Properties

Label 700.2.be.e.207.14
Level $700$
Weight $2$
Character 700.207
Analytic conductor $5.590$
Analytic rank $0$
Dimension $72$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [700,2,Mod(107,700)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("700.107"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(700, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 3, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 700.be (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [72,-2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.58952814149\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(18\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 207.14
Character \(\chi\) \(=\) 700.207
Dual form 700.2.be.e.443.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.05431 - 0.942570i) q^{2} +(1.20413 - 0.322645i) q^{3} +(0.223125 - 1.98751i) q^{4} +(0.965404 - 1.47514i) q^{6} +(0.451584 - 2.60693i) q^{7} +(-1.63813 - 2.30576i) q^{8} +(-1.25225 + 0.722989i) q^{9} +(0.824629 + 0.476100i) q^{11} +(-0.372591 - 2.46521i) q^{12} +(3.15680 - 3.15680i) q^{13} +(-1.98110 - 3.17415i) q^{14} +(-3.90043 - 0.886929i) q^{16} +(-2.56885 + 0.688322i) q^{17} +(-0.638792 + 1.94259i) q^{18} +(1.99048 + 3.44760i) q^{19} +(-0.297348 - 3.28477i) q^{21} +(1.31817 - 0.275315i) q^{22} +(0.141582 - 0.528392i) q^{23} +(-2.71646 - 2.24790i) q^{24} +(0.352732 - 6.30375i) q^{26} +(-3.91905 + 3.91905i) q^{27} +(-5.08055 - 1.47920i) q^{28} -7.23080i q^{29} +(3.41863 + 1.97375i) q^{31} +(-4.94824 + 2.74133i) q^{32} +(1.14657 + 0.307222i) q^{33} +(-2.05957 + 3.14702i) q^{34} +(1.15754 + 2.65019i) q^{36} +(-0.269180 + 1.00460i) q^{37} +(5.34818 + 1.75867i) q^{38} +(2.78267 - 4.81972i) q^{39} +3.71449 q^{41} +(-3.40962 - 3.18289i) q^{42} +(8.73324 + 8.73324i) q^{43} +(1.13025 - 1.53273i) q^{44} +(-0.348775 - 0.690538i) q^{46} +(-3.09794 - 0.830089i) q^{47} +(-4.98278 + 0.190479i) q^{48} +(-6.59214 - 2.35449i) q^{49} +(-2.87114 + 1.65765i) q^{51} +(-5.56983 - 6.97856i) q^{52} +(0.760768 + 2.83923i) q^{53} +(-0.437903 + 7.82586i) q^{54} +(-6.75070 + 3.22924i) q^{56} +(3.50914 + 3.50914i) q^{57} +(-6.81553 - 7.62348i) q^{58} +(6.30084 - 10.9134i) q^{59} +(3.01183 + 5.21665i) q^{61} +(5.46468 - 1.14136i) q^{62} +(1.31928 + 3.59102i) q^{63} +(-2.63307 + 7.55427i) q^{64} +(1.49841 - 0.756815i) q^{66} +(3.85605 + 14.3910i) q^{67} +(0.794874 + 5.25921i) q^{68} -0.681932i q^{69} +7.60710i q^{71} +(3.71839 + 1.70305i) q^{72} +(-3.80964 - 14.2178i) q^{73} +(0.663102 + 1.31287i) q^{74} +(7.29629 - 3.18685i) q^{76} +(1.61355 - 1.93475i) q^{77} +(-1.60914 - 7.70432i) q^{78} +(5.34864 + 9.26412i) q^{79} +(-1.28561 + 2.22674i) q^{81} +(3.91621 - 3.50117i) q^{82} +(-5.72446 - 5.72446i) q^{83} +(-6.59488 - 0.141933i) q^{84} +(17.4392 + 0.975826i) q^{86} +(-2.33298 - 8.70680i) q^{87} +(-0.253076 - 2.68131i) q^{88} +(-1.83403 + 1.05888i) q^{89} +(-6.80400 - 9.65512i) q^{91} +(-1.01860 - 0.399294i) q^{92} +(4.75329 + 1.27364i) q^{93} +(-4.04859 + 2.04485i) q^{94} +(-5.07384 + 4.89744i) q^{96} +(3.08588 + 3.08588i) q^{97} +(-9.16941 + 3.73120i) q^{98} -1.37686 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q - 2 q^{2} - 16 q^{6} + 4 q^{8} - 10 q^{12} - 28 q^{16} - 4 q^{17} + 20 q^{18} + 4 q^{21} + 16 q^{22} - 4 q^{26} - 42 q^{28} + 38 q^{32} + 64 q^{33} + 16 q^{36} + 4 q^{37} - 12 q^{38} - 40 q^{41} - 78 q^{42}+ \cdots + 90 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/700\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(477\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.05431 0.942570i 0.745507 0.666497i
\(3\) 1.20413 0.322645i 0.695203 0.186279i 0.106122 0.994353i \(-0.466157\pi\)
0.589081 + 0.808074i \(0.299490\pi\)
\(4\) 0.223125 1.98751i 0.111563 0.993757i
\(5\) 0 0
\(6\) 0.965404 1.47514i 0.394125 0.602224i
\(7\) 0.451584 2.60693i 0.170683 0.985326i
\(8\) −1.63813 2.30576i −0.579166 0.815210i
\(9\) −1.25225 + 0.722989i −0.417418 + 0.240996i
\(10\) 0 0
\(11\) 0.824629 + 0.476100i 0.248635 + 0.143549i 0.619139 0.785281i \(-0.287482\pi\)
−0.370504 + 0.928831i \(0.620815\pi\)
\(12\) −0.372591 2.46521i −0.107558 0.711645i
\(13\) 3.15680 3.15680i 0.875540 0.875540i −0.117529 0.993069i \(-0.537497\pi\)
0.993069 + 0.117529i \(0.0374974\pi\)
\(14\) −1.98110 3.17415i −0.529472 0.848327i
\(15\) 0 0
\(16\) −3.90043 0.886929i −0.975108 0.221732i
\(17\) −2.56885 + 0.688322i −0.623038 + 0.166943i −0.556508 0.830842i \(-0.687859\pi\)
−0.0665295 + 0.997784i \(0.521193\pi\)
\(18\) −0.638792 + 1.94259i −0.150565 + 0.457872i
\(19\) 1.99048 + 3.44760i 0.456646 + 0.790935i 0.998781 0.0493567i \(-0.0157171\pi\)
−0.542135 + 0.840292i \(0.682384\pi\)
\(20\) 0 0
\(21\) −0.297348 3.28477i −0.0648866 0.716797i
\(22\) 1.31817 0.275315i 0.281034 0.0586973i
\(23\) 0.141582 0.528392i 0.0295219 0.110177i −0.949593 0.313486i \(-0.898503\pi\)
0.979115 + 0.203309i \(0.0651696\pi\)
\(24\) −2.71646 2.24790i −0.554495 0.458850i
\(25\) 0 0
\(26\) 0.352732 6.30375i 0.0691765 1.23627i
\(27\) −3.91905 + 3.91905i −0.754222 + 0.754222i
\(28\) −5.08055 1.47920i −0.960133 0.279543i
\(29\) 7.23080i 1.34273i −0.741129 0.671363i \(-0.765709\pi\)
0.741129 0.671363i \(-0.234291\pi\)
\(30\) 0 0
\(31\) 3.41863 + 1.97375i 0.614004 + 0.354495i 0.774531 0.632536i \(-0.217986\pi\)
−0.160527 + 0.987031i \(0.551319\pi\)
\(32\) −4.94824 + 2.74133i −0.874734 + 0.484604i
\(33\) 1.14657 + 0.307222i 0.199592 + 0.0534805i
\(34\) −2.05957 + 3.14702i −0.353213 + 0.539710i
\(35\) 0 0
\(36\) 1.15754 + 2.65019i 0.192924 + 0.441698i
\(37\) −0.269180 + 1.00460i −0.0442530 + 0.165154i −0.984516 0.175294i \(-0.943912\pi\)
0.940263 + 0.340449i \(0.110579\pi\)
\(38\) 5.34818 + 1.75867i 0.867589 + 0.285294i
\(39\) 2.78267 4.81972i 0.445584 0.771773i
\(40\) 0 0
\(41\) 3.71449 0.580106 0.290053 0.957011i \(-0.406327\pi\)
0.290053 + 0.957011i \(0.406327\pi\)
\(42\) −3.40962 3.18289i −0.526116 0.491130i
\(43\) 8.73324 + 8.73324i 1.33181 + 1.33181i 0.903754 + 0.428052i \(0.140800\pi\)
0.428052 + 0.903754i \(0.359200\pi\)
\(44\) 1.13025 1.53273i 0.170392 0.231068i
\(45\) 0 0
\(46\) −0.348775 0.690538i −0.0514241 0.101814i
\(47\) −3.09794 0.830089i −0.451880 0.121081i 0.0256988 0.999670i \(-0.491819\pi\)
−0.477579 + 0.878589i \(0.658486\pi\)
\(48\) −4.98278 + 0.190479i −0.719202 + 0.0274933i
\(49\) −6.59214 2.35449i −0.941735 0.336356i
\(50\) 0 0
\(51\) −2.87114 + 1.65765i −0.402040 + 0.232118i
\(52\) −5.56983 6.97856i −0.772397 0.967752i
\(53\) 0.760768 + 2.83923i 0.104500 + 0.389998i 0.998288 0.0584914i \(-0.0186290\pi\)
−0.893788 + 0.448489i \(0.851962\pi\)
\(54\) −0.437903 + 7.82586i −0.0595911 + 1.06496i
\(55\) 0 0
\(56\) −6.75070 + 3.22924i −0.902101 + 0.431525i
\(57\) 3.50914 + 3.50914i 0.464797 + 0.464797i
\(58\) −6.81553 7.62348i −0.894923 1.00101i
\(59\) 6.30084 10.9134i 0.820300 1.42080i −0.0851594 0.996367i \(-0.527140\pi\)
0.905459 0.424433i \(-0.139527\pi\)
\(60\) 0 0
\(61\) 3.01183 + 5.21665i 0.385626 + 0.667923i 0.991856 0.127366i \(-0.0406523\pi\)
−0.606230 + 0.795289i \(0.707319\pi\)
\(62\) 5.46468 1.14136i 0.694015 0.144953i
\(63\) 1.31928 + 3.59102i 0.166214 + 0.452426i
\(64\) −2.63307 + 7.55427i −0.329134 + 0.944283i
\(65\) 0 0
\(66\) 1.49841 0.756815i 0.184442 0.0931574i
