(-0.250619\pi\)
−0.708480 + 0.705731i \(0.750619\pi\)
\(108\) 10.3201 + 4.04554i 0.993056 + 0.389282i
\(109\) 6.29292i 0.602752i 0.953505 + 0.301376i \(0.0974460\pi\)
−0.953505 + 0.301376i \(0.902554\pi\)
\(110\) −1.41484 + 2.65802i −0.134900 + 0.253432i
\(111\) 1.29651i 0.123059i
\(112\) 0 0
\(113\) 10.8513 + 10.8513i 1.02081 + 1.02081i 0.999779 + 0.0210265i \(0.00669344\pi\)
0.0210265 + 0.999779i \(0.493307\pi\)
\(114\) 3.84323 5.87246i 0.359951 0.550007i
\(115\) 1.21821 0.110366i 0.113599 0.0102917i
\(116\) 5.78844 + 13.2526i 0.537443 + 1.23047i
\(117\) −4.56467 + 4.56467i −0.422004 + 0.422004i
\(118\) 17.4450 3.64360i 1.60595 0.335420i
\(119\) 0 0
\(120\) −5.98907 + 5.12756i −0.546725 + 0.468080i
\(121\) 10.0933 0.917574
\(122\) −8.33881 + 1.74166i −0.754960 + 0.157682i
\(123\) −3.27426 + 3.27426i −0.295230 + 0.295230i
\(124\) 3.16007 + 7.23497i 0.283783 + 0.649720i
\(125\) −5.50036 + 9.73376i −0.491967 + 0.870614i
\(126\) 0 0
\(127\) 1.22418 + 1.22418i 0.108629 + 0.108629i 0.759332 0.650703i \(-0.225526\pi\)
−0.650703 + 0.759332i \(0.725526\pi\)
\(128\) −1.46085 + 11.2190i −0.129123 + 0.991629i
\(129\) 15.3964i 1.35558i
\(130\) −4.12147 13.5027i −0.361477 1.18426i
\(131\) 1.30460i 0.113984i 0.998375 + 0.0569918i \(0.0181509\pi\)
−0.998375 + 0.0569918i \(0.981849\pi\)
\(132\) −2.21027 0.866437i −0.192380 0.0754137i
\(133\) 0 0
\(134\) −17.6300 11.5379i −1.52300 0.996724i
\(135\) 1.11820 + 12.3426i 0.0962392 + 1.06228i
\(136\) −1.25550 + 7.41660i −0.107658 + 0.635968i
\(137\) 0.820169 0.820169i 0.0700718 0.0700718i −0.671202 0.741274i \(-0.734222\pi\)
0.741274 + 0.671202i \(0.234222\pi\)
\(138\) 0.197171 + 0.944026i 0.0167843 + 0.0803608i
\(139\) −17.4513 −1.48020 −0.740099 0.672498i \(-0.765221\pi\)
−0.740099 + 0.672498i \(0.765221\pi\)
\(140\) 0 0
\(141\) −3.99813 −0.336704
\(142\) −2.19949 10.5308i −0.184577 0.883727i
\(143\) 3.00591 3.00591i 0.251367 0.251367i
\(144\) 4.24309 + 3.93063i 0.353590 + 0.327552i
\(145\) −10.3547 + 12.4178i −0.859911 + 1.03124i
\(146\) 17.4178 + 11.3990i 1.44151 + 0.943392i
\(147\) 0 0
\(148\) 0.759151 1.93659i 0.0624018 0.159186i
\(149\) 11.2109i 0.918434i −0.888324 0.459217i \(-0.848130\pi\)
0.888324 0.459217i \(-0.151870\pi\)
\(150\) −8.12312 3.42288i −0.663250 0.279477i
\(151\) 15.0204i 1.22235i −0.791497 0.611173i \(-0.790698\pi\)
0.791497 0.611173i \(-0.209302\pi\)
\(152\) 9.17912 6.52131i 0.744525 0.528948i
\(153\) 2.71920 + 2.71920i 0.219835 + 0.219835i
\(154\) 0 0
\(155\) −5.65292 + 6.77924i −0.454054 + 0.544521i
\(156\) 10.2002 4.45519i 0.816666 0.356701i
\(157\) −5.32326 + 5.32326i −0.424842 + 0.424842i −0.886867 0.462025i \(-0.847123\pi\)
0.462025 + 0.886867i \(0.347123\pi\)
\(158\) −14.8087 + 3.09297i −1.17812 + 0.246063i
\(159\) −3.66425 −0.290594
\(160\) −11.9482 + 4.15220i −0.944587 + 0.328260i
\(161\) 0 0
\(162\) −3.55944 + 0.743432i −0.279656 + 0.0584095i
\(163\) 4.70155 4.70155i 0.368254 0.368254i −0.498586 0.866840i \(-0.666147\pi\)
0.866840 + 0.498586i \(0.166147\pi\)
\(164\) −6.80792 + 2.97354i −0.531610 + 0.232195i
\(165\) −0.239486 2.64342i −0.0186439 0.205790i
\(166\) −6.26946 + 9.57976i −0.486605 + 0.743533i
\(167\) −5.93258 5.93258i −0.459077 0.459077i 0.439276 0.898352i \(-0.355235\pi\)
−0.898352 + 0.439276i \(0.855235\pi\)
\(168\) 0 0
\(169\) 6.93083i 0.533141i
\(170\) −8.04362 + 2.45519i −0.616918 + 0.188304i
\(171\) 5.75636i 0.440200i
\(172\) 9.01511 22.9975i 0.687395 1.75354i
\(173\) 1.56525 + 1.56525i 0.119004 + 0.119004i 0.764101 0.645097i \(-0.223183\pi\)
−0.645097 + 0.764101i \(0.723183\pi\)
\(174\) −10.6664 6.98064i −0.808621 0.529201i
\(175\) 0 0
\(176\) −2.79414 2.58838i −0.210616 0.195106i
\(177\) −11.1082 + 11.1082i −0.834941 + 0.834941i
\(178\) 0.612319 + 2.93169i 0.0458952 + 0.219740i
\(179\) −16.4699 −1.23101 −0.615507 0.788131i \(-0.711049\pi\)
−0.615507 + 0.788131i \(0.711049\pi\)
\(180\) −1.80724 + 6.20894i −0.134704 + 0.462787i
\(181\) 5.97636 0.444219 0.222110 0.975022i \(-0.428706\pi\)
0.222110 + 0.975022i \(0.428706\pi\)
\(182\) 0 0
\(183\) 5.30976 5.30976i 0.392508 0.392508i
\(184\) −0.258247 + 1.52553i −0.0190382 + 0.112464i
\(185\) 2.31610 0.209831i 0.170283 0.0154271i
\(186\) −5.82311 3.81093i −0.426971 0.279431i
\(187\) −1.79064 1.79064i −0.130944 0.130944i
\(188\) −5.97198 2.34104i −0.435551 0.170738i
\(189\) 0 0
\(190\) 11.1126 + 5.91516i 0.806195 + 0.429131i
\(191\) 8.04630i 0.582210i −0.956691 0.291105i \(-0.905977\pi\)
0.956691 0.291105i \(-0.0940229\pi\)
\(192\) −4.33795 8.97996i −0.313065 0.648073i
\(193\) −10.2952 10.2952i −0.741065 0.741065i 0.231718 0.972783i \(-0.425565\pi\)
−0.972783 + 0.231718i \(0.925565\pi\)
\(194\) −3.37967 + 5.16415i −0.242647 + 0.370765i
\(195\) 9.55764 + 7.96972i 0.684437 + 0.570723i
\(196\) 0 0
\(197\) 16.4919 16.4919i 1.17500 1.17500i 0.194001 0.981001i \(-0.437854\pi\)
0.981001 0.194001i \(-0.0621465\pi\)
\(198\) −1.90604 + 0.398099i −0.135456 + 0.0282917i
\(199\) −9.65586 −0.684486 −0.342243 0.939611i \(-0.611187\pi\)
−0.342243 + 0.939611i \(0.611187\pi\)
\(200\) −10.1292 9.86908i −0.716244 0.697850i
\(201\) 18.5727 1.31002
\(202\) −1.97981 + 0.413507i −0.139299 + 0.0290943i
\(203\) 0 0
\(204\) −2.65399 6.07630i −0.185816 0.425426i
\(205\) −6.37909 5.31926i −0.445535 0.371513i
\(206\) −7.88031 + 12.0411i −0.549047 + 0.838946i
\(207\) 0.559318 + 0.559318i 0.0388753 + 0.0388753i
\(208\) 17.8446 0.682152i 1.23730 0.0472987i
\(209\) 3.79066i 0.262205i
\(210\) 0 0
\(211\) 10.4344i 0.718333i −0.933274 0.359166i \(-0.883061\pi\)
0.933274 0.359166i \(-0.116939\pi\)
\(212\) −5.47326 2.14554i −0.375905 0.147356i
\(213\) 6.70553 + 6.70553i 0.459455 + 0.459455i
\(214\) 0.0475997 + 0.0311516i 0.00325385 + 0.00212948i
\(215\) 27.5043 2.49180i 1.87578 0.169939i
\(216\) −15.4563 2.61649i −1.05167 0.178029i
\(217\) 0 0
\(218\) −1.81951 8.71155i −0.123233 0.590020i
\(219\) −18.3492 −1.23992
\(220\) 1.19009 4.08868i 0.0802362 0.275659i
\(221\) 11.8729 0.798660
\(222\) 0.374868 + 1.79481i 0.0251595 + 0.120460i
