Properties

Label 700.2.be.e
Level 700700
Weight 22
Character orbit 700.be
Analytic conductor 5.5905.590
Analytic rank 00
Dimension 7272
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [700,2,Mod(107,700)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("700.107"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(700, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 3, 4])) N = Newforms(chi, 2, names="a")
 
Level: N N == 700=22527 700 = 2^{2} \cdot 5^{2} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 700.be (of order 1212, degree 44, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [72,-2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 5.589528141495.58952814149
Analytic rank: 00
Dimension: 7272
Relative dimension: 1818 over Q(ζ12)\Q(\zeta_{12})
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: SU(2)[C12]\mathrm{SU}(2)[C_{12}]

qq-expansion

The algebraic qq-expansion of this newform has not been computed, but we have computed the trace expansion.

Tr(f)(q)=\operatorname{Tr}(f)(q) = 72q2q216q6+4q810q1228q164q17+20q18+4q21+16q224q2642q28+38q32+64q33+16q36+4q3712q3840q4178q42++90q98+O(q100) 72 q - 2 q^{2} - 16 q^{6} + 4 q^{8} - 10 q^{12} - 28 q^{16} - 4 q^{17} + 20 q^{18} + 4 q^{21} + 16 q^{22} - 4 q^{26} - 42 q^{28} + 38 q^{32} + 64 q^{33} + 16 q^{36} + 4 q^{37} - 12 q^{38} - 40 q^{41} - 78 q^{42}+ \cdots + 90 q^{98}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
107.1 −1.41349 + 0.0450897i 0.543458 2.02821i 1.99593 0.127468i 0 −0.676724 + 2.89137i 0.0742486 + 2.64471i −2.81549 + 0.270171i −1.22023 0.704499i 0
107.2 −1.34344 0.441772i −0.322645 + 1.20413i 1.60968 + 1.18699i 0 0.965404 1.47514i 2.60693 0.451584i −1.63813 2.30576i 1.25225 + 0.722989i 0
107.3 −1.24667 + 0.667698i −0.543458 + 2.02821i 1.10836 1.66480i 0 −0.676724 2.89137i −0.0742486 2.64471i −0.270171 + 2.81549i −1.22023 0.704499i 0
107.4 −1.04540 0.952442i −0.727420 + 2.71477i 0.185707 + 1.99136i 0 3.34610 2.14518i −0.496852 + 2.59868i 1.70252 2.25864i −4.24276 2.44956i 0
107.5 −0.942570 + 1.05431i 0.322645 1.20413i −0.223125 1.98751i 0 0.965404 + 1.47514i −2.60693 + 0.451584i 2.30576 + 1.63813i 1.25225 + 0.722989i 0
107.6 −0.839014 1.13844i 0.290169 1.08292i −0.592112 + 1.91034i 0 −1.47630 + 0.578247i −2.16744 1.51730i 2.67161 0.928715i 1.50955 + 0.871538i 0
107.7 −0.764487 1.18977i 0.638980 2.38471i −0.831118 + 1.81913i 0 −3.32575 + 1.06284i 1.60796 + 2.10106i 2.79973 0.401862i −2.68045 1.54756i 0
107.8 −0.429119 + 1.34754i 0.727420 2.71477i −1.63171 1.15651i 0 3.34610 + 2.14518i 0.496852 2.59868i 2.25864 1.70252i −4.24276 2.44956i 0
107.9 −0.157385 + 1.40543i −0.290169 + 1.08292i −1.95046 0.442386i 0 −1.47630 0.578247i 2.16744 + 1.51730i 0.928715 2.67161i 1.50955 + 0.871538i 0
107.10 −0.0671791 + 1.41262i −0.638980 + 2.38471i −1.99097 0.189797i 0 −3.32575 1.06284i −1.60796 2.10106i 0.401862 2.79973i −2.68045 1.54756i 0
107.11 −0.0366689 1.41374i −0.107770 + 0.402205i −1.99731 + 0.103680i 0 0.572564 + 0.137611i 1.30345 2.30240i 0.219816 + 2.81987i 2.44792 + 1.41331i 0
107.12 0.599707 1.28076i −0.147892 + 0.551941i −1.28070 1.53616i 0 0.618214 + 0.520418i −0.735093 + 2.54158i −2.73551 + 0.719030i 2.31531 + 1.33674i 0
107.13 0.675113 + 1.24267i 0.107770 0.402205i −1.08845 + 1.67788i 0 0.572564 0.137611i −1.30345 + 2.30240i −2.81987 0.219816i 2.44792 + 1.41331i 0
107.14 0.739299 1.20559i 0.664287 2.47915i −0.906874 1.78258i 0 −2.49773 2.63369i 2.23844 1.41045i −2.81950 0.224544i −3.10685 1.79374i 0