\(67\) 3.85605 + 14.3910i 0.471092 + 1.75814i 0.635858 + 0.771806i \(0.280647\pi\)
−0.164766 + 0.986333i \(0.552687\pi\)
\(68\) 0.794874 + 5.25921i 0.0963927 + 0.637773i
\(69\) 0.681932i 0.0820949i
\(70\) 0 0
\(71\) 7.60710i 0.902797i 0.892322 + 0.451399i \(0.149075\pi\)
−0.892322 + 0.451399i \(0.850925\pi\)
\(72\) 3.71839 + 1.70305i 0.438216 + 0.200706i
\(73\) −3.80964 14.2178i −0.445885 1.66406i −0.713590 0.700564i \(-0.752932\pi\)
0.267705 0.963501i \(-0.413735\pi\)
\(74\) 0.663102 + 1.31287i 0.0770841 + 0.152618i
\(75\) 0 0
\(76\) 7.29629 3.18685i 0.836942 0.365557i
\(77\) 1.61355 1.93475i 0.183881 0.220485i
\(78\) −1.60914 7.70432i −0.182199 0.872343i
\(79\) 5.34864 + 9.26412i 0.601769 + 1.04230i 0.992553 + 0.121813i \(0.0388707\pi\)
−0.390784 + 0.920483i \(0.627796\pi\)
\(80\) 0 0
\(81\) −1.28561 + 2.22674i −0.142846 + 0.247416i
\(82\) 3.91621 3.50117i 0.432473 0.386639i
\(83\) −5.72446 5.72446i −0.628341 0.628341i 0.319309 0.947651i \(-0.396549\pi\)
−0.947651 + 0.319309i \(0.896549\pi\)
\(84\) −6.59488 0.141933i −0.719561 0.0154861i
\(85\) 0 0
\(86\) 17.4392 + 0.975826i 1.88052 + 0.105226i
\(87\) −2.33298 8.70680i −0.250122 0.933467i
\(88\) −0.253076 2.68131i −0.0269780 0.285828i
\(89\) −1.83403 + 1.05888i −0.194407 + 0.112241i −0.594044 0.804433i \(-0.702469\pi\)
0.399637 + 0.916673i \(0.369136\pi\)
\(90\) 0 0
\(91\) −6.80400 9.65512i −0.713253 1.01213i
\(92\) −1.01860 0.399294i −0.106196 0.0416293i
\(93\) 4.75329 + 1.27364i 0.492893 + 0.132070i
\(94\) −4.04859 + 2.04485i −0.417580 + 0.210910i
\(95\) 0 0
\(96\) −5.07384 + 4.89744i −0.517846 + 0.499843i
\(97\) 3.08588 + 3.08588i 0.313324 + 0.313324i 0.846196 0.532872i \(-0.178887\pi\)
−0.532872 + 0.846196i \(0.678887\pi\)
\(98\) −9.16941 + 3.73120i −0.926251 + 0.376908i
\(99\) −1.37686 −0.138379
\(100\) 0 0
\(101\) 0.715074 1.23854i 0.0711525 0.123240i −0.828254 0.560353i \(-0.810666\pi\)
0.899407 + 0.437113i \(0.143999\pi\)
\(102\) −1.46461 + 4.45393i −0.145018 + 0.441004i
\(103\) −2.63366 + 9.82894i −0.259502 + 0.968474i 0.706028 + 0.708183i \(0.250485\pi\)
−0.965530 + 0.260291i \(0.916182\pi\)
\(104\) −12.4501 2.10758i −1.22083 0.206666i
\(105\) 0 0
\(106\) 3.47825 + 2.27634i 0.337838 + 0.221097i
\(107\) 0.0388547 + 0.0104111i 0.00375622 + 0.00100648i 0.260697 0.965421i \(-0.416048\pi\)
−0.256940 + 0.966427i \(0.582714\pi\)
\(108\) 6.91473 + 8.66361i 0.665371 + 0.833656i
\(109\) 5.44983 + 3.14646i 0.521999 + 0.301376i 0.737752 0.675072i \(-0.235887\pi\)
−0.215753 + 0.976448i \(0.569221\pi\)
\(110\) 0 0
\(111\) 1.29651i 0.123059i
\(112\) −4.07353 + 9.76762i −0.384912 + 0.922953i
\(113\) −10.8513 + 10.8513i −1.02081 + 1.02081i −0.0210265 + 0.999779i \(0.506693\pi\)
−0.999779 + 0.0210265i \(0.993307\pi\)
\(114\) 7.00732 + 0.392101i 0.656295 + 0.0367236i
\(115\) 0 0
\(116\) −14.3713 1.61337i −1.33434 0.149798i
\(117\) −1.67078 + 6.23545i −0.154464 + 0.576468i
\(118\) −3.64360 17.4450i −0.335420 1.60595i
\(119\) 0.634353 + 7.00765i 0.0581511 + 0.642390i
\(120\) 0 0
\(121\) −5.04666 8.74107i −0.458787 0.794643i
\(122\) 8.09245 + 2.66108i 0.732656 + 0.240923i
\(123\) 4.47272 1.19846i 0.403292 0.108062i
\(124\) 4.68563 6.35419i 0.420782 0.570623i
\(125\) 0 0
\(126\) 4.77572 + 2.54252i 0.425455 + 0.226506i
\(127\) 1.22418 1.22418i 0.108629 0.108629i −0.650703 0.759332i \(-0.725526\pi\)
0.759332 + 0.650703i \(0.225526\pi\)
\(128\) 4.34436 + 10.4464i 0.383991 + 0.923337i
\(129\) 13.3337 + 7.69820i 1.17396 + 0.677788i
\(130\) 0 0
\(131\) −1.12982 + 0.652300i −0.0987126 + 0.0569918i −0.548544 0.836122i \(-0.684818\pi\)
0.449831 + 0.893114i \(0.351484\pi\)
\(132\) 0.866437 2.21027i 0.0754137 0.192380i
\(133\) 9.88652 3.63214i 0.857270 0.314947i
\(134\) 17.6300 + 11.5379i 1.52300 + 0.996724i
\(135\) 0 0
\(136\) 5.79522 + 4.79560i 0.496936 + 0.411219i
\(137\) 1.12037 0.300203i 0.0957198 0.0256480i −0.210641 0.977563i \(-0.567555\pi\)
0.306361 + 0.951915i \(0.400889\pi\)
\(138\) −0.642768 0.718965i −0.0547161 0.0612024i
\(139\) −17.4513 −1.48020 −0.740099 0.672498i \(-0.765221\pi\)
−0.740099 + 0.672498i \(0.765221\pi\)
\(140\) 0 0
\(141\) −3.99813 −0.336704
\(142\) 7.17023 + 8.02022i 0.601712 + 0.673042i
\(143\) 4.10614 1.10024i 0.343373 0.0920065i
\(144\) 5.52556 1.70931i 0.460464 0.142442i
\(145\) 0 0
\(146\) −17.4178 11.3990i −1.44151 0.943392i
\(147\) −8.69745 0.708187i −0.717353 0.0584103i
\(148\) 1.93659 + 0.759151i 0.159186 + 0.0624018i
\(149\) 9.70894 5.60546i 0.795387 0.459217i −0.0464684 0.998920i \(-0.514797\pi\)
0.841856 + 0.539703i \(0.181463\pi\)
\(150\) 0 0
\(151\) 13.0081 + 7.51022i 1.05858 + 0.611173i 0.925040 0.379870i \(-0.124031\pi\)
0.133543 + 0.991043i \(0.457365\pi\)
\(152\) 4.68870 10.2372i 0.380304 0.830345i
\(153\) 2.71920 2.71920i 0.219835 0.219835i
\(154\) −0.122463 3.56070i −0.00986832 0.286929i
\(155\) 0 0
\(156\) −8.95839 6.60600i −0.717245 0.528903i
\(157\) 7.27171 1.94845i 0.580345 0.155503i 0.0433084 0.999062i \(-0.486210\pi\)
0.537037 + 0.843559i \(0.319544\pi\)
\(158\) 14.3712 + 4.72576i 1.14331 + 0.375961i
\(159\) 1.83212 + 3.17333i 0.145297 + 0.251662i
\(160\) 0 0
\(161\) −1.31354 0.607707i −0.103522 0.0478941i
\(162\) 0.743432 + 3.55944i 0.0584095 + 0.279656i
\(163\) 1.72089 6.42243i 0.134790 0.503044i −0.865208 0.501412i \(-0.832814\pi\)
0.999999 0.00163153i \(-0.000519334\pi\)
\(164\) 0.828796 7.38261i 0.0647181 0.576485i
\(165\) 0 0
\(166\) −11.4310 0.639635i −0.887221 0.0496453i
\(167\) 5.93258 5.93258i 0.459077 0.459077i −0.439276 0.898352i \(-0.644765\pi\)
0.898352 + 0.439276i \(0.144765\pi\)
\(168\) −7.08681 + 6.06650i −0.546759 + 0.468040i
\(169\) 6.93083i 0.533141i
\(170\) 0 0
\(171\) −4.98516 2.87818i −0.381225 0.220100i
\(172\) 19.3060 15.4088i 1.47207 1.17491i
\(173\) −2.13818 0.572923i −0.162563 0.0435585i 0.176620 0.984279i \(-0.443484\pi\)
−0.339182 + 0.940721i \(0.610150\pi\)
\(174\) −10.6664 6.98064i −0.808621 0.529201i
\(175\) 0 0
\(176\) −2.79414 2.58838i −0.210616 0.195106i
\(177\) 4.06587 15.1740i 0.305610 1.14055i
\(178\) −0.935563 + 2.84508i −0.0701234 + 0.213248i
\(179\) −8.23493 + 14.2633i −0.615507 + 1.06609i 0.374788 + 0.927111i \(0.377716\pi\)
−0.990295 + 0.138980i \(0.955618\pi\)
\(180\) 0 0
\(181\) −5.97636 −0.444219 −0.222110 0.975022i \(-0.571294\pi\)
−0.222110 + 0.975022i \(0.571294\pi\)
\(182\) −16.2741 3.76622i −1.20632 0.279171i
\(183\) 5.30976 + 5.30976i 0.392508 + 0.392508i
\(184\) −1.45027 + 0.539119i −0.106916 + 0.0397444i
\(185\) 0 0
\(186\) 6.21192 3.13750i 0.455480 0.230052i
\(187\) −2.44606 0.655419i −0.178873 0.0479290i
\(188\) −2.34104 + 5.97198i −0.170738 + 0.435551i
\(189\) 8.44690 + 11.9865i 0.614422 + 0.871887i
\(190\) 0 0
\(191\) −6.96830 + 4.02315i −0.504209 + 0.291105i −0.730450 0.682966i \(-0.760690\pi\)
0.226241 + 0.974071i \(0.427356\pi\)
\(192\) −0.733203 + 9.94585i −0.0529144 + 0.717780i
\(193\) 3.76831 + 14.0635i 0.271249 + 1.01231i 0.958314 + 0.285718i \(0.0922321\pi\)
−0.687065 + 0.726596i \(0.741101\pi\)
\(194\) 6.16213 + 0.344807i 0.442415 + 0.0247557i
\(195\) 0 0
\(196\) −6.15046 + 12.5766i −0.439319 + 0.898331i
\(197\) −16.4919 16.4919i −1.17500 1.17500i −0.981001 0.194001i \(-0.937854\pi\)
−0.194001 0.981001i \(-0.562146\pi\)
