Properties

Label 195.2.o.a.161.11
Level $195$
Weight $2$
Character 195.161
Analytic conductor $1.557$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [195,2,Mod(86,195)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(195, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("195.86"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 195 = 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 195.o (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.55708283941\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 161.11
Character \(\chi\) \(=\) 195.161
Dual form 195.2.o.a.86.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.260415 + 0.260415i) q^{2} +(1.18585 + 1.26244i) q^{3} -1.86437i q^{4} +(-0.707107 - 0.707107i) q^{5} +(-0.0199472 + 0.637571i) q^{6} +(2.54331 + 2.54331i) q^{7} +(1.00634 - 1.00634i) q^{8} +(-0.187534 + 2.99413i) q^{9} -0.368282i q^{10} +(0.348374 - 0.348374i) q^{11} +(2.35366 - 2.21086i) q^{12} +(-0.339913 - 3.58949i) q^{13} +1.32463i q^{14} +(0.0541629 - 1.73120i) q^{15} -3.20461 q^{16} +5.28437 q^{17} +(-0.828552 + 0.730879i) q^{18} +(-3.44898 + 3.44898i) q^{19} +(-1.31831 + 1.31831i) q^{20} +(-0.194812 + 6.22677i) q^{21} +0.181443 q^{22} -9.38135 q^{23} +(2.46381 + 0.0770834i) q^{24} +1.00000i q^{25} +(0.846238 - 1.02327i) q^{26} +(-4.00231 + 3.31383i) q^{27} +(4.74167 - 4.74167i) q^{28} -6.80884i q^{29} +(0.464935 - 0.436726i) q^{30} +(-2.96376 + 2.96376i) q^{31} +(-2.84720 - 2.84720i) q^{32} +(0.852920 + 0.0266847i) q^{33} +(1.37613 + 1.37613i) q^{34} -3.59678i q^{35} +(5.58217 + 0.349633i) q^{36} +(1.76399 + 1.76399i) q^{37} -1.79633 q^{38} +(4.12845 - 4.68571i) q^{39} -1.42318 q^{40} +(-2.21539 - 2.21539i) q^{41} +(-1.67227 + 1.57081i) q^{42} -5.41717i q^{43} +(-0.649497 - 0.649497i) q^{44} +(2.24978 - 1.98456i) q^{45} +(-2.44304 - 2.44304i) q^{46} +(-2.47000 + 2.47000i) q^{47} +(-3.80017 - 4.04564i) q^{48} +5.93686i q^{49} +(-0.260415 + 0.260415i) q^{50} +(6.26646 + 6.67123i) q^{51} +(-6.69214 + 0.633724i) q^{52} -6.94843i q^{53} +(-1.90523 - 0.179291i) q^{54} -0.492675 q^{55} +5.11886 q^{56} +(-8.44410 - 0.264184i) q^{57} +(1.77312 - 1.77312i) q^{58} +(-0.248775 + 0.248775i) q^{59} +(-3.22760 - 0.100980i) q^{60} -3.60093 q^{61} -1.54361 q^{62} +(-8.09197 + 7.13805i) q^{63} +4.92631i q^{64} +(-2.29780 + 2.77851i) q^{65} +(0.215164 + 0.229062i) q^{66} +(-1.34019 + 1.34019i) q^{67} -9.85202i q^{68} +(-11.1248 - 11.8434i) q^{69} +(0.936655 - 0.936655i) q^{70} +(11.6961 + 11.6961i) q^{71} +(2.82439 + 3.20183i) q^{72} +(6.48532 + 6.48532i) q^{73} +0.918735i q^{74} +(-1.26244 + 1.18585i) q^{75} +(6.43016 + 6.43016i) q^{76} +1.77204 q^{77} +(2.29534 - 0.145118i) q^{78} +2.66096 q^{79} +(2.26600 + 2.26600i) q^{80} +(-8.92966 - 1.12300i) q^{81} -1.15384i q^{82} +(7.35570 + 7.35570i) q^{83} +(11.6090 + 0.363202i) q^{84} +(-3.73662 - 3.73662i) q^{85} +(1.41071 - 1.41071i) q^{86} +(8.59579 - 8.07424i) q^{87} -0.701163i q^{88} +(-2.54802 + 2.54802i) q^{89} +(1.10268 + 0.0690654i) q^{90} +(8.26469 - 9.99370i) q^{91} +17.4903i q^{92} +(-7.25614 - 0.227017i) q^{93} -1.28645 q^{94} +4.87759 q^{95} +(0.218090 - 6.97078i) q^{96} +(10.4901 - 10.4901i) q^{97} +(-1.54604 + 1.54604i) q^{98} +(0.977745 + 1.10841i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 12 q^{6} - 16 q^{7} + 4 q^{15} - 64 q^{16} + 4 q^{18} - 16 q^{19} - 12 q^{21} + 8 q^{24} - 24 q^{27} + 32 q^{28} + 32 q^{31} - 4 q^{33} - 16 q^{34} + 32 q^{37} - 8 q^{39} + 8 q^{42} - 8 q^{45} - 40 q^{46}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/195\mathbb{Z}\right)^\times\).

