Properties

Label 700.2.be.e.543.5
Level $700$
Weight $2$
Character 700.543
Analytic conductor $5.590$
Analytic rank $0$
Dimension $72$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [700,2,Mod(107,700)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(700, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 3, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("700.107"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 700.be (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [72,-2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.58952814149\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(18\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 543.5
Character \(\chi\) \(=\) 700.543
Dual form 700.2.be.e.107.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.942570 - 1.05431i) q^{2} +(0.322645 + 1.20413i) q^{3} +(-0.223125 + 1.98751i) q^{4} +(0.965404 - 1.47514i) q^{6} +(-2.60693 - 0.451584i) q^{7} +(2.30576 - 1.63813i) q^{8} +(1.25225 - 0.722989i) q^{9} +(0.824629 + 0.476100i) q^{11} +(-2.46521 + 0.372591i) q^{12} +(3.15680 + 3.15680i) q^{13} +(1.98110 + 3.17415i) q^{14} +(-3.90043 - 0.886929i) q^{16} +(0.688322 + 2.56885i) q^{17} +(-1.94259 - 0.638792i) q^{18} +(-1.99048 - 3.44760i) q^{19} +(-0.297348 - 3.28477i) q^{21} +(-0.275315 - 1.31817i) q^{22} +(0.528392 + 0.141582i) q^{23} +(2.71646 + 2.24790i) q^{24} +(0.352732 - 6.30375i) q^{26} +(3.91905 + 3.91905i) q^{27} +(1.47920 - 5.08055i) q^{28} +7.23080i q^{29} +(3.41863 + 1.97375i) q^{31} +(2.74133 + 4.94824i) q^{32} +(-0.307222 + 1.14657i) q^{33} +(2.05957 - 3.14702i) q^{34} +(1.15754 + 2.65019i) q^{36} +(1.00460 + 0.269180i) q^{37} +(-1.75867 + 5.34818i) q^{38} +(-2.78267 + 4.81972i) q^{39} +3.71449 q^{41} +(-3.18289 + 3.40962i) q^{42} +(-8.73324 + 8.73324i) q^{43} +(-1.13025 + 1.53273i) q^{44} +(-0.348775 - 0.690538i) q^{46} +(-0.830089 + 3.09794i) q^{47} +(-0.190479 - 4.98278i) q^{48} +(6.59214 + 2.35449i) q^{49} +(-2.87114 + 1.65765i) q^{51} +(-6.97856 + 5.56983i) q^{52} +(-2.83923 + 0.760768i) q^{53} +(0.437903 - 7.82586i) q^{54} +(-6.75070 + 3.22924i) q^{56} +(3.50914 - 3.50914i) q^{57} +(7.62348 - 6.81553i) q^{58} +(-6.30084 + 10.9134i) q^{59} +(3.01183 + 5.21665i) q^{61} +(-1.14136 - 5.46468i) q^{62} +(-3.59102 + 1.31928i) q^{63} +(2.63307 - 7.55427i) q^{64} +(1.49841 - 0.756815i) q^{66} +(14.3910 - 3.85605i) q^{67} +(-5.25921 + 0.794874i) q^{68} +0.681932i q^{69} +7.60710i q^{71} +(1.70305 - 3.71839i) q^{72} +(14.2178 - 3.80964i) q^{73} +(-0.663102 - 1.31287i) q^{74} +(7.29629 - 3.18685i) q^{76} +(-1.93475 - 1.61355i) q^{77} +(7.70432 - 1.60914i) q^{78} +(-5.34864 - 9.26412i) q^{79} +(-1.28561 + 2.22674i) q^{81} +(-3.50117 - 3.91621i) q^{82} +(5.72446 - 5.72446i) q^{83} +(6.59488 + 0.141933i) q^{84} +(17.4392 + 0.975826i) q^{86} +(-8.70680 + 2.33298i) q^{87} +(2.68131 - 0.253076i) q^{88} +(1.83403 - 1.05888i) q^{89} +(-6.80400 - 9.65512i) q^{91} +(-0.399294 + 1.01860i) q^{92} +(-1.27364 + 4.75329i) q^{93} +(4.04859 - 2.04485i) q^{94} +(-5.07384 + 4.89744i) q^{96} +(3.08588 - 3.08588i) q^{97} +(-3.73120 - 9.16941i) q^{98} +1.37686 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q - 2 q^{2} - 16 q^{6} + 4 q^{8} - 10 q^{12} - 28 q^{16} - 4 q^{17} + 20 q^{18} + 4 q^{21} + 16 q^{22} - 4 q^{26} - 42 q^{28} + 38 q^{32} + 64 q^{33} + 16 q^{36} + 4 q^{37} - 12 q^{38} - 40 q^{41} - 78 q^{42}+ \cdots + 90 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/700\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(477\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.942570 1.05431i −0.666497 0.745507i
\(3\) 0.322645 + 1.20413i 0.186279 + 0.695203i 0.994353 + 0.106122i \(0.0338435\pi\)
−0.808074 + 0.589081i \(0.799490\pi\)
\(4\) −0.223125 + 1.98751i −0.111563 + 0.993757i
\(5\) 0 0
\(6\) 0.965404 1.47514i 0.394125 0.602224i
\(7\) −2.60693 0.451584i −0.985326 0.170683i
\(8\) 2.30576 1.63813i 0.815210 0.579166i
\(9\) 1.25225 0.722989i 0.417418 0.240996i
\(10\) 0 0
\(11\) 0.824629 + 0.476100i 0.248635 + 0.143549i 0.619139 0.785281i \(-0.287482\pi\)
−0.370504 + 0.928831i \(0.620815\pi\)
\(12\) −2.46521 + 0.372591i −0.711645 + 0.107558i
\(13\) 3.15680 + 3.15680i 0.875540 + 0.875540i 0.993069 0.117529i \(-0.0374974\pi\)
−0.117529 + 0.993069i \(0.537497\pi\)
\(14\) 1.98110 + 3.17415i 0.529472 + 0.848327i
\(15\) 0 0
\(16\) −3.90043 0.886929i −0.975108 0.221732i
\(17\) 0.688322 + 2.56885i 0.166943 + 0.623038i 0.997784 + 0.0665295i \(0.0211927\pi\)
−0.830842 + 0.556508i \(0.812141\pi\)
\(18\) −1.94259 0.638792i −0.457872 0.150565i
\(19\) −1.99048 3.44760i −0.456646 0.790935i 0.542135 0.840292i \(-0.317616\pi\)
−0.998781 + 0.0493567i \(0.984283\pi\)
\(20\) 0 0
\(21\) −0.297348 3.28477i −0.0648866 0.716797i
\(22\) −0.275315 1.31817i −0.0586973 0.281034i
\(23\) 0.528392 + 0.141582i 0.110177 + 0.0295219i 0.313486 0.949593i \(-0.398503\pi\)
−0.203309 + 0.979115i \(0.565170\pi\)
\(24\) 2.71646 + 2.24790i 0.554495 + 0.458850i
\(25\) 0 0
\(26\) 0.352732 6.30375i 0.0691765 1.23627i
\(27\) 3.91905 + 3.91905i 0.754222 + 0.754222i
\(28\) 1.47920 5.08055i 0.279543 0.960133i
\(29\) 7.23080i 1.34273i 0.741129 + 0.671363i \(0.234291\pi\)
−0.741129 + 0.671363i \(0.765709\pi\)
\(30\) 0 0
\(31\) 3.41863 + 1.97375i 0.614004 + 0.354495i 0.774531 0.632536i \(-0.217986\pi\)
−0.160527 + 0.987031i \(0.551319\pi\)
\(32\) 2.74133 + 4.94824i 0.484604 + 0.874734i
\(33\) −0.307222 + 1.14657i −0.0534805 + 0.199592i
\(34\) 2.05957 3.14702i 0.353213 0.539710i
\(35\) 0 0
\(36\) 1.15754 + 2.65019i 0.192924 + 0.441698i
\(37\) 1.00460 + 0.269180i 0.165154 + 0.0442530i 0.340449 0.940263i \(-0.389421\pi\)
−0.175294 + 0.984516i \(0.556088\pi\)
\(38\) −1.75867 + 5.34818i −0.285294 + 0.867589i
\(39\) −2.78267 + 4.81972i −0.445584 + 0.771773i
\(40\) 0 0
\(41\) 3.71449 0.580106 0.290053 0.957011i \(-0.406327\pi\)
0.290053 + 0.957011i \(0.406327\pi\)
\(42\) −3.18289 + 3.40962i −0.491130 + 0.526116i
\(43\) −8.73324 + 8.73324i −1.33181 + 1.33181i −0.428052 + 0.903754i \(0.640800\pi\)
−0.903754 + 0.428052i \(0.859200\pi\)
\(44\) −1.13025 + 1.53273i −0.170392 + 0.231068i
\(45\) 0 0
\(46\) −0.348775 0.690538i −0.0514241 0.101814i
\(47\) −0.830089 + 3.09794i −0.121081 + 0.451880i −0.999670 0.0256988i \(-0.991819\pi\)
0.878589 + 0.477579i \(0.158486\pi\)
\(48\) −0.190479 4.98278i −0.0274933 0.719202i
\(49\) 6.59214 + 2.35449i 0.941735 + 0.336356i
\(50\) 0 0
\(51\) −2.87114 + 1.65765i −0.402040 + 0.232118i
\(52\) −6.97856 + 5.56983i −0.967752 + 0.772397i
\(53\) −2.83923 + 0.760768i −0.389998 + 0.104500i −0.448489 0.893788i \(-0.648038\pi\)
0.0584914 + 0.998288i \(0.481371\pi\)
\(54\) 0.437903 7.82586i 0.0595911 1.06496i
\(55\) 0 0
\(56\) −6.75070 + 3.22924i −0.902101 + 0.431525i
\(57\) 3.50914 3.50914i 0.464797 0.464797i
\(58\) 7.62348 6.81553i 1.00101 0.894923i
\(59\) −6.30084 + 10.9134i −0.820300 + 1.42080i 0.0851594 + 0.996367i \(0.472860\pi\)
−0.905459 + 0.424433i \(0.860473\pi\)
\(60\) 0 0
\(61\) 3.01183 + 5.21665i 0.385626 + 0.667923i 0.991856 0.127366i \(-0.0406523\pi\)
−0.606230 + 0.795289i \(0.707319\pi\)
\(62\) −1.14136 5.46468i −0.144953 0.694015i
\(63\) −3.59102 + 1.31928i −0.452426 + 0.166214i
\(64\) 2.63307 7.55427i 0.329134 0.944283i
\(65\) 0 0