\(223\) 10.7262 10.7262i 0.718279 0.718279i −0.249973 0.968253i \(-0.580422\pi\)
0.968253 + 0.249973i \(0.0804218\pi\)
\(224\) 0 0
\(225\) −7.11217 + 1.29934i −0.474145 + 0.0866230i
\(226\) −18.1594 11.8844i −1.20795 0.790539i
\(227\) −7.08686 7.08686i −0.470371 0.470371i 0.431663 0.902035i \(-0.357927\pi\)
−0.902035 + 0.431663i \(0.857927\pi\)
\(228\) −3.62240 + 9.24071i −0.239899 + 0.611981i
\(229\) 17.0883i 1.12923i −0.825355 0.564614i \(-0.809025\pi\)
0.825355 0.564614i \(-0.190975\pi\)
\(230\) −1.65451 + 0.505012i −0.109095 + 0.0332995i
\(231\) 0 0
\(232\) −11.8450 16.6725i −0.777661 1.09460i
\(233\) −1.32616 1.32616i −0.0868794 0.0868794i 0.662331 0.749211i \(-0.269567\pi\)
−0.749211 + 0.662331i \(0.769567\pi\)
\(234\) 4.99925 7.63887i 0.326811 0.499368i
\(235\) −0.647071 7.14231i −0.0422102 0.465913i
\(236\) −23.0964 + 10.0880i −1.50345 + 0.656671i
\(237\) 9.42947 9.42947i 0.612510 0.612510i
\(238\) 0 0
\(239\) −15.2182 −0.984385 −0.492193 0.870486i \(-0.663804\pi\)
−0.492193 + 0.870486i \(0.663804\pi\)
\(240\) 6.80836 8.82995i 0.439478 0.569971i
\(241\) 13.1756 0.848715 0.424357 0.905495i \(-0.360500\pi\)
0.424357 + 0.905495i \(0.360500\pi\)
\(242\) −13.9726 + 2.91834i −0.898192 + 0.187598i
\(243\) −9.49067 + 9.49067i −0.608827 + 0.608827i
\(244\) 11.0402 4.82210i 0.706775 0.308703i
\(245\) 0 0
\(246\) 3.58599 5.47940i 0.228634 0.349354i
\(247\) −12.5671 12.5671i −0.799625 0.799625i
\(248\) −6.46650 9.10198i −0.410623 0.577976i
\(249\) 10.0920i 0.639556i
\(250\) 4.79999 15.0652i 0.303578 0.952807i
\(251\) 14.7048i 0.928161i 0.885793 + 0.464080i \(0.153615\pi\)
−0.885793 + 0.464080i \(0.846385\pi\)
\(252\) 0 0
\(253\) −0.368320 0.368320i −0.0231561 0.0231561i
\(254\) −2.04864 1.34073i −0.128543 0.0841249i
\(255\) 4.74761 5.69355i 0.297307 0.356544i
\(256\) −1.22149 15.9533i −0.0763433 0.997082i
\(257\) −9.34659 + 9.34659i −0.583025 + 0.583025i −0.935733 0.352709i \(-0.885261\pi\)
0.352709 + 0.935733i \(0.385261\pi\)
\(258\) 4.45165 + 21.3139i 0.277148 + 1.32694i
\(259\) 0 0
\(260\) 9.60963 + 17.5006i 0.595964 + 1.08534i
\(261\) −10.4556 −0.647183
\(262\) −0.377207 1.80601i −0.0233039 0.111576i
\(263\) −7.47296 + 7.47296i −0.460803 + 0.460803i −0.898919 0.438116i \(-0.855646\pi\)
0.438116 + 0.898919i \(0.355646\pi\)
\(264\) 3.31029 + 0.560375i 0.203734 + 0.0344887i
\(265\) −0.593033 6.54585i −0.0364298 0.402108i
\(266\) 0 0
\(267\) −1.86676 1.86676i −0.114244 0.114244i
\(268\) 27.7419 + 10.8750i 1.69461 + 0.664294i
\(269\) 12.1965i 0.743635i 0.928306 + 0.371818i \(0.121265\pi\)
−0.928306 + 0.371818i \(0.878735\pi\)
\(270\) −5.11665 16.7630i −0.311389 1.02017i
\(271\) 6.58193i 0.399824i −0.979814 0.199912i \(-0.935934\pi\)
0.979814 0.199912i \(-0.0640656\pi\)
\(272\) −0.406362 10.6301i −0.0246393 0.644546i
\(273\) 0 0
\(274\) −0.898253 + 1.37253i −0.0542655 + 0.0829178i
\(275\) 4.68348 0.855639i 0.282424 0.0515970i
\(276\) −0.545904 1.24985i −0.0328595 0.0752318i
\(277\) −2.90395 + 2.90395i −0.174481 + 0.174481i −0.788945 0.614464i \(-0.789372\pi\)
0.614464 + 0.788945i \(0.289372\pi\)
\(278\) 24.1585 5.04579i 1.44893 0.302626i
\(279\) −5.70799 −0.341728
\(280\) 0 0
\(281\) −32.2773 −1.92550 −0.962752 0.270386i \(-0.912849\pi\)
−0.962752 + 0.270386i \(0.912849\pi\)
\(282\) 5.53478 1.15600i 0.329591 0.0688390i
\(283\) −13.8084 + 13.8084i −0.820825 + 0.820825i −0.986226 0.165401i \(-0.947108\pi\)
0.165401 + 0.986226i \(0.447108\pi\)
\(284\) 6.08968 + 13.9423i 0.361356 + 0.827324i
\(285\) −11.0516 + 1.00124i −0.654641 + 0.0593084i
\(286\) −3.29208 + 5.03032i −0.194665 + 0.297449i
\(287\) 0 0
\(288\) −7.01036 4.21450i −0.413090 0.248342i
\(289\) 9.92721i 0.583954i
\(290\) 10.7440 20.1844i 0.630909 1.18527i
\(291\) 5.44030i 0.318916i
\(292\) −27.4080 10.7441i −1.60393 0.628749i
\(293\) −12.6859 12.6859i −0.741121 0.741121i 0.231673 0.972794i \(-0.425580\pi\)
−0.972794 + 0.231673i \(0.925580\pi\)
\(294\) 0 0
\(295\) −21.6415 18.0460i −1.26002 1.05068i
\(296\) −0.490987 + 2.90039i −0.0285380 + 0.168582i
\(297\) 3.73172 3.73172i 0.216536 0.216536i
\(298\) 3.24148 + 15.5197i 0.187774 + 0.899034i
\(299\) 2.44216 0.141234
\(300\) 12.2348 + 2.38974i 0.706379 + 0.137972i
\(301\) 0 0
\(302\) 4.34295 + 20.7934i 0.249909 + 1.19653i
\(303\) 1.26065 1.26065i 0.0724225 0.0724225i
\(304\) −10.8215 + 11.6817i −0.620655 + 0.669993i
\(305\) 10.3448 + 8.62606i 0.592339 + 0.493927i
\(306\) −4.55052 2.97809i −0.260136 0.170246i
\(307\) −9.98091 9.98091i −0.569640 0.569640i 0.362387 0.932028i \(-0.381962\pi\)
−0.932028 + 0.362387i \(0.881962\pi\)
\(308\) 0 0
\(309\) 12.6850i 0.721626i
\(310\) 5.86545 11.0192i 0.333135 0.625851i
\(311\) 13.9385i 0.790380i −0.918599 0.395190i \(-0.870679\pi\)
0.918599 0.395190i \(-0.129321\pi\)
\(312\) −12.8323 + 9.11674i −0.726488 + 0.516134i
\(313\) −3.47072 3.47072i −0.196176 0.196176i 0.602182 0.798359i \(-0.294298\pi\)
−0.798359 + 0.602182i \(0.794298\pi\)
\(314\) 5.83006 8.90835i 0.329009 0.502727i
\(315\) 0 0
\(316\) 19.6060 8.56345i 1.10292 0.481732i
\(317\) 24.3266 24.3266i 1.36632 1.36632i 0.500688 0.865628i \(-0.333080\pi\)
0.865628 0.500688i \(-0.166920\pi\)
\(318\) 5.07257 1.05947i 0.284456 0.0594119i
\(319\) 6.88516 0.385495
\(320\) 15.3398 9.20271i 0.857522 0.514447i
\(321\) −0.0501451 −0.00279883
\(322\) 0 0
\(323\) −7.48630 + 7.48630i −0.416549 + 0.416549i
\(324\) 4.71253 2.05833i 0.261807 0.114351i
\(325\) −12.6903 + 18.3637i −0.703934 + 1.01864i
\(326\) −5.14916 + 7.86793i −0.285186 + 0.435764i
\(327\) 5.54710 + 5.54710i 0.306755 + 0.306755i
\(328\) 8.56473 6.08482i 0.472908 0.335978i
\(329\) 0 0
\(330\) 1.09584 + 3.59015i 0.0603239 + 0.197631i
\(331\) 12.9558i 0.712118i 0.934464 + 0.356059i \(0.115880\pi\)
−0.934464 + 0.356059i \(0.884120\pi\)
\(332\) 5.90922 15.0744i 0.324311 0.827314i
\(333\) 1.06339 + 1.06339i 0.0582736 + 0.0582736i
\(334\) 9.92804 + 6.49739i 0.543238 + 0.355522i
\(335\) 3.00587 + 33.1785i 0.164228 + 1.81274i
\(336\) 0 0