\(n\) \(106\) \(131\) \(157\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.260415 + 0.260415i 0.184141 + 0.184141i 0.793157 0.609017i \(-0.208436\pi\)
−0.609017 + 0.793157i \(0.708436\pi\)
\(3\) 1.18585 + 1.26244i 0.684649 + 0.728873i
\(4\) 1.86437i 0.932184i
\(5\) −0.707107 0.707107i −0.316228 0.316228i
\(6\) −0.0199472 + 0.637571i −0.00814341 + 0.260287i
\(7\) 2.54331 + 2.54331i 0.961281 + 0.961281i 0.999278 0.0379967i \(-0.0120976\pi\)
−0.0379967 + 0.999278i \(0.512098\pi\)
\(8\) 1.00634 1.00634i 0.355794 0.355794i
\(9\) −0.187534 + 2.99413i −0.0625113 + 0.998044i
\(10\) 0.368282i 0.116461i
\(11\) 0.348374 0.348374i 0.105039 0.105039i −0.652634 0.757673i \(-0.726336\pi\)
0.757673 + 0.652634i \(0.226336\pi\)
\(12\) 2.35366 2.21086i 0.679444 0.638219i
\(13\) −0.339913 3.58949i −0.0942750 0.995546i
\(14\) 1.32463i 0.354022i
\(15\) 0.0541629 1.73120i 0.0139848 0.446995i
\(16\) −3.20461 −0.801152
\(17\) 5.28437 1.28165 0.640824 0.767688i \(-0.278593\pi\)
0.640824 + 0.767688i \(0.278593\pi\)
\(18\) −0.828552 + 0.730879i −0.195292 + 0.172270i
\(19\) −3.44898 + 3.44898i −0.791249 + 0.791249i −0.981697 0.190448i \(-0.939006\pi\)
0.190448 + 0.981697i \(0.439006\pi\)
\(20\) −1.31831 + 1.31831i −0.294783 + 0.294783i
\(21\) −0.194812 + 6.22677i −0.0425115 + 1.35879i
\(22\) 0.181443 0.0386838
\(23\) −9.38135 −1.95615 −0.978073 0.208262i \(-0.933219\pi\)
−0.978073 + 0.208262i \(0.933219\pi\)
\(24\) 2.46381 + 0.0770834i 0.502923 + 0.0157346i
\(25\) 1.00000i 0.200000i
\(26\) 0.846238 1.02327i 0.165961 0.200681i
\(27\) −4.00231 + 3.31383i −0.770246 + 0.637747i
\(28\) 4.74167 4.74167i 0.896091 0.896091i
\(29\) 6.80884i 1.26437i −0.774817 0.632185i \(-0.782158\pi\)
0.774817 0.632185i \(-0.217842\pi\)
\(30\) 0.464935 0.436726i 0.0848852 0.0797349i
\(31\) −2.96376 + 2.96376i −0.532306 + 0.532306i −0.921258 0.388952i \(-0.872837\pi\)
0.388952 + 0.921258i \(0.372837\pi\)
\(32\) −2.84720 2.84720i −0.503319 0.503319i
\(33\) 0.852920 + 0.0266847i 0.148474 + 0.00464521i
\(34\) 1.37613 + 1.37613i 0.236004 + 0.236004i
\(35\) 3.59678i 0.607968i
\(36\) 5.58217 + 0.349633i 0.930361 + 0.0582721i
\(37\) 1.76399 + 1.76399i 0.289998 + 0.289998i 0.837079 0.547082i \(-0.184261\pi\)
−0.547082 + 0.837079i \(0.684261\pi\)
\(38\) −1.79633 −0.291403
\(39\) 4.12845 4.68571i 0.661081 0.750314i
\(40\) −1.42318 −0.225024
\(41\) −2.21539 2.21539i −0.345986 0.345986i 0.512626 0.858612i \(-0.328673\pi\)
−0.858612 + 0.512626i \(0.828673\pi\)
\(42\) −1.67227 + 1.57081i −0.258037 + 0.242381i
\(43\) 5.41717i 0.826110i −0.910706 0.413055i \(-0.864462\pi\)
0.910706 0.413055i \(-0.135538\pi\)
\(44\) −0.649497 0.649497i −0.0979153 0.0979153i
\(45\) 2.24978 1.98456i 0.335377 0.295841i
\(46\) −2.44304 2.44304i −0.360207 0.360207i
\(47\) −2.47000 + 2.47000i −0.360286 + 0.360286i −0.863918 0.503632i \(-0.831997\pi\)
0.503632 + 0.863918i \(0.331997\pi\)
\(48\) −3.80017 4.04564i −0.548508 0.583938i
\(49\) 5.93686i 0.848123i
\(50\) −0.260415 + 0.260415i −0.0368282 + 0.0368282i
\(51\) 6.26646 + 6.67123i 0.877480 + 0.934159i
\(52\) −6.69214 + 0.633724i −0.928032 + 0.0878817i
\(53\) 6.94843i 0.954441i −0.878784 0.477220i \(-0.841644\pi\)
0.878784 0.477220i \(-0.158356\pi\)
\(54\) −1.90523 0.179291i −0.259269 0.0243984i
\(55\) −0.492675 −0.0664322
\(56\) 5.11886 0.684036
\(57\) −8.44410 0.264184i −1.11845 0.0349921i
\(58\) 1.77312 1.77312i 0.232822 0.232822i
\(59\) −0.248775 + 0.248775i −0.0323877 + 0.0323877i −0.723115 0.690727i \(-0.757290\pi\)
0.690727 + 0.723115i \(0.257290\pi\)
\(60\) −3.22760 0.100980i −0.416682 0.0130364i
\(61\) −3.60093 −0.461052 −0.230526 0.973066i \(-0.574045\pi\)
−0.230526 + 0.973066i \(0.574045\pi\)
\(62\) −1.54361 −0.196039
\(63\) −8.09197 + 7.13805i −1.01949 + 0.899310i
\(64\) 4.92631i 0.615789i
\(65\) −2.29780 + 2.77851i −0.285007 + 0.344632i
\(66\) 0.215164 + 0.229062i 0.0264848 + 0.0281956i
\(67\) −1.34019 + 1.34019i −0.163731 + 0.163731i −0.784217 0.620486i \(-0.786935\pi\)
0.620486 + 0.784217i \(0.286935\pi\)
\(68\) 9.85202i 1.19473i
\(69\) −11.1248 11.8434i −1.33927 1.42578i
\(70\) 0.936655 0.936655i 0.111952 0.111952i
\(71\) 11.6961 + 11.6961i 1.38807 + 1.38807i 0.829361 + 0.558713i \(0.188705\pi\)
0.558713 + 0.829361i \(0.311295\pi\)