\(66\) 1.49841 0.756815i 0.184442 0.0931574i
\(67\) 14.3910 3.85605i 1.75814 0.471092i 0.771806 0.635858i \(-0.219353\pi\)
0.986333 + 0.164766i \(0.0526868\pi\)
\(68\) −5.25921 + 0.794874i −0.637773 + 0.0963927i
\(69\) 0.681932i 0.0820949i
\(70\) 0 0
\(71\) 7.60710i 0.902797i 0.892322 + 0.451399i \(0.149075\pi\)
−0.892322 + 0.451399i \(0.850925\pi\)
\(72\) 1.70305 3.71839i 0.200706 0.438216i
\(73\) 14.2178 3.80964i 1.66406 0.445885i 0.700564 0.713590i \(-0.252932\pi\)
0.963501 + 0.267705i \(0.0862652\pi\)
\(74\) −0.663102 1.31287i −0.0770841 0.152618i
\(75\) 0 0
\(76\) 7.29629 3.18685i 0.836942 0.365557i
\(77\) −1.93475 1.61355i −0.220485 0.183881i
\(78\) 7.70432 1.60914i 0.872343 0.182199i
\(79\) −5.34864 9.26412i −0.601769 1.04230i −0.992553 0.121813i \(-0.961129\pi\)
0.390784 0.920483i \(-0.372204\pi\)
\(80\) 0 0
\(81\) −1.28561 + 2.22674i −0.142846 + 0.247416i
\(82\) −3.50117 3.91621i −0.386639 0.432473i
\(83\) 5.72446 5.72446i 0.628341 0.628341i −0.319309 0.947651i \(-0.603451\pi\)
0.947651 + 0.319309i \(0.103451\pi\)
\(84\) 6.59488 + 0.141933i 0.719561 + 0.0154861i
\(85\) 0 0
\(86\) 17.4392 + 0.975826i 1.88052 + 0.105226i
\(87\) −8.70680 + 2.33298i −0.933467 + 0.250122i
\(88\) 2.68131 0.253076i 0.285828 0.0269780i
\(89\) 1.83403 1.05888i 0.194407 0.112241i −0.399637 0.916673i \(-0.630864\pi\)
0.594044 + 0.804433i \(0.297531\pi\)
\(90\) 0 0
\(91\) −6.80400 9.65512i −0.713253 1.01213i
\(92\) −0.399294 + 1.01860i −0.0416293 + 0.106196i
\(93\) −1.27364 + 4.75329i −0.132070 + 0.492893i
\(94\) 4.04859 2.04485i 0.417580 0.210910i
\(95\) 0 0
\(96\) −5.07384 + 4.89744i −0.517846 + 0.499843i
\(97\) 3.08588 3.08588i 0.313324 0.313324i −0.532872 0.846196i \(-0.678887\pi\)
0.846196 + 0.532872i \(0.178887\pi\)
\(98\) −3.73120 9.16941i −0.376908 0.926251i
\(99\) 1.37686 0.138379
\(100\) 0 0
\(101\) 0.715074 1.23854i 0.0711525 0.123240i −0.828254 0.560353i \(-0.810666\pi\)
0.899407 + 0.437113i \(0.143999\pi\)
\(102\) 4.45393 + 1.46461i 0.441004 + 0.145018i
\(103\) −9.82894 2.63366i −0.968474 0.259502i −0.260291 0.965530i \(-0.583818\pi\)
−0.708183 + 0.706028i \(0.750485\pi\)
\(104\) 12.4501 + 2.10758i 1.22083 + 0.206666i
\(105\) 0 0
\(106\) 3.47825 + 2.27634i 0.337838 + 0.221097i
\(107\) 0.0104111 0.0388547i 0.00100648 0.00375622i −0.965421 0.260697i \(-0.916048\pi\)
0.966427 + 0.256940i \(0.0827144\pi\)
\(108\) −8.66361 + 6.91473i −0.833656 + 0.665371i
\(109\) −5.44983 3.14646i −0.521999 0.301376i 0.215753 0.976448i \(-0.430779\pi\)
−0.737752 + 0.675072i \(0.764113\pi\)
\(110\) 0 0
\(111\) 1.29651i 0.123059i
\(112\) 9.76762 + 4.07353i 0.922953 + 0.384912i
\(113\) −10.8513 10.8513i −1.02081 1.02081i −0.999779 0.0210265i \(-0.993307\pi\)
−0.0210265 0.999779i \(-0.506693\pi\)
\(114\) −7.00732 0.392101i −0.656295 0.0367236i
\(115\) 0 0
\(116\) −14.3713 1.61337i −1.33434 0.149798i
\(117\) 6.23545 + 1.67078i 0.576468 + 0.154464i
\(118\) 17.4450 3.64360i 1.60595 0.335420i
\(119\) −0.634353 7.00765i −0.0581511 0.642390i
\(120\) 0 0
\(121\) −5.04666 8.74107i −0.458787 0.794643i
\(122\) 2.66108 8.09245i 0.240923 0.732656i
\(123\) 1.19846 + 4.47272i 0.108062 + 0.403292i
\(124\) −4.68563 + 6.35419i −0.420782 + 0.570623i
\(125\) 0 0
\(126\) 4.77572 + 2.54252i 0.425455 + 0.226506i
\(127\) −1.22418 1.22418i −0.108629 0.108629i 0.650703 0.759332i \(-0.274474\pi\)
−0.759332 + 0.650703i \(0.774474\pi\)
\(128\) −10.4464 + 4.34436i −0.923337 + 0.383991i
\(129\) −13.3337 7.69820i −1.17396 0.677788i
\(130\) 0 0
\(131\) −1.12982 + 0.652300i −0.0987126 + 0.0569918i −0.548544 0.836122i \(-0.684818\pi\)
0.449831 + 0.893114i \(0.351484\pi\)
\(132\) −2.21027 0.866437i −0.192380 0.0754137i
\(133\) 3.63214 + 9.88652i 0.314947 + 0.857270i
\(134\) −17.6300 11.5379i −1.52300 0.996724i
\(135\) 0 0
\(136\) 5.79522 + 4.79560i 0.496936 + 0.411219i
\(137\) −0.300203 1.12037i −0.0256480 0.0957198i 0.951915 0.306361i \(-0.0991115\pi\)
−0.977563 + 0.210641i \(0.932445\pi\)
\(138\) 0.718965 0.642768i 0.0612024 0.0547161i
\(139\) 17.4513 1.48020 0.740099 0.672498i \(-0.234779\pi\)
0.740099 + 0.672498i \(0.234779\pi\)
\(140\) 0 0
\(141\) −3.99813 −0.336704
\(142\) 8.02022 7.17023i 0.673042 0.601712i
\(143\) 1.10024 + 4.10614i 0.0920065 + 0.343373i
\(144\) −5.52556 + 1.70931i −0.460464 + 0.142442i
\(145\) 0 0
\(146\) −17.4178 11.3990i −1.44151 0.943392i
\(147\) −0.708187 + 8.69745i −0.0584103 + 0.717353i
\(148\) −0.759151 + 1.93659i −0.0624018 + 0.159186i
\(149\) −9.70894 + 5.60546i −0.795387 + 0.459217i −0.841856 0.539703i \(-0.818537\pi\)
0.0464684 + 0.998920i \(0.485203\pi\)
\(150\) 0 0
\(151\) 13.0081 + 7.51022i 1.05858 + 0.611173i 0.925040 0.379870i \(-0.124031\pi\)
0.133543 + 0.991043i \(0.457365\pi\)
\(152\) −10.2372 4.68870i −0.830345 0.380304i
\(153\) 2.71920 + 2.71920i 0.219835 + 0.219835i
\(154\) 0.122463 + 3.56070i 0.00986832 + 0.286929i
\(155\) 0 0
\(156\) −8.95839 6.60600i −0.717245 0.528903i
\(157\) −1.94845 7.27171i −0.155503 0.580345i −0.999062 0.0433084i \(-0.986210\pi\)
0.843559 0.537037i \(-0.180456\pi\)
\(158\) −4.72576 + 14.3712i −0.375961 + 1.14331i
\(159\) −1.83212 3.17333i −0.145297 0.251662i
\(160\) 0 0
\(161\) −1.31354 0.607707i −0.103522 0.0478941i
\(162\) 3.55944 0.743432i 0.279656 0.0584095i
\(163\) 6.42243 + 1.72089i 0.503044 + 0.134790i 0.501412 0.865208i \(-0.332814\pi\)
0.00163153 + 0.999999i \(0.499481\pi\)
\(164\) −0.828796 + 7.38261i −0.0647181 + 0.576485i
\(165\) 0 0
\(166\) −11.4310 0.639635i −0.887221 0.0496453i
\(167\) −5.93258 5.93258i −0.459077 0.459077i 0.439276 0.898352i \(-0.355235\pi\)
−0.898352 + 0.439276i \(0.855235\pi\)
\(168\) −6.06650 7.08681i −0.468040 0.546759i
\(169\) 6.93083i 0.533141i
\(170\) 0 0
\(171\) −4.98516 2.87818i −0.381225 0.220100i
\(172\) −15.4088 19.3060i −1.17491 1.47207i
\(173\) 0.572923 2.13818i 0.0435585 0.162563i −0.940721 0.339182i \(-0.889850\pi\)
0.984279 + 0.176620i \(0.0565163\pi\)
\(174\) 10.6664 + 6.98064i 0.808621 + 0.529201i
\(175\) 0 0
\(176\) −2.79414 2.58838i −0.210616 0.195106i
\(177\) −15.1740 4.06587i −1.14055 0.305610i
\(178\) −2.84508 0.935563i −0.213248 0.0701234i
\(179\) 8.23493 14.2633i 0.615507 1.06609i −0.374788 0.927111i \(-0.622284\pi\)
0.990295 0.138980i \(-0.0443822\pi\)
\(180\) 0 0
\(181\) −5.97636 −0.444219 −0.222110 0.975022i \(-0.571294\pi\)
−0.222110 + 0.975022i \(0.571294\pi\)
\(182\) −3.76622 + 16.2741i −0.279171 + 1.20632i
\(183\) −5.30976 + 5.30976i −0.392508 + 0.392508i
\(184\) 1.45027 0.539119i 0.106916 0.0397444i
\(185\) 0 0
\(186\) 6.21192 3.13750i 0.455480 0.230052i
\(187\) −0.655419 + 2.44606i −0.0479290 + 0.178873i
\(188\) −5.97198 2.34104i −0.435551 0.170738i
\(189\) −8.44690 11.9865i −0.614422 0.871887i
\(190\) 0 0
\(191\) −6.96830 + 4.02315i −0.504209 + 0.291105i −0.730450 0.682966i \(-0.760690\pi\)
0.226241 + 0.974071i \(0.427356\pi\)
\(192\) 9.94585 + 0.733203i 0.717780 + 0.0529144i
\(193\) −14.0635 + 3.76831i −1.01231 + 0.271249i −0.726596 0.687065i \(-0.758899\pi\)
−0.285718 + 0.958314i \(0.592232\pi\)
\(194\) −6.16213 0.344807i −0.442415 0.0247557i
\(195\) 0 0
\(196\) −6.15046 + 12.5766i −0.439319 + 0.898331i
\(197\) −16.4919 + 16.4919i −1.17500 + 1.17500i −0.194001 + 0.981001i \(0.562146\pi\)
−0.981001 + 0.194001i \(0.937854\pi\)