\(198\) −1.45163 + 1.29778i −0.103163 + 0.0922295i
\(199\) 4.82793 8.36222i 0.342243 0.592782i −0.642606 0.766197i \(-0.722147\pi\)
0.984849 + 0.173415i \(0.0554801\pi\)
\(200\) 0 0
\(201\) 9.28636 + 16.0844i 0.655009 + 1.13451i
\(202\) −0.413507 1.97981i −0.0290943 0.139299i
\(203\) −18.8502 3.26531i −1.32302 0.229180i
\(204\) 2.65399 + 6.07630i 0.185816 + 0.425426i
\(205\) 0 0
\(206\) 6.48778 + 12.8451i 0.452025 + 0.894962i
\(207\) 0.204725 + 0.764042i 0.0142293 + 0.0531046i
\(208\) −15.1128 + 9.51304i −1.04788 + 0.659610i
\(209\) 3.79066i 0.262205i
\(210\) 0 0
\(211\) 10.4344i 0.718333i −0.933274 0.359166i \(-0.883061\pi\)
0.933274 0.359166i \(-0.116939\pi\)
\(212\) 5.81275 0.878535i 0.399221 0.0603381i
\(213\) 2.45439 + 9.15992i 0.168172 + 0.627628i
\(214\) 0.0507779 0.0256468i 0.00347111 0.00175318i
\(215\) 0 0
\(216\) 15.4563 + 2.61649i 1.05167 + 0.178029i
\(217\) 6.68921 8.02081i 0.454093 0.544488i
\(218\) 8.71155 1.81951i 0.590020 0.123233i
\(219\) −9.17459 15.8909i −0.619961 1.07380i
\(220\) 0 0
\(221\) −5.93647 + 10.2823i −0.399330 + 0.691660i
\(222\) 1.22205 + 1.36692i 0.0820187 + 0.0917416i
\(223\) −10.7262 10.7262i −0.718279 0.718279i 0.249973 0.968253i \(-0.419578\pi\)
−0.968253 + 0.249973i \(0.919578\pi\)
\(224\) 4.91191 + 14.1377i 0.328191 + 0.944611i
\(225\) 0 0
\(226\) −1.21249 + 21.6687i −0.0806539 + 1.44138i
\(227\) 2.59397 + 9.68083i 0.172168 + 0.642539i 0.997017 + 0.0771860i \(0.0245935\pi\)
−0.824849 + 0.565353i \(0.808740\pi\)
\(228\) 7.75744 6.19149i 0.513749 0.410041i
\(229\) −14.7989 + 8.54416i −0.977940 + 0.564614i −0.901647 0.432472i \(-0.857641\pi\)
−0.0762921 + 0.997086i \(0.524308\pi\)
\(230\) 0 0
\(231\) 1.31868 2.85029i 0.0867627 0.187535i
\(232\) −16.6725 + 11.8450i −1.09460 + 0.777661i
\(233\) −1.81156 0.485407i −0.118680 0.0318001i 0.198990 0.980001i \(-0.436234\pi\)
−0.317670 + 0.948201i \(0.602900\pi\)
\(234\) 4.11583 + 8.14891i 0.269060 + 0.532711i
\(235\) 0 0
\(236\) −20.2846 14.9581i −1.32042 0.973687i
\(237\) 9.42947 + 9.42947i 0.612510 + 0.612510i
\(238\) 7.27400 + 6.79029i 0.471503 + 0.440149i
\(239\) 15.2182 0.984385 0.492193 0.870486i \(-0.336196\pi\)
0.492193 + 0.870486i \(0.336196\pi\)
\(240\) 0 0
\(241\) 6.58780 11.4104i 0.424357 0.735008i −0.572003 0.820252i \(-0.693833\pi\)
0.996360 + 0.0852432i \(0.0271667\pi\)
\(242\) −13.5598 4.45894i −0.871656 0.286632i
\(243\) 3.47383 12.9645i 0.222846 0.831673i
\(244\) 11.0402 4.82210i 0.706775 0.308703i
\(245\) 0 0
\(246\) 3.58599 5.47940i 0.228634 0.349354i
\(247\) 17.1670 + 4.59987i 1.09231 + 0.292683i
\(248\) −1.04917 11.1158i −0.0666222 0.705854i
\(249\) −8.73995 5.04601i −0.553872 0.319778i
\(250\) 0 0
\(251\) 14.7048i 0.928161i −0.885793 0.464080i \(-0.846385\pi\)
0.885793 0.464080i \(-0.153615\pi\)
\(252\) 7.43158 1.82084i 0.468145 0.114702i
\(253\) 0.368320 0.368320i 0.0231561 0.0231561i
\(254\) 0.136786 2.44454i 0.00858275 0.153384i
\(255\) 0 0
\(256\) 14.4267 + 6.91881i 0.901670 + 0.432426i
\(257\) −3.42109 + 12.7677i −0.213402 + 0.796426i 0.773321 + 0.634014i \(0.218594\pi\)
−0.986723 + 0.162412i \(0.948073\pi\)
\(258\) 21.3139 4.45165i 1.32694 0.277148i
\(259\) 2.49735 + 1.15539i 0.155178 + 0.0717926i
\(260\) 0 0
\(261\) 5.22778 + 9.05478i 0.323592 + 0.560477i
\(262\) −0.576336 + 1.75266i −0.0356061 + 0.108279i
\(263\) 10.2083 2.73529i 0.629468 0.168665i 0.0700398 0.997544i \(-0.477687\pi\)
0.559428 + 0.828879i \(0.311021\pi\)
\(264\) −1.16985 3.14698i −0.0719991 0.193683i
\(265\) 0 0
\(266\) 6.99988 13.1481i 0.429190 0.806164i
\(267\) −1.86676 + 1.86676i −0.114244 + 0.114244i
\(268\) 29.4627 4.45297i 1.79972 0.272009i
\(269\) −10.5625 6.09826i −0.644007 0.371818i 0.142149 0.989845i \(-0.454599\pi\)
−0.786156 + 0.618027i \(0.787932\pi\)
\(270\) 0 0
\(271\) 5.70012 3.29096i 0.346257 0.199912i −0.316778 0.948500i \(-0.602601\pi\)
0.663036 + 0.748588i \(0.269268\pi\)
\(272\) 10.6301 0.406362i 0.644546 0.0246393i
\(273\) −11.3081 9.43072i −0.684395 0.570773i
\(274\) 0.898253 1.37253i 0.0542655 0.0829178i
\(275\) 0 0
\(276\) −1.35535 0.152156i −0.0815824 0.00915872i
\(277\) −3.96687 + 1.06292i −0.238346 + 0.0638646i −0.376015 0.926614i \(-0.622706\pi\)
0.137669 + 0.990478i \(0.456039\pi\)
\(278\) −18.3990 + 16.4490i −1.10350 + 0.986548i
\(279\) −5.70799 −0.341728
\(280\) 0 0
\(281\) −32.2773 −1.92550 −0.962752 0.270386i \(-0.912849\pi\)
−0.962752 + 0.270386i \(0.912849\pi\)
\(282\) −4.21526 + 3.76852i −0.251015 + 0.224412i
\(283\) −18.8626 + 5.05423i −1.12127 + 0.300443i −0.771396 0.636355i \(-0.780441\pi\)
−0.349872 + 0.936798i \(0.613775\pi\)
\(284\) 15.1192 + 1.69734i 0.897161 + 0.100718i
\(285\) 0 0
\(286\) 3.29208 5.03032i 0.194665 0.297449i
\(287\) 1.67740 9.68341i 0.0990140 0.571594i
\(288\) 4.21450 7.01036i 0.248342 0.413090i
\(289\) −8.59722 + 4.96361i −0.505719 + 0.291977i
\(290\) 0 0
\(291\) 4.71144 + 2.72015i 0.276190 + 0.159458i
\(292\) −29.1081 + 4.39938i −1.70342 + 0.257454i
\(293\) −12.6859 + 12.6859i −0.741121 + 0.741121i −0.972794 0.231673i \(-0.925580\pi\)
0.231673 + 0.972794i \(0.425580\pi\)
\(294\) −9.83729 + 7.45130i −0.573723 + 0.434569i
\(295\) 0 0
\(296\) 2.75731 1.02499i 0.160265 0.0595764i
\(297\) −5.09762 + 1.36590i −0.295794 + 0.0792577i
\(298\) 4.95266 15.0612i 0.286900 0.872473i
\(299\) −1.22108 2.11498i −0.0706170 0.122312i
\(300\) 0 0
\(301\) 26.7107 18.8231i 1.53958 1.08495i
\(302\) 20.7934 4.34295i 1.19653 0.249909i
\(303\) 0.461430 1.72208i 0.0265085 0.0989309i
\(304\) −4.70593 15.2126i −0.269904 0.872500i
\(305\) 0 0
\(306\) 0.303836 5.42991i 0.0173691 0.310407i
\(307\) 9.98091 9.98091i 0.569640 0.569640i −0.362387 0.932028i \(-0.618038\pi\)
0.932028 + 0.362387i \(0.118038\pi\)
\(308\) −3.48532 3.63864i −0.198594 0.207331i
\(309\) 12.6850i 0.721626i
\(310\) 0 0
\(311\) −12.0711 6.96926i −0.684490 0.395190i 0.117055 0.993125i \(-0.462655\pi\)
−0.801544 + 0.597935i \(0.795988\pi\)
\(312\) −15.6715 + 1.47916i −0.887224 + 0.0837409i
\(313\) 4.74109 + 1.27037i 0.267982 + 0.0718056i 0.390308 0.920684i \(-0.372369\pi\)
−0.122326 + 0.992490i \(0.539035\pi\)
\(314\) 5.83006 8.90835i 0.329009 0.502727i
\(315\) 0 0
\(316\) 19.6060 8.56345i 1.10292 0.481732i
\(317\) −8.90414 + 33.2307i −0.500106 + 1.86642i −0.000794747 1.00000i \(0.500253\pi\)
−0.499312 + 0.866423i \(0.666414\pi\)
\(318\) 4.92271 + 1.61876i 0.276052 + 0.0907756i
\(319\) 3.44258 5.96272i 0.192747 0.333848i
\(320\) 0 0
\(321\) 0.0501451 0.00279883
\(322\) −1.95768 + 0.597395i −0.109097 + 0.0332915i
\(323\) −7.48630 7.48630i −0.416549 0.416549i
\(324\) 4.13883 + 3.05201i 0.229935 + 0.169556i
\(325\) 0 0
\(326\) −4.23925 8.39327i −0.234790 0.464860i
\(327\) 7.57748 + 2.03038i 0.419035 + 0.112280i
\(328\) −6.08482 8.56473i −0.335978 0.472908i
\(329\) −3.56296 + 7.70124i −0.196432 + 0.424583i
\(330\) 0 0
\(331\) 11.2201 6.47792i 0.616712 0.356059i −0.158876 0.987299i \(-0.550787\pi\)
0.775588 + 0.631240i \(0.217454\pi\)
\(332\) −12.6547 + 10.1002i −0.694518 + 0.554320i
\(333\) −0.389229 1.45262i −0.0213296 0.0796032i
\(334\) 0.662889 11.8466i 0.0362717 0.648219i
\(335\) 0 0
\(336\) −1.75358 + 13.0758i −0.0956655 + 0.713341i
\(337\) −7.43071 7.43071i −0.404776 0.404776i 0.475136 0.879912i \(-0.342399\pi\)