\(72\) 2.82439 + 3.20183i 0.332857 + 0.377339i
\(73\) 6.48532 + 6.48532i 0.759050 + 0.759050i 0.976149 0.217100i \(-0.0696597\pi\)
−0.217100 + 0.976149i \(0.569660\pi\)
\(74\) 0.918735i 0.106801i
\(75\) −1.26244 + 1.18585i −0.145775 + 0.136930i
\(76\) 6.43016 + 6.43016i 0.737590 + 0.737590i
\(77\) 1.77204 0.201943
\(78\) 2.29534 0.145118i 0.259896 0.0164314i
\(79\) 2.66096 0.299382 0.149691 0.988733i \(-0.452172\pi\)
0.149691 + 0.988733i \(0.452172\pi\)
\(80\) 2.26600 + 2.26600i 0.253346 + 0.253346i
\(81\) −8.92966 1.12300i −0.992185 0.124778i
\(82\) 1.15384i 0.127420i
\(83\) 7.35570 + 7.35570i 0.807393 + 0.807393i 0.984239 0.176846i \(-0.0565894\pi\)
−0.176846 + 0.984239i \(0.556589\pi\)
\(84\) 11.6090 + 0.363202i 1.26664 + 0.0396286i
\(85\) −3.73662 3.73662i −0.405293 0.405293i
\(86\) 1.41071 1.41071i 0.152121 0.152121i
\(87\) 8.59579 8.07424i 0.921565 0.865650i
\(88\) 0.701163i 0.0747442i
\(89\) −2.54802 + 2.54802i −0.270090 + 0.270090i −0.829136 0.559046i \(-0.811167\pi\)
0.559046 + 0.829136i \(0.311167\pi\)
\(90\) 1.10268 + 0.0690654i 0.116233 + 0.00728013i
\(91\) 8.26469 9.99370i 0.866375 1.04762i
\(92\) 17.4903i 1.82349i
\(93\) −7.25614 0.227017i −0.752426 0.0235406i
\(94\) −1.28645 −0.132687
\(95\) 4.87759 0.500430
\(96\) 0.218090 6.97078i 0.0222587 0.711452i
\(97\) 10.4901 10.4901i 1.06511 1.06511i 0.0673840 0.997727i \(-0.478535\pi\)
0.997727 0.0673840i \(-0.0214653\pi\)
\(98\) −1.54604 + 1.54604i −0.156174 + 0.156174i
\(99\) 0.977745 + 1.10841i 0.0982670 + 0.111399i
\(100\) 1.86437 0.186437
\(101\) 2.56854 0.255579 0.127790 0.991801i \(-0.459212\pi\)
0.127790 + 0.991801i \(0.459212\pi\)
\(102\) −0.105409 + 3.36916i −0.0104370 + 0.333597i
\(103\) 15.2419i 1.50183i −0.660400 0.750914i \(-0.729613\pi\)
0.660400 0.750914i \(-0.270387\pi\)
\(104\) −3.95431 3.27017i −0.387752 0.320667i
\(105\) 4.54074 4.26524i 0.443131 0.416244i
\(106\) 1.80947 1.80947i 0.175752 0.175752i
\(107\) 8.85806i 0.856341i −0.903698 0.428171i \(-0.859158\pi\)
0.903698 0.428171i \(-0.140842\pi\)
\(108\) 6.17820 + 7.46179i 0.594498 + 0.718011i
\(109\) −7.99281 + 7.99281i −0.765573 + 0.765573i −0.977324 0.211751i \(-0.932083\pi\)
0.211751 + 0.977324i \(0.432083\pi\)
\(110\) −0.128300 0.128300i −0.0122329 0.0122329i
\(111\) −0.135118 + 4.31875i −0.0128248 + 0.409918i
\(112\) −8.15031 8.15031i −0.770132 0.770132i
\(113\) 11.4219i 1.07448i 0.843430 + 0.537239i \(0.180533\pi\)
−0.843430 + 0.537239i \(0.819467\pi\)
\(114\) −2.13017 2.26776i −0.199509 0.212396i
\(115\) 6.63361 + 6.63361i 0.618588 + 0.618588i
\(116\) −12.6942 −1.17863
\(117\) 10.8112 0.344594i 0.999492 0.0318577i
\(118\) −0.129569 −0.0119278
\(119\) 13.4398 + 13.4398i 1.23202 + 1.23202i
\(120\) −1.68767 1.79668i −0.154062 0.164014i
\(121\) 10.7573i 0.977934i
\(122\) −0.937735 0.937735i −0.0848986 0.0848986i
\(123\) 0.169694 5.42392i 0.0153008 0.489058i
\(124\) 5.52553 + 5.52553i 0.496207 + 0.496207i
\(125\) 0.707107 0.707107i 0.0632456 0.0632456i
\(126\) −3.96612 0.248413i −0.353330 0.0221304i
\(127\) 2.64759i 0.234936i 0.993077 + 0.117468i \(0.0374777\pi\)
−0.993077 + 0.117468i \(0.962522\pi\)
\(128\) −6.97729 + 6.97729i −0.616711 + 0.616711i
\(129\) 6.83887 6.42393i 0.602129 0.565595i
\(130\) −1.32194 + 0.125184i −0.115942 + 0.0109794i
\(131\) 5.12086i 0.447412i 0.974657 + 0.223706i \(0.0718155\pi\)
−0.974657 + 0.223706i \(0.928184\pi\)
\(132\) 0.0497501 1.59016i 0.00433019 0.138405i
\(133\) −17.5436 −1.52123
\(134\) −0.698012 −0.0602991
\(135\) 5.17330 + 0.486831i 0.445246 + 0.0418997i
\(136\) 5.31786 5.31786i 0.456003 0.456003i
\(137\) 8.25322 8.25322i 0.705120 0.705120i −0.260385 0.965505i \(-0.583849\pi\)
0.965505 + 0.260385i \(0.0838494\pi\)
\(138\) 0.187132 5.98127i 0.0159297 0.509160i
\(139\) −0.517263 −0.0438737 −0.0219369 0.999759i \(-0.506983\pi\)
−0.0219369 + 0.999759i \(0.506983\pi\)
\(140\) −6.70573 −0.566738
\(141\) −6.04728 0.189197i −0.509273 0.0159332i
\(142\) 6.09168i 0.511202i
\(143\) −1.36890 1.13207i −0.114473 0.0946682i
\(144\) 0.600973 9.59502i 0.0500811 0.799585i
\(145\) −4.81458 + 4.81458i −0.399829 + 0.399829i
\(146\) 3.37774i 0.279544i
\(147\) −7.49496 + 7.04021i −0.618174 + 0.580666i
\(148\) 3.28872 3.28872i 0.270331 0.270331i
\(149\) 0.824702 + 0.824702i 0.0675622 + 0.0675622i 0.740080 0.672518i \(-0.234787\pi\)