\(337\) 7.43071 7.43071i 0.404776 0.404776i −0.475136 0.879912i \(-0.657601\pi\)
0.879912 + 0.475136i \(0.157601\pi\)
\(338\) −2.00395 9.59464i −0.109001 0.521879i
\(339\) 19.1305 1.03903
\(340\) 10.4252 5.72452i 0.565388 0.310456i
\(341\) 3.75880 0.203550
\(342\) 1.66437 + 7.96877i 0.0899989 + 0.430902i
\(343\) 0 0
\(344\) −5.83059 + 34.4429i −0.314364 + 1.85704i
\(345\) 0.976545 1.17112i 0.0525754 0.0630508i
\(346\) −2.61942 1.71427i −0.140821 0.0921599i
\(347\) −6.47913 6.47913i −0.347818 0.347818i 0.511478 0.859296i \(-0.329098\pi\)
−0.859296 + 0.511478i \(0.829098\pi\)
\(348\) 16.7843 + 6.57954i 0.899735 + 0.352700i
\(349\) 19.9513i 1.06797i −0.845495 0.533984i \(-0.820694\pi\)
0.845495 0.533984i \(-0.179306\pi\)
\(350\) 0 0
\(351\) 24.7434i 1.32070i
\(352\) 4.61644 + 2.77531i 0.246057 + 0.147925i
\(353\) −1.75275 1.75275i −0.0932896 0.0932896i 0.658922 0.752211i \(-0.271013\pi\)
−0.752211 + 0.658922i \(0.771013\pi\)
\(354\) 12.1657 18.5893i 0.646601 0.988008i
\(355\) −10.8936 + 13.0641i −0.578171 + 0.693369i
\(356\) −1.69532 3.88142i −0.0898516 0.205715i
\(357\) 0 0
\(358\) 22.7999 4.76203i 1.20501 0.251681i
\(359\) −15.8929 −0.838796 −0.419398 0.907803i \(-0.637759\pi\)
−0.419398 + 0.907803i \(0.637759\pi\)
\(360\) 0.706607 9.11782i 0.0372414 0.480551i
\(361\) −3.15203 −0.165896
\(362\) −8.27332 + 1.72798i −0.434836 + 0.0908206i
\(363\) 8.89708 8.89708i 0.466976 0.466976i
\(364\) 0 0
\(365\) −2.96969 32.7792i −0.155441 1.71574i
\(366\) −5.81527 + 8.88576i −0.303969 + 0.464466i
\(367\) 7.61243 + 7.61243i 0.397366 + 0.397366i 0.877303 0.479937i \(-0.159341\pi\)
−0.479937 + 0.877303i \(0.659341\pi\)
\(368\) −0.0835854 2.18653i −0.00435719 0.113981i
\(369\) 5.37107i 0.279607i
\(370\) −3.14560 + 0.960146i −0.163532 + 0.0499156i
\(371\) 0 0
\(372\) 9.16305 + 3.59195i 0.475082 + 0.186234i
\(373\) −10.4404 10.4404i −0.540581 0.540581i 0.383118 0.923699i \(-0.374850\pi\)
−0.923699 + 0.383118i \(0.874850\pi\)
\(374\) 2.99659 + 1.96112i 0.154950 + 0.101407i
\(375\) 3.73167 + 13.4286i 0.192703 + 0.693450i
\(376\) 8.94413 + 1.51409i 0.461259 + 0.0780831i
\(377\) −22.8262 + 22.8262i −1.17561 + 1.17561i
\(378\) 0 0
\(379\) 26.4563 1.35897 0.679483 0.733691i \(-0.262204\pi\)
0.679483 + 0.733691i \(0.262204\pi\)
\(380\) −17.0940 4.97554i −0.876902 0.255240i
\(381\) 2.15819 0.110567
\(382\) 2.32647 + 11.1388i 0.119033 + 0.569912i
\(383\) −20.7755 + 20.7755i −1.06158 + 1.06158i −0.0636047 + 0.997975i \(0.520260\pi\)
−0.997975 + 0.0636047i \(0.979740\pi\)
\(384\) 8.60163 + 11.1771i 0.438950 + 0.570377i
\(385\) 0 0
\(386\) 17.2288 + 11.2754i 0.876922 + 0.573901i
\(387\) 12.6281 + 12.6281i 0.641920 + 0.641920i
\(388\) 3.18548 8.12614i 0.161718 0.412542i
\(389\) 9.35264i 0.474198i −0.971486 0.237099i \(-0.923803\pi\)
0.971486 0.237099i \(-0.0761965\pi\)
\(390\) −15.5354 8.26935i −0.786664 0.418735i
\(391\) 1.45481i 0.0735731i
\(392\) 0 0
\(393\) 1.14998 + 1.14998i 0.0580090 + 0.0580090i
\(394\) −18.0621 + 27.5989i −0.909954 + 1.39041i
\(395\) 18.3710 + 15.3188i 0.924345 + 0.770773i
\(396\) 2.52351 1.10221i 0.126811 0.0553881i
\(397\) 12.5650 12.5650i 0.630620 0.630620i −0.317603 0.948224i \(-0.602878\pi\)
0.948224 + 0.317603i \(0.102878\pi\)
\(398\) 13.3670 2.79186i 0.670028 0.139943i
\(399\) 0 0
\(400\) 16.8758 + 10.7335i 0.843790 + 0.536673i
\(401\) 6.15342 0.307287 0.153644 0.988126i \(-0.450899\pi\)
0.153644 + 0.988126i \(0.450899\pi\)
\(402\) −25.7110 + 5.37004i −1.28235 + 0.267833i
\(403\) −12.4615 + 12.4615i −0.620750 + 0.620750i
\(404\) 2.62118 1.14487i 0.130408 0.0569594i
\(405\) 4.41569 + 3.68206i 0.219417 + 0.182963i
\(406\) 0 0
\(407\) −0.700261 0.700261i −0.0347107 0.0347107i
\(408\) 5.43090 + 7.64431i 0.268870 + 0.378450i
\(409\) 6.54619i 0.323688i −0.986816 0.161844i \(-0.948256\pi\)
0.986816 0.161844i \(-0.0517442\pi\)
\(410\) 10.3688 + 5.51924i 0.512080 + 0.272576i
\(411\) 1.44593i 0.0713224i
\(412\) 7.42751 18.9475i 0.365927 0.933478i
\(413\) 0 0
\(414\) −0.936005 0.612568i −0.0460022 0.0301061i
\(415\) 18.0285 1.63333i 0.884985 0.0801768i
\(416\) −24.5057 + 6.10383i −1.20149 + 0.299265i
\(417\) −15.3830 + 15.3830i −0.753309 + 0.753309i
\(418\) −1.09602 5.24756i −0.0536079 0.256667i
\(419\) −17.7908 −0.869139 −0.434569 0.900638i \(-0.643099\pi\)
−0.434569 + 0.900638i \(0.643099\pi\)
\(420\) 0 0
\(421\) −16.4678 −0.802591 −0.401295 0.915949i \(-0.631440\pi\)
−0.401295 + 0.915949i \(0.631440\pi\)
\(422\) 3.01695 + 14.4447i 0.146863 + 0.703159i
\(423\) 3.27925 3.27925i 0.159443 0.159443i
\(424\) 8.19721 + 1.38764i 0.398092 + 0.0673900i
\(425\) 10.9394 + 7.55973i 0.530638 + 0.366701i
\(426\) −11.2215 7.34393i −0.543686 0.355815i
\(427\) 0 0
\(428\) −0.0749013 0.0293616i −0.00362049 0.00141925i
\(429\) 5.29931i 0.255853i
\(430\) −37.3548 + 11.4020i −1.80141 + 0.549852i
\(431\) 15.1329i 0.728925i 0.931218 + 0.364463i \(0.118747\pi\)
−0.931218 + 0.364463i \(0.881253\pi\)
\(432\) 22.1533 0.846865i 1.06585 0.0407448i
\(433\) 5.45382 + 5.45382i 0.262094 + 0.262094i 0.825904 0.563811i \(-0.190665\pi\)
−0.563811 + 0.825904i \(0.690665\pi\)
\(434\) 0 0
\(435\) 1.81860 + 20.0736i 0.0871953 + 0.962454i
\(436\) 5.03764 + 11.5337i 0.241259 + 0.552363i
\(437\) −1.53987 + 1.53987i −0.0736620 + 0.0736620i
\(438\) 25.4015 5.30541i 1.21373 0.253502i
\(439\) −25.7463 −1.22880 −0.614402 0.788993i \(-0.710603\pi\)
−0.614402 + 0.788993i \(0.710603\pi\)
\(440\) −0.465312 + 6.00423i −0.0221829 + 0.286241i
\(441\) 0 0
\(442\) −16.4362 + 3.43289i −0.781790 + 0.163286i
\(443\) −12.2254 + 12.2254i −0.580847 + 0.580847i −0.935136 0.354289i \(-0.884723\pi\)
0.354289 + 0.935136i \(0.384723\pi\)
\(444\) −1.03789 2.37625i −0.0492561 0.112772i
\(445\) 3.03268 3.63693i 0.143763 0.172407i
\(446\) −11.7474 + 17.9500i −0.556255 + 0.849959i
\(447\) −9.88223 9.88223i −0.467413 0.467413i
\(448\) 0 0
\(449\) 11.0999i 0.523839i 0.965090 + 0.261919i \(0.0843555\pi\)
−0.965090 + 0.261919i \(0.915645\pi\)
\(450\) 9.46998 3.85512i 0.446419 0.181732i