\(198\) −1.29778 1.45163i −0.0922295 0.103163i
\(199\) −4.82793 + 8.36222i −0.342243 + 0.592782i −0.984849 0.173415i \(-0.944520\pi\)
0.642606 + 0.766197i \(0.277853\pi\)
\(200\) 0 0
\(201\) 9.28636 + 16.0844i 0.655009 + 1.13451i
\(202\) −1.97981 + 0.413507i −0.139299 + 0.0290943i
\(203\) 3.26531 18.8502i 0.229180 1.32302i
\(204\) −2.65399 6.07630i −0.185816 0.425426i
\(205\) 0 0
\(206\) 6.48778 + 12.8451i 0.452025 + 0.894962i
\(207\) 0.764042 0.204725i 0.0531046 0.0142293i
\(208\) −9.51304 15.1128i −0.659610 1.04788i
\(209\) 3.79066i 0.262205i
\(210\) 0 0
\(211\) 10.4344i 0.718333i −0.933274 0.359166i \(-0.883061\pi\)
0.933274 0.359166i \(-0.116939\pi\)
\(212\) −0.878535 5.81275i −0.0603381 0.399221i
\(213\) −9.15992 + 2.45439i −0.627628 + 0.168172i
\(214\) −0.0507779 + 0.0256468i −0.00347111 + 0.00175318i
\(215\) 0 0
\(216\) 15.4563 + 2.61649i 1.05167 + 0.178029i
\(217\) −8.02081 6.68921i −0.544488 0.454093i
\(218\) 1.81951 + 8.71155i 0.123233 + 0.590020i
\(219\) 9.17459 + 15.8909i 0.619961 + 1.07380i
\(220\) 0 0
\(221\) −5.93647 + 10.2823i −0.399330 + 0.691660i
\(222\) 1.36692 1.22205i 0.0917416 0.0820187i
\(223\) 10.7262 10.7262i 0.718279 0.718279i −0.249973 0.968253i \(-0.580422\pi\)
0.968253 + 0.249973i \(0.0804218\pi\)
\(224\) −4.91191 14.1377i −0.328191 0.944611i
\(225\) 0 0
\(226\) −1.21249 + 21.6687i −0.0806539 + 1.44138i
\(227\) 9.68083 2.59397i 0.642539 0.172168i 0.0771860 0.997017i \(-0.475406\pi\)
0.565353 + 0.824849i \(0.308740\pi\)
\(228\) 6.19149 + 7.75744i 0.410041 + 0.513749i
\(229\) 14.7989 8.54416i 0.977940 0.564614i 0.0762921 0.997086i \(-0.475692\pi\)
0.901647 + 0.432472i \(0.142359\pi\)
\(230\) 0 0
\(231\) 1.31868 2.85029i 0.0867627 0.187535i
\(232\) 11.8450 + 16.6725i 0.777661 + 1.09460i
\(233\) 0.485407 1.81156i 0.0318001 0.118680i −0.948201 0.317670i \(-0.897100\pi\)
0.980001 + 0.198990i \(0.0637663\pi\)
\(234\) −4.11583 8.14891i −0.269060 0.532711i
\(235\) 0 0
\(236\) −20.2846 14.9581i −1.32042 0.973687i
\(237\) 9.42947 9.42947i 0.612510 0.612510i
\(238\) −6.79029 + 7.27400i −0.440149 + 0.471503i
\(239\) −15.2182 −0.984385 −0.492193 0.870486i \(-0.663804\pi\)
−0.492193 + 0.870486i \(0.663804\pi\)
\(240\) 0 0
\(241\) 6.58780 11.4104i 0.424357 0.735008i −0.572003 0.820252i \(-0.693833\pi\)
0.996360 + 0.0852432i \(0.0271667\pi\)
\(242\) −4.45894 + 13.5598i −0.286632 + 0.871656i
\(243\) 12.9645 + 3.47383i 0.831673 + 0.222846i
\(244\) −11.0402 + 4.82210i −0.706775 + 0.308703i
\(245\) 0 0
\(246\) 3.58599 5.47940i 0.228634 0.349354i
\(247\) 4.59987 17.1670i 0.292683 1.09231i
\(248\) 11.1158 1.04917i 0.705854 0.0666222i
\(249\) 8.73995 + 5.04601i 0.553872 + 0.319778i
\(250\) 0 0
\(251\) 14.7048i 0.928161i −0.885793 0.464080i \(-0.846385\pi\)
0.885793 0.464080i \(-0.153615\pi\)
\(252\) −1.82084 7.43158i −0.114702 0.468145i
\(253\) 0.368320 + 0.368320i 0.0231561 + 0.0231561i
\(254\) −0.136786 + 2.44454i −0.00858275 + 0.153384i
\(255\) 0 0
\(256\) 14.4267 + 6.91881i 0.901670 + 0.432426i
\(257\) 12.7677 + 3.42109i 0.796426 + 0.213402i 0.634014 0.773321i \(-0.281406\pi\)
0.162412 + 0.986723i \(0.448073\pi\)
\(258\) 4.45165 + 21.3139i 0.277148 + 1.32694i
\(259\) −2.49735 1.15539i −0.155178 0.0717926i
\(260\) 0 0
\(261\) 5.22778 + 9.05478i 0.323592 + 0.560477i
\(262\) 1.75266 + 0.576336i 0.108279 + 0.0356061i
\(263\) 2.73529 + 10.2083i 0.168665 + 0.629468i 0.997544 + 0.0700398i \(0.0223126\pi\)
−0.828879 + 0.559428i \(0.811021\pi\)
\(264\) 1.16985 + 3.14698i 0.0719991 + 0.193683i
\(265\) 0 0
\(266\) 6.99988 13.1481i 0.429190 0.806164i
\(267\) 1.86676 + 1.86676i 0.114244 + 0.114244i
\(268\) 4.45297 + 29.4627i 0.272009 + 1.79972i
\(269\) 10.5625 + 6.09826i 0.644007 + 0.371818i 0.786156 0.618027i \(-0.212068\pi\)
−0.142149 + 0.989845i \(0.545401\pi\)
\(270\) 0 0
\(271\) 5.70012 3.29096i 0.346257 0.199912i −0.316778 0.948500i \(-0.602601\pi\)
0.663036 + 0.748588i \(0.269268\pi\)
\(272\) −0.406362 10.6301i −0.0246393 0.644546i
\(273\) 9.43072 11.3081i 0.570773 0.684395i
\(274\) −0.898253 + 1.37253i −0.0542655 + 0.0829178i
\(275\) 0 0
\(276\) −1.35535 0.152156i −0.0815824 0.00915872i
\(277\) 1.06292 + 3.96687i 0.0638646 + 0.238346i 0.990478 0.137669i \(-0.0439609\pi\)
−0.926614 + 0.376015i \(0.877294\pi\)
\(278\) −16.4490 18.3990i −0.986548 1.10350i
\(279\) 5.70799 0.341728
\(280\) 0 0
\(281\) −32.2773 −1.92550 −0.962752 0.270386i \(-0.912849\pi\)
−0.962752 + 0.270386i \(0.912849\pi\)
\(282\) 3.76852 + 4.21526i 0.224412 + 0.251015i
\(283\) −5.05423 18.8626i −0.300443 1.12127i −0.936798 0.349872i \(-0.886225\pi\)
0.636355 0.771396i \(-0.280441\pi\)
\(284\) −15.1192 1.69734i −0.897161 0.100718i
\(285\) 0 0
\(286\) 3.29208 5.03032i 0.194665 0.297449i
\(287\) −9.68341 1.67740i −0.571594 0.0990140i
\(288\) 7.01036 + 4.21450i 0.413090 + 0.248342i
\(289\) 8.59722 4.96361i 0.505719 0.291977i
\(290\) 0 0
\(291\) 4.71144 + 2.72015i 0.276190 + 0.159458i
\(292\) 4.39938 + 29.1081i 0.257454 + 1.70342i
\(293\) −12.6859 12.6859i −0.741121 0.741121i 0.231673 0.972794i \(-0.425580\pi\)
−0.972794 + 0.231673i \(0.925580\pi\)
\(294\) 9.83729 7.45130i 0.573723 0.434569i
\(295\) 0 0
\(296\) 2.75731 1.02499i 0.160265 0.0595764i
\(297\) 1.36590 + 5.09762i 0.0792577 + 0.295794i
\(298\) 15.0612 + 4.95266i 0.872473 + 0.286900i
\(299\) 1.22108 + 2.11498i 0.0706170 + 0.122312i
\(300\) 0 0
\(301\) 26.7107 18.8231i 1.53958 1.08495i
\(302\) −4.34295 20.7934i −0.249909 1.19653i
\(303\) 1.72208 + 0.461430i 0.0989309 + 0.0265085i
\(304\) 4.70593 + 15.2126i 0.269904 + 0.872500i
\(305\) 0 0
\(306\) 0.303836 5.42991i 0.0173691 0.310407i
\(307\) −9.98091 9.98091i −0.569640 0.569640i 0.362387 0.932028i \(-0.381962\pi\)
−0.932028 + 0.362387i \(0.881962\pi\)
\(308\) 3.63864 3.48532i 0.207331 0.198594i
\(309\) 12.6850i 0.721626i
\(310\) 0 0
\(311\) −12.0711 6.96926i −0.684490 0.395190i 0.117055 0.993125i \(-0.462655\pi\)
−0.801544 + 0.597935i \(0.795988\pi\)
\(312\) 1.47916 + 15.6715i 0.0837409 + 0.887224i
\(313\) −1.27037 + 4.74109i −0.0718056 + 0.267982i −0.992490 0.122326i \(-0.960965\pi\)
0.920684 + 0.390308i \(0.127631\pi\)
\(314\) −5.83006 + 8.90835i −0.329009 + 0.502727i
\(315\) 0 0
\(316\) 19.6060 8.56345i 1.10292 0.481732i
\(317\) 33.2307 + 8.90414i 1.86642 + 0.500106i 1.00000 0.000794747i \(0.000252976\pi\)
0.866423 + 0.499312i \(0.166414\pi\)
\(318\) −1.61876 + 4.92271i −0.0907756 + 0.276052i
\(319\) −3.44258 + 5.96272i −0.192747 + 0.333848i
\(320\) 0 0
\(321\) 0.0501451 0.00279883
\(322\) 0.597395 + 1.95768i 0.0332915 + 0.109097i
\(323\) 7.48630 7.48630i 0.416549 0.416549i
\(324\) −4.13883 3.05201i −0.229935 0.169556i
\(325\) 0 0
\(326\) −4.23925 8.39327i −0.234790 0.464860i
\(327\) 2.03038 7.57748i 0.112280 0.419035i
\(328\) 8.56473 6.08482i 0.472908 0.335978i
\(329\) 3.56296 7.70124i 0.196432 0.424583i
\(330\) 0 0
\(331\) 11.2201 6.47792i 0.616712 0.356059i −0.158876 0.987299i \(-0.550787\pi\)
0.775588 + 0.631240i \(0.217454\pi\)
\(332\) 10.1002 + 12.6547i 0.554320 + 0.694518i
\(333\) 1.45262 0.389229i 0.0796032 0.0213296i
\(334\) −0.662889 + 11.8466i −0.0362717 + 0.648219i
\(335\) 0 0
\(336\) −1.75358 + 13.0758i −0.0956655 + 0.713341i
\(337\) −7.43071 + 7.43071i −0.404776 + 0.404776i −0.879912 0.475136i \(-0.842399\pi\)