−0.879912 + 0.475136i \(0.842399\pi\)
\(338\) −6.53279 7.30722i −0.355337 0.397461i
\(339\) −9.56524 + 16.5675i −0.519513 + 0.899822i
\(340\) 0 0
\(341\) 1.87940 + 3.25522i 0.101775 + 0.176280i
\(342\) −7.96877 + 1.66437i −0.430902 + 0.0899989i
\(343\) −9.11490 + 16.1220i −0.492158 + 0.870506i
\(344\) 5.83059 34.4429i 0.314364 1.85704i
\(345\) 0 0
\(346\) −2.79431 + 1.41134i −0.150223 + 0.0758743i
\(347\) −2.37153 8.85066i −0.127310 0.475128i 0.872601 0.488433i \(-0.162431\pi\)
−0.999911 + 0.0133050i \(0.995765\pi\)
\(348\) −17.8254 + 2.69413i −0.955544 + 0.144420i
\(349\) 19.9513i 1.06797i −0.845495 0.533984i \(-0.820694\pi\)
0.845495 0.533984i \(-0.179306\pi\)
\(350\) 0 0
\(351\) 24.7434i 1.32070i
\(352\) −5.38561 0.0952748i −0.287054 0.00507817i
\(353\) −0.641552 2.39430i −0.0341464 0.127436i 0.946749 0.321973i \(-0.104346\pi\)
−0.980895 + 0.194537i \(0.937679\pi\)
\(354\) −10.0159 19.8305i −0.532340 1.05398i
\(355\) 0 0
\(356\) 1.69532 + 3.88142i 0.0898516 + 0.205715i
\(357\) 3.02482 + 8.23343i 0.160091 + 0.435759i
\(358\) 4.76203 + 22.7999i 0.251681 + 1.20501i
\(359\) −7.94645 13.7637i −0.419398 0.726418i 0.576481 0.817110i \(-0.304425\pi\)
−0.995879 + 0.0906921i \(0.971092\pi\)
\(360\) 0 0
\(361\) 1.57601 2.72973i 0.0829481 0.143670i
\(362\) −6.30091 + 5.63313i −0.331169 + 0.296071i
\(363\) −8.89708 8.89708i −0.466976 0.466976i
\(364\) −20.7078 + 11.3688i −1.08539 + 0.595884i
\(365\) 0 0
\(366\) 10.6029 + 0.593297i 0.554224 + 0.0310121i
\(367\) −2.78634 10.3988i −0.145446 0.542812i −0.999735 0.0230136i \(-0.992674\pi\)
0.854289 0.519798i \(-0.173993\pi\)
\(368\) −1.02088 + 1.93538i −0.0532169 + 0.100889i
\(369\) −4.65148 + 2.68553i −0.242147 + 0.139803i
\(370\) 0 0
\(371\) 7.74521 0.701119i 0.402111 0.0364003i
\(372\) 3.59195 9.16305i 0.186234 0.475082i
\(373\) −14.2618 3.82144i −0.738448 0.197867i −0.130060 0.991506i \(-0.541517\pi\)
−0.608388 + 0.793640i \(0.708184\pi\)
\(374\) −3.19667 + 1.61457i −0.165296 + 0.0834873i
\(375\) 0 0
\(376\) 3.16083 + 8.50289i 0.163007 + 0.438503i
\(377\) −22.8262 22.8262i −1.17561 1.17561i
\(378\) 20.2037 + 4.67561i 1.03917 + 0.240488i
\(379\) −26.4563 −1.35897 −0.679483 0.733691i \(-0.737796\pi\)
−0.679483 + 0.733691i \(0.737796\pi\)
\(380\) 0 0
\(381\) 1.07909 1.86905i 0.0552837 0.0957542i
\(382\) −3.55463 + 10.8097i −0.181871 + 0.553075i
\(383\) 7.60437 28.3799i 0.388565 1.45015i −0.443904 0.896074i \(-0.646407\pi\)
0.832470 0.554071i \(-0.186926\pi\)
\(384\) 8.60163 + 11.1771i 0.438950 + 0.570377i
\(385\) 0 0
\(386\) 17.2288 + 11.2754i 0.876922 + 0.573901i
\(387\) −17.2503 4.62219i −0.876880 0.234959i
\(388\) 6.82177 5.44470i 0.346323 0.276413i
\(389\) −8.09963 4.67632i −0.410667 0.237099i 0.280409 0.959881i \(-0.409530\pi\)
−0.691076 + 0.722782i \(0.742863\pi\)
\(390\) 0 0
\(391\) 1.45481i 0.0735731i
\(392\) 5.36988 + 19.0569i 0.271220 + 0.962517i
\(393\) −1.14998 + 1.14998i −0.0580090 + 0.0580090i
\(394\) −32.9324 1.84276i −1.65911 0.0928370i
\(395\) 0 0
\(396\) −0.307212 + 2.73653i −0.0154380 + 0.137516i
\(397\) 4.59912 17.1641i 0.230823 0.861443i −0.749164 0.662384i \(-0.769545\pi\)
0.979987 0.199059i \(-0.0637886\pi\)
\(398\) −2.79186 13.3670i −0.139943 0.670028i
\(399\) 10.7327 7.56340i 0.537309 0.378644i
\(400\) 0 0
\(401\) −3.07671 5.32902i −0.153644 0.266118i 0.778921 0.627122i \(-0.215767\pi\)
−0.932564 + 0.361004i \(0.882434\pi\)
\(402\) 24.9514 + 8.20490i 1.24446 + 0.409223i
\(403\) 17.0227 4.56121i 0.847960 0.227210i
\(404\) −2.30207 1.69757i −0.114532 0.0844573i
\(405\) 0 0
\(406\) −22.9516 + 14.3250i −1.13907 + 0.710935i
\(407\) −0.700261 + 0.700261i −0.0347107 + 0.0347107i
\(408\) 8.52545 + 3.90471i 0.422073 + 0.193312i
\(409\) 5.66917 + 3.27310i 0.280322 + 0.161844i 0.633569 0.773686i \(-0.281589\pi\)
−0.353247 + 0.935530i \(0.614922\pi\)
\(410\) 0 0
\(411\) 1.25221 0.722965i 0.0617670 0.0356612i
\(412\) 18.9475 + 7.42751i 0.933478 + 0.365927i
\(413\) −25.6050 21.3541i −1.25994 1.05077i
\(414\) 0.936005 + 0.612568i 0.0460022 + 0.0301061i
\(415\) 0 0
\(416\) −6.96678 + 24.2745i −0.341575 + 1.19015i
\(417\) −21.0136 + 5.63057i −1.02904 + 0.275730i
\(418\) 3.57296 + 3.99652i 0.174759 + 0.195476i
\(419\) −17.7908 −0.869139 −0.434569 0.900638i \(-0.643099\pi\)
−0.434569 + 0.900638i \(0.643099\pi\)
\(420\) 0 0
\(421\) −16.4678 −0.802591 −0.401295 0.915949i \(-0.631440\pi\)
−0.401295 + 0.915949i \(0.631440\pi\)
\(422\) −9.83513 11.0010i −0.478767 0.535522i
\(423\) 4.47954 1.20029i 0.217803 0.0583601i
\(424\) 5.30034 6.40517i 0.257407 0.311062i
\(425\) 0 0
\(426\) 11.2215 + 7.34393i 0.543686 + 0.355815i
\(427\) 14.9595 5.49588i 0.723942 0.265964i
\(428\) 0.0293616 0.0749013i 0.00141925 0.00362049i
\(429\) 4.58934 2.64965i 0.221575 0.127926i
\(430\) 0 0
\(431\) −13.1055 7.56644i −0.631268 0.364463i 0.149975 0.988690i \(-0.452081\pi\)
−0.781243 + 0.624227i \(0.785414\pi\)
\(432\) 18.7619 11.8101i 0.902683 0.568212i
\(433\) 5.45382 5.45382i 0.262094 0.262094i −0.563811 0.825904i \(-0.690665\pi\)
0.825904 + 0.563811i \(0.190665\pi\)
\(434\) −0.507689 14.7614i −0.0243698 0.708572i
\(435\) 0 0
\(436\) 7.46963 10.1296i 0.357730 0.485118i
\(437\) 2.10350 0.563632i 0.100624 0.0269622i
\(438\) −24.6511 8.10614i −1.17787 0.387327i
\(439\) 12.8732 + 22.2970i 0.614402 + 1.06418i 0.990489 + 0.137592i \(0.0439362\pi\)
−0.376087 + 0.926585i \(0.622730\pi\)
\(440\) 0 0
\(441\) 9.95730 1.81762i 0.474157 0.0865536i
\(442\) 3.43289 + 16.4362i 0.163286 + 0.781790i
\(443\) −4.47481 + 16.7002i −0.212605 + 0.793452i 0.774391 + 0.632707i \(0.218056\pi\)
−0.986996 + 0.160745i \(0.948610\pi\)
\(444\) 2.57683 + 0.289284i 0.122291 + 0.0137288i
\(445\) 0 0
\(446\) −21.4189 1.19851i −1.01421 0.0567513i
\(447\) 9.88223 9.88223i 0.467413 0.467413i
\(448\) 18.5044 + 10.2756i 0.874250 + 0.485477i
\(449\) 11.0999i 0.523839i −0.965090 0.261919i \(-0.915645\pi\)
0.965090 0.261919i \(-0.0843555\pi\)
\(450\) 0 0
\(451\) 3.06308 + 1.76847i 0.144235 + 0.0832739i
\(452\) 19.1459 + 23.9883i 0.900549 + 1.12832i
\(453\) 18.0865 + 4.84627i 0.849779 + 0.227698i
\(454\) 11.8597 + 7.76157i 0.556603 + 0.364268i
\(455\) 0 0
\(456\) 2.34281 13.8397i 0.109712 0.648101i
\(457\) 5.49672 20.5140i 0.257126 0.959606i −0.709770 0.704434i \(-0.751201\pi\)
0.966896 0.255172i \(-0.0821322\pi\)
\(458\) −7.54913 + 22.9572i −0.352748 + 1.07272i
\(459\) 7.36989 12.7650i 0.343997 0.595821i
\(460\) 0 0
\(461\) −8.61652 −0.401311 −0.200656 0.979662i \(-0.564307\pi\)
−0.200656 + 0.979662i \(0.564307\pi\)
\(462\) −1.29630 4.24802i −0.0603094 0.197636i
\(463\) 1.63340 + 1.63340i 0.0759103 + 0.0759103i 0.744043 0.668132i \(-0.232906\pi\)
−0.668132 + 0.744043i \(0.732906\pi\)
\(464\) −6.41320 + 28.2032i −0.297725 + 1.30930i
\(465\) 0 0
\(466\) −2.36747 + 1.19576i −0.109671 + 0.0553924i
\(467\) −24.6125 6.59489i −1.13893 0.305175i −0.360409 0.932794i \(-0.617363\pi\)
−0.778521 + 0.627619i \(0.784030\pi\)
\(468\) 12.0203 + 4.71199i 0.555637 + 0.217812i
\(469\) 39.2576 3.55372i 1.81275 0.164095i
\(470\) 0 0
\(471\) 8.12741 4.69236i 0.374491 0.216213i
\(472\) −35.4852 + 3.34928i −1.63334 + 0.154163i
\(473\) 3.04379 + 11.3596i 0.139953 + 0.522313i
\(474\) 18.8295 + 1.05362i 0.864867 + 0.0483944i
\(475\) 0 0