−0.672518 + 0.740080i \(0.734787\pi\)
\(150\) −0.637571 0.0199472i −0.0520574 0.00162868i
\(151\) −6.80265 6.80265i −0.553591 0.553591i 0.373884 0.927475i \(-0.378026\pi\)
−0.927475 + 0.373884i \(0.878026\pi\)
\(152\) 6.94167i 0.563044i
\(153\) −0.991000 + 15.8221i −0.0801176 + 1.27914i
\(154\) 0.461466 + 0.461466i 0.0371860 + 0.0371860i
\(155\) 4.19138 0.336660
\(156\) −8.73589 7.69696i −0.699431 0.616250i
\(157\) 8.40663 0.670922 0.335461 0.942054i \(-0.391108\pi\)
0.335461 + 0.942054i \(0.391108\pi\)
\(158\) 0.692954 + 0.692954i 0.0551284 + 0.0551284i
\(159\) 8.77202 8.23978i 0.695666 0.653457i
\(160\) 4.02655i 0.318327i
\(161\) −23.8597 23.8597i −1.88041 1.88041i
\(162\) −2.03297 2.61786i −0.159725 0.205679i
\(163\) 6.91500 + 6.91500i 0.541625 + 0.541625i 0.924005 0.382380i \(-0.124896\pi\)
−0.382380 + 0.924005i \(0.624896\pi\)
\(164\) −4.13030 + 4.13030i −0.322522 + 0.322522i
\(165\) −0.584237 0.621975i −0.0454828 0.0484207i
\(166\) 3.83106i 0.297348i
\(167\) 2.11987 2.11987i 0.164040 0.164040i −0.620314 0.784354i \(-0.712995\pi\)
0.784354 + 0.620314i \(0.212995\pi\)
\(168\) 6.07018 + 6.46228i 0.468325 + 0.498576i
\(169\) −12.7689 + 2.44023i −0.982224 + 0.187710i
\(170\) 1.94614i 0.149262i
\(171\) −9.67989 10.9735i −0.740240 0.839164i
\(172\) −10.0996 −0.770087
\(173\) 21.2987 1.61931 0.809655 0.586906i \(-0.199654\pi\)
0.809655 + 0.586906i \(0.199654\pi\)
\(174\) 4.34112 + 0.135817i 0.329099 + 0.0102963i
\(175\) −2.54331 + 2.54331i −0.192256 + 0.192256i
\(176\) −1.11640 + 1.11640i −0.0841518 + 0.0841518i
\(177\) −0.609074 0.0190556i −0.0457808 0.00143231i
\(178\) −1.32708 −0.0994692
\(179\) −2.77071 −0.207093 −0.103546 0.994625i \(-0.533019\pi\)
−0.103546 + 0.994625i \(0.533019\pi\)
\(180\) −3.69996 4.19442i −0.275779 0.312633i
\(181\) 20.1030i 1.49425i −0.664686 0.747123i \(-0.731435\pi\)
0.664686 0.747123i \(-0.268565\pi\)
\(182\) 4.75475 0.450260i 0.352446 0.0333755i
\(183\) −4.27015 4.54598i −0.315659 0.336048i
\(184\) −9.44081 + 9.44081i −0.695985 + 0.695985i
\(185\) 2.49465i 0.183411i
\(186\) −1.83049 1.94872i −0.134218 0.142887i
\(187\) 1.84094 1.84094i 0.134623 0.134623i
\(188\) 4.60499 + 4.60499i 0.335853 + 0.335853i
\(189\) −18.6072 1.75102i −1.35348 0.127368i
\(190\) 1.27020 + 1.27020i 0.0921497 + 0.0921497i
\(191\) 13.9497i 1.00937i 0.863304 + 0.504684i \(0.168391\pi\)
−0.863304 + 0.504684i \(0.831609\pi\)
\(192\) −6.21919 + 5.84185i −0.448832 + 0.421599i
\(193\) −0.516880 0.516880i −0.0372058 0.0372058i 0.688259 0.725465i \(-0.258375\pi\)
−0.725465 + 0.688259i \(0.758375\pi\)
\(194\) 5.46356 0.392261
\(195\) −6.23255 + 0.394042i −0.446322 + 0.0282179i
\(196\) 11.0685 0.790607
\(197\) −3.72469 3.72469i −0.265373 0.265373i 0.561859 0.827233i \(-0.310086\pi\)
−0.827233 + 0.561859i \(0.810086\pi\)
\(198\) −0.0340268 + 0.543265i −0.00241818 + 0.0386081i
\(199\) 14.3661i 1.01839i −0.860652 0.509193i \(-0.829944\pi\)
0.860652 0.509193i \(-0.170056\pi\)
\(200\) 1.00634 + 1.00634i 0.0711588 + 0.0711588i
\(201\) −3.28119 0.102656i −0.231437 0.00724080i
\(202\) 0.668886 + 0.668886i 0.0470626 + 0.0470626i
\(203\) 17.3170 17.3170i 1.21542 1.21542i
\(204\) 12.4376 11.6830i 0.870808 0.817973i
\(205\) 3.13303i 0.218820i
\(206\) 3.96921 3.96921i 0.276548 0.276548i
\(207\) 1.75932 28.0890i 0.122281 1.95232i
\(208\) 1.08929 + 11.5029i 0.0755286 + 0.797584i
\(209\) 2.40306i 0.166223i
\(210\) 2.29321 + 0.0717458i 0.158246 + 0.00495093i
\(211\) 9.49226 0.653474 0.326737 0.945115i \(-0.394051\pi\)
0.326737 + 0.945115i \(0.394051\pi\)
\(212\) −12.9544 −0.889715
\(213\) −0.895898 + 28.6355i −0.0613859 + 1.96207i
\(214\) 2.30677 2.30677i 0.157687 0.157687i
\(215\) −3.83051 + 3.83051i −0.261239 + 0.261239i
\(216\) −0.692846 + 7.36251i −0.0471422 + 0.500956i
\(217\) −15.0755 −1.02339
\(218\) −4.16289 −0.281947
\(219\) −0.496762 + 15.8780i −0.0335681 + 1.07293i
\(220\) 0.918527i 0.0619271i
\(221\) −1.79623 18.9682i −0.120827 1.27594i
\(222\) −1.15985 + 1.08948i −0.0778442 + 0.0731211i
\(223\) 4.69628 4.69628i 0.314486 0.314486i −0.532159 0.846645i \(-0.678619\pi\)
0.846645 + 0.532159i \(0.178619\pi\)
\(224\) 14.4826i 0.967662i
\(225\) −2.99413 0.187534i −0.199609 0.0125023i
\(226\) −2.97442 + 2.97442i −0.197855 + 0.197855i