\(451\) 3.53694i 0.166548i
\(452\) 28.5750 + 11.2015i 1.34406 + 0.526876i
\(453\) −13.2403 13.2403i −0.622082 0.622082i
\(454\) 11.8597 + 7.76157i 0.556603 + 0.364268i
\(455\) 0 0
\(456\) 2.34281 13.8397i 0.109712 0.648101i
\(457\) −15.0173 + 15.0173i −0.702480 + 0.702480i −0.964942 0.262462i \(-0.915466\pi\)
0.262462 + 0.964942i \(0.415466\pi\)
\(458\) 4.94084 + 23.6561i 0.230870 + 1.10537i
\(459\) 14.7398 0.687994
\(460\) 2.14439 1.17749i 0.0999825 0.0549006i
\(461\) 8.61652 0.401311 0.200656 0.979662i \(-0.435693\pi\)
0.200656 + 0.979662i \(0.435693\pi\)
\(462\) 0 0
\(463\) 1.63340 1.63340i 0.0759103 0.0759103i −0.668132 0.744043i \(-0.732906\pi\)
0.744043 + 0.668132i \(0.232906\pi\)
\(464\) 21.2181 + 19.6556i 0.985026 + 0.912488i
\(465\) 0.992826 + 10.9587i 0.0460412 + 0.508199i
\(466\) 2.21929 + 1.45241i 0.102807 + 0.0672818i
\(467\) −18.0176 18.0176i −0.833754 0.833754i 0.154274 0.988028i \(-0.450696\pi\)
−0.988028 + 0.154274i \(0.950696\pi\)
\(468\) −4.71199 + 12.0203i −0.217812 + 0.555637i
\(469\) 0 0
\(470\) 2.96086 + 9.70030i 0.136574 + 0.447441i
\(471\) 9.38472i 0.432425i
\(472\) 29.0565 20.6432i 1.33743 0.950179i
\(473\) −8.31578 8.31578i −0.382360 0.382360i
\(474\) −10.3272 + 15.7800i −0.474344 + 0.724800i
\(475\) −3.57726 19.5807i −0.164136 0.898423i
\(476\) 0 0
\(477\) 3.00540 3.00540i 0.137608 0.137608i
\(478\) 21.0672 4.40014i 0.963592 0.201258i
\(479\) 9.27849 0.423945 0.211972 0.977276i \(-0.432011\pi\)
0.211972 + 0.977276i \(0.432011\pi\)
\(480\) −6.87203 + 14.1922i −0.313664 + 0.647783i
\(481\) 4.64312 0.211708
\(482\) −18.2395 + 3.80954i −0.830787 + 0.173520i
\(483\) 0 0
\(484\) 18.4990 8.07996i 0.840865 0.367271i
\(485\) 9.71861 0.880476i 0.441300 0.0399803i
\(486\) 10.3942 15.8824i 0.471492 0.720441i
\(487\) 12.5929 + 12.5929i 0.570638 + 0.570638i 0.932307 0.361669i \(-0.117793\pi\)
−0.361669 + 0.932307i \(0.617793\pi\)
\(488\) −13.8891 + 9.86754i −0.628732 + 0.446683i
\(489\) 8.28866i 0.374826i
\(490\) 0 0
\(491\) 2.49970i 0.112810i −0.998408 0.0564049i \(-0.982036\pi\)
0.998408 0.0564049i \(-0.0179638\pi\)
\(492\) −3.37994 + 8.62219i −0.152379 + 0.388719i
\(493\) 13.5977 + 13.5977i 0.612411 + 0.612411i
\(494\) 21.0307 + 13.7635i 0.946217 + 0.619251i
\(495\) 2.36455 + 1.97170i 0.106279 + 0.0886213i
\(496\) 11.5836 + 10.7305i 0.520117 + 0.481816i
\(497\) 0 0
\(498\) 2.91797 + 13.9708i 0.130757 + 0.626047i
\(499\) −6.52398 −0.292053 −0.146027 0.989281i \(-0.546649\pi\)
−0.146027 + 0.989281i \(0.546649\pi\)
\(500\) −2.28894 + 22.2432i −0.102364 + 0.994747i
\(501\) −10.4589 −0.467271
\(502\) −4.25169 20.3565i −0.189762 0.908555i
\(503\) −14.6078 + 14.6078i −0.651327 + 0.651327i −0.953313 0.301985i \(-0.902351\pi\)
0.301985 + 0.953313i \(0.402351\pi\)
\(504\) 0 0
\(505\) 2.45607 + 2.04801i 0.109294 + 0.0911353i
\(506\) 0.616375 + 0.403386i 0.0274012 + 0.0179327i
\(507\) 6.10941 + 6.10941i 0.271328 + 0.271328i
\(508\) 3.22367 + 1.26369i 0.143027 + 0.0560673i
\(509\) 34.4631i 1.52755i −0.645482 0.763775i \(-0.723344\pi\)
0.645482 0.763775i \(-0.276656\pi\)
\(510\) −4.92611 + 9.25452i −0.218132 + 0.409797i
\(511\) 0 0
\(512\) 6.30364 + 21.7316i 0.278584 + 0.960412i
\(513\) −15.6016 15.6016i −0.688825 0.688825i
\(514\) 10.2364 15.6413i 0.451510 0.689909i
\(515\) 22.6607 2.05299i 0.998549 0.0904654i
\(516\) −12.3252 28.2185i −0.542587 1.24225i
\(517\) −2.15944 + 2.15944i −0.0949721 + 0.0949721i
\(518\) 0 0
\(519\) 2.75949 0.121128
\(520\) −18.3631 21.4483i −0.805274 0.940572i
\(521\) 33.9051 1.48541 0.742705 0.669619i \(-0.233543\pi\)
0.742705 + 0.669619i \(0.233543\pi\)
\(522\) 14.4741 3.02308i 0.633513 0.132317i
\(523\) 13.0488 13.0488i 0.570583 0.570583i −0.361708 0.932291i \(-0.617806\pi\)
0.932291 + 0.361708i \(0.117806\pi\)
\(524\) 1.04437 + 2.39107i 0.0456233 + 0.104455i
\(525\) 0 0
\(526\) 8.18443 12.5058i 0.356858 0.545280i
\(527\) 7.42338 + 7.42338i 0.323368 + 0.323368i
\(528\) −4.74460 + 0.181374i −0.206482 + 0.00789328i
\(529\) 22.7008i 0.986989i
\(530\) 2.71360 + 8.89022i 0.117871 + 0.386167i
\(531\) 18.2217i 0.790756i
\(532\) 0 0
\(533\) −11.7259 11.7259i −0.507906 0.507906i
\(534\) 3.12398 + 2.04449i 0.135188 + 0.0884737i
\(535\) −0.00811564 0.0895797i −0.000350870 0.00387287i
\(536\) −41.5486 7.03346i −1.79463 0.303799i
\(537\) −14.5179 + 14.5179i −0.626493 + 0.626493i
\(538\) −3.52645 16.8842i −0.152036 0.727928i
\(539\) 0 0
\(540\) 11.9300 + 21.7263i 0.513385 + 0.934953i
\(541\) 3.18298 0.136847 0.0684236 0.997656i \(-0.478203\pi\)
0.0684236 + 0.997656i \(0.478203\pi\)
\(542\) 1.90307 + 9.11163i 0.0817439 + 0.391378i
\(543\) 5.26806 5.26806i 0.226074 0.226074i
\(544\) 3.63609 + 14.5982i 0.155896 + 0.625893i
\(545\) −9.01164 + 10.8072i −0.386016 + 0.462928i
\(546\) 0 0
\(547\) −15.6791 15.6791i −0.670391 0.670391i 0.287415 0.957806i \(-0.407204\pi\)
−0.957806 + 0.287415i \(0.907204\pi\)
\(548\) 0.846640 2.15977i 0.0361667 0.0922609i
\(549\) 8.71008i 0.371737i
\(550\) −6.23613 + 2.53866i −0.265910 + 0.108249i
\(551\) 28.7854i 1.22630i
\(552\) 1.11709 + 1.57237i 0.0475466 + 0.0669246i
\(553\) 0 0
\(554\) 3.18042 4.85969i 0.135123 0.206469i
\(555\) 1.85664 2.22656i 0.0788099 0.0945124i
\(556\) −31.9847 + 13.9702i −1.35645 + 0.592468i
\(557\) 15.0928 15.0928i 0.639501 0.639501i −0.310931 0.950432i \(-0.600641\pi\)
0.950432 + 0.310931i \(0.100641\pi\)
\(558\) 7.90180 1.65038i 0.334510 0.0698663i
\(559\) 55.1382 2.33210
\(560\) 0 0
\(561\) −3.15683 −0.133282
\(562\) 44.6828 9.33253i 1.88483 0.393669i
\(563\) 9.62553 9.62553i 0.405668 0.405668i −0.474557 0.880225i \(-0.657392\pi\)
0.880225 + 0.474557i \(0.157392\pi\)
\(564\) −7.32778 + 3.20061i −0.308555 + 0.134770i
\(565\) 3.09614 + 34.1749i 0.130255 + 1.43775i
\(566\) 15.1231 23.1081i 0.635669 0.971305i
\(567\) 0 0
\(568\) −12.4614 17.5402i −0.522869 0.735969i
\(569\) 23.4891i 0.984713i −0.870394 0.492357i \(-0.836136\pi\)
0.870394 0.492357i \(-0.163864\pi\)
\(570\) 15.0097 4.58148i 0.628687 0.191897i