0.475136 + 0.879912i \(0.342399\pi\)
\(338\) 7.30722 6.53279i 0.397461 0.355337i
\(339\) 9.56524 16.5675i 0.519513 0.899822i
\(340\) 0 0
\(341\) 1.87940 + 3.25522i 0.101775 + 0.176280i
\(342\) 1.66437 + 7.96877i 0.0899989 + 0.430902i
\(343\) −16.1220 9.11490i −0.870506 0.492158i
\(344\) −5.83059 + 34.4429i −0.314364 + 1.85704i
\(345\) 0 0
\(346\) −2.79431 + 1.41134i −0.150223 + 0.0758743i
\(347\) −8.85066 + 2.37153i −0.475128 + 0.127310i −0.488433 0.872601i \(-0.662431\pi\)
0.0133050 + 0.999911i \(0.495765\pi\)
\(348\) −2.69413 17.8254i −0.144420 0.955544i
\(349\) 19.9513i 1.06797i 0.845495 + 0.533984i \(0.179306\pi\)
−0.845495 + 0.533984i \(0.820694\pi\)
\(350\) 0 0
\(351\) 24.7434i 1.32070i
\(352\) −0.0952748 + 5.38561i −0.00507817 + 0.287054i
\(353\) 2.39430 0.641552i 0.127436 0.0341464i −0.194537 0.980895i \(-0.562321\pi\)
0.321973 + 0.946749i \(0.395654\pi\)
\(354\) 10.0159 + 19.8305i 0.532340 + 1.05398i
\(355\) 0 0
\(356\) 1.69532 + 3.88142i 0.0898516 + 0.205715i
\(357\) 8.23343 3.02482i 0.435759 0.160091i
\(358\) −22.7999 + 4.76203i −1.20501 + 0.251681i
\(359\) 7.94645 + 13.7637i 0.419398 + 0.726418i 0.995879 0.0906921i \(-0.0289079\pi\)
−0.576481 + 0.817110i \(0.695575\pi\)
\(360\) 0 0
\(361\) 1.57601 2.72973i 0.0829481 0.143670i
\(362\) 5.63313 + 6.30091i 0.296071 + 0.331169i
\(363\) 8.89708 8.89708i 0.466976 0.466976i
\(364\) 20.7078 11.3688i 1.08539 0.595884i
\(365\) 0 0
\(366\) 10.6029 + 0.593297i 0.554224 + 0.0310121i
\(367\) −10.3988 + 2.78634i −0.542812 + 0.145446i −0.519798 0.854289i \(-0.673993\pi\)
−0.0230136 + 0.999735i \(0.507326\pi\)
\(368\) −1.93538 1.02088i −0.100889 0.0532169i
\(369\) 4.65148 2.68553i 0.242147 0.139803i
\(370\) 0 0
\(371\) 7.74521 0.701119i 0.402111 0.0364003i
\(372\) −9.16305 3.59195i −0.475082 0.186234i
\(373\) 3.82144 14.2618i 0.197867 0.738448i −0.793640 0.608388i \(-0.791816\pi\)
0.991506 0.130060i \(-0.0415169\pi\)
\(374\) 3.19667 1.61457i 0.165296 0.0834873i
\(375\) 0 0
\(376\) 3.16083 + 8.50289i 0.163007 + 0.438503i
\(377\) −22.8262 + 22.8262i −1.17561 + 1.17561i
\(378\) −4.67561 + 20.2037i −0.240488 + 1.03917i
\(379\) 26.4563 1.35897 0.679483 0.733691i \(-0.262204\pi\)
0.679483 + 0.733691i \(0.262204\pi\)
\(380\) 0 0
\(381\) 1.07909 1.86905i 0.0552837 0.0957542i
\(382\) 10.8097 + 3.55463i 0.553075 + 0.181871i
\(383\) 28.3799 + 7.60437i 1.45015 + 0.388565i 0.896074 0.443904i \(-0.146407\pi\)
0.554071 + 0.832470i \(0.313074\pi\)
\(384\) −8.60163 11.1771i −0.438950 0.570377i
\(385\) 0 0
\(386\) 17.2288 + 11.2754i 0.876922 + 0.573901i
\(387\) −4.62219 + 17.2503i −0.234959 + 0.876880i
\(388\) 5.44470 + 6.82177i 0.276413 + 0.346323i
\(389\) 8.09963 + 4.67632i 0.410667 + 0.237099i 0.691076 0.722782i \(-0.257137\pi\)
−0.280409 + 0.959881i \(0.590470\pi\)
\(390\) 0 0
\(391\) 1.45481i 0.0735731i
\(392\) 19.0569 5.36988i 0.962517 0.271220i
\(393\) −1.14998 1.14998i −0.0580090 0.0580090i
\(394\) 32.9324 + 1.84276i 1.65911 + 0.0928370i
\(395\) 0 0
\(396\) −0.307212 + 2.73653i −0.0154380 + 0.137516i
\(397\) −17.1641 4.59912i −0.861443 0.230823i −0.199059 0.979987i \(-0.563789\pi\)
−0.662384 + 0.749164i \(0.730455\pi\)
\(398\) 13.3670 2.79186i 0.670028 0.139943i
\(399\) −10.7327 + 7.56340i −0.537309 + 0.378644i
\(400\) 0 0
\(401\) −3.07671 5.32902i −0.153644 0.266118i 0.778921 0.627122i \(-0.215767\pi\)
−0.932564 + 0.361004i \(0.882434\pi\)
\(402\) 8.20490 24.9514i 0.409223 1.24446i
\(403\) 4.56121 + 17.0227i 0.227210 + 0.847960i
\(404\) 2.30207 + 1.69757i 0.114532 + 0.0844573i
\(405\) 0 0
\(406\) −22.9516 + 14.3250i −1.13907 + 0.710935i
\(407\) 0.700261 + 0.700261i 0.0347107 + 0.0347107i
\(408\) −3.90471 + 8.52545i −0.193312 + 0.422073i
\(409\) −5.66917 3.27310i −0.280322 0.161844i 0.353247 0.935530i \(-0.385078\pi\)
−0.633569 + 0.773686i \(0.718411\pi\)
\(410\) 0 0
\(411\) 1.25221 0.722965i 0.0617670 0.0356612i
\(412\) 7.42751 18.9475i 0.365927 0.933478i
\(413\) 21.3541 25.6050i 1.05077 1.25994i
\(414\) −0.936005 0.612568i −0.0460022 0.0301061i
\(415\) 0 0
\(416\) −6.96678 + 24.2745i −0.341575 + 1.19015i
\(417\) 5.63057 + 21.0136i 0.275730 + 1.02904i
\(418\) −3.99652 + 3.57296i −0.195476 + 0.174759i
\(419\) 17.7908 0.869139 0.434569 0.900638i \(-0.356901\pi\)
0.434569 + 0.900638i \(0.356901\pi\)
\(420\) 0 0
\(421\) −16.4678 −0.802591 −0.401295 0.915949i \(-0.631440\pi\)
−0.401295 + 0.915949i \(0.631440\pi\)
\(422\) −11.0010 + 9.83513i −0.535522 + 0.478767i
\(423\) 1.20029 + 4.47954i 0.0583601 + 0.217803i
\(424\) −5.30034 + 6.40517i −0.257407 + 0.311062i
\(425\) 0 0
\(426\) 11.2215 + 7.34393i 0.543686 + 0.355815i
\(427\) −5.49588 14.9595i −0.265964 0.723942i
\(428\) 0.0749013 + 0.0293616i 0.00362049 + 0.00141925i
\(429\) −4.58934 + 2.64965i −0.221575 + 0.127926i
\(430\) 0 0
\(431\) −13.1055 7.56644i −0.631268 0.364463i 0.149975 0.988690i \(-0.452081\pi\)
−0.781243 + 0.624227i \(0.785414\pi\)
\(432\) −11.8101 18.7619i −0.568212 0.902683i
\(433\) 5.45382 + 5.45382i 0.262094 + 0.262094i 0.825904 0.563811i \(-0.190665\pi\)
−0.563811 + 0.825904i \(0.690665\pi\)
\(434\) 0.507689 + 14.7614i 0.0243698 + 0.708572i
\(435\) 0 0
\(436\) 7.46963 10.1296i 0.357730 0.485118i
\(437\) −0.563632 2.10350i −0.0269622 0.100624i
\(438\) 8.10614 24.6511i 0.387327 1.17787i
\(439\) −12.8732 22.2970i −0.614402 1.06418i −0.990489 0.137592i \(-0.956064\pi\)
0.376087 0.926585i \(-0.377270\pi\)
\(440\) 0 0
\(441\) 9.95730 1.81762i 0.474157 0.0865536i
\(442\) 16.4362 3.43289i 0.781790 0.163286i
\(443\) −16.7002 4.47481i −0.793452 0.212605i −0.160745 0.986996i \(-0.551390\pi\)
−0.632707 + 0.774391i \(0.718056\pi\)
\(444\) −2.57683 0.289284i −0.122291 0.0137288i
\(445\) 0 0
\(446\) −21.4189 1.19851i −1.01421 0.0567513i
\(447\) −9.88223 9.88223i −0.467413 0.467413i
\(448\) −10.2756 + 18.5044i −0.485477 + 0.874250i
\(449\) 11.0999i 0.523839i 0.965090 + 0.261919i \(0.0843555\pi\)
−0.965090 + 0.261919i \(0.915645\pi\)
\(450\) 0 0
\(451\) 3.06308 + 1.76847i 0.144235 + 0.0832739i
\(452\) 23.9883 19.1459i 1.12832 0.900549i
\(453\) −4.84627 + 18.0865i −0.227698 + 0.849779i
\(454\) −11.8597 7.76157i −0.556603 0.364268i
\(455\) 0 0
\(456\) 2.34281 13.8397i 0.109712 0.648101i
\(457\) −20.5140 5.49672i −0.959606 0.257126i −0.255172 0.966896i \(-0.582132\pi\)
−0.704434 + 0.709770i \(0.748799\pi\)
\(458\) −22.9572 7.54913i −1.07272 0.352748i
\(459\) −7.36989 + 12.7650i −0.343997 + 0.595821i
\(460\) 0 0
\(461\) −8.61652 −0.401311 −0.200656 0.979662i \(-0.564307\pi\)
−0.200656 + 0.979662i \(0.564307\pi\)
\(462\) −4.24802 + 1.29630i −0.197636 + 0.0603094i
\(463\) −1.63340 + 1.63340i −0.0759103 + 0.0759103i −0.744043 0.668132i \(-0.767094\pi\)
0.668132 + 0.744043i \(0.267094\pi\)
\(464\) 6.41320 28.2032i 0.297725 1.30930i
\(465\) 0 0
\(466\) −2.36747 + 1.19576i −0.109671 + 0.0553924i
\(467\) −6.59489 + 24.6125i −0.305175 + 1.13893i 0.627619 + 0.778521i \(0.284030\pi\)
−0.932794 + 0.360409i \(0.882637\pi\)
\(468\) −4.71199 + 12.0203i −0.217812 + 0.555637i
\(469\) −39.2576 + 3.55372i −1.81275 + 0.164095i
\(470\) 0 0
\(471\) 8.12741 4.69236i 0.374491 0.216213i
\(472\) 3.34928 + 35.4852i 0.154163 + 1.63334i
\(473\) −11.3596 + 3.04379i −0.522313 + 0.139953i
\(474\) −18.8295 1.05362i −0.864867 0.0483944i
\(475\) 0 0
