Properties

Label 975.2.o.p.476.10
Level $975$
Weight $2$
Character 975.476
Analytic conductor $7.785$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [975,2,Mod(476,975)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("975.476"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(975, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.o (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,0,0,0,12,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 476.10
Character \(\chi\) \(=\) 975.476
Dual form 975.2.o.p.551.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.260415 + 0.260415i) q^{2} +(-1.18585 + 1.26244i) q^{3} +1.86437i q^{4} +(-0.0199472 - 0.637571i) q^{6} +(-2.54331 + 2.54331i) q^{7} +(-1.00634 - 1.00634i) q^{8} +(-0.187534 - 2.99413i) q^{9} +(0.348374 + 0.348374i) q^{11} +(-2.35366 - 2.21086i) q^{12} +(0.339913 - 3.58949i) q^{13} -1.32463i q^{14} -3.20461 q^{16} -5.28437 q^{17} +(0.828552 + 0.730879i) q^{18} +(-3.44898 - 3.44898i) q^{19} +(-0.194812 - 6.22677i) q^{21} -0.181443 q^{22} +9.38135 q^{23} +(2.46381 - 0.0770834i) q^{24} +(0.846238 + 1.02327i) q^{26} +(4.00231 + 3.31383i) q^{27} +(-4.74167 - 4.74167i) q^{28} +6.80884i q^{29} +(-2.96376 - 2.96376i) q^{31} +(2.84720 - 2.84720i) q^{32} +(-0.852920 + 0.0266847i) q^{33} +(1.37613 - 1.37613i) q^{34} +(5.58217 - 0.349633i) q^{36} +(-1.76399 + 1.76399i) q^{37} +1.79633 q^{38} +(4.12845 + 4.68571i) q^{39} +(-2.21539 + 2.21539i) q^{41} +(1.67227 + 1.57081i) q^{42} -5.41717i q^{43} +(-0.649497 + 0.649497i) q^{44} +(-2.44304 + 2.44304i) q^{46} +(2.47000 + 2.47000i) q^{47} +(3.80017 - 4.04564i) q^{48} -5.93686i q^{49} +(6.26646 - 6.67123i) q^{51} +(6.69214 + 0.633724i) q^{52} -6.94843i q^{53} +(-1.90523 + 0.179291i) q^{54} +5.11886 q^{56} +(8.44410 - 0.264184i) q^{57} +(-1.77312 - 1.77312i) q^{58} +(-0.248775 - 0.248775i) q^{59} -3.60093 q^{61} +1.54361 q^{62} +(8.09197 + 7.13805i) q^{63} -4.92631i q^{64} +(0.215164 - 0.229062i) q^{66} +(1.34019 + 1.34019i) q^{67} -9.85202i q^{68} +(-11.1248 + 11.8434i) q^{69} +(11.6961 - 11.6961i) q^{71} +(-2.82439 + 3.20183i) q^{72} +(-6.48532 + 6.48532i) q^{73} -0.918735i q^{74} +(6.43016 - 6.43016i) q^{76} -1.77204 q^{77} +(-2.29534 - 0.145118i) q^{78} +2.66096 q^{79} +(-8.92966 + 1.12300i) q^{81} -1.15384i q^{82} +(-7.35570 + 7.35570i) q^{83} +(11.6090 - 0.363202i) q^{84} +(1.41071 + 1.41071i) q^{86} +(-8.59579 - 8.07424i) q^{87} -0.701163i q^{88} +(-2.54802 - 2.54802i) q^{89} +(8.26469 + 9.99370i) q^{91} +17.4903i q^{92} +(7.25614 - 0.227017i) q^{93} -1.28645 q^{94} +(0.218090 + 6.97078i) q^{96} +(-10.4901 - 10.4901i) q^{97} +(1.54604 + 1.54604i) q^{98} +(0.977745 - 1.10841i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 12 q^{6} + 16 q^{7} - 64 q^{16} - 4 q^{18} - 16 q^{19} - 12 q^{21} + 8 q^{24} + 24 q^{27} - 32 q^{28} + 32 q^{31} + 4 q^{33} - 16 q^{34} - 32 q^{37} - 8 q^{39} - 8 q^{42} - 40 q^{46} - 8 q^{48} - 32 q^{54}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.260415 + 0.260415i −0.184141 + 0.184141i −0.793157 0.609017i \(-0.791564\pi\)
0.609017 + 0.793157i \(0.291564\pi\)
\(3\) −1.18585 + 1.26244i −0.684649 + 0.728873i
\(4\) 1.86437i 0.932184i
\(5\) 0 0
\(6\) −0.0199472 0.637571i −0.00814341 0.260287i
\(7\) −2.54331 + 2.54331i −0.961281 + 0.961281i −0.999278 0.0379967i \(-0.987902\pi\)
0.0379967 + 0.999278i \(0.487902\pi\)
\(8\) −1.00634 1.00634i −0.355794 0.355794i
\(9\) −0.187534 2.99413i −0.0625113 0.998044i
\(10\) 0 0
\(11\) 0.348374 + 0.348374i 0.105039 + 0.105039i 0.757673 0.652634i \(-0.226336\pi\)
−0.652634 + 0.757673i \(0.726336\pi\)
\(12\) −2.35366 2.21086i −0.679444 0.638219i
\(13\) 0.339913 3.58949i 0.0942750 0.995546i
\(14\) 1.32463i 0.354022i
\(15\) 0 0
\(16\) −3.20461 −0.801152
\(17\) −5.28437 −1.28165 −0.640824 0.767688i \(-0.721407\pi\)
−0.640824 + 0.767688i \(0.721407\pi\)
\(18\) 0.828552 + 0.730879i 0.195292 + 0.172270i
\(19\) −3.44898 3.44898i −0.791249 0.791249i 0.190448 0.981697i \(-0.439006\pi\)
−0.981697 + 0.190448i \(0.939006\pi\)
\(20\) 0 0
\(21\) −0.194812 6.22677i −0.0425115 1.35879i
\(22\) −0.181443 −0.0386838
\(23\) 9.38135 1.95615 0.978073 0.208262i \(-0.0667807\pi\)
0.978073 + 0.208262i \(0.0667807\pi\)
\(24\) 2.46381 0.0770834i 0.502923 0.0157346i
\(25\) 0 0
\(26\) 0.846238 + 1.02327i 0.165961 + 0.200681i
\(27\) 4.00231 + 3.31383i 0.770246 + 0.637747i
\(28\) −4.74167 4.74167i −0.896091 0.896091i
\(29\) 6.80884i 1.26437i 0.774817 + 0.632185i \(0.217842\pi\)
−0.774817 + 0.632185i \(0.782158\pi\)
\(30\) 0 0
\(31\) −2.96376 2.96376i −0.532306 0.532306i 0.388952 0.921258i \(-0.372837\pi\)
−0.921258 + 0.388952i \(0.872837\pi\)
\(32\) 2.84720 2.84720i 0.503319 0.503319i
\(33\) −0.852920 + 0.0266847i −0.148474 + 0.00464521i
\(34\) 1.37613 1.37613i 0.236004 0.236004i
\(35\) 0 0
\(36\) 5.58217 0.349633i 0.930361 0.0582721i
\(37\) −1.76399 + 1.76399i −0.289998 + 0.289998i −0.837079 0.547082i \(-0.815739\pi\)
0.547082 + 0.837079i \(0.315739\pi\)
\(38\) 1.79633 0.291403
\(39\) 4.12845 + 4.68571i 0.661081 + 0.750314i
\(40\) 0 0
\(41\) −2.21539 + 2.21539i −0.345986 + 0.345986i −0.858612 0.512626i \(-0.828673\pi\)
0.512626 + 0.858612i \(0.328673\pi\)
\(42\) 1.67227 + 1.57081i 0.258037 + 0.242381i
\(43\) 5.41717i 0.826110i −0.910706 0.413055i \(-0.864462\pi\)
0.910706 0.413055i \(-0.135538\pi\)
\(44\) −0.649497 + 0.649497i −0.0979153 + 0.0979153i
\(45\) 0 0
\(46\) −2.44304 + 2.44304i −0.360207 + 0.360207i
\(47\) 2.47000 + 2.47000i 0.360286 + 0.360286i 0.863918 0.503632i \(-0.168003\pi\)
−0.503632 + 0.863918i \(0.668003\pi\)
\(48\) 3.80017 4.04564i 0.548508 0.583938i
\(49\) 5.93686i 0.848123i
\(50\) 0 0
\(51\) 6.26646 6.67123i 0.877480 0.934159i
\(52\) 6.69214 + 0.633724i 0.928032 + 0.0878817i
\(53\) 6.94843i 0.954441i −0.878784 0.477220i \(-0.841644\pi\)
0.878784 0.477220i \(-0.158356\pi\)
\(54\) −1.90523 + 0.179291i −0.259269 + 0.0243984i
\(55\) 0 0
\(56\) 5.11886 0.684036
\(57\) 8.44410 0.264184i 1.11845 0.0349921i
\(58\) −1.77312 1.77312i −0.232822 0.232822i
\(59\) −0.248775 0.248775i −0.0323877 0.0323877i 0.690727 0.723115i \(-0.257290\pi\)
−0.723115 + 0.690727i \(0.757290\pi\)
\(60\) 0 0
\(61\) −3.60093 −0.461052 −0.230526 0.973066i \(-0.574045\pi\)
−0.230526 + 0.973066i \(0.574045\pi\)
\(62\) 1.54361 0.196039
\(63\) 8.09197 + 7.13805i 1.01949 + 0.899310i
\(64\) 4.92631i 0.615789i
\(65\) 0 0
\(66\) 0.215164 0.229062i 0.0264848 0.0281956i
\(67\) 1.34019 + 1.34019i 0.163731 + 0.163731i 0.784217 0.620486i \(-0.213065\pi\)
−0.620486 + 0.784217i \(0.713065\pi\)