\(227\) 7.76531 + 7.76531i 0.515402 + 0.515402i 0.916177 0.400775i \(-0.131259\pi\)
−0.400775 + 0.916177i \(0.631259\pi\)
\(228\) −0.492537 + 15.7429i −0.0326191 + 1.04260i
\(229\) −5.52070 5.52070i −0.364818 0.364818i 0.500765 0.865583i \(-0.333052\pi\)
−0.865583 + 0.500765i \(0.833052\pi\)
\(230\) 3.45498i 0.227815i
\(231\) 2.10137 + 2.23711i 0.138260 + 0.147191i
\(232\) −6.85200 6.85200i −0.449856 0.449856i
\(233\) −9.73604 −0.637829 −0.318915 0.947783i \(-0.603318\pi\)
−0.318915 + 0.947783i \(0.603318\pi\)
\(234\) 2.90512 + 2.72565i 0.189914 + 0.178181i
\(235\) 3.49311 0.227865
\(236\) 0.463808 + 0.463808i 0.0301913 + 0.0301913i
\(237\) 3.15550 + 3.35932i 0.204971 + 0.218211i
\(238\) 6.99984i 0.453732i
\(239\) −16.1376 16.1376i −1.04385 1.04385i −0.998993 0.0448582i \(-0.985716\pi\)
−0.0448582 0.998993i \(-0.514284\pi\)
\(240\) −0.173571 + 5.54783i −0.0112039 + 0.358111i
\(241\) −6.35964 6.35964i −0.409660 0.409660i 0.471960 0.881620i \(-0.343547\pi\)
−0.881620 + 0.471960i \(0.843547\pi\)
\(242\) −2.80135 + 2.80135i −0.180078 + 0.180078i
\(243\) −9.17148 12.6049i −0.588351 0.808606i
\(244\) 6.71346i 0.429786i
\(245\) 4.19799 4.19799i 0.268200 0.268200i
\(246\) 1.45666 1.36828i 0.0928731 0.0872381i
\(247\) 13.5524 + 11.2077i 0.862320 + 0.713130i
\(248\) 5.96508i 0.378783i
\(249\) −0.563431 + 18.0089i −0.0357060 + 1.14127i
\(250\) 0.368282 0.0232922
\(251\) 4.33610 0.273692 0.136846 0.990592i \(-0.456303\pi\)
0.136846 + 0.990592i \(0.456303\pi\)
\(252\) 13.3080 + 15.0864i 0.838323 + 0.950354i
\(253\) −3.26821 + 3.26821i −0.205471 + 0.205471i
\(254\) −0.689471 + 0.689471i −0.0432612 + 0.0432612i
\(255\) 0.286217 9.14833i 0.0179236 0.572890i
\(256\) 6.21864 0.388665
\(257\) −4.95572 −0.309129 −0.154565 0.987983i \(-0.549398\pi\)
−0.154565 + 0.987983i \(0.549398\pi\)
\(258\) 3.45383 + 0.108057i 0.215026 + 0.00672736i
\(259\) 8.97273i 0.557538i
\(260\) 5.18017 + 4.28395i 0.321260 + 0.265679i
\(261\) 20.3866 + 1.27689i 1.26190 + 0.0790375i
\(262\) −1.33355 + 1.33355i −0.0823868 + 0.0823868i
\(263\) 21.5950i 1.33160i 0.746129 + 0.665801i \(0.231910\pi\)
−0.746129 + 0.665801i \(0.768090\pi\)
\(264\) 0.885180 0.831472i 0.0544790 0.0511736i
\(265\) −4.91329 + 4.91329i −0.301821 + 0.301821i
\(266\) −4.56862 4.56862i −0.280120 0.280120i
\(267\) −6.23830 0.195173i −0.381778 0.0119444i
\(268\) 2.49862 + 2.49862i 0.152627 + 0.152627i
\(269\) 4.12228i 0.251340i −0.992072 0.125670i \(-0.959892\pi\)
0.992072 0.125670i \(-0.0401080\pi\)
\(270\) 1.22042 + 1.47398i 0.0742726 + 0.0897035i
\(271\) −2.86523 2.86523i −0.174050 0.174050i 0.614706 0.788756i \(-0.289275\pi\)
−0.788756 + 0.614706i \(0.789275\pi\)
\(272\) −16.9343 −1.02680
\(273\) 22.4172 1.41728i 1.35675 0.0857779i
\(274\) 4.29852 0.259683
\(275\) 0.348374 + 0.348374i 0.0210077 + 0.0210077i
\(276\) −22.0805 + 20.7408i −1.32909 + 1.24845i
\(277\) 13.8782i 0.833857i −0.908939 0.416929i \(-0.863106\pi\)
0.908939 0.416929i \(-0.136894\pi\)
\(278\) −0.134703 0.134703i −0.00807894 0.00807894i
\(279\) −8.31807 9.42968i −0.497990 0.564540i
\(280\) −3.61958 3.61958i −0.216311 0.216311i
\(281\) −14.6864 + 14.6864i −0.876116 + 0.876116i −0.993130 0.117015i \(-0.962668\pi\)
0.117015 + 0.993130i \(0.462668\pi\)
\(282\) −1.52553 1.62407i −0.0908439 0.0967119i
\(283\) 7.59425i 0.451431i −0.974193 0.225716i \(-0.927528\pi\)
0.974193 0.225716i \(-0.0724720\pi\)
\(284\) 21.8059 21.8059i 1.29394 1.29394i
\(285\) 5.78407 + 6.15769i 0.342619 + 0.364750i
\(286\) −0.0616749 0.651289i −0.00364692 0.0385115i
\(287\) 11.2688i 0.665179i
\(288\) 9.05885 7.99095i 0.533798 0.470871i
\(289\) 10.9246 0.642623
\(290\) −2.50757 −0.147250
\(291\) 25.6829 + 0.803522i 1.50556 + 0.0471033i
\(292\) 12.0910 12.0910i 0.707574 0.707574i
\(293\) 15.8408 15.8408i 0.925429 0.925429i −0.0719771 0.997406i \(-0.522931\pi\)
0.997406 + 0.0719771i \(0.0229308\pi\)
\(294\) −3.78517 0.118424i −0.220756 0.00690662i
\(295\) 0.351821 0.0204838
\(296\) 3.55033 0.206359
\(297\) −0.239849 + 2.54875i −0.0139175 + 0.147894i
\(298\) 0.429529i 0.0248819i
\(299\) 3.18885 + 33.6743i 0.184416 + 1.94743i
\(300\) 2.21086 + 2.35366i 0.127644 + 0.135889i
\(301\) 13.7775 13.7775i 0.794124 0.794124i
\(302\) 3.54302i 0.203878i