\(476\) 14.0693 + 0.302795i 0.644867 + 0.0138786i
\(477\) −3.00540 + 3.00540i −0.137608 + 0.137608i
\(478\) 14.3442 + 16.0447i 0.656090 + 0.733867i
\(479\) 4.63924 8.03541i 0.211972 0.367147i −0.740359 0.672211i \(-0.765345\pi\)
0.952332 + 0.305064i \(0.0986780\pi\)
\(480\) 0 0
\(481\) 2.32156 + 4.02106i 0.105854 + 0.183345i
\(482\) −18.2395 + 3.80954i −0.830787 + 0.173520i
\(483\) 0.307949 1.77775i 0.0140122 0.0808903i
\(484\) 18.4990 8.07996i 0.840865 0.367271i
\(485\) 0 0
\(486\) −8.55746 16.9429i −0.388174 0.768544i
\(487\) 17.2022 4.60932i 0.779506 0.208868i 0.152939 0.988236i \(-0.451126\pi\)
0.626567 + 0.779368i \(0.284459\pi\)
\(488\) 15.4901 + 7.09457i 0.701204 + 0.321156i
\(489\) 8.28866i 0.374826i
\(490\) 0 0
\(491\) 2.49970i 0.112810i −0.998408 0.0564049i \(-0.982036\pi\)
0.998408 0.0564049i \(-0.0179638\pi\)
\(492\) −9.15701 + 1.38398i −0.412830 + 0.0623949i
\(493\) −18.5748 + 4.97711i −0.836569 + 0.224158i
\(494\) −22.4349 + 11.3314i −1.00940 + 0.509823i
\(495\) 0 0
\(496\) −11.5836 10.7305i −0.520117 0.481816i
\(497\) 3.43524 19.8312i 0.154092 0.889550i
\(498\) −2.91797 13.9708i −0.130757 0.626047i
\(499\) 3.26199 + 5.64993i 0.146027 + 0.252926i 0.929756 0.368178i \(-0.120018\pi\)
−0.783729 + 0.621103i \(0.786685\pi\)
\(500\) 0 0
\(501\) 5.22947 9.05770i 0.233635 0.404668i
\(502\) −15.5034 + 13.8603i −0.691951 + 0.618617i
\(503\) −14.6078 + 14.6078i −0.651327 + 0.651327i −0.953313 0.301985i \(-0.902351\pi\)
0.301985 + 0.953313i \(0.402351\pi\)
\(504\) −6.11889 + 8.92451i −0.272557 + 0.397529i
\(505\) 0 0
\(506\) 0.0411550 0.735489i 0.00182956 0.0326965i
\(507\) −8.34561 + 2.23620i −0.370641 + 0.0993131i
\(508\) 2.70623 2.15993i 0.120069 0.0958316i
\(509\) 29.8459 17.2316i 1.32290 0.763775i 0.338708 0.940892i \(-0.390010\pi\)
0.984190 + 0.177116i \(0.0566769\pi\)
\(510\) 0 0
\(511\) −38.7851 + 3.51094i −1.71575 + 0.155315i
\(512\) −6.30364 21.7316i −0.278584 0.960412i
\(513\) 5.71056 21.3121i 0.252128 0.940953i
\(514\) −8.42755 16.6857i −0.371723 0.735973i
\(515\) 0 0
\(516\) 18.2754 24.7832i 0.804528 1.09102i
\(517\) −2.15944 + 2.15944i −0.0949721 + 0.0949721i
\(518\) 1.13579 + 3.72201i 0.0499036 + 0.163536i
\(519\) 2.75949 0.121128
\(520\) 0 0
\(521\) 16.9526 29.3627i 0.742705 1.28640i −0.208555 0.978011i \(-0.566876\pi\)
0.951259 0.308392i \(-0.0997908\pi\)
\(522\) 4.61897 14.0465i 0.202167 0.614796i
\(523\) −17.8250 4.77618i −0.779431 0.208848i −0.152897 0.988242i \(-0.548860\pi\)
−0.626534 + 0.779394i \(0.715527\pi\)
\(524\) −1.04437 2.39107i −0.0456233 0.104455i
\(525\) 0 0
\(526\) 8.18443 12.5058i 0.356858 0.545280i
\(527\) −2.71715 + 10.1405i −0.118361 + 0.441728i
\(528\) 2.21522 4.19963i 0.0964053 0.182765i
\(529\) −19.6594 11.3504i −0.854758 0.493495i
\(530\) 0 0
\(531\) 18.2217i 0.790756i
\(532\) −20.4600 + 5.01301i −0.887055 + 0.217341i
\(533\) 11.7259 + 11.7259i 0.507906 + 0.507906i
\(534\) 0.208587 3.72769i 0.00902643 0.161313i
\(535\) 0 0
\(536\) 26.8655 32.4654i 1.16041 1.40229i
\(537\) 19.8318 + 5.31392i 0.855806 + 0.229312i
\(538\) −3.52645 16.8842i −0.152036 0.727928i
\(539\) 4.31510 + 5.08010i 0.185864 + 0.218815i
\(540\) 0 0
\(541\) −1.59149 2.75655i −0.0684236 0.118513i 0.829784 0.558085i \(-0.188464\pi\)
−0.898208 + 0.439572i \(0.855130\pi\)
\(542\) −8.84244 2.90771i −0.379815 0.124897i
\(543\) −1.92824 7.19630i −0.0827488 0.308823i
\(544\) −10.8244 + 10.4481i −0.464092 + 0.447957i
\(545\) 0 0
\(546\) −20.8113 + 0.715760i −0.890640 + 0.0306317i
\(547\) 15.6791 + 15.6791i 0.670391 + 0.670391i 0.957806 0.287415i \(-0.0927960\pi\)
−0.287415 + 0.957806i \(0.592796\pi\)
\(548\) 2.29374 0.346674i 0.0979836 0.0148092i
\(549\) 7.54315 + 4.35504i 0.321934 + 0.185869i
\(550\) 0 0
\(551\) 24.9289 14.3927i 1.06201 0.613151i
\(552\) 1.11709 + 1.57237i 0.0475466 + 0.0669246i
\(553\) 9.76000 + 26.5663i 0.415037 + 1.12971i
\(554\) 3.18042 4.85969i 0.135123 0.206469i
\(555\) 0 0
\(556\) −3.89382 + 34.6847i −0.165135 + 1.47096i
\(557\) −5.52434 20.6171i −0.234074 0.873575i −0.978564 0.205942i \(-0.933974\pi\)
0.744491 0.667633i \(-0.232692\pi\)
\(558\) −5.38017 6.01797i −0.227761 0.254761i
\(559\) −55.1382 −2.33210
\(560\) 0 0
\(561\) −3.15683 −0.133282
\(562\) 30.4236 + 34.0302i 1.28334 + 1.43548i
\(563\) 3.52319 + 13.1487i 0.148485 + 0.554153i 0.999576 + 0.0291340i \(0.00927495\pi\)
−0.851091 + 0.525019i \(0.824058\pi\)
\(564\) 0.892084 7.94635i 0.0375635 0.334602i
\(565\) 0 0
\(566\) −15.1231 + 23.1081i −0.635669 + 0.971305i
\(567\) 4.35705 5.22439i 0.182979 0.219404i
\(568\) 12.4614 + 17.5402i 0.522869 + 0.735969i
\(569\) −20.3421 + 11.7445i −0.852787 + 0.492357i −0.861590 0.507605i \(-0.830531\pi\)
0.00880335 + 0.999961i \(0.497198\pi\)
\(570\) 0 0
\(571\) 23.4830 + 13.5579i 0.982734 + 0.567382i 0.903094 0.429442i \(-0.141290\pi\)
0.0796395 + 0.996824i \(0.474623\pi\)
\(572\) −8.40651 + 1.27056i −0.351494 + 0.0531246i
\(573\) −7.09267 7.09267i −0.296301 0.296301i
\(574\) 7.35879 + 11.7904i 0.307150 + 0.492120i
\(575\) 0 0
\(576\) −2.16438 11.3635i −0.0901826 0.473480i
\(577\) −7.22183 26.9522i −0.300649 1.12204i −0.936627 0.350329i \(-0.886070\pi\)
0.635978 0.771707i \(-0.280597\pi\)
\(578\) −13.3366 4.38556i −0.554731 0.182415i
\(579\) −9.07505 15.7184i −0.377146 0.653236i
\(580\) 0 0
\(581\) −17.5083 + 12.3382i −0.726368 + 0.511874i
\(582\) −1.57299 7.53124i −0.0652024 0.312180i
\(583\) −2.70351 0.724403i −0.111968 0.0300017i
\(584\) 26.5421 32.0747i 1.09832 1.32726i
\(585\) 0 0
\(586\) −1.41749 + 25.3323i −0.0585560 + 1.04647i
\(587\) 22.8296 + 22.8296i 0.942280 + 0.942280i 0.998423 0.0561427i \(-0.0178802\pi\)
−0.0561427 + 0.998423i \(0.517880\pi\)
\(588\) −17.1283 3.34815i −0.706359 0.138075i
\(589\) 15.7148i 0.647516i
\(590\) 0 0
\(591\) −25.1794 14.5374i −1.03574 0.597987i
\(592\) −3.67961 1.94092i −0.151231 0.0797715i
\(593\) −9.88391 + 36.8872i −0.405883 + 1.51478i 0.396537 + 0.918019i \(0.370212\pi\)
−0.802421 + 0.596759i \(0.796455\pi\)
\(594\) 4.08700 6.24494i 0.167691 0.256233i
\(595\) 0 0
\(596\) −8.97462 20.5474i −0.367615 0.841653i
\(597\) −11.6269 3.11542i −0.475857 0.127506i
\(598\) 1.07888 3.28091i 0.0441186 0.134166i
\(599\) −14.4801 + 25.0802i −0.591640 + 1.02475i 0.402372 + 0.915476i \(0.368186\pi\)
−0.994012 + 0.109274i \(0.965147\pi\)
\(600\) 0 0
\(601\) −8.88262 −0.362330 −0.181165 0.983453i \(-0.557987\pi\)
−0.181165 + 0.983453i \(0.557987\pi\)
\(602\) −45.0220 10.4192i −1.83496 0.424653i
\(603\) 15.2333 15.2333i 0.620347 0.620347i
\(604\) −17.8291 + 24.1780i −0.725456 + 0.983791i
\(605\) 0 0
\(606\) −1.13669 2.25053i −0.0461749 0.0914215i
\(607\) 11.8891 44.3709i 0.482565 1.80096i −0.108218 0.994127i \(-0.534515\pi\)
0.590783 0.806830i \(-0.298819\pi\)
\(608\) 11.6030 19.3004i 0.470565 0.782734i
\(609\) 23.7515 2.15006i 0.962461 0.0871249i
\(610\) 0 0
\(611\) −12.4000 + 7.15915i −0.501651 + 0.289628i
\(612\) −6.01118 + 4.79773i −0.242988 + 0.193937i
\(613\) 0.223941 0.0600047i 0.00904487 0.00242357i −0.254294 0.967127i \(-0.581843\pi\)
0.263339 + 0.964703i \(0.415176\pi\)
\(614\) −1.11524 + 19.9306i −0.0450073 + 0.804335i
\(615\) 0 0
\(616\) −7.10426 0.551085i −0.286239 0.0222038i
\(617\) 27.1038 27.1038i 1.09116 1.09116i 0.0957517 0.995405i \(-0.469475\pi\)