\(476\) 14.0693 + 0.302795i 0.644867 + 0.0138786i
\(477\) −3.00540 3.00540i −0.137608 0.137608i
\(478\) 16.0447 14.3442i 0.733867 0.656090i
\(479\) −4.63924 + 8.03541i −0.211972 + 0.367147i −0.952332 0.305064i \(-0.901322\pi\)
0.740359 + 0.672211i \(0.234655\pi\)
\(480\) 0 0
\(481\) 2.32156 + 4.02106i 0.105854 + 0.183345i
\(482\) −3.80954 18.2395i −0.173520 0.830787i
\(483\) −1.77775 0.307949i −0.0808903 0.0140122i
\(484\) −18.4990 + 8.07996i −0.840865 + 0.367271i
\(485\) 0 0
\(486\) −8.55746 16.9429i −0.388174 0.768544i
\(487\) 4.60932 + 17.2022i 0.208868 + 0.779506i 0.988236 + 0.152939i \(0.0488738\pi\)
−0.779368 + 0.626567i \(0.784459\pi\)
\(488\) 7.09457 15.4901i 0.321156 0.701204i
\(489\) 8.28866i 0.374826i
\(490\) 0 0
\(491\) 2.49970i 0.112810i −0.998408 0.0564049i \(-0.982036\pi\)
0.998408 0.0564049i \(-0.0179638\pi\)
\(492\) −1.38398 9.15701i −0.0623949 0.412830i
\(493\) 4.97711 + 18.5748i 0.224158 + 0.836569i
\(494\) 22.4349 11.3314i 1.00940 0.509823i
\(495\) 0 0
\(496\) −11.5836 10.7305i −0.520117 0.481816i
\(497\) 19.8312 + 3.43524i 0.889550 + 0.154092i
\(498\) −13.9708 + 2.91797i −0.626047 + 0.130757i
\(499\) −3.26199 5.64993i −0.146027 0.252926i 0.783729 0.621103i \(-0.213315\pi\)
−0.929756 + 0.368178i \(0.879982\pi\)
\(500\) 0 0
\(501\) 5.22947 9.05770i 0.233635 0.404668i
\(502\) −13.8603 15.5034i −0.618617 0.691951i
\(503\) 14.6078 + 14.6078i 0.651327 + 0.651327i 0.953313 0.301985i \(-0.0976493\pi\)
−0.301985 + 0.953313i \(0.597649\pi\)
\(504\) 6.11889 8.92451i 0.272557 0.397529i
\(505\) 0 0
\(506\) 0.0411550 0.735489i 0.00182956 0.0326965i
\(507\) −2.23620 8.34561i −0.0993131 0.370641i
\(508\) −2.15993 2.70623i −0.0958316 0.120069i
\(509\) −29.8459 + 17.2316i −1.32290 + 0.763775i −0.984190 0.177116i \(-0.943323\pi\)
−0.338708 + 0.940892i \(0.609990\pi\)
\(510\) 0 0
\(511\) −38.7851 + 3.51094i −1.71575 + 0.155315i
\(512\) 21.7316 6.30364i 0.960412 0.278584i
\(513\) −21.3121 5.71056i −0.940953 0.252128i
\(514\) 8.42755 + 16.6857i 0.371723 + 0.735973i
\(515\) 0 0
\(516\) 18.2754 24.7832i 0.804528 1.09102i
\(517\) −2.15944 2.15944i −0.0949721 0.0949721i
\(518\) 3.72201 1.13579i 0.163536 0.0499036i
\(519\) −2.75949 −0.121128
\(520\) 0 0
\(521\) 16.9526 29.3627i 0.742705 1.28640i −0.208555 0.978011i \(-0.566876\pi\)
0.951259 0.308392i \(-0.0997908\pi\)
\(522\) 14.0465 + 4.61897i 0.614796 + 0.202167i
\(523\) −4.77618 + 17.8250i −0.208848 + 0.779431i 0.779394 + 0.626534i \(0.215527\pi\)
−0.988242 + 0.152897i \(0.951140\pi\)
\(524\) 1.04437 + 2.39107i 0.0456233 + 0.104455i
\(525\) 0 0
\(526\) 8.18443 12.5058i 0.356858 0.545280i
\(527\) −10.1405 2.71715i −0.441728 0.118361i
\(528\) −4.19963 2.21522i −0.182765 0.0964053i
\(529\) 19.6594 + 11.3504i 0.854758 + 0.493495i
\(530\) 0 0
\(531\) 18.2217i 0.790756i
\(532\) −5.01301 20.4600i −0.217341 0.887055i
\(533\) 11.7259 11.7259i 0.507906 0.507906i
\(534\) −0.208587 + 3.72769i −0.00902643 + 0.161313i
\(535\) 0 0
\(536\) 26.8655 32.4654i 1.16041 1.40229i
\(537\) −5.31392 + 19.8318i −0.229312 + 0.855806i
\(538\) −16.8842 + 3.52645i −0.727928 + 0.152036i
\(539\) −4.31510 5.08010i −0.185864 0.218815i
\(540\) 0 0
\(541\) −1.59149 2.75655i −0.0684236 0.118513i 0.829784 0.558085i \(-0.188464\pi\)
−0.898208 + 0.439572i \(0.855130\pi\)
\(542\) 2.90771 8.84244i 0.124897 0.379815i
\(543\) −7.19630 + 1.92824i −0.308823 + 0.0827488i
\(544\) 10.8244 10.4481i 0.464092 0.447957i
\(545\) 0 0
\(546\) −20.8113 + 0.715760i −0.890640 + 0.0306317i
\(547\) −15.6791 + 15.6791i −0.670391 + 0.670391i −0.957806 0.287415i \(-0.907204\pi\)
0.287415 + 0.957806i \(0.407204\pi\)
\(548\) −0.346674 2.29374i −0.0148092 0.0979836i
\(549\) −7.54315 4.35504i −0.321934 0.185869i
\(550\) 0 0
\(551\) 24.9289 14.3927i 1.06201 0.613151i
\(552\) −1.57237 + 1.11709i −0.0669246 + 0.0475466i
\(553\) 26.5663 9.76000i 1.12971 0.415037i
\(554\) −3.18042 + 4.85969i −0.135123 + 0.206469i
\(555\) 0 0
\(556\) −3.89382 + 34.6847i −0.165135 + 1.47096i
\(557\) 20.6171 5.52434i 0.873575 0.234074i 0.205942 0.978564i \(-0.433974\pi\)
0.667633 + 0.744491i \(0.267308\pi\)
\(558\) −6.01797 + 5.38017i −0.254761 + 0.227761i
\(559\) 55.1382 2.33210
\(560\) 0 0
\(561\) −3.15683 −0.133282
\(562\) −34.0302 + 30.4236i −1.43548 + 1.28334i
\(563\) 13.1487 3.52319i 0.554153 0.148485i 0.0291340 0.999576i \(-0.490725\pi\)
0.525019 + 0.851091i \(0.324058\pi\)
\(564\) −0.892084 + 7.94635i −0.0375635 + 0.334602i
\(565\) 0 0
\(566\) −15.1231 + 23.1081i −0.635669 + 0.971305i
\(567\) 5.22439 + 4.35705i 0.219404 + 0.182979i
\(568\) 17.5402 12.4614i 0.735969 0.522869i
\(569\) 20.3421 11.7445i 0.852787 0.492357i −0.00880335 0.999961i \(-0.502802\pi\)
0.861590 + 0.507605i \(0.169469\pi\)
\(570\) 0 0
\(571\) 23.4830 + 13.5579i 0.982734 + 0.567382i 0.903094 0.429442i \(-0.141290\pi\)
0.0796395 + 0.996824i \(0.474623\pi\)
\(572\) −1.27056 8.40651i −0.0531246 0.351494i
\(573\) −7.09267 + 7.09267i −0.296301 + 0.296301i
\(574\) −7.35879 11.7904i −0.307150 0.492120i
\(575\) 0 0
\(576\) −2.16438 11.3635i −0.0901826 0.473480i
\(577\) 26.9522 7.22183i 1.12204 0.300649i 0.350329 0.936627i \(-0.386070\pi\)
0.771707 + 0.635978i \(0.219403\pi\)
\(578\) −4.38556 + 13.3366i −0.182415 + 0.554731i
\(579\) 9.07505 + 15.7184i 0.377146 + 0.653236i
\(580\) 0 0
\(581\) −17.5083 + 12.3382i −0.726368 + 0.511874i
\(582\) 7.53124 1.57299i 0.312180 0.0652024i
\(583\) −0.724403 + 2.70351i −0.0300017 + 0.111968i
\(584\) −26.5421 + 32.0747i −1.09832 + 1.32726i
\(585\) 0 0
\(586\) −1.41749 + 25.3323i −0.0585560 + 1.04647i
\(587\) −22.8296 + 22.8296i −0.942280 + 0.942280i −0.998423 0.0561427i \(-0.982120\pi\)
0.0561427 + 0.998423i \(0.482120\pi\)
\(588\) −3.34815 + 17.1283i −0.138075 + 0.706359i
\(589\) 15.7148i 0.647516i
\(590\) 0 0
\(591\) −25.1794 14.5374i −1.03574 0.597987i
\(592\) 1.94092 3.67961i 0.0797715 0.151231i
\(593\) 36.8872 + 9.88391i 1.51478 + 0.405883i 0.918019 0.396537i \(-0.129788\pi\)
0.596759 + 0.802421i \(0.296455\pi\)
\(594\) −4.08700 + 6.24494i −0.167691 + 0.256233i
\(595\) 0 0
\(596\) −8.97462 20.5474i −0.367615 0.841653i
\(597\) 3.11542 11.6269i 0.127506 0.475857i
\(598\) −3.28091 1.07888i −0.134166 0.0441186i
\(599\) 14.4801 25.0802i 0.591640 1.02475i −0.402372 0.915476i \(-0.631814\pi\)
0.994012 0.109274i \(-0.0348526\pi\)
\(600\) 0 0
\(601\) −8.88262 −0.362330 −0.181165 0.983453i \(-0.557987\pi\)
−0.181165 + 0.983453i \(0.557987\pi\)
\(602\) 10.4192 45.0220i 0.424653 1.83496i
\(603\) −15.2333 15.2333i −0.620347 0.620347i
\(604\) 17.8291 24.1780i 0.725456 0.983791i
\(605\) 0 0
\(606\) −1.13669 2.25053i −0.0461749 0.0914215i
\(607\) 44.3709 + 11.8891i 1.80096 + 0.482565i 0.994127 0.108218i \(-0.0345145\pi\)
0.806830 + 0.590783i \(0.201181\pi\)
\(608\) −19.3004 11.6030i −0.782734 0.470565i
\(609\) −23.7515 + 2.15006i −0.962461 + 0.0871249i
\(610\) 0 0
\(611\) −12.4000 + 7.15915i −0.501651 + 0.289628i
\(612\) −4.79773 6.01118i −0.193937 0.242988i
\(613\) −0.0600047 0.223941i −0.00242357 0.00904487i 0.964703 0.263339i \(-0.0848237\pi\)
−0.967127 + 0.254294i \(0.918157\pi\)
\(614\) 1.11524 19.9306i 0.0450073 0.804335i
\(615\) 0 0
\(616\) −7.10426 0.551085i −0.286239 0.0222038i
\(617\) 27.1038 + 27.1038i 1.09116 + 1.09116i 0.995405 + 0.0957517i \(0.0305255\pi\)