\(68\) 9.85202i 1.19473i
\(69\) −11.1248 + 11.8434i −1.33927 + 1.42578i
\(70\) 0 0
\(71\) 11.6961 11.6961i 1.38807 1.38807i 0.558713 0.829361i \(-0.311295\pi\)
0.829361 0.558713i \(-0.188705\pi\)
\(72\) −2.82439 + 3.20183i −0.332857 + 0.377339i
\(73\) −6.48532 + 6.48532i −0.759050 + 0.759050i −0.976149 0.217100i \(-0.930340\pi\)
0.217100 + 0.976149i \(0.430340\pi\)
\(74\) 0.918735i 0.106801i
\(75\) 0 0
\(76\) 6.43016 6.43016i 0.737590 0.737590i
\(77\) −1.77204 −0.201943
\(78\) −2.29534 0.145118i −0.259896 0.0164314i
\(79\) 2.66096 0.299382 0.149691 0.988733i \(-0.452172\pi\)
0.149691 + 0.988733i \(0.452172\pi\)
\(80\) 0 0
\(81\) −8.92966 + 1.12300i −0.992185 + 0.124778i
\(82\) 1.15384i 0.127420i
\(83\) −7.35570 + 7.35570i −0.807393 + 0.807393i −0.984239 0.176846i \(-0.943411\pi\)
0.176846 + 0.984239i \(0.443411\pi\)
\(84\) 11.6090 0.363202i 1.26664 0.0396286i
\(85\) 0 0
\(86\) 1.41071 + 1.41071i 0.152121 + 0.152121i
\(87\) −8.59579 8.07424i −0.921565 0.865650i
\(88\) 0.701163i 0.0747442i
\(89\) −2.54802 2.54802i −0.270090 0.270090i 0.559046 0.829136i \(-0.311167\pi\)
−0.829136 + 0.559046i \(0.811167\pi\)
\(90\) 0 0
\(91\) 8.26469 + 9.99370i 0.866375 + 1.04762i
\(92\) 17.4903i 1.82349i
\(93\) 7.25614 0.227017i 0.752426 0.0235406i
\(94\) −1.28645 −0.132687
\(95\) 0 0
\(96\) 0.218090 + 6.97078i 0.0222587 + 0.711452i
\(97\) −10.4901 10.4901i −1.06511 1.06511i −0.997727 0.0673840i \(-0.978535\pi\)
−0.0673840 0.997727i \(-0.521465\pi\)
\(98\) 1.54604 + 1.54604i 0.156174 + 0.156174i
\(99\) 0.977745 1.10841i 0.0982670 0.111399i
\(100\) 0 0
\(101\) 2.56854 0.255579 0.127790 0.991801i \(-0.459212\pi\)
0.127790 + 0.991801i \(0.459212\pi\)
\(102\) 0.105409 + 3.36916i 0.0104370 + 0.333597i
\(103\) 15.2419i 1.50183i −0.660400 0.750914i \(-0.729613\pi\)
0.660400 0.750914i \(-0.270387\pi\)
\(104\) −3.95431 + 3.27017i −0.387752 + 0.320667i
\(105\) 0 0
\(106\) 1.80947 + 1.80947i 0.175752 + 0.175752i
\(107\) 8.85806i 0.856341i −0.903698 0.428171i \(-0.859158\pi\)
0.903698 0.428171i \(-0.140842\pi\)
\(108\) −6.17820 + 7.46179i −0.594498 + 0.718011i
\(109\) −7.99281 7.99281i −0.765573 0.765573i 0.211751 0.977324i \(-0.432083\pi\)
−0.977324 + 0.211751i \(0.932083\pi\)
\(110\) 0 0
\(111\) −0.135118 4.31875i −0.0128248 0.409918i
\(112\) 8.15031 8.15031i 0.770132 0.770132i
\(113\) 11.4219i 1.07448i 0.843430 + 0.537239i \(0.180533\pi\)
−0.843430 + 0.537239i \(0.819467\pi\)
\(114\) −2.13017 + 2.26776i −0.199509 + 0.212396i
\(115\) 0 0
\(116\) −12.6942 −1.17863
\(117\) −10.8112 0.344594i −0.999492 0.0318577i
\(118\) 0.129569 0.0119278
\(119\) 13.4398 13.4398i 1.23202 1.23202i
\(120\) 0 0
\(121\) 10.7573i 0.977934i
\(122\) 0.937735 0.937735i 0.0848986 0.0848986i
\(123\) −0.169694 5.42392i −0.0153008 0.489058i
\(124\) 5.52553 5.52553i 0.496207 0.496207i
\(125\) 0 0
\(126\) −3.96612 + 0.248413i −0.353330 + 0.0221304i
\(127\) 2.64759i 0.234936i 0.993077 + 0.117468i \(0.0374777\pi\)
−0.993077 + 0.117468i \(0.962522\pi\)
\(128\) 6.97729 + 6.97729i 0.616711 + 0.616711i
\(129\) 6.83887 + 6.42393i 0.602129 + 0.565595i
\(130\) 0 0
\(131\) 5.12086i 0.447412i −0.974657 0.223706i \(-0.928184\pi\)
0.974657 0.223706i \(-0.0718155\pi\)
\(132\) −0.0497501 1.59016i −0.00433019 0.138405i
\(133\) 17.5436 1.52123
\(134\) −0.698012 −0.0602991
\(135\) 0 0
\(136\) 5.31786 + 5.31786i 0.456003 + 0.456003i
\(137\) −8.25322 8.25322i −0.705120 0.705120i 0.260385 0.965505i \(-0.416151\pi\)
−0.965505 + 0.260385i \(0.916151\pi\)
\(138\) −0.187132 5.98127i −0.0159297 0.509160i
\(139\) −0.517263 −0.0438737 −0.0219369 0.999759i \(-0.506983\pi\)
−0.0219369 + 0.999759i \(0.506983\pi\)
\(140\) 0 0
\(141\) −6.04728 + 0.189197i −0.509273 + 0.0159332i
\(142\) 6.09168i 0.511202i
\(143\) 1.36890 1.13207i 0.114473 0.0946682i
\(144\) 0.600973 + 9.59502i 0.0500811 + 0.799585i
\(145\) 0 0
\(146\) 3.37774i 0.279544i
\(147\) 7.49496 + 7.04021i 0.618174 + 0.580666i
\(148\) −3.28872 3.28872i −0.270331 0.270331i
\(149\) 0.824702 0.824702i 0.0675622 0.0675622i −0.672518 0.740080i \(-0.734787\pi\)
0.740080 + 0.672518i \(0.234787\pi\)
\(150\) 0 0
\(151\) −6.80265 + 6.80265i −0.553591 + 0.553591i −0.927475 0.373884i \(-0.878026\pi\)
0.373884 + 0.927475i \(0.378026\pi\)
\(152\) 6.94167i 0.563044i
\(153\) 0.991000 + 15.8221i 0.0801176 + 1.27914i
\(154\) 0.461466 0.461466i 0.0371860 0.0371860i
\(155\) 0 0
\(156\) −8.73589 + 7.69696i −0.699431 + 0.616250i
\(157\) −8.40663 −0.670922 −0.335461 0.942054i \(-0.608892\pi\)
−0.335461 + 0.942054i \(0.608892\pi\)
\(158\) −0.692954 + 0.692954i −0.0551284 + 0.0551284i
\(159\) 8.77202 + 8.23978i 0.695666 + 0.653457i
\(160\) 0 0
\(161\) −23.8597 + 23.8597i −1.88041 + 1.88041i
\(162\) 2.03297 2.61786i 0.159725 0.205679i
\(163\) −6.91500 + 6.91500i −0.541625 + 0.541625i −0.924005 0.382380i \(-0.875104\pi\)
0.382380 + 0.924005i \(0.375104\pi\)
\(164\) −4.13030 4.13030i −0.322522 0.322522i
\(165\) 0 0
\(166\) 3.83106i 0.297348i
\(167\) −2.11987 2.11987i −0.164040 0.164040i 0.620314 0.784354i \(-0.287005\pi\)
−0.784354 + 0.620314i \(0.787005\pi\)
\(168\) −6.07018 + 6.46228i −0.468325 + 0.498576i
\(169\) −12.7689 2.44023i −0.982224 0.187710i
\(170\) 0 0
\(171\) −9.67989 + 10.9735i −0.740240 + 0.839164i
\(172\) 10.0996 0.770087
\(173\) −21.2987 −1.61931 −0.809655 0.586906i \(-0.800346\pi\)
−0.809655 + 0.586906i \(0.800346\pi\)
\(174\) 4.34112 0.135817i 0.329099 0.0102963i
\(175\) 0 0
\(176\) −1.11640 1.11640i −0.0841518 0.0841518i
\(177\) 0.609074 0.0190556i 0.0457808 0.00143231i
\(178\) 1.32708 0.0994692
\(179\) −2.77071 −0.207093 −0.103546 0.994625i \(-0.533019\pi\)
−0.103546 + 0.994625i \(0.533019\pi\)
\(180\) 0 0
\(181\) 20.1030i 1.49425i 0.664686 + 0.747123i \(0.268565\pi\)
−0.664686 + 0.747123i \(0.731435\pi\)
\(182\) −4.75475 0.450260i −0.352446 0.0333755i
\(183\) 4.27015 4.54598i 0.315659 0.336048i
\(184\) −9.44081 9.44081i −0.695985 0.695985i
\(185\) 0 0
\(186\) −1.83049 + 1.94872i −0.134218 + 0.142887i
\(187\) −1.84094 1.84094i −0.134623 0.134623i
\(188\) −4.60499 + 4.60499i −0.335853 + 0.335853i
\(189\) −18.6072 + 1.75102i −1.35348 + 0.127368i
\(190\) 0 0
\(191\) 13.9497i 1.00937i −0.863304 0.504684i \(-0.831609\pi\)
0.863304 0.504684i \(-0.168391\pi\)
\(192\) 6.21919 + 5.84185i 0.448832 + 0.421599i
\(193\) 0.516880 0.516880i 0.0372058 0.0372058i −0.688259 0.725465i \(-0.741625\pi\)
0.725465 + 0.688259i \(0.241625\pi\)
\(194\) 5.46356 0.392261
\(195\) 0 0
\(196\) 11.0685 0.790607
\(197\) 3.72469 3.72469i 0.265373 0.265373i −0.561859 0.827233i \(-0.689914\pi\)