0.995405 0.0957517i \(-0.0305255\pi\)
\(618\) −13.3739 + 11.9565i −0.537978 + 0.480962i
\(619\) 7.14970 12.3836i 0.287371 0.497741i −0.685811 0.727780i \(-0.740552\pi\)
0.973181 + 0.230039i \(0.0738855\pi\)
\(620\) 0 0
\(621\) 1.51593 + 2.62566i 0.0608320 + 0.105364i
\(622\) 4.03012 + 19.2957i 0.161593 + 0.773685i
\(623\) −5.25935 + 1.93220i −0.210711 + 0.0774119i
\(624\) 15.1284 16.3310i 0.605619 0.653762i
\(625\) 0 0
\(626\) 6.19597 3.12944i 0.247641 0.125078i
\(627\) 4.56444 1.22304i 0.182286 0.0488434i
\(628\) 14.8874 2.25007i 0.594071 0.0897875i
\(629\) 2.76594i 0.110285i
\(630\) 0 0
\(631\) 30.7128i 1.22266i 0.791377 + 0.611328i \(0.209364\pi\)
−0.791377 + 0.611328i \(0.790636\pi\)
\(632\) −27.5085 12.5991i −1.09423 0.501165i
\(633\) 12.5643 3.36660i 0.499387 0.133810i
\(634\) −21.9346 43.4281i −0.871132 1.72475i
\(635\) 0 0
\(636\) 6.71584 2.93332i 0.266300 0.116314i
\(637\) 13.3774 + 28.2428i 0.530033 + 1.11902i
\(638\) 9.53141 1.99075i 0.377352 0.0788144i
\(639\) 5.49985 + 9.52602i 0.217571 + 0.376843i
\(640\) 0 0
\(641\) −20.7752 + 35.9837i −0.820572 + 1.42127i 0.0846851 + 0.996408i \(0.473012\pi\)
−0.905257 + 0.424864i \(0.860322\pi\)
\(642\) −0.0472652 0.0528683i −0.00186541 0.00208655i
\(643\) −12.5692 + 12.5692i −0.495681 + 0.495681i −0.910090 0.414410i \(-0.863988\pi\)
0.414410 + 0.910090i \(0.363988\pi\)
\(644\) 1.50091 2.47509i 0.0591442 0.0975322i
\(645\) 0 0
\(646\) −14.9492 0.836497i −0.588169 0.0329115i
\(647\) 34.4127 9.22084i 1.35290 0.362509i 0.491696 0.870767i \(-0.336377\pi\)
0.861205 + 0.508258i \(0.169710\pi\)
\(648\) 0.683380 + 7.24033i 0.0268457 + 0.284427i
\(649\) −10.3917 + 5.99966i −0.407910 + 0.235507i
\(650\) 0 0
\(651\) 5.46679 11.8163i 0.214261 0.463118i
\(652\) −4.85329 + 12.3807i −0.190070 + 0.484866i
\(653\) −3.40648 + 12.7132i −0.133306 + 0.497505i −0.999999 0.00133684i \(-0.999574\pi\)
0.866693 + 0.498842i \(0.166241\pi\)
\(654\) −9.90276 + 5.00166i −0.387229 + 0.195580i
\(655\) 0 0
\(656\) −14.4881 3.29449i −0.565666 0.128628i
\(657\) 15.0499 15.0499i 0.587153 0.587153i
\(658\) −11.4778 + 3.50250i −0.447451 + 0.136542i
\(659\) 10.3786 0.404294 0.202147 0.979355i \(-0.435208\pi\)
0.202147 + 0.979355i \(0.435208\pi\)
\(660\) 0 0
\(661\) −11.5282 + 19.9675i −0.448397 + 0.776646i −0.998282 0.0585946i \(-0.981338\pi\)
0.549885 + 0.835240i \(0.314671\pi\)
\(662\) −17.4054 5.72352i −0.676481 0.222451i
\(663\) −14.2965 3.83074i −0.555231 0.148774i
\(664\) 3.82184 22.5767i 0.148316 0.876144i
\(665\) 0 0
\(666\) −1.77956 1.16463i −0.0689567 0.0451286i
\(667\) −1.02375 + 3.82069i −0.0396398 + 0.147938i
\(668\) 13.1148 10.4674i 0.507427 0.404995i
\(669\) 16.3765 + 9.45496i 0.633151 + 0.365550i
\(670\) 0 0
\(671\) 5.73573i 0.221425i
\(672\) 15.4387 10.4760i 0.595562 0.404121i
\(673\) −27.9624 27.9624i −1.07787 1.07787i −0.996700 0.0811716i \(-0.974134\pi\)
−0.0811716 0.996700i \(-0.525866\pi\)
\(674\) 14.8382 + 0.830285i 0.571546 + 0.0319814i
\(675\) 0 0
\(676\) −13.7751 1.54644i −0.529813 0.0594786i
\(677\) −33.0709 8.86132i −1.27102 0.340568i −0.440597 0.897705i \(-0.645233\pi\)
−0.830421 + 0.557137i \(0.811900\pi\)
\(678\) −26.4831 + 5.53131i −1.01708 + 0.212429i
\(679\) −9.43821 + 6.65114i −0.362205 + 0.255247i
\(680\) 0 0
\(681\) 6.24694 + 10.8200i 0.239383 + 0.414624i
\(682\) 1.66053 5.04973i 0.0635850 0.193364i
\(683\) −0.498756 1.86138i −0.0190844 0.0712239i 0.955727 0.294255i \(-0.0950715\pi\)
−0.974811 + 0.223031i \(0.928405\pi\)
\(684\) 6.83274 9.26588i 0.261256 0.354290i
\(685\) 0 0
\(686\) 5.58620 + 25.5889i 0.213282 + 0.976991i
\(687\) 15.0630 + 15.0630i 0.574691 + 0.574691i
\(688\) 41.8091 26.3176i 1.59396 1.00335i
\(689\) −11.3645 6.56128i −0.432952 0.249965i
\(690\) 0 0
\(691\) 30.8812 17.8293i 1.17478 0.678257i 0.219976 0.975505i \(-0.429402\pi\)
0.954800 + 0.297248i \(0.0960688\pi\)
\(692\) 4.12182 + 1.61577i 0.156688 + 0.0614225i
\(693\) −3.58937 0.621767i −0.136349 0.0236190i
\(694\) 10.8427 + 7.09598i 0.411582 + 0.269360i
\(695\) 0 0
\(696\) −16.2541 + 19.6422i −0.616109 + 0.744534i
\(697\) 2.55677 + 9.54198i 0.0968444 + 0.361428i
\(698\) 21.0348 18.8055i 0.796177 0.711797i
\(699\) 2.33797 0.0884301
\(700\) 0 0
\(701\) 33.6504 1.27096 0.635479 0.772119i \(-0.280803\pi\)
0.635479 + 0.772119i \(0.280803\pi\)
\(702\) 26.0871 23.3223i 0.984594 0.880245i
\(703\) −1.07159 3.99924i −0.0404159 0.150834i
\(704\) 5.76789 4.97586i 0.217385 0.187535i
\(705\) 0 0
\(706\) −2.93319 1.91962i −0.110392 0.0722460i
\(707\) −2.42345 + 2.90588i −0.0911433 + 0.109287i
\(708\) 11.4667 29.2514i 0.430944 1.09934i
\(709\) −7.92917 + 4.57791i −0.297786 + 0.171927i −0.641448 0.767167i \(-0.721666\pi\)
0.343662 + 0.939093i \(0.388333\pi\)
\(710\) 0 0
\(711\) −13.3957 7.73401i −0.502378 0.290048i
\(712\) 2.49425 5.44589i 0.0934762 0.204093i
\(713\) 1.52693 + 1.52693i 0.0571839 + 0.0571839i
\(714\) −10.9497 5.82945i −0.409781 0.218162i
\(715\) 0 0
\(716\) 26.5111 + 19.5495i 0.990767 + 0.730601i
\(717\) −4.91009 18.3247i −0.183370 0.684348i
\(718\) 7.02104 21.3512i 0.262023 0.796820i
\(719\) −6.67322 11.5584i −0.248869 0.431054i 0.714343 0.699796i \(-0.246726\pi\)
−0.963212 + 0.268742i \(0.913392\pi\)
\(720\) 0 0
\(721\) 24.4340 + 11.3043i 0.909970 + 0.420996i
\(722\) −4.36348 + 0.911364i −0.162392 + 0.0339175i
\(723\) 15.8651 + 4.25104i 0.590029 + 0.158098i
\(724\) 1.33348 11.8781i 0.0495582 0.441446i
\(725\) 0 0
\(726\) −17.7664 0.994134i −0.659372 0.0368958i
\(727\) −6.15934 6.15934i −0.228437 0.228437i 0.583602 0.812040i \(-0.301643\pi\)
−0.812040 + 0.583602i \(0.801643\pi\)
\(728\) −31.5047 11.1166i −1.16764 0.412008i
\(729\) 24.4454i 0.905384i
\(730\) 0 0
\(731\) −28.4457 16.4231i −1.05210 0.607431i
\(732\) −9.36848 11.7380i −0.346269 0.433847i
\(733\) −2.65865 + 9.92223i −0.0981996 + 0.366486i −0.997485 0.0708761i \(-0.977420\pi\)
0.899286 + 0.437362i \(0.144087\pi\)
\(734\) 12.7392 + 8.33717i 0.470213 + 0.307731i
\(735\) 0 0
\(736\) 0.747914 + 3.00273i 0.0275685 + 0.110682i
\(737\) 13.7031 + 3.67173i 0.504760 + 0.135250i
\(738\) −7.21572 2.37279i −0.265614 0.0873435i
\(739\) 21.8583 37.8597i 0.804070 1.39269i −0.112847 0.993612i \(-0.535997\pi\)
0.916917 0.399078i \(-0.130670\pi\)
\(740\) 0 0
\(741\) 22.1553 0.813897
\(742\) −8.03959 7.50497i −0.295143 0.275516i
\(743\) −26.0186 + 26.0186i −0.954529 + 0.954529i −0.999010 0.0444813i \(-0.985836\pi\)
0.0444813 + 0.999010i \(0.485836\pi\)
\(744\) 4.84979 + 13.0463i 0.177802 + 0.478302i
\(745\) 0 0
\(746\) −18.6383 + 9.41377i −0.682396 + 0.344663i
\(747\) 3.02975 11.3072i 0.110853 0.413709i
\(748\) −4.71534 1.84843i −0.172410 0.0675854i
\(749\) −0.0446871 + 0.0965899i −0.00163283 + 0.00352932i
\(750\) 0 0
\(751\) −7.30460 + 4.21731i −0.266548 + 0.153892i −0.627318 0.778763i \(-0.715847\pi\)
0.360770 + 0.932655i \(0.382514\pi\)
\(752\) 5.98535 11.3471i 0.218263 0.413784i
\(753\) 17.7065 4.74444i 0.645260 0.172897i
\(754\) 45.5811 + 2.55053i 1.65997 + 0.0928850i
\(755\) 0 0
\(756\) 25.7080 14.1139i 0.934991 0.513316i
\(757\) −3.33081 + 3.33081i −0.121060 + 0.121060i −0.765041 0.643981i \(-0.777282\pi\)
0.643981 + 0.765041i \(0.277282\pi\)
\(758\) −24.9369 27.8930i −0.905748 1.01312i