0.0957517 + 0.995405i \(0.469475\pi\)
\(618\) 11.9565 + 13.3739i 0.480962 + 0.537978i
\(619\) −7.14970 + 12.3836i −0.287371 + 0.497741i −0.973181 0.230039i \(-0.926115\pi\)
0.685811 + 0.727780i \(0.259448\pi\)
\(620\) 0 0
\(621\) 1.51593 + 2.62566i 0.0608320 + 0.105364i
\(622\) −19.2957 + 4.03012i −0.773685 + 0.161593i
\(623\) 1.93220 + 5.25935i 0.0774119 + 0.210711i
\(624\) −15.1284 + 16.3310i −0.605619 + 0.653762i
\(625\) 0 0
\(626\) 6.19597 3.12944i 0.247641 0.125078i
\(627\) 1.22304 + 4.56444i 0.0488434 + 0.182286i
\(628\) −2.25007 14.8874i −0.0897875 0.594071i
\(629\) 2.76594i 0.110285i
\(630\) 0 0
\(631\) 30.7128i 1.22266i 0.791377 + 0.611328i \(0.209364\pi\)
−0.791377 + 0.611328i \(0.790636\pi\)
\(632\) 12.5991 27.5085i 0.501165 1.09423i
\(633\) −3.36660 12.5643i −0.133810 0.499387i
\(634\) 21.9346 + 43.4281i 0.871132 + 1.72475i
\(635\) 0 0
\(636\) 6.71584 2.93332i 0.266300 0.116314i
\(637\) −28.2428 + 13.3774i −1.11902 + 0.530033i
\(638\) −1.99075 9.53141i −0.0788144 0.377352i
\(639\) −5.49985 9.52602i −0.217571 0.376843i
\(640\) 0 0
\(641\) −20.7752 + 35.9837i −0.820572 + 1.42127i 0.0846851 + 0.996408i \(0.473012\pi\)
−0.905257 + 0.424864i \(0.860322\pi\)
\(642\) 0.0528683 0.0472652i 0.00208655 0.00186541i
\(643\) 12.5692 + 12.5692i 0.495681 + 0.495681i 0.910090 0.414410i \(-0.136012\pi\)
−0.414410 + 0.910090i \(0.636012\pi\)
\(644\) −1.50091 + 2.47509i −0.0591442 + 0.0975322i
\(645\) 0 0
\(646\) −14.9492 0.836497i −0.588169 0.0329115i
\(647\) 9.22084 + 34.4127i 0.362509 + 1.35290i 0.870767 + 0.491696i \(0.163623\pi\)
−0.508258 + 0.861205i \(0.669710\pi\)
\(648\) 7.24033 0.683380i 0.284427 0.0268457i
\(649\) 10.3917 5.99966i 0.407910 0.235507i
\(650\) 0 0
\(651\) 5.46679 11.8163i 0.214261 0.463118i
\(652\) −12.3807 4.85329i −0.484866 0.190070i
\(653\) 12.7132 + 3.40648i 0.497505 + 0.133306i 0.498842 0.866693i \(-0.333759\pi\)
−0.00133684 + 0.999999i \(0.500426\pi\)
\(654\) 9.90276 5.00166i 0.387229 0.195580i
\(655\) 0 0
\(656\) −14.4881 3.29449i −0.565666 0.128628i
\(657\) 15.0499 + 15.0499i 0.587153 + 0.587153i
\(658\) 3.50250 + 11.4778i 0.136542 + 0.447451i
\(659\) −10.3786 −0.404294 −0.202147 0.979355i \(-0.564792\pi\)
−0.202147 + 0.979355i \(0.564792\pi\)
\(660\) 0 0
\(661\) −11.5282 + 19.9675i −0.448397 + 0.776646i −0.998282 0.0585946i \(-0.981338\pi\)
0.549885 + 0.835240i \(0.314671\pi\)
\(662\) 5.72352 17.4054i 0.222451 0.676481i
\(663\) −3.83074 + 14.2965i −0.148774 + 0.555231i
\(664\) −3.82184 + 22.5767i −0.148316 + 0.876144i
\(665\) 0 0
\(666\) −1.77956 1.16463i −0.0689567 0.0451286i
\(667\) −3.82069 1.02375i −0.147938 0.0396398i
\(668\) −10.4674 13.1148i −0.404995 0.507427i
\(669\) −16.3765 9.45496i −0.633151 0.365550i
\(670\) 0 0
\(671\) 5.73573i 0.221425i
\(672\) 10.4760 + 15.4387i 0.404121 + 0.595562i
\(673\) −27.9624 + 27.9624i −1.07787 + 1.07787i −0.0811716 + 0.996700i \(0.525866\pi\)
−0.996700 + 0.0811716i \(0.974134\pi\)
\(674\) −14.8382 0.830285i −0.571546 0.0319814i
\(675\) 0 0
\(676\) −13.7751 1.54644i −0.529813 0.0594786i
\(677\) 8.86132 33.0709i 0.340568 1.27102i −0.557137 0.830421i \(-0.688100\pi\)
0.897705 0.440597i \(-0.145233\pi\)
\(678\) 5.53131 + 26.4831i 0.212429 + 1.01708i
\(679\) 9.43821 6.65114i 0.362205 0.255247i
\(680\) 0 0
\(681\) 6.24694 + 10.8200i 0.239383 + 0.414624i
\(682\) 5.04973 + 1.66053i 0.193364 + 0.0635850i
\(683\) −1.86138 + 0.498756i −0.0712239 + 0.0190844i −0.294255 0.955727i \(-0.595072\pi\)
0.223031 + 0.974811i \(0.428405\pi\)
\(684\) −6.83274 + 9.26588i −0.261256 + 0.354290i
\(685\) 0 0
\(686\) 5.58620 + 25.5889i 0.213282 + 0.976991i
\(687\) −15.0630 + 15.0630i −0.574691 + 0.574691i
\(688\) −26.3176 41.8091i −1.00335 1.59396i
\(689\) 11.3645 + 6.56128i 0.432952 + 0.249965i
\(690\) 0 0
\(691\) 30.8812 17.8293i 1.17478 0.678257i 0.219976 0.975505i \(-0.429402\pi\)
0.954800 + 0.297248i \(0.0960688\pi\)
\(692\) −1.61577 + 4.12182i −0.0614225 + 0.156688i
\(693\) −0.621767 + 3.58937i −0.0236190 + 0.136349i
\(694\) −10.8427 7.09598i −0.411582 0.269360i
\(695\) 0 0
\(696\) −16.2541 + 19.6422i −0.616109 + 0.744534i
\(697\) −9.54198 + 2.55677i −0.361428 + 0.0968444i
\(698\) −18.8055 21.0348i −0.711797 0.796177i
\(699\) −2.33797 −0.0884301
\(700\) 0 0
\(701\) 33.6504 1.27096 0.635479 0.772119i \(-0.280803\pi\)
0.635479 + 0.772119i \(0.280803\pi\)
\(702\) 23.3223 + 26.0871i 0.880245 + 0.984594i
\(703\) −3.99924 + 1.07159i −0.150834 + 0.0404159i
\(704\) −5.76789 + 4.97586i −0.217385 + 0.187535i
\(705\) 0 0
\(706\) −2.93319 1.91962i −0.110392 0.0722460i
\(707\) −2.90588 2.42345i −0.109287 0.0911433i
\(708\) −29.2514 11.4667i −1.09934 0.430944i
\(709\) 7.92917 4.57791i 0.297786 0.171927i −0.343662 0.939093i \(-0.611667\pi\)
0.641448 + 0.767167i \(0.278334\pi\)
\(710\) 0 0
\(711\) −13.3957 7.73401i −0.502378 0.290048i
\(712\) 5.44589 + 2.49425i 0.204093 + 0.0934762i
\(713\) 1.52693 1.52693i 0.0571839 0.0571839i
\(714\) 10.9497 + 5.82945i 0.409781 + 0.218162i
\(715\) 0 0
\(716\) 26.5111 + 19.5495i 0.990767 + 0.730601i
\(717\) 18.3247 4.91009i 0.684348 0.183370i
\(718\) −21.3512 7.02104i −0.796820 0.262023i
\(719\) 6.67322 + 11.5584i 0.248869 + 0.431054i 0.963212 0.268742i \(-0.0866078\pi\)
−0.714343 + 0.699796i \(0.753274\pi\)
\(720\) 0 0
\(721\) 24.4340 + 11.3043i 0.909970 + 0.420996i
\(722\) −0.911364 4.36348i −0.0339175 0.162392i
\(723\) 4.25104 15.8651i 0.158098 0.590029i
\(724\) −1.33348 + 11.8781i −0.0495582 + 0.441446i
\(725\) 0 0
\(726\) −17.7664 0.994134i −0.659372 0.0368958i
\(727\) 6.15934 6.15934i 0.228437 0.228437i −0.583602 0.812040i \(-0.698357\pi\)
0.812040 + 0.583602i \(0.198357\pi\)
\(728\) −11.1166 + 31.5047i −0.412008 + 1.16764i
\(729\) 24.4454i 0.905384i
\(730\) 0 0
\(731\) −28.4457 16.4231i −1.05210 0.607431i
\(732\) 11.7380 9.36848i 0.433847 0.346269i
\(733\) 9.92223 + 2.65865i 0.366486 + 0.0981996i 0.437362 0.899286i \(-0.355913\pi\)
−0.0708761 + 0.997485i \(0.522580\pi\)
\(734\) −12.7392 8.33717i −0.470213 0.307731i
\(735\) 0 0
\(736\) 0.747914 + 3.00273i 0.0275685 + 0.110682i
\(737\) −3.67173 + 13.7031i −0.135250 + 0.504760i
\(738\) −2.37279 + 7.21572i −0.0873435 + 0.265614i
\(739\) −21.8583 + 37.8597i −0.804070 + 1.39269i 0.112847 + 0.993612i \(0.464003\pi\)
−0.916917 + 0.399078i \(0.869330\pi\)
\(740\) 0 0
\(741\) 22.1553 0.813897
\(742\) 7.50497 8.03959i 0.275516 0.295143i
\(743\) 26.0186 + 26.0186i 0.954529 + 0.954529i 0.999010 0.0444813i \(-0.0141635\pi\)
−0.0444813 + 0.999010i \(0.514164\pi\)
\(744\) −4.84979 13.0463i −0.177802 0.478302i
\(745\) 0 0
\(746\) −18.6383 + 9.41377i −0.682396 + 0.344663i
\(747\) 11.3072 + 3.02975i 0.413709 + 0.110853i
\(748\) −1.84843 + 4.71534i −0.0675854 + 0.172410i
\(749\) 0.0446871 0.0965899i 0.00163283 0.00352932i
\(750\) 0 0
\(751\) −7.30460 + 4.21731i −0.266548 + 0.153892i −0.627318 0.778763i \(-0.715847\pi\)
0.360770 + 0.932655i \(0.382514\pi\)
\(752\) 11.3471 + 5.98535i 0.413784 + 0.218263i
\(753\) −4.74444 17.7065i −0.172897 0.645260i
\(754\) −45.5811 2.55053i −1.65997 0.0928850i
\(755\) 0 0
\(756\) 25.7080 14.1139i 0.934991 0.513316i
\(757\) −3.33081 3.33081i −0.121060 0.121060i 0.643981 0.765041i \(-0.277282\pi\)
−0.765041 + 0.643981i \(0.777282\pi\)