0.827233 + 0.561859i \(0.189914\pi\)
\(198\) 0.0340268 + 0.543265i 0.00241818 + 0.0386081i
\(199\) 14.3661i 1.01839i 0.860652 + 0.509193i \(0.170056\pi\)
−0.860652 + 0.509193i \(0.829944\pi\)
\(200\) 0 0
\(201\) −3.28119 + 0.102656i −0.231437 + 0.00724080i
\(202\) −0.668886 + 0.668886i −0.0470626 + 0.0470626i
\(203\) −17.3170 17.3170i −1.21542 1.21542i
\(204\) 12.4376 + 11.6830i 0.870808 + 0.817973i
\(205\) 0 0
\(206\) 3.96921 + 3.96921i 0.276548 + 0.276548i
\(207\) −1.75932 28.0890i −0.122281 1.95232i
\(208\) −1.08929 + 11.5029i −0.0755286 + 0.797584i
\(209\) 2.40306i 0.166223i
\(210\) 0 0
\(211\) 9.49226 0.653474 0.326737 0.945115i \(-0.394051\pi\)
0.326737 + 0.945115i \(0.394051\pi\)
\(212\) 12.9544 0.889715
\(213\) 0.895898 + 28.6355i 0.0613859 + 1.96207i
\(214\) 2.30677 + 2.30677i 0.157687 + 0.157687i
\(215\) 0 0
\(216\) −0.692846 7.36251i −0.0471422 0.500956i
\(217\) 15.0755 1.02339
\(218\) 4.16289 0.281947
\(219\) −0.496762 15.8780i −0.0335681 1.07293i
\(220\) 0 0
\(221\) −1.79623 + 18.9682i −0.120827 + 1.27594i
\(222\) 1.15985 + 1.08948i 0.0778442 + 0.0731211i
\(223\) −4.69628 4.69628i −0.314486 0.314486i 0.532159 0.846645i \(-0.321381\pi\)
−0.846645 + 0.532159i \(0.821381\pi\)
\(224\) 14.4826i 0.967662i
\(225\) 0 0
\(226\) −2.97442 2.97442i −0.197855 0.197855i
\(227\) −7.76531 + 7.76531i −0.515402 + 0.515402i −0.916177 0.400775i \(-0.868741\pi\)
0.400775 + 0.916177i \(0.368741\pi\)
\(228\) 0.492537 + 15.7429i 0.0326191 + 1.04260i
\(229\) −5.52070 + 5.52070i −0.364818 + 0.364818i −0.865583 0.500765i \(-0.833052\pi\)
0.500765 + 0.865583i \(0.333052\pi\)
\(230\) 0 0
\(231\) 2.10137 2.23711i 0.138260 0.147191i
\(232\) 6.85200 6.85200i 0.449856 0.449856i
\(233\) 9.73604 0.637829 0.318915 0.947783i \(-0.396682\pi\)
0.318915 + 0.947783i \(0.396682\pi\)
\(234\) 2.90512 2.72565i 0.189914 0.178181i
\(235\) 0 0
\(236\) 0.463808 0.463808i 0.0301913 0.0301913i
\(237\) −3.15550 + 3.35932i −0.204971 + 0.218211i
\(238\) 6.99984i 0.453732i
\(239\) −16.1376 + 16.1376i −1.04385 + 1.04385i −0.0448582 + 0.998993i \(0.514284\pi\)
−0.998993 + 0.0448582i \(0.985716\pi\)
\(240\) 0 0
\(241\) −6.35964 + 6.35964i −0.409660 + 0.409660i −0.881620 0.471960i \(-0.843547\pi\)
0.471960 + 0.881620i \(0.343547\pi\)
\(242\) 2.80135 + 2.80135i 0.180078 + 0.180078i
\(243\) 9.17148 12.6049i 0.588351 0.808606i
\(244\) 6.71346i 0.429786i
\(245\) 0 0
\(246\) 1.45666 + 1.36828i 0.0928731 + 0.0872381i
\(247\) −13.5524 + 11.2077i −0.862320 + 0.713130i
\(248\) 5.96508i 0.378783i
\(249\) −0.563431 18.0089i −0.0357060 1.14127i
\(250\) 0 0
\(251\) 4.33610 0.273692 0.136846 0.990592i \(-0.456303\pi\)
0.136846 + 0.990592i \(0.456303\pi\)
\(252\) −13.3080 + 15.0864i −0.838323 + 0.950354i
\(253\) 3.26821 + 3.26821i 0.205471 + 0.205471i
\(254\) −0.689471 0.689471i −0.0432612 0.0432612i
\(255\) 0 0
\(256\) 6.21864 0.388665
\(257\) 4.95572 0.309129 0.154565 0.987983i \(-0.450602\pi\)
0.154565 + 0.987983i \(0.450602\pi\)
\(258\) −3.45383 + 0.108057i −0.215026 + 0.00672736i
\(259\) 8.97273i 0.557538i
\(260\) 0 0
\(261\) 20.3866 1.27689i 1.26190 0.0790375i
\(262\) 1.33355 + 1.33355i 0.0823868 + 0.0823868i
\(263\) 21.5950i 1.33160i 0.746129 + 0.665801i \(0.231910\pi\)
−0.746129 + 0.665801i \(0.768090\pi\)
\(264\) 0.885180 + 0.831472i 0.0544790 + 0.0511736i
\(265\) 0 0
\(266\) −4.56862 + 4.56862i −0.280120 + 0.280120i
\(267\) 6.23830 0.195173i 0.381778 0.0119444i
\(268\) −2.49862 + 2.49862i −0.152627 + 0.152627i
\(269\) 4.12228i 0.251340i 0.992072 + 0.125670i \(0.0401080\pi\)
−0.992072 + 0.125670i \(0.959892\pi\)
\(270\) 0 0
\(271\) −2.86523 + 2.86523i −0.174050 + 0.174050i −0.788756 0.614706i \(-0.789275\pi\)
0.614706 + 0.788756i \(0.289275\pi\)
\(272\) 16.9343 1.02680
\(273\) −22.4172 1.41728i −1.35675 0.0857779i
\(274\) 4.29852 0.259683
\(275\) 0 0
\(276\) −22.0805 20.7408i −1.32909 1.24845i
\(277\) 13.8782i 0.833857i −0.908939 0.416929i \(-0.863106\pi\)
0.908939 0.416929i \(-0.136894\pi\)
\(278\) 0.134703 0.134703i 0.00807894 0.00807894i
\(279\) −8.31807 + 9.42968i −0.497990 + 0.564540i
\(280\) 0 0
\(281\) −14.6864 14.6864i −0.876116 0.876116i 0.117015 0.993130i \(-0.462668\pi\)
−0.993130 + 0.117015i \(0.962668\pi\)
\(282\) 1.52553 1.62407i 0.0908439 0.0967119i
\(283\) 7.59425i 0.451431i −0.974193 0.225716i \(-0.927528\pi\)
0.974193 0.225716i \(-0.0724720\pi\)
\(284\) 21.8059 + 21.8059i 1.29394 + 1.29394i
\(285\) 0 0
\(286\) −0.0616749 + 0.651289i −0.00364692 + 0.0385115i
\(287\) 11.2688i 0.665179i
\(288\) −9.05885 7.99095i −0.533798 0.470871i
\(289\) 10.9246 0.642623
\(290\) 0 0
\(291\) 25.6829 0.803522i 1.50556 0.0471033i
\(292\) −12.0910 12.0910i −0.707574 0.707574i
\(293\) −15.8408 15.8408i −0.925429 0.925429i 0.0719771 0.997406i \(-0.477069\pi\)
−0.997406 + 0.0719771i \(0.977069\pi\)
\(294\) −3.78517 + 0.118424i −0.220756 + 0.00690662i
\(295\) 0 0
\(296\) 3.55033 0.206359
\(297\) 0.239849 + 2.54875i 0.0139175 + 0.147894i
\(298\) 0.429529i 0.0248819i
\(299\) 3.18885 33.6743i 0.184416 1.94743i
\(300\) 0 0
\(301\) 13.7775 + 13.7775i 0.794124 + 0.794124i
\(302\) 3.54302i 0.203878i
\(303\) −3.04590 + 3.24264i −0.174982 + 0.186285i
\(304\) 11.0526 + 11.0526i 0.633911 + 0.633911i
\(305\) 0 0
\(306\) −4.37838 3.86224i −0.250295 0.220789i
\(307\) −19.6820 + 19.6820i −1.12331 + 1.12331i −0.132074 + 0.991240i \(0.542164\pi\)
−0.991240 + 0.132074i \(0.957836\pi\)
\(308\) 3.30374i 0.188248i
\(309\) 19.2421 + 18.0746i 1.09464 + 1.02823i
\(310\) 0 0
\(311\) 15.5168 0.879877 0.439938 0.898028i \(-0.355000\pi\)
0.439938 + 0.898028i \(0.355000\pi\)
\(312\) 0.560791 8.87003i 0.0317486 0.502166i
\(313\) 3.72939 0.210797 0.105399 0.994430i \(-0.466388\pi\)
0.105399 + 0.994430i \(0.466388\pi\)
\(314\) 2.18921 2.18921i 0.123544 0.123544i
\(315\) 0 0
\(316\) 4.96102i 0.279079i
\(317\) 18.4547 18.4547i 1.03652 1.03652i 0.0372111 0.999307i \(-0.488153\pi\)
0.999307 0.0372111i \(-0.0118474\pi\)
\(318\) −4.43012 + 0.138602i −0.248429 + 0.00777241i
\(319\) −2.37202 + 2.37202i −0.132808 + 0.132808i
\(320\) 0 0
\(321\) 11.1828 + 10.5043i 0.624164 + 0.586293i
\(322\) 12.4268i 0.692519i
\(323\) 18.2257 + 18.2257i 1.01410 + 1.01410i
\(324\) −2.09369 16.6482i −0.116316 0.924899i
\(325\) 0 0
\(326\) 3.60154i 0.199471i
\(327\) 19.5687 0.612233i 1.08215 0.0338566i
\(328\) 4.45886 0.246199
\(329\) −12.5639 −0.692673
\(330\) 0 0
\(331\) −15.0140 15.0140i −0.825244 0.825244i 0.161611 0.986855i \(-0.448331\pi\)
−0.986855 + 0.161611i \(0.948331\pi\)
\(332\) −13.7137 13.7137i −0.752639 0.752639i