\(303\) 3.04590 + 3.24264i 0.174982 + 0.186285i
\(304\) 11.0526 11.0526i 0.633911 0.633911i
\(305\) 2.54624 + 2.54624i 0.145797 + 0.145797i
\(306\) −4.37838 + 3.86224i −0.250295 + 0.220789i
\(307\) 19.6820 + 19.6820i 1.12331 + 1.12331i 0.991240 + 0.132074i \(0.0421636\pi\)
0.132074 + 0.991240i \(0.457836\pi\)
\(308\) 3.30374i 0.188248i
\(309\) 19.2421 18.0746i 1.09464 1.02823i
\(310\) 1.09150 + 1.09150i 0.0619929 + 0.0619929i
\(311\) 15.5168 0.879877 0.439938 0.898028i \(-0.355000\pi\)
0.439938 + 0.898028i \(0.355000\pi\)
\(312\) −0.560791 8.87003i −0.0317486 0.502166i
\(313\) −3.72939 −0.210797 −0.105399 0.994430i \(-0.533612\pi\)
−0.105399 + 0.994430i \(0.533612\pi\)
\(314\) 2.18921 + 2.18921i 0.123544 + 0.123544i
\(315\) 10.7693 + 0.674520i 0.606779 + 0.0380049i
\(316\) 4.96102i 0.279079i
\(317\) −18.4547 18.4547i −1.03652 1.03652i −0.999307 0.0372111i \(-0.988153\pi\)
−0.0372111 0.999307i \(-0.511847\pi\)
\(318\) 4.43012 + 0.138602i 0.248429 + 0.00777241i
\(319\) −2.37202 2.37202i −0.132808 0.132808i
\(320\) 3.48343 3.48343i 0.194729 0.194729i
\(321\) 11.1828 10.5043i 0.624164 0.586293i
\(322\) 12.4268i 0.692519i
\(323\) −18.2257 + 18.2257i −1.01410 + 1.01410i
\(324\) −2.09369 + 16.6482i −0.116316 + 0.924899i
\(325\) 3.58949 0.339913i 0.199109 0.0188550i
\(326\) 3.60154i 0.199471i
\(327\) −19.5687 0.612233i −1.08215 0.0338566i
\(328\) −4.45886 −0.246199
\(329\) −12.5639 −0.692673
\(330\) 0.00982748 0.314115i 0.000540985 0.0172915i
\(331\) −15.0140 + 15.0140i −0.825244 + 0.825244i −0.986855 0.161611i \(-0.948331\pi\)
0.161611 + 0.986855i \(0.448331\pi\)
\(332\) 13.7137 13.7137i 0.752639 0.752639i
\(333\) −5.61242 + 4.95080i −0.307559 + 0.271302i
\(334\) 1.10409 0.0604131
\(335\) 1.89532 0.103552
\(336\) 0.624297 19.9543i 0.0340582 1.08860i
\(337\) 18.0210i 0.981666i 0.871254 + 0.490833i \(0.163308\pi\)
−0.871254 + 0.490833i \(0.836692\pi\)
\(338\) −3.96068 2.68974i −0.215433 0.146303i
\(339\) −14.4195 + 13.5446i −0.783158 + 0.735641i
\(340\) −6.96643 + 6.96643i −0.377808 + 0.377808i
\(341\) 2.06499i 0.111825i
\(342\) 0.336873 5.37844i 0.0182160 0.290833i
\(343\) 2.70390 2.70390i 0.145997 0.145997i
\(344\) −5.45150 5.45150i −0.293925 0.293925i
\(345\) −0.508121 + 16.2410i −0.0273563 + 0.874387i
\(346\) 5.54649 + 5.54649i 0.298181 + 0.298181i
\(347\) 12.1453i 0.651991i 0.945371 + 0.325996i \(0.105700\pi\)
−0.945371 + 0.325996i \(0.894300\pi\)
\(348\) −15.0534 16.0257i −0.806945 0.859069i
\(349\) 22.2952 + 22.2952i 1.19343 + 1.19343i 0.976097 + 0.217337i \(0.0697371\pi\)
0.217337 + 0.976097i \(0.430263\pi\)
\(350\) −1.32463 −0.0708045
\(351\) 13.2554 + 13.2399i 0.707522 + 0.706692i
\(352\) −1.98378 −0.105736
\(353\) −7.05913 7.05913i −0.375720 0.375720i 0.493836 0.869555i \(-0.335594\pi\)
−0.869555 + 0.493836i \(0.835594\pi\)
\(354\) −0.153649 0.163574i −0.00816637 0.00869386i
\(355\) 16.5408i 0.877895i
\(356\) 4.75045 + 4.75045i 0.251774 + 0.251774i
\(357\) −1.02946 + 32.9046i −0.0544848 + 1.74149i
\(358\) −0.721534 0.721534i −0.0381343 0.0381343i
\(359\) −17.9957 + 17.9957i −0.949776 + 0.949776i −0.998798 0.0490218i \(-0.984390\pi\)
0.0490218 + 0.998798i \(0.484390\pi\)
\(360\) 0.266894 4.26118i 0.0140666 0.224584i
\(361\) 4.79088i 0.252151i
\(362\) 5.23512 5.23512i 0.275152 0.275152i
\(363\) −13.5805 + 12.7565i −0.712789 + 0.669541i
\(364\) −18.6319 15.4084i −0.976579 0.807621i
\(365\) 9.17163i 0.480065i
\(366\) 0.0718286 2.29585i 0.00375454 0.120006i
\(367\) 17.4749 0.912181 0.456090 0.889933i \(-0.349249\pi\)
0.456090 + 0.889933i \(0.349249\pi\)
\(368\) 30.0635 1.56717
\(369\) 7.04863 6.21771i 0.366937 0.323681i
\(370\) 0.649644 0.649644i 0.0337734 0.0337734i
\(371\) 17.6720 17.6720i 0.917486 0.917486i
\(372\) −0.423244 + 13.5281i −0.0219442 + 0.701400i
\(373\) 12.9747 0.671805 0.335903 0.941897i \(-0.390959\pi\)
0.335903 + 0.941897i \(0.390959\pi\)
\(374\) 0.958813 0.0495790
\(375\) 1.73120 + 0.0541629i 0.0893990 + 0.00279696i
\(376\) 4.97131i 0.256376i
\(377\) −24.4403 + 2.31442i −1.25874 + 0.119199i
\(378\) −4.38960 5.30159i −0.225777 0.272684i
\(379\) −4.51436 + 4.51436i −0.231887 + 0.231887i −0.813480 0.581593i \(-0.802430\pi\)
0.581593 + 0.813480i \(0.302430\pi\)
\(380\) 9.09362i 0.466493i
\(381\) −3.34244 + 3.13964i −0.171238 + 0.160848i