\(571\) 27.1159i 1.13476i −0.823455 0.567382i \(-0.807956\pi\)
0.823455 0.567382i \(-0.192044\pi\)
\(572\) 3.10292 7.91553i 0.129740 0.330965i
\(573\) −7.09267 7.09267i −0.296301 0.296301i
\(574\) 0 0
\(575\) 2.25014 + 1.55497i 0.0938374 + 0.0648469i
\(576\) 10.9233 + 3.80736i 0.455137 + 0.158640i
\(577\) −19.7304 + 19.7304i −0.821388 + 0.821388i −0.986307 0.164919i \(-0.947264\pi\)
0.164919 + 0.986307i \(0.447264\pi\)
\(578\) −2.87031 13.7427i −0.119389 0.571619i
\(579\) −18.1501 −0.754292
\(580\) −9.03732 + 31.0486i −0.375254 + 1.28922i
\(581\) 0 0
\(582\) 1.57299 + 7.53124i 0.0652024 + 0.312180i
\(583\) −1.97910 + 1.97910i −0.0819661 + 0.0819661i
\(584\) 41.0485 + 6.94881i 1.69860 + 0.287544i
\(585\) −14.3759 + 1.30241i −0.594369 + 0.0538480i
\(586\) 21.2296 + 13.8937i 0.876988 + 0.573944i
\(587\) 22.8296 + 22.8296i 0.942280 + 0.942280i 0.998423 0.0561427i \(-0.0178802\pi\)
−0.0561427 + 0.998423i \(0.517880\pi\)
\(588\) 0 0
\(589\) 15.7148i 0.647516i
\(590\) 35.1770 + 18.7244i 1.44821 + 0.770872i
\(591\) 29.0747i 1.19597i
\(592\) −0.158915 4.15710i −0.00653138 0.170856i
\(593\) −27.0033 27.0033i −1.10889 1.10889i −0.993296 0.115598i \(-0.963122\pi\)
−0.115598 0.993296i \(-0.536878\pi\)
\(594\) −4.08700 + 6.24494i −0.167691 + 0.256233i
\(595\) 0 0
\(596\) −8.97462 20.5474i −0.367615 0.841653i
\(597\) −8.51148 + 8.51148i −0.348352 + 0.348352i
\(598\) −3.38079 + 0.706117i −0.138251 + 0.0288753i
\(599\) 28.9601 1.18328 0.591640 0.806202i \(-0.298481\pi\)
0.591640 + 0.806202i \(0.298481\pi\)
\(600\) −17.6282 + 0.229311i −0.719667 + 0.00936158i
\(601\) 8.88262 0.362330 0.181165 0.983453i \(-0.442013\pi\)
0.181165 + 0.983453i \(0.442013\pi\)
\(602\) 0 0
\(603\) −15.2333 + 15.2333i −0.620347 + 0.620347i
\(604\) −12.0242 27.5295i −0.489260 1.12016i
\(605\) 17.3338 + 14.4539i 0.704718 + 0.587635i
\(606\) −1.38067 + 2.10967i −0.0560859 + 0.0856994i
\(607\) 32.4817 + 32.4817i 1.31839 + 1.31839i 0.915048 + 0.403344i \(0.132152\pi\)
0.403344 + 0.915048i \(0.367848\pi\)
\(608\) 11.6030 19.3004i 0.470565 0.782734i
\(609\) 0 0
\(610\) −16.8148 8.95037i −0.680810 0.362390i
\(611\) 14.3183i 0.579256i
\(612\) 7.16055 + 2.80697i 0.289448 + 0.113465i
\(613\) 0.163936 + 0.163936i 0.00662131 + 0.00662131i 0.710410 0.703788i \(-0.248510\pi\)
−0.703788 + 0.710410i \(0.748510\pi\)
\(614\) 16.7028 + 10.9311i 0.674071 + 0.441145i
\(615\) −10.3119 + 0.934224i −0.415815 + 0.0376716i
\(616\) 0 0
\(617\) −27.1038 + 27.1038i −1.09116 + 1.09116i −0.0957517 + 0.995405i \(0.530525\pi\)
−0.995405 + 0.0957517i \(0.969475\pi\)
\(618\) 3.66770 + 17.5604i 0.147536 + 0.706383i
\(619\) 14.2994 0.574742 0.287371 0.957819i \(-0.407219\pi\)
0.287371 + 0.957819i \(0.407219\pi\)
\(620\) −4.93373 + 16.9503i −0.198143 + 0.680740i
\(621\) 3.03185 0.121664
\(622\) 4.03012 + 19.2957i 0.161593 + 0.773685i
\(623\) 0 0
\(624\) 15.1284 16.3310i 0.605619 0.653762i
\(625\) −23.3851 + 8.83962i −0.935402 + 0.353585i
\(626\) 5.80816 + 3.80115i 0.232141 + 0.151924i
\(627\) 3.34140 + 3.34140i 0.133443 + 0.133443i
\(628\) −5.49507 + 14.0179i −0.219277 + 0.559374i
\(629\) 2.76594i 0.110285i
\(630\) 0 0
\(631\) 30.7128i 1.22266i 0.791377 + 0.611328i \(0.209364\pi\)
−0.791377 + 0.611328i \(0.790636\pi\)
\(632\) −24.6654 + 17.5235i −0.981136 + 0.697049i
\(633\) −9.19773 9.19773i −0.365577 0.365577i
\(634\) −26.6426 + 40.7099i −1.05811 + 1.61680i
\(635\) 0.349288 + 3.85541i 0.0138611 + 0.152997i
\(636\) −6.71584 + 2.93332i −0.266300 + 0.116314i
\(637\) 0 0
\(638\) −9.53141 + 1.99075i −0.377352 + 0.0788144i
\(639\) −10.9997 −0.435141
\(640\) −18.5747 + 17.1750i −0.734230 + 0.678901i
\(641\) 41.5504 1.64114 0.820572 0.571543i \(-0.193655\pi\)
0.820572 + 0.571543i \(0.193655\pi\)
\(642\) 0.0694179 0.0144987i 0.00273971 0.000572220i
\(643\) −12.5692 + 12.5692i −0.495681 + 0.495681i −0.910090 0.414410i \(-0.863988\pi\)
0.414410 + 0.910090i \(0.363988\pi\)
\(644\) 0 0
\(645\) 22.0481 26.4410i 0.868142 1.04111i
\(646\) 8.19903 12.5281i 0.322587 0.492913i
\(647\) −25.1918 25.1918i −0.990392 0.990392i 0.00956185 0.999954i \(-0.496956\pi\)
−0.999954 + 0.00956185i \(0.996956\pi\)
\(648\) −5.92862 + 4.21199i −0.232898 + 0.165463i
\(649\) 11.9993i 0.471014i
\(650\) 12.2582 29.0909i 0.480805 1.14104i
\(651\) 0 0
\(652\) 4.85329 12.3807i 0.190070 0.484866i
\(653\) 9.30669 + 9.30669i 0.364199 + 0.364199i 0.865356 0.501157i \(-0.167092\pi\)
−0.501157 + 0.865356i \(0.667092\pi\)
\(654\) −9.28294 6.07521i −0.362992 0.237560i
\(655\) −1.86822 + 2.24046i −0.0729976 + 0.0875420i
\(656\) −10.0972 + 10.8998i −0.394228 + 0.425567i
\(657\) 15.0499 15.0499i 0.587153 0.587153i
\(658\) 0 0
\(659\) 10.3786 0.404294 0.202147 0.979355i \(-0.435208\pi\)
0.202147 + 0.979355i \(0.435208\pi\)
\(660\) −2.55506 4.65315i −0.0994554 0.181124i
\(661\) −23.0565 −0.896793 −0.448397 0.893835i \(-0.648005\pi\)
−0.448397 + 0.893835i \(0.648005\pi\)
\(662\) −3.74600 17.9353i −0.145592 0.697076i
\(663\) 10.4658 10.4658i 0.406457 0.406457i
\(664\) −3.82184 + 22.5767i −0.148316 + 0.876144i
\(665\) 0 0
\(666\) −1.77956 1.16463i −0.0689567 0.0451286i
\(667\) 2.79694 + 2.79694i 0.108298 + 0.108298i
\(668\) −15.6224 6.12406i −0.604450 0.236947i
\(669\) 18.9099i 0.731100i
\(670\) −13.7542 45.0613i −0.531373 1.74087i
\(671\) 5.73573i 0.221425i
\(672\) 0 0
\(673\) 27.9624 + 27.9624i 1.07787 + 1.07787i 0.996700 + 0.0811716i \(0.0258662\pi\)
0.0811716 + 0.996700i \(0.474134\pi\)
\(674\) −8.13815 + 12.4351i −0.313470 + 0.478983i
\(675\) −15.7546 + 22.7978i −0.606394 + 0.877489i
\(676\) 5.54831 + 12.7028i 0.213396 + 0.488571i
\(677\) 24.2096 24.2096i 0.930450 0.930450i −0.0672842 0.997734i \(-0.521433\pi\)
0.997734 + 0.0672842i \(0.0214334\pi\)
\(678\) −26.4831 + 5.53131i −1.01708 + 0.212429i
\(679\) 0 0
\(680\) −12.7769 + 10.9390i −0.489973 + 0.419492i
\(681\) −12.4939 −0.478767
\(682\) −5.20346 + 1.08680i −0.199251 + 0.0416159i
\(683\) 1.36263 1.36263i 0.0521395 0.0521395i −0.680556 0.732696i \(-0.738262\pi\)
0.732696 + 0.680556i \(0.238262\pi\)