\(333\) 5.61242 + 4.95080i 0.307559 + 0.271302i
\(334\) 1.10409 0.0604131
\(335\) 0 0
\(336\) 0.624297 + 19.9543i 0.0340582 + 1.08860i
\(337\) 18.0210i 0.981666i 0.871254 + 0.490833i \(0.163308\pi\)
−0.871254 + 0.490833i \(0.836692\pi\)
\(338\) 3.96068 2.68974i 0.215433 0.146303i
\(339\) −14.4195 13.5446i −0.783158 0.735641i
\(340\) 0 0
\(341\) 2.06499i 0.111825i
\(342\) −0.336873 5.37844i −0.0182160 0.290833i
\(343\) −2.70390 2.70390i −0.145997 0.145997i
\(344\) −5.45150 + 5.45150i −0.293925 + 0.293925i
\(345\) 0 0
\(346\) 5.54649 5.54649i 0.298181 0.298181i
\(347\) 12.1453i 0.651991i 0.945371 + 0.325996i \(0.105700\pi\)
−0.945371 + 0.325996i \(0.894300\pi\)
\(348\) 15.0534 16.0257i 0.806945 0.859069i
\(349\) 22.2952 22.2952i 1.19343 1.19343i 0.217337 0.976097i \(-0.430263\pi\)
0.976097 0.217337i \(-0.0697371\pi\)
\(350\) 0 0
\(351\) 13.2554 13.2399i 0.707522 0.706692i
\(352\) 1.98378 0.105736
\(353\) 7.05913 7.05913i 0.375720 0.375720i −0.493836 0.869555i \(-0.664406\pi\)
0.869555 + 0.493836i \(0.164406\pi\)
\(354\) −0.153649 + 0.163574i −0.00816637 + 0.00869386i
\(355\) 0 0
\(356\) 4.75045 4.75045i 0.251774 0.251774i
\(357\) 1.02946 + 32.9046i 0.0544848 + 1.74149i
\(358\) 0.721534 0.721534i 0.0381343 0.0381343i
\(359\) −17.9957 17.9957i −0.949776 0.949776i 0.0490218 0.998798i \(-0.484390\pi\)
−0.998798 + 0.0490218i \(0.984390\pi\)
\(360\) 0 0
\(361\) 4.79088i 0.252151i
\(362\) −5.23512 5.23512i −0.275152 0.275152i
\(363\) 13.5805 + 12.7565i 0.712789 + 0.669541i
\(364\) −18.6319 + 15.4084i −0.976579 + 0.807621i
\(365\) 0 0
\(366\) 0.0718286 + 2.29585i 0.00375454 + 0.120006i
\(367\) −17.4749 −0.912181 −0.456090 0.889933i \(-0.650751\pi\)
−0.456090 + 0.889933i \(0.650751\pi\)
\(368\) −30.0635 −1.56717
\(369\) 7.04863 + 6.21771i 0.366937 + 0.323681i
\(370\) 0 0
\(371\) 17.6720 + 17.6720i 0.917486 + 0.917486i
\(372\) 0.423244 + 13.5281i 0.0219442 + 0.701400i
\(373\) −12.9747 −0.671805 −0.335903 0.941897i \(-0.609041\pi\)
−0.335903 + 0.941897i \(0.609041\pi\)
\(374\) 0.958813 0.0495790
\(375\) 0 0
\(376\) 4.97131i 0.256376i
\(377\) 24.4403 + 2.31442i 1.25874 + 0.119199i
\(378\) 4.38960 5.30159i 0.225777 0.272684i
\(379\) −4.51436 4.51436i −0.231887 0.231887i 0.581593 0.813480i \(-0.302430\pi\)
−0.813480 + 0.581593i \(0.802430\pi\)
\(380\) 0 0
\(381\) −3.34244 3.13964i −0.171238 0.160848i
\(382\) 3.63271 + 3.63271i 0.185866 + 0.185866i
\(383\) 24.9851 24.9851i 1.27668 1.27668i 0.334161 0.942516i \(-0.391547\pi\)
0.942516 0.334161i \(-0.108453\pi\)
\(384\) −17.0824 + 0.534446i −0.871734 + 0.0272733i
\(385\) 0 0
\(386\) 0.269206i 0.0137022i
\(387\) −16.2197 + 1.01590i −0.824494 + 0.0516412i
\(388\) 19.5575 19.5575i 0.992880 0.992880i
\(389\) −5.36318 −0.271924 −0.135962 0.990714i \(-0.543413\pi\)
−0.135962 + 0.990714i \(0.543413\pi\)
\(390\) 0 0
\(391\) −49.5745 −2.50709
\(392\) −5.97449 + 5.97449i −0.301757 + 0.301757i
\(393\) 6.46481 + 6.07256i 0.326106 + 0.306320i
\(394\) 1.93993i 0.0977322i
\(395\) 0 0
\(396\) 2.06648 + 1.82288i 0.103845 + 0.0916030i
\(397\) 2.52951 2.52951i 0.126952 0.126952i −0.640776 0.767728i \(-0.721387\pi\)
0.767728 + 0.640776i \(0.221387\pi\)
\(398\) −3.74114 3.74114i −0.187527 0.187527i
\(399\) −20.8041 + 22.1479i −1.04151 + 1.10878i
\(400\) 0 0
\(401\) −11.1604 11.1604i −0.557326 0.557326i 0.371219 0.928545i \(-0.378940\pi\)
−0.928545 + 0.371219i \(0.878940\pi\)
\(402\) 0.827736 0.881202i 0.0412837 0.0439504i
\(403\) −11.6458 + 9.63096i −0.580119 + 0.479752i
\(404\) 4.78871i 0.238247i
\(405\) 0 0
\(406\) 9.01920 0.447615
\(407\) −1.22905 −0.0609219
\(408\) −13.0197 + 0.407337i −0.644570 + 0.0201662i
\(409\) −12.4909 12.4909i −0.617634 0.617634i 0.327290 0.944924i \(-0.393865\pi\)
−0.944924 + 0.327290i \(0.893865\pi\)
\(410\) 0 0
\(411\) 20.2063 0.632179i 0.996703 0.0311831i
\(412\) 28.4165 1.39998
\(413\) 1.26542 0.0622674
\(414\) 7.77294 + 6.85663i 0.382019 + 0.336985i
\(415\) 0 0
\(416\) −9.25221 11.1878i −0.453627 0.548528i
\(417\) 0.613395 0.653016i 0.0300381 0.0319784i
\(418\) 0.625793 + 0.625793i 0.0306085 + 0.0306085i
\(419\) 6.25022i 0.305343i −0.988277 0.152672i \(-0.951212\pi\)
0.988277 0.152672i \(-0.0487877\pi\)
\(420\) 0 0
\(421\) −24.9169 24.9169i −1.21438 1.21438i −0.969573 0.244803i \(-0.921277\pi\)
−0.244803 0.969573i \(-0.578723\pi\)
\(422\) −2.47192 + 2.47192i −0.120331 + 0.120331i
\(423\) 6.93229 7.85871i 0.337060 0.382104i
\(424\) −6.99247 + 6.99247i −0.339585 + 0.339585i
\(425\) 0 0
\(426\) −7.69041 7.22380i −0.372602 0.349994i
\(427\) 9.15829 9.15829i 0.443201 0.443201i
\(428\) 16.5147 0.798268
\(429\) −0.194134 + 3.07062i −0.00937290 + 0.148251i
\(430\) 0 0
\(431\) 3.03234 3.03234i 0.146063 0.146063i −0.630294 0.776357i \(-0.717066\pi\)
0.776357 + 0.630294i \(0.217066\pi\)
\(432\) −12.8258 10.6195i −0.617084 0.510932i
\(433\) 30.0237i 1.44285i 0.692493 + 0.721424i \(0.256512\pi\)
−0.692493 + 0.721424i \(0.743488\pi\)
\(434\) −3.92588 + 3.92588i −0.188448 + 0.188448i
\(435\) 0 0
\(436\) 14.9016 14.9016i 0.713655 0.713655i
\(437\) −32.3560 32.3560i −1.54780 1.54780i
\(438\) 4.26422 + 4.00549i 0.203752 + 0.191390i
\(439\) 13.8417i 0.660629i 0.943871 + 0.330314i \(0.107155\pi\)
−0.943871 + 0.330314i \(0.892845\pi\)
\(440\) 0 0
\(441\) −17.7757 + 1.11336i −0.846464 + 0.0530173i
\(442\) −4.47184 5.40736i −0.212704 0.257202i
\(443\) 5.89439i 0.280051i −0.990148 0.140026i \(-0.955282\pi\)
0.990148 0.140026i \(-0.0447185\pi\)
\(444\) 8.05175 0.251909i 0.382119 0.0119551i
\(445\) 0 0
\(446\) 2.44596 0.115819
\(447\) 0.0631704 + 2.01911i 0.00298786 + 0.0955006i
\(448\) 12.5291 + 12.5291i 0.591946 + 0.591946i
\(449\) 15.1945 + 15.1945i 0.717073 + 0.717073i 0.968005 0.250932i \(-0.0807369\pi\)
−0.250932 + 0.968005i \(0.580737\pi\)
\(450\) 0 0
\(451\) −1.54357 −0.0726837
\(452\) −21.2946 −1.00161
\(453\) −0.521068 16.6549i −0.0244819 0.782514i
\(454\) 4.04440i 0.189813i
\(455\) 0 0
\(456\) −8.76348 8.23176i −0.410387 0.385487i
\(457\) −5.58713 5.58713i −0.261355 0.261355i 0.564250 0.825604i \(-0.309166\pi\)
−0.825604 + 0.564250i \(0.809166\pi\)
\(458\) 2.87534i 0.134356i
\(459\) −21.1497 17.5115i −0.987184 0.817368i
\(460\) 0 0
\(461\) −14.7907 + 14.7907i −0.688870 + 0.688870i −0.961982 0.273113i \(-0.911947\pi\)
0.273113 + 0.961982i \(0.411947\pi\)
\(462\) 0.0353473 + 1.12980i 0.00164451 + 0.0525632i
\(463\) −8.79012 + 8.79012i −0.408512 + 0.408512i −0.881219 0.472708i \(-0.843277\pi\)
0.472708 + 0.881219i \(0.343277\pi\)
\(464\) 21.8197i 1.01295i
\(465\) 0 0
\(466\) −2.53541 + 2.53541i −0.117450 + 0.117450i