107.15 1.10438 0.883367i −0.216303 + 0.807254i 0.439327 1.95115i 0 0.474220 + 1.08259i −2.62434 0.335905i −1.23840 2.54291i 1.99320 + 1.15078i 0
107.16 1.15974 + 0.809319i 0.147892 0.551941i 0.690004 + 1.87720i 0 0.618214 0.520418i 0.735093 2.54158i −0.719030 + 2.73551i 2.31531 + 1.33674i 0
107.17 1.24304 + 0.674418i −0.664287 + 2.47915i 1.09032 + 1.67666i 0 −2.49773 + 2.63369i −2.23844 + 1.41045i 0.224544 + 2.81950i −3.10685 1.79374i 0
107.18 1.39811 + 0.212826i 0.216303 0.807254i 1.90941 + 0.595107i 0 0.474220 1.08259i 2.62434 + 0.335905i 2.54291 + 1.23840i 1.99320 + 1.15078i 0
207.1 −1.41374 0.0366689i −0.402205 + 0.107770i 1.99731 + 0.103680i 0 0.572564 0.137611i −2.30240 + 1.30345i −2.81987 0.219816i −2.44792 + 1.41331i 0
207.2 −1.28076 + 0.599707i −0.551941 + 0.147892i 1.28070 1.53616i 0 0.618214 0.520418i 2.54158 0.735093i −0.719030 + 2.73551i −2.31531 + 1.33674i 0
See all 72 embeddings
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 107.18
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
5.c odd 4 1 inner
7.c even 3 1 inner
20.e even 4 1 inner
28.g odd 6 1 inner
35.l odd 12 1 inner
140.w even 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 700.2.be.e 72
4.b odd 2 1 inner 700.2.be.e 72
5.b even 2 1 140.2.w.b 72
5.c odd 4 1 140.2.w.b 72
5.c odd 4 1 inner 700.2.be.e 72
7.c even 3 1 inner 700.2.be.e 72
20.d odd 2 1 140.2.w.b 72
20.e even 4 1 140.2.w.b 72
20.e even 4 1 inner 700.2.be.e 72
28.g odd 6 1 inner 700.2.be.e 72
35.c odd 2 1 980.2.x.m 72
35.f even 4 1 980.2.x.m 72
35.i odd 6 1 980.2.k.j 36
35.i odd 6 1 980.2.x.m 72
35.j even 6 1 140.2.w.b 72
35.j even 6 1 980.2.k.k 36
35.k even 12 1 980.2.k.j 36
35.k even 12 1 980.2.x.m 72
35.l odd 12 1 140.2.w.b 72
35.l odd 12 1 inner 700.2.be.e 72
35.l odd 12 1 980.2.k.k 36
140.c even 2 1 980.2.x.m 72
140.j odd 4 1 980.2.x.m 72
140.p odd 6 1 140.2.w.b 72
140.p odd 6 1 980.2.k.k 36
140.s even 6 1 980.2.k.j 36
140.s even 6 1 980.2.x.m 72
140.w even 12 1 140.2.w.b 72
140.w even 12 1 inner 700.2.be.e 72
140.w even 12 1 980.2.k.k 36
140.x odd 12 1 980.2.k.j 36
140.x odd 12 1 980.2.x.m 72
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
140.2.w.b 72 5.b even 2 1
140.2.w.b 72 5.c odd 4 1
140.2.w.b 72 20.d odd 2 1
140.2.w.b 72 20.e even 4 1
140.2.w.b 72 35.j even 6 1
140.2.w.b 72 35.l odd 12 1
140.2.w.b 72 140.p odd 6 1
140.2.w.b 72 140.w even 12 1
700.2.be.e 72 1.a even 1 1 trivial
700.2.be.e 72 4.b odd 2 1 inner
700.2.be.e 72 5.c odd 4 1 inner
700.2.be.e 72 7.c even 3 1 inner
700.2.be.e 72 20.e even 4 1 inner
700.2.be.e 72 28.g odd 6 1 inner
700.2.be.e 72 35.l odd 12 1 inner
700.2.be.e 72 140.w even 12 1 inner
980.2.k.j 36 35.i odd 6 1
980.2.k.j 36 35.k even 12 1
980.2.k.j 36 140.s even 6 1
980.2.k.j 36 140.x odd 12 1
980.2.k.k 36 35.j even 6 1
980.2.k.k 36 35.l odd 12 1
980.2.k.k 36 140.p odd 6 1
980.2.k.k 36 140.w even 12 1
980.2.x.m 72 35.c odd 2 1
980.2.x.m 72 35.f even 4 1
980.2.x.m 72 35.i odd 6 1
980.2.x.m 72 35.k even 12 1
980.2.x.m 72 140.c even 2 1
980.2.x.m 72 140.j odd 4 1
980.2.x.m 72 140.s even 6 1
980.2.x.m 72 140.x odd 12 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T372167T368+17716T3641150565T360+54628057T356++136048896 T_{3}^{72} - 167 T_{3}^{68} + 17716 T_{3}^{64} - 1150565 T_{3}^{60} + 54628057 T_{3}^{56} + \cdots + 136048896 acting on S2new(700,[χ])S_{2}^{\mathrm{new}}(700, [\chi]). Copy content Toggle raw display