\(759\) −0.324667 + 0.562340i −0.0117847 + 0.0204117i
\(760\) 0 0
\(761\) 17.2317 + 29.8462i 0.624649 + 1.08192i 0.988609 + 0.150509i \(0.0480913\pi\)
−0.363959 + 0.931415i \(0.618575\pi\)
\(762\) −2.98767 + 0.624010i −0.108232 + 0.0226055i
\(763\) 12.7864 + 10.6636i 0.462899 + 0.386050i
\(764\) −6.44127 14.7473i −0.233037 0.533537i
\(765\) 0 0
\(766\) −18.7327 37.0888i −0.676840 1.34007i
\(767\) −54.3419 + 14.5609i −1.96217 + 0.525763i
\(768\) −3.67642 + 19.6039i −0.132661 + 0.707396i
\(769\) 18.7498i 0.676135i −0.941122 0.338067i \(-0.890227\pi\)
0.941122 0.338067i \(-0.109773\pi\)
\(770\) 0 0
\(771\) 16.4777i 0.593431i
\(772\) −4.35164 28.7922i −0.156619 1.03626i
\(773\) 42.9466 11.5075i 1.54468 0.413896i 0.616907 0.787036i \(-0.288386\pi\)
0.927775 + 0.373140i \(0.121719\pi\)
\(774\) 22.5438 11.3864i 0.810320 0.409274i
\(775\) 0 0
\(776\) 2.06023 12.1704i 0.0739581 0.436891i
\(777\) 0.585483 3.37991i 0.0210041 0.121254i
\(778\) −2.70418 12.9472i −0.0969497 0.464181i
\(779\) −7.39361 12.8061i −0.264903 0.458826i
\(780\) 0 0
\(781\) −3.62174 + 6.27304i −0.129596 + 0.224467i
\(782\) 1.53382 1.37126i 0.0548493 0.0490363i
\(783\) −28.3379 + 28.3379i −1.01271 + 1.01271i
\(784\) −23.6239 15.0303i −0.843712 0.536796i
\(785\) 0 0
\(786\) −0.128496 + 2.29637i −0.00458329 + 0.0819089i
\(787\) −1.04293 + 0.279451i −0.0371763 + 0.00996136i −0.277359 0.960766i \(-0.589459\pi\)
0.240183 + 0.970728i \(0.422793\pi\)
\(788\) −29.0982 36.4577i −1.03658 1.29875i
\(789\) −11.4095 + 6.58729i −0.406189 + 0.234514i
\(790\) 0 0
\(791\) 23.3883 + 33.1889i 0.831592 + 1.18006i
\(792\) 3.17471 2.25547i 0.112808 0.0801447i
\(793\) −6.96017 + 25.9757i −0.247163 + 0.922424i
\(794\) 11.3295 + 22.4312i 0.402069 + 0.796055i
\(795\) 0 0
\(796\) −15.5428 11.4614i −0.550900 0.406239i
\(797\) 13.9414 13.9414i 0.493829 0.493829i −0.415681 0.909510i \(-0.636457\pi\)
0.909510 + 0.415681i \(0.136457\pi\)
\(798\) 18.0905 + 4.18657i 0.640397 + 0.148203i
\(799\) −8.52950 −0.301752
\(800\) 0 0
\(801\) 1.53111 2.65196i 0.0540992 0.0937025i
\(802\) −2.71841 + 8.26676i −0.0959902 + 0.291910i
\(803\) 13.5382 + 3.62754i 0.477751 + 0.128013i
\(804\) −34.0401 + 14.8679i −1.20050 + 0.524352i
\(805\) 0 0
\(806\) 13.6479 20.8540i 0.480726 0.734550i
\(807\) −3.93515 + 14.6862i −0.138524 + 0.516978i
\(808\) −0.380106 4.02717i −0.0133721 0.141675i
\(809\) 4.37439 + 2.52555i 0.153795 + 0.0887937i 0.574923 0.818208i \(-0.305032\pi\)
−0.421127 + 0.907001i \(0.638365\pi\)
\(810\) 0 0
\(811\) 21.1629i 0.743131i −0.928407 0.371565i \(-0.878821\pi\)
0.928407 0.371565i \(-0.121179\pi\)
\(812\) 36.7364 + 10.6958i 1.28919 + 0.375349i
\(813\) 5.80185 + 5.80185i 0.203480 + 0.203480i
\(814\) 0.0782451 1.39833i 0.00274249 0.0490116i
\(815\) 0 0
\(816\) 12.6689 3.91907i 0.443501 0.137195i
\(817\) 47.4920 + 12.7255i 1.66154 + 0.445207i
\(818\) 1.89274 + 9.06216i 0.0661781 + 0.316851i
\(819\) −15.5009 7.17144i −0.541644 0.250590i
\(820\) 0 0
\(821\) −21.3620 37.0001i −0.745540 1.29131i −0.949942 0.312426i \(-0.898858\pi\)
0.204402 0.978887i \(-0.434475\pi\)
\(822\) −1.94252 0.638770i −0.0677533 0.0222797i
\(823\) 1.23565 + 4.61152i 0.0430722 + 0.160748i 0.984112 0.177548i \(-0.0568164\pi\)
−0.941040 + 0.338295i \(0.890150\pi\)
\(824\) −26.9775 + 10.0285i −0.939804 + 0.349359i
\(825\) 0 0
\(826\) −47.1233 + 1.62071i −1.63963 + 0.0563916i
\(827\) 6.21884 + 6.21884i 0.216250 + 0.216250i 0.806916 0.590666i \(-0.201135\pi\)
−0.590666 + 0.806916i \(0.701135\pi\)
\(828\) 0.236416 + 1.56422i 0.00821602 + 0.0543606i
\(829\) −33.7077 19.4612i −1.17072 0.675915i −0.216869 0.976201i \(-0.569585\pi\)
−0.953849 + 0.300286i \(0.902918\pi\)
\(830\) 0 0
\(831\) −4.43367 + 2.55978i −0.153802 + 0.0887978i
\(832\) 32.1594 15.5353i 1.11493 0.538588i
\(833\) −1.51083 + 18.5549i −0.0523470 + 0.642889i
\(834\) 16.8475 25.7431i 0.583383 0.891410i
\(835\) 0 0
\(836\) 7.53399 + 0.845791i 0.260568 + 0.0292523i
\(837\) 5.66257 + 21.1330i 0.195727 + 0.730464i
\(838\) −16.7691 18.7570i −0.579279 0.647949i
\(839\) −15.0742 −0.520418 −0.260209 0.965552i \(-0.583791\pi\)
−0.260209 + 0.965552i \(0.583791\pi\)
\(840\) 0 0
\(841\) −23.2844 −0.802910
\(842\) 15.5220 + 17.3621i 0.534925 + 0.598337i
\(843\) −10.4141 38.8660i −0.358681 1.33862i
\(844\) 20.7385 + 2.32817i 0.713848 + 0.0801390i
\(845\) 0 0
\(846\) 3.59146 5.48776i 0.123477 0.188673i
\(847\) 9.20895 + 25.0663i 0.316423 + 0.861289i
\(848\) 11.7489 0.449132i 0.403461 0.0154233i
\(849\) 21.0823 12.1719i 0.723543 0.417738i
\(850\) 0 0
\(851\) 0.492709 + 0.284465i 0.0168898 + 0.00975135i
\(852\) −2.83434 18.7531i −0.0971028 0.642471i
\(853\) 14.0097 + 14.0097i 0.479684 + 0.479684i 0.905031 0.425346i \(-0.139848\pi\)
−0.425346 + 0.905031i \(0.639848\pi\)
\(854\) −10.5917 + 19.8947i −0.362440 + 0.680784i
\(855\) 0 0
\(856\) −0.0396435 0.106644i −0.00135499 0.00364503i
\(857\) 9.22615 + 34.4324i 0.315159 + 1.17619i 0.923841 + 0.382776i \(0.125032\pi\)
−0.608682 + 0.793414i \(0.708302\pi\)
\(858\) 7.11932 + 2.34108i 0.243049 + 0.0799233i
\(859\) 26.2004 + 45.3805i 0.893947 + 1.54836i 0.835103 + 0.550094i \(0.185408\pi\)
0.0588442 + 0.998267i \(0.481258\pi\)
\(860\) 0 0
\(861\) −1.10450 12.2013i −0.0376411 0.415818i
\(862\) 4.37546 + 20.9491i 0.149029 + 0.713528i
\(863\) −5.09743 1.36585i −0.173518 0.0464941i 0.171014 0.985269i \(-0.445296\pi\)
−0.344532 + 0.938775i \(0.611962\pi\)
\(864\) −8.64899 + 30.1358i −0.294245 + 1.02524i
\(865\) 0 0
\(866\) 0.609393 10.8906i 0.0207080 0.370077i
\(867\) 8.75067 + 8.75067i 0.297188 + 0.297188i
\(868\) 15.0846 14.4489i 0.512003 0.490429i
\(869\) 10.1859i 0.345535i
\(870\) 0 0
\(871\) 57.6023 + 33.2567i 1.95178 + 1.12686i
\(872\) −17.7203 + 1.67254i −0.600085 + 0.0566392i
\(873\) 1.63325 6.09536i 0.0552771 0.206297i
\(874\) −1.68647 + 2.57694i −0.0570458 + 0.0871662i
\(875\) 0 0
\(876\) −33.6304 + 14.6890i −1.13627 + 0.496295i
\(877\) −10.7858 2.89005i −0.364211 0.0975901i 0.0720722 0.997399i \(-0.477039\pi\)
−0.436283 + 0.899809i \(0.643705\pi\)
\(878\) −11.3740 + 34.5887i −0.383854 + 1.16731i
\(879\) 11.1824 19.3685i 0.377174 0.653285i
\(880\) 0 0
\(881\) 22.0701 0.743561 0.371781 0.928321i \(-0.378747\pi\)
0.371781 + 0.928321i \(0.378747\pi\)
\(882\) −11.3018 8.78481i −0.380551 0.295800i
\(883\) −5.32169 + 5.32169i −0.179089 + 0.179089i −0.790959 0.611869i \(-0.790418\pi\)
0.611869 + 0.790959i \(0.290418\pi\)
\(884\) −19.1116 14.0930i −0.642792 0.474000i
\(885\) 0 0
\(886\) 11.0233 + 21.8250i 0.370335 + 0.733225i
\(887\) −1.31079 + 4.89193i −0.0440120 + 0.164255i −0.984434 0.175754i \(-0.943764\pi\)
0.940422 + 0.340009i \(0.110430\pi\)
\(888\) 2.12385 + 2.98944i 0.0712718 + 0.100319i
\(889\) 2.63853 + 3.74417i 0.0884936 + 0.125576i
\(890\) 0 0
\(891\) −2.12030 + 1.22416i −0.0710327 + 0.0410108i
\(892\) 18.9252 + 23.7118i 0.633662 + 0.793929i
\(893\) 12.3327 3.30454i 0.412699 0.110582i
\(894\) −1.10421 + 19.7336i −0.0369303 + 0.659990i
\(895\) 0 0
\(896\) 29.1948 6.60803i 0.975328 0.220759i
\(897\) −2.15273 + 2.15273i −0.0718774 + 0.0718774i
\(898\) 11.7028 10.4625i 0.390526 0.349137i
\(899\) −14.2718 + 24.7194i −0.475990 + 0.824439i
\(900\) 0 0
\(901\) −3.90860 6.76989i −0.130214 0.225538i
\(902\) −1.02265 4.89633i −0.0340507 0.163030i