\(758\) −27.8930 + 24.9369i −1.01312 + 0.905748i
\(759\) 0.324667 0.562340i 0.0117847 0.0204117i
\(760\) 0 0
\(761\) 17.2317 + 29.8462i 0.624649 + 1.08192i 0.988609 + 0.150509i \(0.0480913\pi\)
−0.363959 + 0.931415i \(0.618575\pi\)
\(762\) −0.624010 2.98767i −0.0226055 0.108232i
\(763\) 10.6636 12.7864i 0.386050 0.462899i
\(764\) 6.44127 + 14.7473i 0.233037 + 0.533537i
\(765\) 0 0
\(766\) −18.7327 37.0888i −0.676840 1.34007i
\(767\) −14.5609 54.3419i −0.525763 1.96217i
\(768\) 19.6039 + 3.67642i 0.707396 + 0.132661i
\(769\) 18.7498i 0.676135i 0.941122 + 0.338067i \(0.109773\pi\)
−0.941122 + 0.338067i \(0.890227\pi\)
\(770\) 0 0
\(771\) 16.4777i 0.593431i
\(772\) 28.7922 4.35164i 1.03626 0.156619i
\(773\) −11.5075 42.9466i −0.413896 1.54468i −0.787036 0.616907i \(-0.788386\pi\)
0.373140 0.927775i \(-0.378281\pi\)
\(774\) −22.5438 + 11.3864i −0.810320 + 0.409274i
\(775\) 0 0
\(776\) 2.06023 12.1704i 0.0739581 0.436891i
\(777\) 3.37991 + 0.585483i 0.121254 + 0.0210041i
\(778\) −12.9472 + 2.70418i −0.464181 + 0.0969497i
\(779\) 7.39361 + 12.8061i 0.264903 + 0.458826i
\(780\) 0 0
\(781\) −3.62174 + 6.27304i −0.129596 + 0.224467i
\(782\) 1.37126 + 1.53382i 0.0490363 + 0.0548493i
\(783\) 28.3379 + 28.3379i 1.01271 + 1.01271i
\(784\) 23.6239 + 15.0303i 0.843712 + 0.536796i
\(785\) 0 0
\(786\) −0.128496 + 2.29637i −0.00458329 + 0.0819089i
\(787\) −0.279451 1.04293i −0.00996136 0.0371763i 0.960766 0.277359i \(-0.0894592\pi\)
−0.970728 + 0.240183i \(0.922793\pi\)
\(788\) −36.4577 + 29.0982i −1.29875 + 1.03658i
\(789\) 11.4095 6.58729i 0.406189 0.234514i
\(790\) 0 0
\(791\) 23.3883 + 33.1889i 0.831592 + 1.18006i
\(792\) 2.25547 + 3.17471i 0.0801447 + 0.112808i
\(793\) 25.9757 + 6.96017i 0.922424 + 0.247163i
\(794\) −11.3295 22.4312i −0.402069 0.796055i
\(795\) 0 0
\(796\) −15.5428 11.4614i −0.550900 0.406239i
\(797\) 13.9414 + 13.9414i 0.493829 + 0.493829i 0.909510 0.415681i \(-0.136457\pi\)
−0.415681 + 0.909510i \(0.636457\pi\)
\(798\) 4.18657 18.0905i 0.148203 0.640397i
\(799\) 8.52950 0.301752
\(800\) 0 0
\(801\) 1.53111 2.65196i 0.0540992 0.0937025i
\(802\) −8.26676 2.71841i −0.291910 0.0959902i
\(803\) 3.62754 13.5382i 0.128013 0.477751i
\(804\) 34.0401 14.8679i 1.20050 0.524352i
\(805\) 0 0
\(806\) 13.6479 20.8540i 0.480726 0.734550i
\(807\) −14.6862 3.93515i −0.516978 0.138524i
\(808\) −4.02717 + 0.380106i −0.141675 + 0.0133721i
\(809\) −4.37439 2.52555i −0.153795 0.0887937i 0.421127 0.907001i \(-0.361635\pi\)
−0.574923 + 0.818208i \(0.694968\pi\)
\(810\) 0 0
\(811\) 21.1629i 0.743131i −0.928407 0.371565i \(-0.878821\pi\)
0.928407 0.371565i \(-0.121179\pi\)
\(812\) −10.6958 + 36.7364i −0.375349 + 1.28919i
\(813\) 5.80185 5.80185i 0.203480 0.203480i
\(814\) −0.0782451 + 1.39833i −0.00274249 + 0.0490116i
\(815\) 0 0
\(816\) 12.6689 3.91907i 0.443501 0.137195i
\(817\) −12.7255 + 47.4920i −0.445207 + 1.66154i
\(818\) 9.06216 1.89274i 0.316851 0.0661781i
\(819\) 15.5009 + 7.17144i 0.541644 + 0.250590i
\(820\) 0 0
\(821\) −21.3620 37.0001i −0.745540 1.29131i −0.949942 0.312426i \(-0.898858\pi\)
0.204402 0.978887i \(-0.434475\pi\)
\(822\) 0.638770 1.94252i 0.0222797 0.0677533i
\(823\) 4.61152 1.23565i 0.160748 0.0430722i −0.177548 0.984112i \(-0.556816\pi\)
0.338295 + 0.941040i \(0.390150\pi\)
\(824\) 26.9775 10.0285i 0.939804 0.349359i
\(825\) 0 0
\(826\) −47.1233 + 1.62071i −1.63963 + 0.0563916i
\(827\) −6.21884 + 6.21884i −0.216250 + 0.216250i −0.806916 0.590666i \(-0.798865\pi\)
0.590666 + 0.806916i \(0.298865\pi\)
\(828\) 1.56422 0.236416i 0.0543606 0.00821602i
\(829\) 33.7077 + 19.4612i 1.17072 + 0.675915i 0.953849 0.300286i \(-0.0970821\pi\)
0.216869 + 0.976201i \(0.430415\pi\)
\(830\) 0 0
\(831\) −4.43367 + 2.55978i −0.153802 + 0.0887978i
\(832\) 15.5353 + 32.1594i 0.538588 + 1.11493i
\(833\) 18.5549 + 1.51083i 0.642889 + 0.0523470i
\(834\) −16.8475 + 25.7431i −0.583383 + 0.891410i
\(835\) 0 0
\(836\) 7.53399 + 0.845791i 0.260568 + 0.0292523i
\(837\) −21.1330 + 5.66257i −0.730464 + 0.195727i
\(838\) −18.7570 + 16.7691i −0.647949 + 0.579279i
\(839\) 15.0742 0.520418 0.260209 0.965552i \(-0.416209\pi\)
0.260209 + 0.965552i \(0.416209\pi\)
\(840\) 0 0
\(841\) −23.2844 −0.802910
\(842\) −17.3621 + 15.5220i −0.598337 + 0.534925i
\(843\) −38.8660 + 10.4141i −1.33862 + 0.358681i
\(844\) −20.7385 2.32817i −0.713848 0.0801390i
\(845\) 0 0
\(846\) 3.59146 5.48776i 0.123477 0.188673i
\(847\) −25.0663 + 9.20895i −0.861289 + 0.316423i
\(848\) −0.449132 11.7489i −0.0154233 0.403461i
\(849\) −21.0823 + 12.1719i −0.723543 + 0.417738i
\(850\) 0 0
\(851\) 0.492709 + 0.284465i 0.0168898 + 0.00975135i
\(852\) 18.7531 2.83434i 0.642471 0.0971028i
\(853\) 14.0097 14.0097i 0.479684 0.479684i −0.425346 0.905031i \(-0.639848\pi\)
0.905031 + 0.425346i \(0.139848\pi\)
\(854\) 10.5917 19.8947i 0.362440 0.680784i
\(855\) 0 0
\(856\) −0.0396435 0.106644i −0.00135499 0.00364503i
\(857\) −34.4324 + 9.22615i −1.17619 + 0.315159i −0.793414 0.608682i \(-0.791698\pi\)
−0.382776 + 0.923841i \(0.625032\pi\)
\(858\) 2.34108 7.11932i 0.0799233 0.243049i
\(859\) −26.2004 45.3805i −0.893947 1.54836i −0.835103 0.550094i \(-0.814592\pi\)
−0.0588442 0.998267i \(-0.518742\pi\)
\(860\) 0 0
\(861\) −1.10450 12.2013i −0.0376411 0.415818i
\(862\) −20.9491 + 4.37546i −0.713528 + 0.149029i
\(863\) −1.36585 + 5.09743i −0.0464941 + 0.173518i −0.985269 0.171014i \(-0.945296\pi\)
0.938775 + 0.344532i \(0.111962\pi\)
\(864\) 8.64899 30.1358i 0.294245 1.02524i
\(865\) 0 0
\(866\) 0.609393 10.8906i 0.0207080 0.370077i
\(867\) −8.75067 + 8.75067i −0.297188 + 0.297188i
\(868\) −14.4489 15.0846i −0.490429 0.512003i
\(869\) 10.1859i 0.345535i
\(870\) 0 0
\(871\) 57.6023 + 33.2567i 1.95178 + 1.12686i
\(872\) −1.67254 17.7203i −0.0566392 0.600085i
\(873\) −6.09536 1.63325i −0.206297 0.0552771i
\(874\) 1.68647 2.57694i 0.0570458 0.0871662i
\(875\) 0 0
\(876\) −33.6304 + 14.6890i −1.13627 + 0.496295i
\(877\) 2.89005 10.7858i 0.0975901 0.364211i −0.899809 0.436283i \(-0.856295\pi\)
0.997399 + 0.0720722i \(0.0229612\pi\)
\(878\) 34.5887 + 11.3740i 1.16731 + 0.383854i
\(879\) −11.1824 + 19.3685i −0.377174 + 0.653285i
\(880\) 0 0
\(881\) 22.0701 0.743561 0.371781 0.928321i \(-0.378747\pi\)
0.371781 + 0.928321i \(0.378747\pi\)
\(882\) 8.78481 11.3018i 0.295800 0.380551i
\(883\) 5.32169 + 5.32169i 0.179089 + 0.179089i 0.790959 0.611869i \(-0.209582\pi\)
−0.611869 + 0.790959i \(0.709582\pi\)
\(884\) 19.1116 + 14.0930i 0.642792 + 0.474000i
\(885\) 0 0
\(886\) 11.0233 + 21.8250i 0.370335 + 0.733225i
\(887\) −4.89193 1.31079i −0.164255 0.0440120i 0.175754 0.984434i \(-0.443764\pi\)
−0.340009 + 0.940422i \(0.610430\pi\)
\(888\) 2.98944 2.12385i 0.100319 0.0712718i
\(889\) −2.63853 3.74417i −0.0884936 0.125576i
\(890\) 0 0
\(891\) −2.12030 + 1.22416i −0.0710327 + 0.0410108i
\(892\) −23.7118 + 18.9252i −0.793929 + 0.633662i
\(893\) −3.30454 12.3327i −0.110582 0.412699i
\(894\) 1.10421 19.7336i 0.0369303 0.659990i
\(895\) 0 0
\(896\) 29.1948 6.60803i 0.975328 0.220759i
\(897\) −2.15273 2.15273i −0.0718774 0.0718774i
\(898\) −10.4625 11.7028i −0.349137 0.390526i
\(899\) 14.2718 24.7194i 0.475990 0.824439i
\(900\) 0 0
\(901\) −3.90860 6.76989i −0.130214 0.225538i