\(382\) −3.63271 + 3.63271i −0.185866 + 0.185866i
\(383\) −24.9851 24.9851i −1.27668 1.27668i −0.942516 0.334161i \(-0.891547\pi\)
−0.334161 0.942516i \(-0.608453\pi\)
\(384\) −17.0824 0.534446i −0.871734 0.0272733i
\(385\) −1.25302 1.25302i −0.0638600 0.0638600i
\(386\) 0.269206i 0.0137022i
\(387\) 16.2197 + 1.01590i 0.824494 + 0.0516412i
\(388\) −19.5575 19.5575i −0.992880 0.992880i
\(389\) −5.36318 −0.271924 −0.135962 0.990714i \(-0.543413\pi\)
−0.135962 + 0.990714i \(0.543413\pi\)
\(390\) −1.72566 1.52043i −0.0873823 0.0769901i
\(391\) −49.5745 −2.50709
\(392\) 5.97449 + 5.97449i 0.301757 + 0.301757i
\(393\) −6.46481 + 6.07256i −0.326106 + 0.306320i
\(394\) 1.93993i 0.0977322i
\(395\) −1.88159 1.88159i −0.0946729 0.0946729i
\(396\) 2.06648 1.82288i 0.103845 0.0916030i
\(397\) −2.52951 2.52951i −0.126952 0.126952i 0.640776 0.767728i \(-0.278613\pi\)
−0.767728 + 0.640776i \(0.778613\pi\)
\(398\) 3.74114 3.74114i 0.187527 0.187527i
\(399\) −20.8041 22.1479i −1.04151 1.10878i
\(400\) 3.20461i 0.160230i
\(401\) −11.1604 + 11.1604i −0.557326 + 0.557326i −0.928545 0.371219i \(-0.878940\pi\)
0.371219 + 0.928545i \(0.378940\pi\)
\(402\) −0.827736 0.881202i −0.0412837 0.0439504i
\(403\) 11.6458 + 9.63096i 0.580119 + 0.479752i
\(404\) 4.78871i 0.238247i
\(405\) 5.52014 + 7.10831i 0.274298 + 0.353215i
\(406\) 9.01920 0.447615
\(407\) 1.22905 0.0609219
\(408\) 13.0197 + 0.407337i 0.644570 + 0.0201662i
\(409\) −12.4909 + 12.4909i −0.617634 + 0.617634i −0.944924 0.327290i \(-0.893865\pi\)
0.327290 + 0.944924i \(0.393865\pi\)
\(410\) −0.815887 + 0.815887i −0.0402938 + 0.0402938i
\(411\) 20.2063 + 0.632179i 0.996703 + 0.0311831i
\(412\) −28.4165 −1.39998
\(413\) −1.26542 −0.0622674
\(414\) 7.77294 6.85663i 0.382019 0.336985i
\(415\) 10.4025i 0.510640i
\(416\) −9.25221 + 11.1878i −0.453627 + 0.548528i
\(417\) −0.613395 0.653016i −0.0300381 0.0319784i
\(418\) −0.625793 + 0.625793i −0.0306085 + 0.0306085i
\(419\) 6.25022i 0.305343i 0.988277 + 0.152672i \(0.0487877\pi\)
−0.988277 + 0.152672i \(0.951212\pi\)
\(420\) −7.95197 8.46562i −0.388016 0.413080i
\(421\) −24.9169 + 24.9169i −1.21438 + 1.21438i −0.244803 + 0.969573i \(0.578723\pi\)
−0.969573 + 0.244803i \(0.921277\pi\)
\(422\) 2.47192 + 2.47192i 0.120331 + 0.120331i
\(423\) −6.93229 7.85871i −0.337060 0.382104i
\(424\) −6.99247 6.99247i −0.339585 0.339585i
\(425\) 5.28437i 0.256330i
\(426\) −7.69041 + 7.22380i −0.372602 + 0.349994i
\(427\) −9.15829 9.15829i −0.443201 0.443201i
\(428\) −16.5147 −0.798268
\(429\) −0.194134 3.07062i −0.00937290 0.148251i
\(430\) −1.99504 −0.0962095
\(431\) 3.03234 + 3.03234i 0.146063 + 0.146063i 0.776357 0.630294i \(-0.217066\pi\)
−0.630294 + 0.776357i \(0.717066\pi\)
\(432\) 12.8258 10.6195i 0.617084 0.510932i
\(433\) 30.0237i 1.44285i 0.692493 + 0.721424i \(0.256512\pi\)
−0.692493 + 0.721424i \(0.743488\pi\)
\(434\) −3.92588 3.92588i −0.188448 0.188448i
\(435\) −11.7875 0.368787i −0.565167 0.0176820i
\(436\) 14.9016 + 14.9016i 0.713655 + 0.713655i
\(437\) 32.3560 32.3560i 1.54780 1.54780i
\(438\) −4.26422 + 4.00549i −0.203752 + 0.191390i
\(439\) 13.8417i 0.660629i −0.943871 0.330314i \(-0.892845\pi\)
0.943871 0.330314i \(-0.107155\pi\)
\(440\) −0.495797 + 0.495797i −0.0236362 + 0.0236362i
\(441\) −17.7757 1.11336i −0.846464 0.0530173i
\(442\) 4.47184 5.40736i 0.212704 0.257202i
\(443\) 5.89439i 0.280051i −0.990148 0.140026i \(-0.955282\pi\)
0.990148 0.140026i \(-0.0447185\pi\)
\(444\) 8.05175 + 0.251909i 0.382119 + 0.0119551i
\(445\) 3.60345 0.170820
\(446\) 2.44596 0.115819
\(447\) −0.0631704 + 2.01911i −0.00298786 + 0.0955006i
\(448\) −12.5291 + 12.5291i −0.591946 + 0.591946i
\(449\) 15.1945 15.1945i 0.717073 0.717073i −0.250932 0.968005i \(-0.580737\pi\)
0.968005 + 0.250932i \(0.0807369\pi\)
\(450\) −0.730879 0.828552i −0.0344540 0.0390583i
\(451\) −1.54357 −0.0726837
\(452\) 21.2946 1.00161
\(453\) 0.521068 16.6549i 0.0244819 0.782514i
\(454\) 4.04440i 0.189813i
\(455\) −12.9106 + 1.22260i −0.605260 + 0.0573161i
\(456\) −8.76348 + 8.23176i −0.410387 + 0.385487i
\(457\) 5.58713 5.58713i 0.261355 0.261355i −0.564250 0.825604i \(-0.690834\pi\)
0.825604 + 0.564250i \(0.190834\pi\)
\(458\) 2.87534i 0.134356i
\(459\) −21.1497 + 17.5115i −0.987184 + 0.817368i