\(903\) 31.2835 + 26.0899i 1.04105 + 0.868218i
\(904\) −42.7964 7.24469i −1.42339 0.240955i
\(905\) 0 0
\(906\) 23.6367 11.9384i 0.785277 0.396625i
\(907\) 3.27202 0.876735i 0.108646 0.0291115i −0.204087 0.978953i \(-0.565422\pi\)
0.312732 + 0.949841i \(0.398756\pi\)
\(908\) 2.99552 + 19.8196i 0.0994098 + 0.657736i
\(909\) 2.06796i 0.0685899i
\(910\) 0 0
\(911\) 31.5983i 1.04690i −0.852057 0.523449i \(-0.824645\pi\)
0.852057 0.523449i \(-0.175355\pi\)
\(912\) −16.7995 + 10.5748i −0.556287 + 0.350166i
\(913\) 7.44597 1.99514i 0.246426 0.0660295i
\(914\) 13.5407 + 26.8091i 0.447886 + 0.886767i
\(915\) 0 0
\(916\) 13.6796 + 31.3195i 0.451988 + 1.03482i
\(917\) 3.23992 1.19029i 0.106992 0.0393069i
\(918\) 20.4049 4.26180i 0.673462 0.140660i
\(919\) −23.1351 40.0712i −0.763157 1.32183i −0.941215 0.337807i \(-0.890315\pi\)
0.178058 0.984020i \(-0.443018\pi\)
\(920\) 0 0
\(921\) 8.79800 15.2386i 0.289904 0.502128i
\(922\) 8.12167 + 9.08446i 0.267473 + 0.299181i
\(923\) −24.0141 + 24.0141i −0.790435 + 0.790435i
\(924\) 5.37076 + 3.25686i 0.176685 + 0.107143i
\(925\) 0 0
\(926\) 3.26169 + 0.182511i 0.107186 + 0.00599768i
\(927\) −14.2124 + 3.80821i −0.466797 + 0.125078i
\(928\) −35.7797 + 19.8220i −1.17453 + 0.650689i
\(929\) −37.0594 + 21.3962i −1.21588 + 0.701987i −0.964034 0.265780i \(-0.914370\pi\)
−0.251844 + 0.967768i \(0.581037\pi\)
\(930\) 0 0
\(931\) −5.00414 27.4137i −0.164004 0.898447i
\(932\) 3.49220 + 1.36896i 0.114391 + 0.0448418i
\(933\) 4.49719 16.7837i 0.147231 0.549475i
\(934\) 32.1652 16.2459i 1.05248 0.531583i
\(935\) 0 0
\(936\) 17.1144 6.36204i 0.559402 0.207950i
\(937\) −18.9957 + 18.9957i −0.620561 + 0.620561i −0.945675 0.325114i \(-0.894597\pi\)
0.325114 + 0.945675i \(0.394597\pi\)
\(938\) 40.7497 + 38.0399i 1.33053 + 1.24205i
\(939\) −6.11875 −0.199678
\(940\) 0 0
\(941\) 10.8404 18.7762i 0.353388 0.612086i −0.633453 0.773781i \(-0.718363\pi\)
0.986841 + 0.161696i \(0.0516963\pi\)
\(942\) −12.6078 4.14590i −0.410785 0.135081i
\(943\) 1.96271 + 0.525906i 0.0639145 + 0.0171258i
\(944\) 34.2554 36.9785i 1.11492 1.20355i
\(945\) 0 0
\(946\) 13.9163 + 9.10749i 0.452457 + 0.296110i
\(947\) 3.97536 14.8363i 0.129182 0.482114i −0.870772 0.491687i \(-0.836381\pi\)
0.999954 + 0.00957300i \(0.00304723\pi\)
\(948\) 16.6373 + 20.8452i 0.540353 + 0.677019i
\(949\) 56.9090 + 32.8564i 1.84735 + 1.06657i
\(950\) 0 0
\(951\) 42.8869i 1.39070i
\(952\) −12.9421 15.1188i −0.419456 0.490003i
\(953\) −22.0087 22.0087i −0.712931 0.712931i 0.254216 0.967147i \(-0.418183\pi\)
−0.967147 + 0.254216i \(0.918183\pi\)
\(954\) 6.00141 + 0.335815i 0.194303 + 0.0108724i
\(955\) 0 0
\(956\) 3.39557 30.2465i 0.109821 0.978240i
\(957\) −8.29061 2.22146i −0.267997 0.0718096i
\(958\) −12.8446 + 2.68274i −0.414990 + 0.0866755i
\(959\) 0.276665 + 3.05629i 0.00893398 + 0.0986929i
\(960\) 0 0
\(961\) −7.70864 13.3518i −0.248666 0.430702i
\(962\) 2.05120 6.23777i 0.0661333 0.201114i
\(963\) −0.0150542 0.0561830i −0.000485114 0.00181047i
\(964\) 21.2084 + 15.6393i 0.683078 + 0.503708i
\(965\) 0 0
\(966\) −2.16455 + 1.35098i −0.0696434 + 0.0434670i
\(967\) −16.9281 16.9281i −0.544372 0.544372i 0.380435 0.924807i \(-0.375774\pi\)
−0.924807 + 0.380435i \(0.875774\pi\)
\(968\) −25.9554 11.8877i −0.834238 0.382086i
\(969\) 11.4299 + 6.59904i 0.367180 + 0.211992i
\(970\) 0 0
\(971\) −32.1198 + 18.5444i −1.03077 + 0.595118i −0.917206 0.398412i \(-0.869561\pi\)
−0.113568 + 0.993530i \(0.536228\pi\)
\(972\) −9.79698 + 24.9920i −0.314238 + 0.801620i
\(973\) −45.4942 7.88071i −1.45848 0.252644i
\(974\) −21.0739 13.7918i −0.675251 0.441918i
\(975\) 0 0
\(976\) −7.12065 23.0185i −0.227926 0.736803i
\(977\) −6.04928 22.5762i −0.193534 0.722277i −0.992642 0.121090i \(-0.961361\pi\)
0.799108 0.601188i \(-0.205306\pi\)
\(978\) 8.73879 7.81264i 0.279436 0.249821i
\(979\) 2.01652 0.0644484
\(980\) 0 0
\(981\) −9.09942 −0.290522
\(982\) −2.63545 + 2.35614i −0.0841006 + 0.0751875i
\(983\) −5.14648 19.2069i −0.164147 0.612606i −0.998147 0.0608417i \(-0.980622\pi\)
0.834000 0.551764i \(-0.186045\pi\)
\(984\) 10.0903 + 8.34979i 0.321666 + 0.266182i
\(985\) 0 0
\(986\) 22.7555 + 14.8923i 0.724682 + 0.474268i
\(987\) 10.4228 + 1.80549i 0.331763 + 0.0574694i
\(988\) 33.0932 + 12.9727i 1.05284 + 0.412716i
\(989\) −5.85104 + 3.37810i −0.186052 + 0.107417i
\(990\) 0 0
\(991\) −19.5362 11.2792i −0.620586 0.358296i 0.156511 0.987676i \(-0.449975\pi\)
−0.777097 + 0.629380i \(0.783309\pi\)
\(992\) −0.394977 + 22.3269i −0.0125405 + 0.708880i
\(993\) 11.4204 + 11.4204i 0.362414 + 0.362414i
\(994\) −24.1461 + 15.0705i −0.765868 + 0.478006i
\(995\) 0 0
\(996\) −11.9791 + 16.2449i −0.379573 + 0.514739i
\(997\) −4.45792 16.6372i −0.141184 0.526905i −0.999896 0.0144466i \(-0.995401\pi\)
0.858712 0.512459i \(-0.171265\pi\)
\(998\) 2.88211 8.76459i 0.0912315 0.277438i
\(999\) 2.88213 + 4.99199i 0.0911865 + 0.157940i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 700.2.be.e.543.5 72
4.3 odd 2 inner 700.2.be.e.543.2 72
5.2 odd 4 inner 700.2.be.e.207.14 72
5.3 odd 4 140.2.w.b.67.5 yes 72
5.4 even 2 140.2.w.b.123.14 yes 72
7.2 even 3 inner 700.2.be.e.443.8 72
20.3 even 4 140.2.w.b.67.11 yes 72
20.7 even 4 inner 700.2.be.e.207.8 72
20.19 odd 2 140.2.w.b.123.17 yes 72
28.23 odd 6 inner 700.2.be.e.443.14 72
35.2 odd 12 inner 700.2.be.e.107.2 72
35.3 even 12 980.2.k.j.687.8 36
35.4 even 6 980.2.k.k.883.1 36
35.9 even 6 140.2.w.b.23.11 yes 72
35.13 even 4 980.2.x.m.67.5 72
35.18 odd 12 980.2.k.k.687.8 36
35.19 odd 6 980.2.x.m.863.11 72
35.23 odd 12 140.2.w.b.107.17 yes 72
35.24 odd 6 980.2.k.j.883.1 36
35.33 even 12 980.2.x.m.667.17 72
35.34 odd 2 980.2.x.m.263.14 72
140.3 odd 12 980.2.k.j.687.1 36
140.19 even 6 980.2.x.m.863.5 72
140.23 even 12 140.2.w.b.107.14 yes 72
140.39 odd 6 980.2.k.k.883.8 36
140.59 even 6 980.2.k.j.883.8 36
140.79 odd 6 140.2.w.b.23.5 72
140.83 odd 4 980.2.x.m.67.11 72
140.103 odd 12 980.2.x.m.667.14 72
140.107 even 12 inner 700.2.be.e.107.5 72
140.123 even 12 980.2.k.k.687.1 36
140.139 even 2 980.2.x.m.263.17 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.w.b.23.5 72 140.79 odd 6
140.2.w.b.23.11 yes 72 35.9 even 6
140.2.w.b.67.5 yes 72 5.3 odd 4
140.2.w.b.67.11 yes 72 20.3 even 4
140.2.w.b.107.14 yes 72 140.23 even 12
140.2.w.b.107.17 yes 72 35.23 odd 12
140.2.w.b.123.14 yes 72 5.4 even 2
140.2.w.b.123.17 yes 72 20.19 odd 2
700.2.be.e.107.2 72 35.2 odd 12 inner
700.2.be.e.107.5 72 140.107 even 12 inner
700.2.be.e.207.8 72 20.7 even 4 inner
700.2.be.e.207.14 72 5.2 odd 4 inner
700.2.be.e.443.8 72 7.2 even 3 inner
700.2.be.e.443.14 72 28.23 odd 6 inner
700.2.be.e.543.2 72 4.3 odd 2 inner
700.2.be.e.543.5 72 1.1 even 1 trivial
980.2.k.j.687.1 36 140.3 odd 12
980.2.k.j.687.8 36 35.3 even 12
980.2.k.j.883.1 36 35.24 odd 6
980.2.k.j.883.8 36 140.59 even 6
980.2.k.k.687.1 36 140.123 even 12
980.2.k.k.687.8 36 35.18 odd 12
980.2.k.k.883.1 36 35.4 even 6
980.2.k.k.883.8 36 140.39 odd 6
980.2.x.m.67.5 72 35.13 even 4
980.2.x.m.67.11 72 140.83 odd 4
980.2.x.m.263.14 72 35.34 odd 2
980.2.x.m.263.17 72 140.139 even 2
980.2.x.m.667.14 72 140.103 odd 12
980.2.x.m.667.17 72 35.33 even 12
980.2.x.m.863.5 72 140.19 even 6
980.2.x.m.863.11 72 35.19 odd 6