\(902\) 4.89633 1.02265i 0.163030 0.0340507i
\(903\) 26.0899 31.2835i 0.868218 1.04105i
\(904\) 42.7964 + 7.24469i 1.42339 + 0.240955i
\(905\) 0 0
\(906\) 23.6367 11.9384i 0.785277 0.396625i
\(907\) 0.876735 + 3.27202i 0.0291115 + 0.108646i 0.978953 0.204087i \(-0.0654224\pi\)
−0.949841 + 0.312732i \(0.898756\pi\)
\(908\) 19.8196 2.99552i 0.657736 0.0994098i
\(909\) 2.06796i 0.0685899i
\(910\) 0 0
\(911\) 31.5983i 1.04690i −0.852057 0.523449i \(-0.824645\pi\)
0.852057 0.523449i \(-0.175355\pi\)
\(912\) −10.5748 16.7995i −0.350166 0.556287i
\(913\) −1.99514 7.44597i −0.0660295 0.246426i
\(914\) −13.5407 26.8091i −0.447886 0.886767i
\(915\) 0 0
\(916\) 13.6796 + 31.3195i 0.451988 + 1.03482i
\(917\) 1.19029 + 3.23992i 0.0393069 + 0.106992i
\(918\) −4.26180 20.4049i −0.140660 0.673462i
\(919\) 23.1351 + 40.0712i 0.763157 + 1.32183i 0.941215 + 0.337807i \(0.109685\pi\)
−0.178058 + 0.984020i \(0.556982\pi\)
\(920\) 0 0
\(921\) 8.79800 15.2386i 0.289904 0.502128i
\(922\) −9.08446 + 8.12167i −0.299181 + 0.267473i
\(923\) 24.0141 + 24.0141i 0.790435 + 0.790435i
\(924\) −5.37076 3.25686i −0.176685 0.107143i
\(925\) 0 0
\(926\) 3.26169 + 0.182511i 0.107186 + 0.00599768i
\(927\) −3.80821 14.2124i −0.125078 0.466797i
\(928\) 19.8220 + 35.7797i 0.650689 + 1.17453i
\(929\) 37.0594 21.3962i 1.21588 0.701987i 0.251844 0.967768i \(-0.418963\pi\)
0.964034 + 0.265780i \(0.0856296\pi\)
\(930\) 0 0
\(931\) −5.00414 27.4137i −0.164004 0.898447i
\(932\) −1.36896 + 3.49220i −0.0448418 + 0.114391i
\(933\) −16.7837 4.49719i −0.549475 0.147231i
\(934\) −32.1652 + 16.2459i −1.05248 + 0.531583i
\(935\) 0 0
\(936\) 17.1144 6.36204i 0.559402 0.207950i
\(937\) −18.9957 18.9957i −0.620561 0.620561i 0.325114 0.945675i \(-0.394597\pi\)
−0.945675 + 0.325114i \(0.894597\pi\)
\(938\) 38.0399 40.7497i 1.24205 1.33053i
\(939\) 6.11875 0.199678
\(940\) 0 0
\(941\) 10.8404 18.7762i 0.353388 0.612086i −0.633453 0.773781i \(-0.718363\pi\)
0.986841 + 0.161696i \(0.0516963\pi\)
\(942\) 4.14590 12.6078i 0.135081 0.410785i
\(943\) 0.525906 1.96271i 0.0171258 0.0639145i
\(944\) −34.2554 + 36.9785i −1.11492 + 1.20355i
\(945\) 0 0
\(946\) 13.9163 + 9.10749i 0.452457 + 0.296110i
\(947\) 14.8363 + 3.97536i 0.482114 + 0.129182i 0.491687 0.870772i \(-0.336381\pi\)
−0.00957300 + 0.999954i \(0.503047\pi\)
\(948\) 20.8452 16.6373i 0.677019 0.540353i
\(949\) −56.9090 32.8564i −1.84735 1.06657i
\(950\) 0 0
\(951\) 42.8869i 1.39070i
\(952\) 15.1188 12.9421i 0.490003 0.419456i
\(953\) −22.0087 + 22.0087i −0.712931 + 0.712931i −0.967147 0.254216i \(-0.918183\pi\)
0.254216 + 0.967147i \(0.418183\pi\)
\(954\) −6.00141 0.335815i −0.194303 0.0108724i
\(955\) 0 0
\(956\) 3.39557 30.2465i 0.109821 0.978240i
\(957\) 2.22146 8.29061i 0.0718096 0.267997i
\(958\) 2.68274 + 12.8446i 0.0866755 + 0.414990i
\(959\) −0.276665 3.05629i −0.00893398 0.0986929i
\(960\) 0 0
\(961\) −7.70864 13.3518i −0.248666 0.430702i
\(962\) 6.23777 + 2.05120i 0.201114 + 0.0661333i
\(963\) −0.0561830 + 0.0150542i −0.00181047 + 0.000485114i
\(964\) −21.2084 15.6393i −0.683078 0.503708i
\(965\) 0 0
\(966\) −2.16455 + 1.35098i −0.0696434 + 0.0434670i
\(967\) 16.9281 16.9281i 0.544372 0.544372i −0.380435 0.924807i \(-0.624226\pi\)
0.924807 + 0.380435i \(0.124226\pi\)
\(968\) −11.8877 + 25.9554i −0.382086 + 0.834238i
\(969\) −11.4299 6.59904i −0.367180 0.211992i
\(970\) 0 0
\(971\) −32.1198 + 18.5444i −1.03077 + 0.595118i −0.917206 0.398412i \(-0.869561\pi\)
−0.113568 + 0.993530i \(0.536228\pi\)
\(972\) −24.9920 9.79698i −0.801620 0.314238i
\(973\) −7.88071 + 45.4942i −0.252644 + 1.45848i
\(974\) 21.0739 + 13.7918i 0.675251 + 0.441918i
\(975\) 0 0
\(976\) −7.12065 23.0185i −0.227926 0.736803i
\(977\) 22.5762 6.04928i 0.722277 0.193534i 0.121090 0.992642i \(-0.461361\pi\)
0.601188 + 0.799108i \(0.294694\pi\)
\(978\) −7.81264 8.73879i −0.249821 0.279436i
\(979\) −2.01652 −0.0644484
\(980\) 0 0
\(981\) −9.09942 −0.290522
\(982\) −2.35614 2.63545i −0.0751875 0.0841006i
\(983\) −19.2069 + 5.14648i −0.612606 + 0.164147i −0.551764 0.834000i \(-0.686045\pi\)
−0.0608417 + 0.998147i \(0.519378\pi\)
\(984\) −10.0903 8.34979i −0.321666 0.266182i
\(985\) 0 0
\(986\) 22.7555 + 14.8923i 0.724682 + 0.474268i
\(987\) −1.80549 + 10.4228i −0.0574694 + 0.331763i
\(988\) 12.9727 33.0932i 0.412716 1.05284i
\(989\) 5.85104 3.37810i 0.186052 0.107417i
\(990\) 0 0
\(991\) −19.5362 11.2792i −0.620586 0.358296i 0.156511 0.987676i \(-0.449975\pi\)
−0.777097 + 0.629380i \(0.783309\pi\)
\(992\) −22.3269 0.394977i −0.708880 0.0125405i
\(993\) 11.4204 11.4204i 0.362414 0.362414i
\(994\) 24.1461 15.0705i 0.765868 0.478006i
\(995\) 0 0
\(996\) −11.9791 + 16.2449i −0.379573 + 0.514739i
\(997\) 16.6372 4.45792i 0.526905 0.141184i 0.0144466 0.999896i \(-0.495401\pi\)
0.512459 + 0.858712i \(0.328735\pi\)
\(998\) −8.76459 2.88211i −0.277438 0.0912315i
\(999\) −2.88213 4.99199i −0.0911865 0.157940i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 700.2.be.e.207.14 72
4.3 odd 2 inner 700.2.be.e.207.8 72
5.2 odd 4 140.2.w.b.123.14 yes 72
5.3 odd 4 inner 700.2.be.e.543.5 72
5.4 even 2 140.2.w.b.67.5 yes 72
7.2 even 3 inner 700.2.be.e.107.2 72
20.3 even 4 inner 700.2.be.e.543.2 72
20.7 even 4 140.2.w.b.123.17 yes 72
20.19 odd 2 140.2.w.b.67.11 yes 72
28.23 odd 6 inner 700.2.be.e.107.5 72
35.2 odd 12 140.2.w.b.23.11 yes 72
35.4 even 6 980.2.k.k.687.8 36
35.9 even 6 140.2.w.b.107.17 yes 72
35.12 even 12 980.2.x.m.863.11 72
35.17 even 12 980.2.k.j.883.1 36
35.19 odd 6 980.2.x.m.667.17 72
35.23 odd 12 inner 700.2.be.e.443.8 72
35.24 odd 6 980.2.k.j.687.8 36
35.27 even 4 980.2.x.m.263.14 72
35.32 odd 12 980.2.k.k.883.1 36
35.34 odd 2 980.2.x.m.67.5 72
140.19 even 6 980.2.x.m.667.14 72
140.23 even 12 inner 700.2.be.e.443.14 72
140.27 odd 4 980.2.x.m.263.17 72
140.39 odd 6 980.2.k.k.687.1 36
140.47 odd 12 980.2.x.m.863.5 72
140.59 even 6 980.2.k.j.687.1 36
140.67 even 12 980.2.k.k.883.8 36
140.79 odd 6 140.2.w.b.107.14 yes 72
140.87 odd 12 980.2.k.j.883.8 36
140.107 even 12 140.2.w.b.23.5 72
140.139 even 2 980.2.x.m.67.11 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.w.b.23.5 72 140.107 even 12
140.2.w.b.23.11 yes 72 35.2 odd 12
140.2.w.b.67.5 yes 72 5.4 even 2
140.2.w.b.67.11 yes 72 20.19 odd 2
140.2.w.b.107.14 yes 72 140.79 odd 6
140.2.w.b.107.17 yes 72 35.9 even 6
140.2.w.b.123.14 yes 72 5.2 odd 4
140.2.w.b.123.17 yes 72 20.7 even 4
700.2.be.e.107.2 72 7.2 even 3 inner
700.2.be.e.107.5 72 28.23 odd 6 inner
700.2.be.e.207.8 72 4.3 odd 2 inner
700.2.be.e.207.14 72 1.1 even 1 trivial
700.2.be.e.443.8 72 35.23 odd 12 inner
700.2.be.e.443.14 72 140.23 even 12 inner
700.2.be.e.543.2 72 20.3 even 4 inner
700.2.be.e.543.5 72 5.3 odd 4 inner
980.2.k.j.687.1 36 140.59 even 6
980.2.k.j.687.8 36 35.24 odd 6
980.2.k.j.883.1 36 35.17 even 12
980.2.k.j.883.8 36 140.87 odd 12
980.2.k.k.687.1 36 140.39 odd 6
980.2.k.k.687.8 36 35.4 even 6
980.2.k.k.883.1 36 35.32 odd 12
980.2.k.k.883.8 36 140.67 even 12
980.2.x.m.67.5 72 35.34 odd 2
980.2.x.m.67.11 72 140.139 even 2
980.2.x.m.263.14 72 35.27 even 4
980.2.x.m.263.17 72 140.27 odd 4
980.2.x.m.667.14 72 140.19 even 6
980.2.x.m.667.17 72 35.19 odd 6
980.2.x.m.863.5 72 140.47 odd 12
980.2.x.m.863.11 72 35.12 even 12