\(467\) −9.31080 −0.430853 −0.215426 0.976520i \(-0.569114\pi\)
−0.215426 + 0.976520i \(0.569114\pi\)
\(468\) 0.642450 20.1560i 0.0296972 0.931711i
\(469\) −6.81706 −0.314783
\(470\) 0 0
\(471\) 9.96897 10.6129i 0.459346 0.489017i
\(472\) 0.500703i 0.0230467i
\(473\) 1.88720 1.88720i 0.0867734 0.0867734i
\(474\) −0.0530788 1.69655i −0.00243799 0.0779253i
\(475\) 0 0
\(476\) 25.0567 + 25.0567i 1.14847 + 1.14847i
\(477\) −20.8045 + 1.30307i −0.952574 + 0.0596634i
\(478\) 8.40491i 0.384432i
\(479\) 21.2367 + 21.2367i 0.970331 + 0.970331i 0.999572 0.0292411i \(-0.00930906\pi\)
−0.0292411 + 0.999572i \(0.509309\pi\)
\(480\) 0 0
\(481\) 5.73221 + 6.93142i 0.261366 + 0.316045i
\(482\) 3.31229i 0.150870i
\(483\) −1.82760 58.4155i −0.0831588 2.65800i
\(484\) 20.0555 0.911614
\(485\) 0 0
\(486\) 0.894116 + 5.67089i 0.0405579 + 0.257237i
\(487\) 11.9347 + 11.9347i 0.540814 + 0.540814i 0.923768 0.382954i \(-0.125093\pi\)
−0.382954 + 0.923768i \(0.625093\pi\)
\(488\) 3.62375 + 3.62375i 0.164040 + 0.164040i
\(489\) −0.529675 16.9299i −0.0239527 0.765599i
\(490\) 0 0
\(491\) −8.47582 −0.382508 −0.191254 0.981541i \(-0.561255\pi\)
−0.191254 + 0.981541i \(0.561255\pi\)
\(492\) 10.1122 0.316372i 0.455892 0.0142632i
\(493\) 35.9805i 1.62048i
\(494\) 0.610596 6.44790i 0.0274720 0.290105i
\(495\) 0 0
\(496\) 9.49767 + 9.49767i 0.426458 + 0.426458i
\(497\) 59.4937i 2.66866i
\(498\) 4.83650 + 4.54305i 0.216729 + 0.203579i
\(499\) 25.0163 + 25.0163i 1.11988 + 1.11988i 0.991758 + 0.128124i \(0.0408957\pi\)
0.128124 + 0.991758i \(0.459104\pi\)
\(500\) 0 0
\(501\) 5.19005 0.162377i 0.231875 0.00725449i
\(502\) −1.12918 + 1.12918i −0.0503979 + 0.0503979i
\(503\) 20.4948i 0.913820i 0.889513 + 0.456910i \(0.151044\pi\)
−0.889513 + 0.456910i \(0.848956\pi\)
\(504\) −0.959960 15.3265i −0.0427600 0.682699i
\(505\) 0 0
\(506\) −1.70218 −0.0756712
\(507\) 18.2226 13.2263i 0.809296 0.587401i
\(508\) −4.93608 −0.219003
\(509\) 25.6979 25.6979i 1.13904 1.13904i 0.150415 0.988623i \(-0.451939\pi\)
0.988623 0.150415i \(-0.0480609\pi\)
\(510\) 0 0
\(511\) 32.9884i 1.45932i
\(512\) −15.5740 + 15.5740i −0.688280 + 0.688280i
\(513\) −2.37456 25.2332i −0.104839 1.11407i
\(514\) −1.29054 + 1.29054i −0.0569234 + 0.0569234i
\(515\) 0 0
\(516\) −11.9766 + 12.7502i −0.527239 + 0.561295i
\(517\) 1.72096i 0.0756879i
\(518\) 2.33663 + 2.33663i 0.102666 + 0.102666i
\(519\) 25.2570 26.8884i 1.10866 1.18027i
\(520\) 0 0
\(521\) 5.36438i 0.235018i −0.993072 0.117509i \(-0.962509\pi\)
0.993072 0.117509i \(-0.0374909\pi\)
\(522\) −4.97644 + 5.64148i −0.217813 + 0.246921i
\(523\) 18.4316 0.805960 0.402980 0.915209i \(-0.367974\pi\)
0.402980 + 0.915209i \(0.367974\pi\)
\(524\) 9.54718 0.417070
\(525\) 0 0
\(526\) −5.62365 5.62365i −0.245203 0.245203i
\(527\) 15.6616 + 15.6616i 0.682230 + 0.682230i
\(528\) 2.73327 0.0855139i 0.118950 0.00372152i
\(529\) 65.0097 2.82651
\(530\) 0 0
\(531\) −0.698211 + 0.791519i −0.0302998 + 0.0343490i
\(532\) 32.7078i 1.41806i
\(533\) 7.19908 + 8.70516i 0.311827 + 0.377062i
\(534\) −1.57372 + 1.67537i −0.0681015 + 0.0725004i
\(535\) 0 0
\(536\) 2.69738i 0.116509i
\(537\) 3.28564 3.49787i 0.141786 0.150944i
\(538\) −1.07350 1.07350i −0.0462820 0.0462820i
\(539\) 2.06824 2.06824i 0.0890856 0.0890856i
\(540\) 0 0
\(541\) −19.8497 + 19.8497i −0.853407 + 0.853407i −0.990551 0.137144i \(-0.956208\pi\)
0.137144 + 0.990551i \(0.456208\pi\)
\(542\) 1.49229i 0.0640995i
\(543\) −25.3790 23.8391i −1.08912 1.02303i
\(544\) −15.0457 + 15.0457i −0.645078 + 0.645078i
\(545\) 0 0
\(546\) 6.20684 5.46867i 0.265628 0.234038i
\(547\) 9.53713 0.407778 0.203889 0.978994i \(-0.434642\pi\)
0.203889 + 0.978994i \(0.434642\pi\)
\(548\) 15.3870 15.3870i 0.657302 0.657302i
\(549\) 0.675297 + 10.7817i 0.0288210 + 0.460150i
\(550\) 0 0
\(551\) 23.4835 23.4835i 1.00043 1.00043i
\(552\) 23.1138 0.723146i 0.983791 0.0307791i
\(553\) −6.76766 + 6.76766i −0.287790 + 0.287790i
\(554\) 3.61407 + 3.61407i 0.153547 + 0.153547i
\(555\) 0 0
\(556\) 0.964369i 0.0408984i
\(557\) 13.2999 + 13.2999i 0.563537 + 0.563537i 0.930310 0.366773i \(-0.119538\pi\)
−0.366773 + 0.930310i \(0.619538\pi\)
\(558\) −0.289479 4.62177i −0.0122546 0.195655i
\(559\) −19.4449 1.84137i −0.822431 0.0778815i
\(560\) 0 0
\(561\) 4.50715 0.141012i 0.190292 0.00595352i
\(562\) 7.64909 0.322657
\(563\) 21.9634 0.925647 0.462823 0.886451i \(-0.346836\pi\)
0.462823 + 0.886451i \(0.346836\pi\)
\(564\) −0.352732 11.2744i −0.0148527 0.474736i
\(565\) 0 0
\(566\) 1.97765 + 1.97765i 0.0831270 + 0.0831270i
\(567\) 19.8548 25.5671i 0.833821 1.07372i
\(568\) −23.5405 −0.987737
\(569\) −18.1666 −0.761585 −0.380792 0.924661i \(-0.624349\pi\)
−0.380792 + 0.924661i \(0.624349\pi\)
\(570\) 0 0
\(571\) 29.6650i 1.24144i −0.784032 0.620720i \(-0.786840\pi\)
0.784032 0.620720i \(-0.213160\pi\)
\(572\) 2.11059 + 2.55214i 0.0882482 + 0.106710i
\(573\) 17.6108 + 16.5422i 0.735700 + 0.691062i
\(574\) 2.93457 + 2.93457i 0.122487 + 0.122487i
\(575\) 0 0
\(576\) −14.7500 + 0.923850i −0.614584 + 0.0384938i
\(577\) −11.2277 11.2277i −0.467414 0.467414i 0.433662 0.901076i \(-0.357221\pi\)
−0.901076 + 0.433662i \(0.857221\pi\)
\(578\) −2.84492 + 2.84492i −0.118333 + 0.118333i
\(579\) 0.0395919 + 1.26547i 0.00164538 + 0.0525913i
\(580\) 0 0
\(581\) 37.4156i 1.55226i
\(582\) −6.47895 + 6.89745i −0.268561 + 0.285908i
\(583\) 2.42065 2.42065i 0.100253 0.100253i
\(584\) 13.0529 0.540131
\(585\) 0 0
\(586\) 8.25035 0.340819
\(587\) −9.11946 + 9.11946i −0.376400 + 0.376400i −0.869802 0.493401i \(-0.835753\pi\)
0.493401 + 0.869802i \(0.335753\pi\)
\(588\) −13.1255 + 13.9734i −0.541288 + 0.576252i
\(589\) 20.4438i 0.842374i
\(590\) 0 0
\(591\) 0.285304 + 9.11914i 0.0117358 + 0.375111i
\(592\) 5.65288 5.65288i 0.232332 0.232332i
\(593\) 6.63125 + 6.63125i 0.272313 + 0.272313i 0.830031 0.557718i \(-0.188323\pi\)
−0.557718 + 0.830031i \(0.688323\pi\)
\(594\) −0.726192 0.601272i −0.0297960 0.0246705i
\(595\) 0 0
\(596\) 1.53755 + 1.53755i 0.0629804 + 0.0629804i
\(597\) −18.1364 17.0360i −0.742274 0.697237i
\(598\) 7.93885 + 9.59969i 0.324644 + 0.392561i
\(599\) 39.9553i 1.63253i 0.577679 + 0.816264i \(0.303959\pi\)
−0.577679 + 0.816264i \(0.696041\pi\)
\(600\) 0 0
\(601\) 20.6271 0.841398 0.420699 0.907200i \(-0.361785\pi\)
0.420699 + 0.907200i \(0.361785\pi\)
\(602\) −7.17574 −0.292461
\(603\) 3.76139 4.26405i 0.153176 0.173646i
\(604\) −12.6826 12.6826i −0.516049 0.516049i
\(605\) 0 0
\(606\) −0.0512353 1.63763i −0.00208129 0.0665241i