\(684\) −4.60812 10.5503i −0.176196 0.403400i
\(685\) 2.58302 0.234014i 0.0986922 0.00894120i
\(686\) 0 0
\(687\) −15.0630 15.0630i −0.574691 0.574691i
\(688\) −1.88716 49.3666i −0.0719473 1.88208i
\(689\) 13.1226i 0.499930i
\(690\) −1.01326 + 1.90358i −0.0385741 + 0.0724680i
\(691\) 35.6585i 1.35651i −0.734824 0.678257i \(-0.762735\pi\)
0.734824 0.678257i \(-0.237265\pi\)
\(692\) 4.12182 + 1.61577i 0.156688 + 0.0614225i
\(693\) 0 0
\(694\) 10.8427 + 7.09598i 0.411582 + 0.269360i
\(695\) −29.9700 24.9907i −1.13683 0.947952i
\(696\) −25.1376 4.25537i −0.952840 0.161299i
\(697\) −6.98521 + 6.98521i −0.264584 + 0.264584i
\(698\) 5.76863 + 27.6194i 0.218346 + 1.04541i
\(699\) −2.33797 −0.0884301
\(700\) 0 0
\(701\) 33.6504 1.27096 0.635479 0.772119i \(-0.280803\pi\)
0.635479 + 0.772119i \(0.280803\pi\)
\(702\) −7.15419 34.2532i −0.270018 1.29281i
\(703\) −2.92765 + 2.92765i −0.110418 + 0.110418i
\(704\) −7.19317 2.50720i −0.271103 0.0944938i
\(705\) −6.86620 5.72544i −0.258596 0.215632i
\(706\) 2.93319 + 1.91962i 0.110392 + 0.0722460i
\(707\) 0 0
\(708\) −11.4667 + 29.2514i −0.430944 + 1.09934i
\(709\) 9.15581i 0.343854i −0.985110 0.171927i \(-0.945001\pi\)
0.985110 0.171927i \(-0.0549993\pi\)
\(710\) 11.3031 21.2349i 0.424199 0.796930i
\(711\) 15.4680i 0.580096i
\(712\) 3.46915 + 4.88303i 0.130012 + 0.182999i
\(713\) 1.52693 + 1.52693i 0.0571839 + 0.0571839i
\(714\) 0 0
\(715\) 9.46674 0.857657i 0.354036 0.0320745i
\(716\) −30.1860 + 13.1845i −1.12810 + 0.492729i
\(717\) −13.4146 + 13.4146i −0.500978 + 0.500978i
\(718\) 22.0012 4.59521i 0.821078 0.171492i
\(719\) −13.3464 −0.497738 −0.248869 0.968537i \(-0.580059\pi\)
−0.248869 + 0.968537i \(0.580059\pi\)
\(720\) 1.65811 + 12.8265i 0.0617939 + 0.478015i
\(721\) 0 0
\(722\) 4.36348 0.911364i 0.162392 0.0339175i
\(723\) 11.6141 11.6141i 0.431931 0.431931i
\(724\) 10.9535 4.78423i 0.407083 0.177804i
\(725\) −35.5653 + 6.49754i −1.32086 + 0.241313i
\(726\) −9.74413 + 14.8891i −0.361639 + 0.552585i
\(727\) −6.15934 6.15934i −0.228437 0.228437i 0.583602 0.812040i \(-0.301643\pi\)
−0.812040 + 0.583602i \(0.801643\pi\)
\(728\) 0 0
\(729\) 24.4454i 0.905384i
\(730\) 13.5887 + 44.5189i 0.502940 + 1.64772i
\(731\) 32.8462i 1.21486i
\(732\) 5.48113 13.9823i 0.202588 0.516801i
\(733\) −7.26358 7.26358i −0.268286 0.268286i 0.560123 0.828409i \(-0.310754\pi\)
−0.828409 + 0.560123i \(0.810754\pi\)
\(734\) −12.7392 8.33717i −0.470213 0.307731i
\(735\) 0 0
\(736\) 0.747914 + 3.00273i 0.0275685 + 0.110682i
\(737\) 10.0314 10.0314i 0.369510 0.369510i
\(738\) 1.55297 + 7.43539i 0.0571656 + 0.273701i
\(739\) −43.7166 −1.60814 −0.804070 0.594535i \(-0.797336\pi\)
−0.804070 + 0.594535i \(0.797336\pi\)
\(740\) 4.07697 2.23868i 0.149873 0.0822954i
\(741\) −22.1553 −0.813897
\(742\) 0 0
\(743\) 26.0186 26.0186i 0.954529 0.954529i −0.0444813 0.999010i \(-0.514164\pi\)
0.999010 + 0.0444813i \(0.0141635\pi\)
\(744\) −13.7233 2.32313i −0.503122 0.0851699i
\(745\) 16.0543 19.2531i 0.588186 0.705378i
\(746\) 17.4717 + 11.4343i 0.639685 + 0.418641i
\(747\) 8.27744 + 8.27744i 0.302856 + 0.302856i
\(748\) −4.71534 1.84843i −0.172410 0.0675854i
\(749\) 0 0
\(750\) −9.04860 17.5108i −0.330408 0.639405i
\(751\) 8.43462i 0.307784i −0.988088 0.153892i \(-0.950819\pi\)
0.988088 0.153892i \(-0.0491807\pi\)
\(752\) −12.8195 + 0.490057i −0.467479 + 0.0178705i
\(753\) 12.9620 + 12.9620i 0.472363 + 0.472363i
\(754\) 24.9994 38.1991i 0.910424 1.39113i
\(755\) 21.5097 25.7954i 0.782818 0.938790i
\(756\) 0 0
\(757\) 3.33081 3.33081i 0.121060 0.121060i −0.643981 0.765041i \(-0.722718\pi\)
0.765041 + 0.643981i \(0.222718\pi\)
\(758\) −36.6245 + 7.64945i −1.33026 + 0.277841i
\(759\) −0.649335 −0.0235694
\(760\) 25.1025 + 1.94537i 0.910563 + 0.0705661i
\(761\) 34.4634 1.24930 0.624649 0.780906i \(-0.285242\pi\)
0.624649 + 0.780906i \(0.285242\pi\)
\(762\) −2.98767 + 0.624010i −0.108232 + 0.0226055i
\(763\) 0 0
\(764\) −6.44127 14.7473i −0.233037 0.533537i
\(765\) 0.775853 + 8.56380i 0.0280510 + 0.309625i
\(766\) 22.7535 34.7674i 0.822116 1.25620i
\(767\) −39.7811 39.7811i −1.43641 1.43641i
\(768\) −15.1393 12.9858i −0.546292 0.468586i
\(769\) 18.7498i 0.676135i 0.941122 + 0.338067i \(0.109773\pi\)
−0.941122 + 0.338067i \(0.890227\pi\)
\(770\) 0 0
\(771\) 16.4777i 0.593431i
\(772\) −27.1106 10.6275i −0.975733 0.382492i
\(773\) −31.4391 31.4391i −1.13079 1.13079i −0.990047 0.140739i \(-0.955052\pi\)
−0.140739 0.990047i \(-0.544948\pi\)
\(774\) −21.1328 13.8303i −0.759602 0.497121i
\(775\) −19.4161 + 3.54719i −0.697447 + 0.127419i
\(776\) −2.06023 + 12.1704i −0.0739581 + 0.436891i
\(777\) 0 0
\(778\) 2.70418 + 12.9472i 0.0969497 + 0.464181i
\(779\) 14.7872 0.529807
\(780\) 23.8972 + 6.95577i 0.855657 + 0.249057i
\(781\) 7.24348 0.259192
\(782\) 0.420639 + 2.01396i 0.0150420 + 0.0720190i
\(783\) −28.3379 + 28.3379i −1.01271 + 1.01271i
\(784\) 0 0
\(785\) −16.7650 + 1.51885i −0.598367 + 0.0542102i
\(786\) −1.92447 1.25947i −0.0686436 0.0449237i
\(787\) 0.763475 + 0.763475i 0.0272149 + 0.0272149i 0.720583 0.693368i \(-0.243874\pi\)
−0.693368 + 0.720583i \(0.743874\pi\)
\(788\) 17.0242 43.4287i 0.606463 1.54708i
\(789\) 13.1746i 0.469027i
\(790\) −29.8610 15.8947i −1.06240 0.565510i
\(791\) 0 0
\(792\) −3.17471 + 2.25547i −0.112808 + 0.0801447i
\(793\) 19.0155 + 19.0155i 0.675262 + 0.675262i
\(794\) −13.7613 + 21.0273i −0.488369 + 0.746230i
\(795\) −6.29280 5.24730i −0.223183 0.186103i
\(796\) −17.6973 + 7.72976i −0.627263 + 0.273974i
\(797\) 13.9414 13.9414i 0.493829 0.493829i −0.415681 0.909510i \(-0.636457\pi\)
0.909510 + 0.415681i \(0.136457\pi\)
\(798\) 0 0
\(799\) −8.52950 −0.301752
\(800\) −26.4653 9.97936i −0.935690 0.352824i
\(801\) 3.06222 0.108198
\(802\) −8.51843 + 1.77917i −0.300796 + 0.0628248i
\(803\) −9.91062 + 9.91062i −0.349738 + 0.349738i
\(804\) 34.0401 14.8679i 1.20050 0.524352i
\(805\) 0 0
\(806\) 13.6479 20.8540i 0.480726 0.734550i
\(807\) 10.7510 + 10.7510i 0.378454 + 0.378454i
\(808\) −3.29758 + 2.34277i −0.116008 + 0.0824182i
\(809\) 5.05111i 0.177587i −0.996050 0.0887937i \(-0.971699\pi\)
0.996050 0.0887937i \(-0.0283012\pi\)
\(810\) −7.17743 3.82049i −0.252189 0.134238i
\(811\) 21.1629i 0.743131i 0.928407 + 0.371565i \(0.121179\pi\)
−0.928407 + 0.371565i \(0.878821\pi\)
\(812\) 0 0
\(813\) −5.80185 5.80185i −0.203480 0.203480i
\(814\) 1.17187 + 0.766930i 0.0410741 + 0.0268809i
\(815\) 14.8070 1.34146i 0.518665 0.0469894i
\(816\) −9.72847 9.01206i −0.340564 0.315485i
\(817\) −34.7666 + 34.7666i −1.21633 + 1.21633i
\(818\) 1.89274 + 9.06216i 0.0661781 + 0.316851i
\(819\) 0 0
\(820\) −15.9498 4.64251i −0.556991 0.162124i
\(821\) 42.7241 1.49108 0.745540 0.666461i \(-0.232192\pi\)
0.745540 + 0.666461i \(0.232192\pi\)
\(822\) 0.418070 + 2.00166i 0.0145819 + 0.0698159i
\(823\) −3.37587 + 3.37587i −0.117675 + 0.117675i −0.763492 0.645817i \(-0.776517\pi\)
0.645817 + 0.763492i \(0.276517\pi\)
\(824\) −4.80380 + 28.3774i −0.167348 + 0.988574i
\(825\) 3.37417 4.88263i 0.117474 0.169992i
\(826\) 0 0
\(827\) −6.21884 6.21884i −0.216250 0.216250i 0.590666 0.806916i \(-0.298865\pi\)
−0.806916 + 0.590666i \(0.798865\pi\)
\(828\) 1.47287 + 0.577370i 0.0511856 + 0.0200650i
\(829\) 38.9224i 1.35183i −0.736980 0.675915i \(-0.763749\pi\)
0.736980 0.675915i \(-0.236251\pi\)
\(830\) −24.4853 + 7.47377i −0.849899 + 0.259418i
\(831\) 5.11956i 0.177596i
\(832\) 32.1594 15.5353i 1.11493 0.538588i
\(833\) 0 0
\(834\) 16.8475 25.7431i 0.583383 0.891410i
\(835\) −1.69271 18.6839i −0.0585785 0.646585i
\(836\) 3.03452 + 6.94752i 0.104951 + 0.240285i
\(837\) −15.4704 + 15.4704i −0.534736 + 0.534736i
\(838\) 24.6286 5.14397i 0.850780 0.177695i
\(839\) 15.0742 0.520418 0.260209 0.965552i \(-0.416209\pi\)
0.260209 + 0.965552i \(0.416209\pi\)
\(840\) 0 0
\(841\) −23.2844 −0.802910
\(842\) 22.7970 4.76143i 0.785638 0.164090i
\(843\) −28.4519 + 28.4519i −0.979936 + 0.979936i
\(844\) −8.35299 19.1241i −0.287522 0.658280i
\(845\) −9.92514 + 11.9027i −0.341435 + 0.409464i
\(846\) −3.59146 + 5.48776i −0.123477 + 0.188673i
\(847\) 0 0
\(848\) −11.7489 + 0.449132i −0.403461 + 0.0154233i
\(849\) 24.3438i 0.835476i
\(850\) −17.3296 7.30227i −0.594401 0.250466i
\(851\) 0.568931i 0.0195027i
\(852\) 17.6578 + 6.92195i 0.604948 + 0.237142i
\(853\) 14.0097 + 14.0097i 0.479684 + 0.479684i 0.905031 0.425346i \(-0.139848\pi\)
−0.425346 + 0.905031i \(0.639848\pi\)
\(854\) 0 0
\(855\) 8.24327 9.88570i 0.281914 0.338084i
\(856\) 0.112178 + 0.0189899i 0.00383418 + 0.000649060i
\(857\) 25.2063 25.2063i 0.861031 0.861031i −0.130427 0.991458i \(-0.541635\pi\)
0.991458 + 0.130427i \(0.0416349\pi\)
\(858\) 1.53222 + 7.33605i 0.0523091 + 0.250449i
\(859\) 52.4008 1.78789 0.893947 0.448173i \(-0.147925\pi\)
0.893947 + 0.448173i \(0.147925\pi\)
\(860\) 48.4151 26.5848i 1.65094 0.906536i
\(861\) 0 0
\(862\) −4.37546 20.9491i −0.149029 0.713528i
\(863\) −3.73158 + 3.73158i −0.127024 + 0.127024i −0.767761 0.640737i \(-0.778629\pi\)
0.640737 + 0.767761i \(0.278629\pi\)
\(864\) −30.4229 + 7.57767i −1.03501 + 0.257798i
\(865\) 0.446604 + 4.92958i 0.0151850 + 0.167611i
\(866\) −9.12684 5.97305i −0.310142 0.202972i
\(867\) 8.75067 + 8.75067i 0.297188 + 0.297188i
\(868\) 0 0
\(869\) 10.1859i 0.345535i
\(870\) −8.32156 27.2629i −0.282127 0.924297i
\(871\) 66.5135i 2.25372i
\(872\) −10.3086 14.5100i −0.349094 0.491370i
\(873\) 4.46212 + 4.46212i 0.151020 + 0.151020i
\(874\) 1.68647 2.57694i 0.0570458 0.0871662i
\(875\) 0 0
\(876\) −33.6304 + 14.6890i −1.13627 + 0.496295i
\(877\) −7.89577 + 7.89577i −0.266621 + 0.266621i −0.827737 0.561116i \(-0.810372\pi\)
0.561116 + 0.827737i \(0.310372\pi\)
\(878\) 35.6417 7.44419i 1.20285 0.251229i
\(879\) −22.3649 −0.754348
\(880\) −1.09189 8.44644i −0.0368076 0.284730i
\(881\) −22.0701 −0.743561 −0.371781 0.928321i \(-0.621253\pi\)
−0.371781 + 0.928321i \(0.621253\pi\)
\(882\) 0 0
\(883\) 5.32169 5.32169i 0.179089 0.179089i −0.611869 0.790959i \(-0.709582\pi\)
0.790959 + 0.611869i \(0.209582\pi\)
\(884\) 21.7607 9.50458i 0.731892 0.319674i
\(885\) −34.9838 + 3.16942i −1.17597 + 0.106539i
\(886\) 13.3893 20.4590i 0.449824 0.687332i
\(887\) −3.58114 3.58114i −0.120243 0.120243i 0.644425 0.764668i \(-0.277097\pi\)
−0.764668 + 0.644425i \(0.777097\pi\)
\(888\) 2.12385 + 2.98944i 0.0712718 + 0.100319i
\(889\) 0 0
\(890\) −3.14670 + 5.91161i −0.105478 + 0.198157i
\(891\) 2.44831i 0.0820216i
\(892\) 11.0724 28.2456i 0.370731 0.945732i
\(893\) 9.02818 + 9.02818i 0.302117 + 0.302117i
\(894\) 16.5377 + 10.8231i 0.553103 + 0.361978i
\(895\) −28.2845 23.5853i −0.945448 0.788369i
\(896\) 0 0
\(897\) 2.15273 2.15273i 0.0718774 0.0718774i
\(898\) −3.20939 15.3661i −0.107099 0.512774i
\(899\) −28.5435 −0.951980
\(900\) −11.9950 + 8.07491i −0.399834 + 0.269164i
\(901\) −7.81720 −0.260429
\(902\) −1.02265 4.89633i −0.0340507 0.163030i
\(903\) 0 0
\(904\) −42.7964 7.24469i −1.42339 0.240955i
\(905\) 10.2635 + 8.55831i 0.341171 + 0.284488i
\(906\) 22.1573 + 14.5008i 0.736126 + 0.481757i
\(907\) 2.39528 + 2.39528i 0.0795341 + 0.0795341i 0.745755 0.666221i \(-0.232089\pi\)
−0.666221 + 0.745755i \(0.732089\pi\)
\(908\) −18.6620 7.31559i −0.619321 0.242776i
\(909\) 2.06796i 0.0685899i
\(910\) 0 0
\(911\) 31.5983i 1.04690i −0.852057 0.523449i \(-0.824645\pi\)
0.852057 0.523449i \(-0.175355\pi\)
\(912\) 0.758287 + 19.8362i 0.0251094 + 0.656842i
\(913\) −5.45083 5.45083i −0.180396 0.180396i
\(914\) 16.4470 25.1311i 0.544020 0.831264i
\(915\) 16.7224 1.51500i 0.552827 0.0500844i
\(916\) −13.6796 31.3195i −0.451988 1.03482i
\(917\) 0 0
\(918\) −20.4049 + 4.26180i −0.673462 + 0.140660i
\(919\) 46.2702 1.52631 0.763157 0.646213i \(-0.223648\pi\)
0.763157 + 0.646213i \(0.223648\pi\)
\(920\) −2.62811 + 2.25006i −0.0866461 + 0.0741824i
\(921\) −17.5960 −0.579808
\(922\) −11.9282 + 2.49135i −0.392835 + 0.0820481i
\(923\) −24.0141 + 24.0141i −0.790435 + 0.790435i
\(924\) 0 0
\(925\) 4.27804 + 2.95637i 0.140661 + 0.0972047i