\(607\) −1.59959 −0.0649252 −0.0324626 0.999473i \(-0.510335\pi\)
−0.0324626 + 0.999473i \(0.510335\pi\)
\(608\) −19.6399 −0.796502
\(609\) 42.3971 1.32645i 1.71802 0.0537503i
\(610\) 0 0
\(611\) 9.70563 8.02646i 0.392648 0.324716i
\(612\) −29.4983 + 1.84759i −1.19240 + 0.0746843i
\(613\) −10.4572 10.4572i −0.422362 0.422362i 0.463654 0.886016i \(-0.346538\pi\)
−0.886016 + 0.463654i \(0.846538\pi\)
\(614\) 10.2510i 0.413696i
\(615\) 0 0
\(616\) 1.78328 + 1.78328i 0.0718502 + 0.0718502i
\(617\) 7.17003 7.17003i 0.288654 0.288654i −0.547894 0.836548i \(-0.684570\pi\)
0.836548 + 0.547894i \(0.184570\pi\)
\(618\) −9.71779 + 0.304033i −0.390907 + 0.0122300i
\(619\) −34.7195 + 34.7195i −1.39550 + 1.39550i −0.583085 + 0.812411i \(0.698154\pi\)
−0.812411 + 0.583085i \(0.801846\pi\)
\(620\) 0 0
\(621\) 37.5471 + 31.0882i 1.50671 + 1.24753i
\(622\) −4.04080 + 4.04080i −0.162021 + 0.162021i
\(623\) 12.9608 0.519265
\(624\) −13.2301 15.0159i −0.529626 0.601116i
\(625\) 0 0
\(626\) −0.971187 + 0.971187i −0.0388164 + 0.0388164i
\(627\) 3.03374 + 2.84967i 0.121156 + 0.113805i
\(628\) 15.6730i 0.625423i
\(629\) 9.32156 9.32156i 0.371675 0.371675i
\(630\) 0 0
\(631\) 15.2658 15.2658i 0.607723 0.607723i −0.334627 0.942351i \(-0.608610\pi\)
0.942351 + 0.334627i \(0.108610\pi\)
\(632\) −2.67783 2.67783i −0.106518 0.106518i
\(633\) −11.2564 + 11.9835i −0.447400 + 0.476300i
\(634\) 9.61174i 0.381731i
\(635\) 0 0
\(636\) −15.3620 + 16.3543i −0.609142 + 0.648489i
\(637\) −21.3103 2.01802i −0.844345 0.0799568i
\(638\) 1.23542i 0.0489106i
\(639\) −37.2132 32.8263i −1.47213 1.29859i
\(640\) 0 0
\(641\) 25.8774 1.02210 0.511048 0.859552i \(-0.329258\pi\)
0.511048 + 0.859552i \(0.329258\pi\)
\(642\) −5.64764 + 0.176694i −0.222895 + 0.00697354i
\(643\) 5.93694 + 5.93694i 0.234130 + 0.234130i 0.814414 0.580284i \(-0.197058\pi\)
−0.580284 + 0.814414i \(0.697058\pi\)
\(644\) −44.4832 44.4832i −1.75289 1.75289i
\(645\) 0 0
\(646\) −9.49246 −0.373476
\(647\) 8.94367 0.351612 0.175806 0.984425i \(-0.443747\pi\)
0.175806 + 0.984425i \(0.443747\pi\)
\(648\) 10.1164 + 7.85614i 0.397409 + 0.308618i
\(649\) 0.173333i 0.00680392i
\(650\) 0 0
\(651\) −17.8772 + 19.0320i −0.700664 + 0.745922i
\(652\) −12.8921 12.8921i −0.504894 0.504894i
\(653\) 29.3417i 1.14823i 0.818775 + 0.574115i \(0.194654\pi\)
−0.818775 + 0.574115i \(0.805346\pi\)
\(654\) −4.93655 + 5.25542i −0.193034 + 0.205503i
\(655\) 0 0
\(656\) 7.09945 7.09945i 0.277187 0.277187i
\(657\) 20.6341 + 18.2017i 0.805014 + 0.710116i
\(658\) 3.27183 3.27183i 0.127549 0.127549i
\(659\) 20.2846i 0.790175i 0.918644 + 0.395087i \(0.129286\pi\)
−0.918644 + 0.395087i \(0.870714\pi\)
\(660\) 0 0
\(661\) −13.3192 + 13.3192i −0.518055 + 0.518055i −0.916983 0.398927i \(-0.869383\pi\)
0.398927 + 0.916983i \(0.369383\pi\)
\(662\) 7.81973 0.303922
\(663\) −21.8163 24.7610i −0.847274 0.961639i
\(664\) 14.8046 0.574531
\(665\) 0 0
\(666\) −2.75082 + 0.172294i −0.106592 + 0.00667626i
\(667\) 63.8761i 2.47329i
\(668\) 3.95221 3.95221i 0.152916 0.152916i
\(669\) 11.4979 0.359725i 0.444533 0.0139078i
\(670\) 0 0
\(671\) −1.25447 1.25447i −0.0484283 0.0484283i
\(672\) −18.2835 17.1742i −0.705303 0.662509i
\(673\) 26.5074i 1.02179i 0.859644 + 0.510893i \(0.170685\pi\)
−0.859644 + 0.510893i \(0.829315\pi\)
\(674\) −4.69293 4.69293i −0.180765 0.180765i
\(675\) 0 0
\(676\) 4.54949 23.8060i 0.174981 0.915614i
\(677\) 24.4044i 0.937939i −0.883214 0.468970i \(-0.844625\pi\)
0.883214 0.468970i \(-0.155375\pi\)
\(678\) 7.28225 0.227834i 0.279673 0.00874993i
\(679\) 53.3593 2.04774
\(680\) 0 0
\(681\) −0.594807 19.0117i −0.0227930 0.728532i
\(682\) 0.537753 + 0.537753i 0.0205916 + 0.0205916i
\(683\) −24.2961 24.2961i −0.929666 0.929666i 0.0680180 0.997684i \(-0.478332\pi\)
−0.997684 + 0.0680180i \(0.978332\pi\)
\(684\) −20.4586 18.0469i −0.782256 0.690040i
\(685\) 0 0
\(686\) 1.40827 0.0537679
\(687\) −0.422874 13.5163i −0.0161337 0.515679i
\(688\) 17.3599i 0.661839i
\(689\) −24.9414 2.36187i −0.950190 0.0899799i
\(690\) 0 0
\(691\) −20.5928 20.5928i −0.783388 0.783388i 0.197013 0.980401i \(-0.436876\pi\)
−0.980401 + 0.197013i \(0.936876\pi\)
\(692\) 39.7086i 1.50950i
\(693\) 0.332319 + 5.30574i 0.0126237 + 0.201548i
\(694\) −3.16280 3.16280i −0.120058 0.120058i
\(695\) 0 0
\(696\) 0.524849 + 16.7757i 0.0198943 + 0.635881i
\(697\) 11.7069 11.7069i 0.443432 0.443432i
\(698\) 11.6120i 0.439520i
\(699\) −11.5455 + 12.2912i −0.436689 + 0.464897i
\(700\) 0 0
\(701\) −20.2981 −0.766648 −0.383324 0.923614i \(-0.625221\pi\)
−0.383324 + 0.923614i \(0.625221\pi\)
\(702\) −0.00405037 + 6.89976i −0.000152871 + 0.260415i
\(703\) 12.1679 0.458921
\(704\) 1.71620 1.71620i 0.0646816 0.0646816i
\(705\) 0 0
\(706\) 3.67660i 0.138371i
\(707\) −6.53260 + 6.53260i −0.245684 + 0.245684i
\(708\) 0.0355267 + 1.13554i 0.00133518 + 0.0426761i
\(709\) −24.9325 + 24.9325i −0.936361 + 0.936361i −0.998093 0.0617322i \(-0.980338\pi\)
0.0617322 + 0.998093i \(0.480338\pi\)
\(710\) 0 0
\(711\) −0.499021 7.96728i −0.0187148 0.298796i
\(712\) 5.12834i 0.192193i
\(713\) −27.8040 27.8040i −1.04127 1.04127i
\(714\) −8.83691 8.30074i −0.330713 0.310647i
\(715\) 0 0
\(716\) 5.16563i 0.193049i
\(717\) −1.23610 39.5094i −0.0461631 1.47551i
\(718\) 9.37268 0.349785
\(719\) −44.3697 −1.65471 −0.827355 0.561679i \(-0.810156\pi\)
−0.827355 + 0.561679i \(0.810156\pi\)
\(720\) 0 0
\(721\) 38.7649 + 38.7649i 1.44368 + 1.44368i
\(722\) −1.24761 1.24761i −0.0464314 0.0464314i
\(723\) −0.487135 15.5703i −0.0181168 0.579064i
\(724\) −37.4794 −1.39291
\(725\) 0 0
\(726\) −6.85852 + 0.214578i −0.254544 + 0.00796372i
\(727\) 19.3095i 0.716150i −0.933693 0.358075i \(-0.883433\pi\)
0.933693 0.358075i \(-0.116567\pi\)
\(728\) 1.73997 18.3741i 0.0644875 0.680990i
\(729\) 5.03704 + 26.5260i 0.186557 + 0.982444i
\(730\) 0 0
\(731\) 28.6263i 1.05878i
\(732\) 8.47538 + 7.96114i 0.313259 + 0.294252i
\(733\) 8.23013 + 8.23013i 0.303987 + 0.303987i 0.842571 0.538585i \(-0.181041\pi\)
−0.538585 + 0.842571i \(0.681041\pi\)
\(734\) 4.55071 4.55071i 0.167970 0.167970i
\(735\) 0 0
\(736\) 26.7106 26.7106i 0.984565 0.984565i
\(737\) 0.933777i 0.0343961i
\(738\) −3.45475 + 0.216384i −0.127171 + 0.00796521i
\(739\) −11.8446 + 11.8446i −0.435710 + 0.435710i −0.890565 0.454855i \(-0.849691\pi\)
0.454855 + 0.890565i \(0.349691\pi\)
\(740\) 0 0
\(741\) 1.92197 30.3998i 0.0706055 1.11677i
\(742\) −9.20411 −0.337893
\(743\) 7.55046 7.55046i 0.276999 0.276999i −0.554911 0.831910i \(-0.687248\pi\)
0.831910 + 0.554911i \(0.187248\pi\)