\(926\) −1.78890 + 2.73345i −0.0587870 + 0.0898268i
\(927\) 10.4042 + 10.4042i 0.341719 + 0.341719i
\(928\) −35.0562 21.0751i −1.15078 0.691826i
\(929\) 42.7925i 1.40397i 0.712189 + 0.701987i \(0.247704\pi\)
−0.712189 + 0.701987i \(0.752296\pi\)
\(930\) −4.54297 14.8836i −0.148970 0.488051i
\(931\) 0 0
\(932\) −3.49220 1.36896i −0.114391 0.0448418i
\(933\) −12.2866 12.2866i −0.402244 0.402244i
\(934\) 30.1520 + 19.7330i 0.986604 + 0.645682i
\(935\) −0.510912 5.63940i −0.0167086 0.184428i
\(936\) 3.04752 18.0025i 0.0996113 0.588432i
\(937\) −18.9957 + 18.9957i −0.620561 + 0.620561i −0.945675 0.325114i \(-0.894597\pi\)
0.325114 + 0.945675i \(0.394597\pi\)
\(938\) 0 0
\(939\) −6.11875 −0.199678
\(940\) −6.90355 12.5724i −0.225169 0.410067i
\(941\) 21.6808 0.706776 0.353388 0.935477i \(-0.385030\pi\)
0.353388 + 0.935477i \(0.385030\pi\)
\(942\) −2.71346 12.9917i −0.0884093 0.423291i
\(943\) −1.43680 + 1.43680i −0.0467887 + 0.0467887i
\(944\) −34.2554 + 36.9785i −1.11492 + 1.20355i
\(945\) 0 0
\(946\) 13.9163 + 9.10749i 0.452457 + 0.296110i
\(947\) −10.8609 10.8609i −0.352932 0.352932i 0.508268 0.861199i \(-0.330286\pi\)
−0.861199 + 0.508268i \(0.830286\pi\)
\(948\) 9.73381 24.8309i 0.316139 0.806469i
\(949\) 65.7129i 2.13313i
\(950\) 10.6136 + 26.0720i 0.344351 + 0.845888i
\(951\) 42.8869i 1.39070i
\(952\) 0 0
\(953\) 22.0087 + 22.0087i 0.712931 + 0.712931i 0.967147 0.254216i \(-0.0818174\pi\)
−0.254216 + 0.967147i \(0.581817\pi\)
\(954\) −3.29153 + 5.02947i −0.106567 + 0.162835i
\(955\) 11.5225 13.8183i 0.372860 0.447151i
\(956\) −27.8920 + 12.1826i −0.902091 + 0.394013i
\(957\) 6.06915 6.06915i 0.196188 0.196188i
\(958\) −12.8446 + 2.68274i −0.414990 + 0.0866755i
\(959\) 0 0
\(960\) 5.40976 21.6338i 0.174599 0.698228i
\(961\) 15.4173 0.497332
\(962\) −6.42766 + 1.34249i −0.207236 + 0.0432837i
\(963\) 0.0411288 0.0411288i 0.00132536 0.00132536i
\(964\) 24.1482 10.5474i 0.777763 0.339709i
\(965\) −2.93747 32.4235i −0.0945604 1.04375i
\(966\) 0 0
\(967\) 16.9281 + 16.9281i 0.544372 + 0.544372i 0.924807 0.380435i \(-0.124226\pi\)
−0.380435 + 0.924807i \(0.624226\pi\)
\(968\) −23.2728 + 16.5342i −0.748015 + 0.531428i
\(969\) 13.1981i 0.423983i
\(970\) −13.1993 + 4.02888i −0.423804 + 0.129360i
\(971\) 37.0888i 1.19024i 0.803638 + 0.595118i \(0.202895\pi\)
−0.803638 + 0.595118i \(0.797105\pi\)
\(972\) −9.79698 + 24.9920i −0.314238 + 0.801620i
\(973\) 0 0
\(974\) −21.0739 13.7918i −0.675251 0.441918i
\(975\) 5.00097 + 27.3736i 0.160159 + 0.876657i
\(976\) 16.3742 17.6759i 0.524127 0.565791i
\(977\) 16.5269 16.5269i 0.528744 0.528744i −0.391454 0.920198i \(-0.628028\pi\)
0.920198 + 0.391454i \(0.128028\pi\)
\(978\) 2.39655 + 11.4743i 0.0766332 + 0.366909i
\(979\) −2.01652 −0.0644484
\(980\) 0 0
\(981\) −9.09942 −0.290522
\(982\) 0.722753 + 3.46044i 0.0230640 + 0.110427i
\(983\) −14.0604 + 14.0604i −0.448459 + 0.448459i −0.894842 0.446383i \(-0.852712\pi\)
0.446383 + 0.894842i \(0.352712\pi\)
\(984\) 2.18600 12.9133i 0.0696872 0.411662i
\(985\) 51.9394 4.70554i 1.65493 0.149931i
\(986\) −22.7555 14.8923i −0.724682 0.474268i
\(987\) 0 0
\(988\) −33.0932 12.9727i −1.05284 0.412716i
\(989\) 6.75620i 0.214835i
\(990\) −3.84343 2.04583i −0.122152 0.0650207i
\(991\) 22.5584i 0.716592i 0.933608 + 0.358296i \(0.116642\pi\)
−0.933608 + 0.358296i \(0.883358\pi\)
\(992\) −19.1382 11.5055i −0.607638 0.365300i
\(993\) 11.4204 + 11.4204i 0.362414 + 0.362414i
\(994\) 0 0
\(995\) −16.5825 13.8275i −0.525701 0.438360i
\(996\) −8.07893 18.4967i −0.255991 0.586090i
\(997\) −12.1793 + 12.1793i −0.385722 + 0.385722i −0.873158 0.487437i \(-0.837932\pi\)
0.487437 + 0.873158i \(0.337932\pi\)
\(998\) 9.03141 1.88632i 0.285884 0.0597103i
\(999\) 5.76426 0.182373
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 980.2.k.j.883.1 36
4.3 odd 2 inner 980.2.k.j.883.8 36
5.2 odd 4 inner 980.2.k.j.687.8 36
7.2 even 3 980.2.x.m.263.14 72
7.3 odd 6 140.2.w.b.23.11 yes 72
7.4 even 3 980.2.x.m.863.11 72
7.5 odd 6 140.2.w.b.123.14 yes 72
7.6 odd 2 980.2.k.k.883.1 36
20.7 even 4 inner 980.2.k.j.687.1 36
28.3 even 6 140.2.w.b.23.5 72
28.11 odd 6 980.2.x.m.863.5 72
28.19 even 6 140.2.w.b.123.17 yes 72
28.23 odd 6 980.2.x.m.263.17 72
28.27 even 2 980.2.k.k.883.8 36
35.2 odd 12 980.2.x.m.67.5 72
35.3 even 12 700.2.be.e.107.2 72
35.12 even 12 140.2.w.b.67.5 yes 72
35.17 even 12 140.2.w.b.107.17 yes 72
35.19 odd 6 700.2.be.e.543.5 72
35.24 odd 6 700.2.be.e.443.8 72
35.27 even 4 980.2.k.k.687.8 36
35.32 odd 12 980.2.x.m.667.17 72
35.33 even 12 700.2.be.e.207.14 72
140.3 odd 12 700.2.be.e.107.5 72
140.19 even 6 700.2.be.e.543.2 72
140.27 odd 4 980.2.k.k.687.1 36
140.47 odd 12 140.2.w.b.67.11 yes 72
140.59 even 6 700.2.be.e.443.14 72
140.67 even 12 980.2.x.m.667.14 72
140.87 odd 12 140.2.w.b.107.14 yes 72
140.103 odd 12 700.2.be.e.207.8 72
140.107 even 12 980.2.x.m.67.11 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.w.b.23.5 72 28.3 even 6
140.2.w.b.23.11 yes 72 7.3 odd 6
140.2.w.b.67.5 yes 72 35.12 even 12
140.2.w.b.67.11 yes 72 140.47 odd 12
140.2.w.b.107.14 yes 72 140.87 odd 12
140.2.w.b.107.17 yes 72 35.17 even 12
140.2.w.b.123.14 yes 72 7.5 odd 6
140.2.w.b.123.17 yes 72 28.19 even 6
700.2.be.e.107.2 72 35.3 even 12
700.2.be.e.107.5 72 140.3 odd 12
700.2.be.e.207.8 72 140.103 odd 12
700.2.be.e.207.14 72 35.33 even 12
700.2.be.e.443.8 72 35.24 odd 6
700.2.be.e.443.14 72 140.59 even 6
700.2.be.e.543.2 72 140.19 even 6
700.2.be.e.543.5 72 35.19 odd 6
980.2.k.j.687.1 36 20.7 even 4 inner
980.2.k.j.687.8 36 5.2 odd 4 inner
980.2.k.j.883.1 36 1.1 even 1 trivial
980.2.k.j.883.8 36 4.3 odd 2 inner
980.2.k.k.687.1 36 140.27 odd 4
980.2.k.k.687.8 36 35.27 even 4
980.2.k.k.883.1 36 7.6 odd 2
980.2.k.k.883.8 36 28.27 even 2
980.2.x.m.67.5 72 35.2 odd 12
980.2.x.m.67.11 72 140.107 even 12
980.2.x.m.263.14 72 7.2 even 3
980.2.x.m.263.17 72 28.23 odd 6
980.2.x.m.667.14 72 140.67 even 12
980.2.x.m.667.17 72 35.32 odd 12
980.2.x.m.863.5 72 28.11 odd 6
980.2.x.m.863.11 72 7.4 even 3