\(744\) −7.53058 7.07367i −0.276085 0.259333i
\(745\) 0 0
\(746\) 3.37880 3.37880i 0.123707 0.123707i
\(747\) 23.4034 + 20.6445i 0.856285 + 0.755342i
\(748\) 3.43218 3.43218i 0.125493 0.125493i
\(749\) 22.5288 + 22.5288i 0.823185 + 0.823185i
\(750\) 0 0
\(751\) 0.869234i 0.0317188i −0.999874 0.0158594i \(-0.994952\pi\)
0.999874 0.0158594i \(-0.00504841\pi\)
\(752\) −7.91537 7.91537i −0.288644 0.288644i
\(753\) −5.14195 + 5.47409i −0.187383 + 0.199487i
\(754\) −6.96732 + 5.76190i −0.253735 + 0.209836i
\(755\) 0 0
\(756\) −3.26456 34.6907i −0.118731 1.26169i
\(757\) 32.3586 1.17609 0.588046 0.808828i \(-0.299897\pi\)
0.588046 + 0.808828i \(0.299897\pi\)
\(758\) 2.35121 0.0853998
\(759\) −8.00154 + 0.250338i −0.290438 + 0.00908670i
\(760\) 0 0
\(761\) 30.6519 + 30.6519i 1.11113 + 1.11113i 0.992998 + 0.118133i \(0.0376908\pi\)
0.118133 + 0.992998i \(0.462309\pi\)
\(762\) 1.68803 0.0528120i 0.0611507 0.00191318i
\(763\) 40.6564 1.47186
\(764\) 26.0074 0.940916
\(765\) 0 0
\(766\) 13.0129i 0.470177i
\(767\) −0.977538 + 0.808414i −0.0352968 + 0.0291901i
\(768\) −7.37436 + 7.85069i −0.266099 + 0.283287i
\(769\) −10.9540 10.9540i −0.395013 0.395013i 0.481457 0.876470i \(-0.340108\pi\)
−0.876470 + 0.481457i \(0.840108\pi\)
\(770\) 0 0
\(771\) −5.87673 + 6.25633i −0.211645 + 0.225316i
\(772\) 0.963655 + 0.963655i 0.0346827 + 0.0346827i
\(773\) −27.0891 + 27.0891i −0.974326 + 0.974326i −0.999679 0.0253530i \(-0.991929\pi\)
0.0253530 + 0.999679i \(0.491929\pi\)
\(774\) 3.95929 4.48841i 0.142314 0.161332i
\(775\) 0 0
\(776\) 21.1132i 0.757921i
\(777\) 11.3276 + 10.6403i 0.406375 + 0.381718i
\(778\) 1.39665 1.39665i 0.0500723 0.0500723i
\(779\) 15.2816 0.547522
\(780\) 0 0
\(781\) 8.14924 0.291603
\(782\) 12.9099 12.9099i 0.461658 0.461658i
\(783\) −22.5634 + 27.2511i −0.806349 + 0.973876i
\(784\) 19.0253i 0.679475i
\(785\) 0 0
\(786\) −3.26491 + 0.102147i −0.116456 + 0.00364346i
\(787\) 36.5342 36.5342i 1.30230 1.30230i 0.375468 0.926836i \(-0.377482\pi\)
0.926836 0.375468i \(-0.122518\pi\)
\(788\) 6.94420 + 6.94420i 0.247377 + 0.247377i
\(789\) −27.2625 25.6083i −0.970569 0.911681i
\(790\) 0 0
\(791\) −29.0494 29.0494i −1.03288 1.03288i
\(792\) −2.09938 + 0.131492i −0.0745980 + 0.00467236i
\(793\) −1.22401 + 12.9255i −0.0434657 + 0.458999i
\(794\) 1.31744i 0.0467543i
\(795\) 0 0
\(796\) −26.7837 −0.949324
\(797\) −29.5724 −1.04751 −0.523754 0.851870i \(-0.675469\pi\)
−0.523754 + 0.851870i \(0.675469\pi\)
\(798\) −0.349947 11.1853i −0.0123880 0.395956i
\(799\) −13.0524 13.0524i −0.461760 0.461760i
\(800\) 0 0
\(801\) −7.15128 + 8.10696i −0.252678 + 0.286445i
\(802\) 5.81269 0.205253
\(803\) −4.51863 −0.159459
\(804\) −0.191389 6.11734i −0.00674976 0.215742i
\(805\) 0 0
\(806\) 0.524694 5.54078i 0.0184815 0.195166i
\(807\) −5.20415 4.88840i −0.183195 0.172080i
\(808\) −2.58482 2.58482i −0.0909337 0.0909337i
\(809\) 53.6701i 1.88694i 0.331455 + 0.943471i \(0.392460\pi\)
−0.331455 + 0.943471i \(0.607540\pi\)
\(810\) 0 0
\(811\) 22.4475 + 22.4475i 0.788238 + 0.788238i 0.981205 0.192967i \(-0.0618110\pi\)
−0.192967 + 0.981205i \(0.561811\pi\)
\(812\) 32.2853 32.2853i 1.13299 1.13299i
\(813\) −0.219470 7.01491i −0.00769717 0.246024i
\(814\) 0.320063 0.320063i 0.0112182 0.0112182i
\(815\) 0 0
\(816\) −20.0815 + 21.3787i −0.702994 + 0.748403i
\(817\) −18.6837 + 18.6837i −0.653659 + 0.653659i
\(818\) 6.50562 0.227464
\(819\) 28.3726 26.6197i 0.991417 0.930169i
\(820\) 0 0
\(821\) −33.6801 + 33.6801i −1.17544 + 1.17544i −0.194553 + 0.980892i \(0.562326\pi\)
−0.980892 + 0.194553i \(0.937674\pi\)
\(822\) −5.09738 + 5.42664i −0.177792 + 0.189276i
\(823\) 43.9680i 1.53263i 0.642467 + 0.766313i \(0.277911\pi\)
−0.642467 + 0.766313i \(0.722089\pi\)
\(824\) −15.3385 + 15.3385i −0.534342 + 0.534342i
\(825\) 0 0
\(826\) −0.329535 + 0.329535i −0.0114660 + 0.0114660i
\(827\) 30.1945 + 30.1945i 1.04996 + 1.04996i 0.998684 + 0.0512796i \(0.0163300\pi\)
0.0512796 + 0.998684i \(0.483670\pi\)
\(828\) 52.3682 3.28002i 1.81992 0.113989i
\(829\) 34.9574i 1.21412i −0.794656 0.607060i \(-0.792349\pi\)
0.794656 0.607060i \(-0.207651\pi\)
\(830\) 0 0
\(831\) 17.5204 + 16.4574i 0.607776 + 0.570900i
\(832\) −17.6829 1.67452i −0.613046 0.0580535i
\(833\) 31.3726i 1.08700i
\(834\) 0.0103180 + 0.329792i 0.000357282 + 0.0114198i
\(835\) 0 0
\(836\) 4.48020 0.154951
\(837\) −2.04049 21.6833i −0.0705298 0.749483i
\(838\) 1.62765 + 1.62765i 0.0562262 + 0.0562262i
\(839\) 3.70208 + 3.70208i 0.127810 + 0.127810i 0.768118 0.640308i \(-0.221193\pi\)
−0.640308 + 0.768118i \(0.721193\pi\)
\(840\) 0 0
\(841\) −17.3603 −0.598632
\(842\) 12.9775 0.447233
\(843\) 35.9565 1.12495i 1.23841 0.0387452i
\(844\) 17.6971i 0.609158i
\(845\) 0 0
\(846\) 0.241253 + 3.85179i 0.00829444 + 0.132427i
\(847\) 27.3591 + 27.3591i 0.940069 + 0.940069i
\(848\) 22.2670i 0.764652i
\(849\) 9.58732 + 9.00562i 0.329036 + 0.309072i
\(850\) 0 0
\(851\) −16.5486 + 16.5486i −0.567278 + 0.567278i
\(852\) −53.3871 + 1.67028i −1.82901 + 0.0572230i
\(853\) −19.6790 + 19.6790i −0.673797 + 0.673797i −0.958589 0.284792i \(-0.908075\pi\)
0.284792 + 0.958589i \(0.408075\pi\)
\(854\) 4.76990i 0.163223i
\(855\) 0 0
\(856\) −8.91420 + 8.91420i −0.304681 + 0.304681i
\(857\) 13.8696 0.473777 0.236889 0.971537i \(-0.423872\pi\)
0.236889 + 0.971537i \(0.423872\pi\)
\(858\) −0.749079 0.850190i −0.0255731 0.0290250i
\(859\) 47.5429 1.62214 0.811072 0.584946i \(-0.198884\pi\)
0.811072 + 0.584946i \(0.198884\pi\)
\(860\) 0 0
\(861\) 14.2263 + 13.3631i 0.484831 + 0.455414i
\(862\) 1.57933i 0.0537922i
\(863\) 18.8498 18.8498i 0.641654 0.641654i −0.309308 0.950962i \(-0.600097\pi\)
0.950962 + 0.309308i \(0.100097\pi\)
\(864\) 20.8305 1.96025i 0.708670 0.0666890i
\(865\) 0 0
\(866\) −7.81862 7.81862i −0.265687 0.265687i
\(867\) −12.9549 + 13.7917i −0.439972 + 0.468391i
\(868\) 28.1063i 0.953990i
\(869\) 0.927010 + 0.927010i 0.0314466 + 0.0314466i
\(870\) 0 0
\(871\) 5.26617 4.35507i 0.178437 0.147566i
\(872\) 16.0869i 0.544773i
\(873\) −29.4416 + 33.3761i −0.996447 + 1.12961i
\(874\) 16.8520 0.570026
\(875\) 0 0
\(876\) 29.6024 0.926148i 1.00017 0.0312916i
\(877\) −37.6363 37.6363i −1.27089 1.27089i −0.945623 0.325265i \(-0.894546\pi\)
−0.325265 0.945623i \(-0.605454\pi\)
\(878\) −3.60458 3.60458i −0.121649 0.121649i
\(879\) 38.7829 1.21337i 1.30811 0.0409260i
\(880\) 0 0
\(881\) −48.6517 −1.63912 −0.819559 0.572995i \(-0.805781\pi\)
−0.819559 + 0.572995i \(0.805781\pi\)
\(882\) 4.33913 4.91900i 0.146106 0.165631i
\(883\) 27.2665i 0.917592i −0.888542 0.458796i \(-0.848281\pi\)
0.888542 0.458796i \(-0.151719\pi\)
\(884\) −35.3638 3.34883i −1.18941 0.112633i
\(885\) 0 0
\(886\) 1.53499 + 1.53499i 0.0515689 + 0.0515689i
\(887\) 32.1996i 1.08116i 0.841294 + 0.540578i \(0.181794\pi\)
−0.841294 + 0.540578i \(0.818206\pi\)
\(888\) −4.21015 + 4.48210i −0.141283 + 0.150409i
\(889\) −6.73364 6.73364i −0.225839 0.225839i
\(890\) 0 0
\(891\) −3.50208 2.71963i −0.117324 0.0911111i
\(892\) 8.75559 8.75559i 0.293159 0.293159i
\(893\) 17.0379i 0.570153i
\(894\) −0.542256 0.509355i −0.0181358 0.0170354i
\(895\) 0 0
\(896\) −35.4908 −1.18566
\(897\) 38.7304 + 43.9583i 1.29317 + 1.46772i
\(898\) −7.91374 −0.264085
\(899\) 20.1797 20.1797i 0.673032 0.673032i
\(900\) 0 0
\(901\) 36.7181i 1.22326i
\(902\) 0.401967 0.401967i 0.0133840 0.0133840i
\(903\) −33.7314 + 1.05533i −1.12251 + 0.0351192i
\(904\) 11.4943 11.4943i 0.382293 0.382293i
\(905\) 0 0
\(906\) 4.47286 + 4.20147i 0.148601 + 0.139585i
\(907\) 52.9829i 1.75927i −0.475651 0.879634i \(-0.657787\pi\)
0.475651 0.879634i \(-0.342213\pi\)
\(908\) −14.4774 14.4774i −0.480449 0.480449i
\(909\) −0.481689 7.69056i −0.0159766 0.255080i
\(910\) 0 0
\(911\) 16.3239i 0.540835i 0.962743 + 0.270417i \(0.0871617\pi\)
−0.962743 + 0.270417i \(0.912838\pi\)
\(912\) −27.0600 + 0.846607i −0.896047 + 0.0280340i
\(913\) −5.12506 −0.169615
\(914\) 2.90994 0.0962522
\(915\) 0 0
\(916\) −10.2926 10.2926i −0.340078 0.340078i
\(917\) 13.0239 + 13.0239i 0.430089 + 0.430089i
\(918\) 10.0680 0.947440i 0.332292 0.0312702i
\(919\) 46.3976 1.53051 0.765257 0.643725i \(-0.222612\pi\)
0.765257 + 0.643725i \(0.222612\pi\)
\(920\) 0 0
\(921\) −1.50760 48.1874i −0.0496772 1.58783i
\(922\) 7.70340i 0.253698i
\(923\) −38.0075 45.9588i −1.25103 1.51275i
\(924\) 4.17079 + 3.91773i 0.137209 + 0.128884i
\(925\) 0 0
\(926\) 4.57815i 0.150447i
\(927\) −45.6363 + 2.85837i −1.49889 + 0.0938813i
\(928\) 19.3861 + 19.3861i 0.636382 + 0.636382i
\(929\) −20.0595 + 20.0595i −0.658131 + 0.658131i −0.954938 0.296807i \(-0.904078\pi\)
0.296807 + 0.954938i \(0.404078\pi\)
\(930\) 0 0
\(931\) −20.4761 + 20.4761i −0.671077 + 0.671077i
\(932\) 18.1516i 0.594575i
\(933\) −18.4005 + 19.5891i −0.602407 + 0.641318i
\(934\) 2.42467 2.42467i 0.0793376 0.0793376i
\(935\) 0 0
\(936\) 10.5329 + 11.2265i 0.344279 + 0.366948i
\(937\) 23.7901 0.777188 0.388594 0.921409i \(-0.372961\pi\)
0.388594 + 0.921409i \(0.372961\pi\)
\(938\) 1.77526 1.77526i 0.0579644 0.0579644i
\(939\) −4.42248 + 4.70815i −0.144322 + 0.153645i
\(940\) 0 0
\(941\) 31.8370 31.8370i 1.03786 1.03786i 0.0386033 0.999255i \(-0.487709\pi\)
0.999255 0.0386033i \(-0.0122909\pi\)
\(942\) 0.167689 + 5.35982i 0.00546359 + 0.174632i
\(943\) −20.7833 + 20.7833i −0.676798 + 0.676798i
\(944\) 0.797226 + 0.797226i 0.0259475 + 0.0259475i
\(945\) 0 0
\(946\) 0.982907i 0.0319571i
\(947\) −37.4100 37.4100i −1.21566 1.21566i −0.969137 0.246523i \(-0.920712\pi\)
−0.246523 0.969137i \(-0.579288\pi\)
\(948\) −6.26301 5.88301i −0.203413 0.191071i
\(949\) 21.0746 + 25.4835i 0.684109 + 0.827228i
\(950\) 0 0
\(951\) 1.41359 + 45.1825i 0.0458388 + 1.46514i
\(952\) −27.0500 −0.876694
\(953\) −17.7294 −0.574311 −0.287156 0.957884i \(-0.592710\pi\)
−0.287156 + 0.957884i \(0.592710\pi\)
\(954\) 5.07847 5.75714i 0.164421 0.186394i
\(955\) 0 0
\(956\) −30.0863 30.0863i −0.973062 0.973062i
\(957\) −0.181692 5.80740i −0.00587326 0.187727i
\(958\) −11.0607 −0.357355
\(959\) 41.9810 1.35564
\(960\) 0 0
\(961\) 13.4323i 0.433300i
\(962\) −3.29779 0.312290i −0.106325 0.0100686i
\(963\) −26.5222 + 1.66119i −0.854666 + 0.0535310i
\(964\) −11.8567 11.8567i −0.381879 0.381879i
\(965\) 0 0
\(966\) 15.6882 + 14.7363i 0.504759 + 0.474133i
\(967\) 1.98285 + 1.98285i 0.0637640 + 0.0637640i 0.738270 0.674506i \(-0.235643\pi\)
−0.674506 + 0.738270i \(0.735643\pi\)
\(968\) −10.8254 + 10.8254i −0.347943 + 0.347943i
\(969\) −44.6218 + 1.39605i −1.43346 + 0.0448476i
\(970\) 0 0
\(971\) 45.7568i 1.46841i 0.678930 + 0.734203i \(0.262444\pi\)
−0.678930 + 0.734203i \(0.737556\pi\)
\(972\) 23.5002 + 17.0990i 0.753770 + 0.548451i
\(973\) 1.31556 1.31556i 0.0421750 0.0421750i
\(974\) −6.21595 −0.199172
\(975\) 0 0
\(976\) 11.5396 0.369373
\(977\) 4.54207 4.54207i 0.145314 0.145314i −0.630707 0.776021i \(-0.717235\pi\)
0.776021 + 0.630707i \(0.217235\pi\)
\(978\) 4.54674 + 4.27087i 0.145389 + 0.136567i
\(979\) 1.77533i 0.0567397i
\(980\) 0 0
\(981\) −22.4326 + 25.4305i −0.716218 + 0.811932i
\(982\) 2.20723 2.20723i 0.0704354 0.0704354i
\(983\) 22.8720 + 22.8720i 0.729505 + 0.729505i 0.970521 0.241016i \(-0.0774808\pi\)
−0.241016 + 0.970521i \(0.577481\pi\)
\(984\) −5.28752 + 5.62906i −0.168560 + 0.179448i
\(985\) 0 0
\(986\) 9.36984 + 9.36984i 0.298396 + 0.298396i
\(987\) 14.8989 15.8613i 0.474238 0.504870i
\(988\) −20.8953 25.2667i −0.664769 0.803842i
\(989\) 50.8203i 1.61599i
\(990\) 0 0
\(991\) −13.1807 −0.418700 −0.209350 0.977841i \(-0.567135\pi\)
−0.209350 + 0.977841i \(0.567135\pi\)
\(992\) −16.8768 −0.535840
\(993\) 36.7586 1.15004i 1.16650 0.0364954i
\(994\) −15.4930 15.4930i −0.491409 0.491409i
\(995\) 0 0
\(996\) 33.5752 1.05044i 1.06387 0.0332846i
\(997\) −9.27082 −0.293610 −0.146805 0.989165i \(-0.546899\pi\)
−0.146805 + 0.989165i \(0.546899\pi\)
\(998\) −13.0292 −0.412432
\(999\) −12.9056 + 1.21447i −0.408314 + 0.0384242i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.o.p.476.10 40
3.2 odd 2 inner 975.2.o.p.476.11 40
5.2 odd 4 975.2.n.r.749.10 40
5.3 odd 4 975.2.n.q.749.11 40
5.4 even 2 195.2.o.a.86.11 yes 40
13.5 odd 4 inner 975.2.o.p.551.11 40
15.2 even 4 975.2.n.r.749.11 40
15.8 even 4 975.2.n.q.749.10 40
15.14 odd 2 195.2.o.a.86.10 40
39.5 even 4 inner 975.2.o.p.551.10 40
65.18 even 4 975.2.n.r.824.11 40
65.44 odd 4 195.2.o.a.161.10 yes 40
65.57 even 4 975.2.n.q.824.10 40
195.44 even 4 195.2.o.a.161.11 yes 40
195.83 odd 4 975.2.n.r.824.10 40
195.122 odd 4 975.2.n.q.824.11 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.o.a.86.10 40 15.14 odd 2
195.2.o.a.86.11 yes 40 5.4 even 2
195.2.o.a.161.10 yes 40 65.44 odd 4
195.2.o.a.161.11 yes 40 195.44 even 4
975.2.n.q.749.10 40 15.8 even 4
975.2.n.q.749.11 40 5.3 odd 4
975.2.n.q.824.10 40 65.57 even 4
975.2.n.q.824.11 40 195.122 odd 4
975.2.n.r.749.10 40 5.2 odd 4
975.2.n.r.749.11 40 15.2 even 4
975.2.n.r.824.10 40 195.83 odd 4
975.2.n.r.824.11 40 65.18 even 4
975.2.o.p.476.10 40 1.1 even 1 trivial
975.2.o.p.476.11 40 3.2 odd 2 inner
975.2.o.p.551.10 40 39.5 even 4 inner
975.2.o.p.551.11 40 13.5 odd 4 inner