\(460\) 12.3675 12.3675i 0.576638 0.576638i
\(461\) −14.7907 14.7907i −0.688870 0.688870i 0.273113 0.961982i \(-0.411947\pi\)
−0.961982 + 0.273113i \(0.911947\pi\)
\(462\) −0.0353473 + 1.12980i −0.00164451 + 0.0525632i
\(463\) 8.79012 + 8.79012i 0.408512 + 0.408512i 0.881219 0.472708i \(-0.156723\pi\)
−0.472708 + 0.881219i \(0.656723\pi\)
\(464\) 21.8197i 1.01295i
\(465\) 4.97034 + 5.29139i 0.230494 + 0.245382i
\(466\) −2.53541 2.53541i −0.117450 0.117450i
\(467\) 9.31080 0.430853 0.215426 0.976520i \(-0.430886\pi\)
0.215426 + 0.976520i \(0.430886\pi\)
\(468\) −0.642450 20.1560i −0.0296972 0.931711i
\(469\) −6.81706 −0.314783
\(470\) 0.909655 + 0.909655i 0.0419593 + 0.0419593i
\(471\) 9.96897 + 10.6129i 0.459346 + 0.489017i
\(472\) 0.500703i 0.0230467i
\(473\) −1.88720 1.88720i −0.0867734 0.0867734i
\(474\) −0.0530788 + 1.69655i −0.00243799 + 0.0779253i
\(475\) −3.44898 3.44898i −0.158250 0.158250i
\(476\) 25.0567 25.0567i 1.14847 1.14847i
\(477\) 20.8045 + 1.30307i 0.952574 + 0.0596634i
\(478\) 8.40491i 0.384432i
\(479\) 21.2367 21.2367i 0.970331 0.970331i −0.0292411 0.999572i \(-0.509309\pi\)
0.999572 + 0.0292411i \(0.00930906\pi\)
\(480\) −5.08330 + 4.77487i −0.232020 + 0.217942i
\(481\) 5.73221 6.93142i 0.261366 0.316045i
\(482\) 3.31229i 0.150870i
\(483\) 1.82760 58.4155i 0.0831588 2.65800i
\(484\) 20.0555 0.911614
\(485\) −14.8353 −0.673635
\(486\) 0.894116 5.67089i 0.0405579 0.257237i
\(487\) −11.9347 + 11.9347i −0.540814 + 0.540814i −0.923768 0.382954i \(-0.874907\pi\)
0.382954 + 0.923768i \(0.374907\pi\)
\(488\) −3.62375 + 3.62375i −0.164040 + 0.164040i
\(489\) −0.529675 + 16.9299i −0.0239527 + 0.765599i
\(490\) 2.18644 0.0987732
\(491\) −8.47582 −0.382508 −0.191254 0.981541i \(-0.561255\pi\)
−0.191254 + 0.981541i \(0.561255\pi\)
\(492\) −10.1122 0.316372i −0.455892 0.0142632i
\(493\) 35.9805i 1.62048i
\(494\) 0.610596 + 6.44790i 0.0274720 + 0.290105i
\(495\) 0.0923933 1.47513i 0.00415277 0.0663023i
\(496\) 9.49767 9.49767i 0.426458 0.426458i
\(497\) 59.4937i 2.66866i
\(498\) −4.83650 + 4.54305i −0.216729 + 0.203579i
\(499\) 25.0163 25.0163i 1.11988 1.11988i 0.128124 0.991758i \(-0.459104\pi\)
0.991758 0.128124i \(-0.0408957\pi\)
\(500\) −1.31831 1.31831i −0.0589565 0.0589565i
\(501\) 5.19005 + 0.162377i 0.231875 + 0.00725449i
\(502\) 1.12918 + 1.12918i 0.0503979 + 0.0503979i
\(503\) 20.4948i 0.913820i 0.889513 + 0.456910i \(0.151044\pi\)
−0.889513 + 0.456910i \(0.848956\pi\)
\(504\) −0.959960 + 15.3265i −0.0427600 + 0.682699i
\(505\) −1.81623 1.81623i −0.0808213 0.0808213i
\(506\) −1.70218 −0.0756712
\(507\) −18.2226 13.2263i −0.809296 0.587401i
\(508\) 4.93608 0.219003
\(509\) 25.6979 + 25.6979i 1.13904 + 1.13904i 0.988623 + 0.150415i \(0.0480609\pi\)
0.150415 + 0.988623i \(0.451939\pi\)
\(510\) 2.45689 2.30782i 0.108793 0.102192i
\(511\) 32.9884i 1.45932i
\(512\) 15.5740 + 15.5740i 0.688280 + 0.688280i
\(513\) 2.37456 25.2332i 0.104839 1.11407i
\(514\) −1.29054 1.29054i −0.0569234 0.0569234i
\(515\) −10.7776 + 10.7776i −0.474920 + 0.474920i
\(516\) −11.9766 12.7502i −0.527239 0.561295i
\(517\) 1.72096i 0.0756879i
\(518\) −2.33663 + 2.33663i −0.102666 + 0.102666i
\(519\) 25.2570 + 26.8884i 1.10866 + 1.18027i
\(520\) 0.483757 + 5.10848i 0.0212141 + 0.224022i
\(521\) 5.36438i 0.235018i 0.993072 + 0.117509i \(0.0374909\pi\)
−0.993072 + 0.117509i \(0.962509\pi\)
\(522\) 4.97644 + 5.64148i 0.217813 + 0.246921i
\(523\) −18.4316 −0.805960 −0.402980 0.915209i \(-0.632026\pi\)
−0.402980 + 0.915209i \(0.632026\pi\)
\(524\) 9.54718 0.417070
\(525\) −6.22677 0.194812i −0.271758 0.00850231i
\(526\) −5.62365 + 5.62365i −0.245203 + 0.245203i
\(527\) −15.6616 + 15.6616i −0.682230 + 0.682230i
\(528\) −2.73327 0.0855139i −0.118950 0.00372152i
\(529\) 65.0097 2.82651
\(530\) −2.55898 −0.111155
\(531\) −0.698211 0.791519i −0.0302998 0.0343490i
\(532\) 32.7078i 1.41806i
\(533\) −7.19908 + 8.70516i −0.311827 + 0.377062i
\(534\) −1.57372 1.67537i −0.0681015 0.0725004i
\(535\) −6.26360 + 6.26360i −0.270799 + 0.270799i
\(536\) 2.69738i 0.116509i
\(537\) −3.28564 3.49787i −0.141786 0.150944i
\(538\) 1.07350 1.07350i 0.0462820 0.0462820i
\(539\) 2.06824 + 2.06824i 0.0890856 + 0.0890856i
\(540\) 0.907632 9.64493i 0.0390582 0.415052i
\(541\) −19.8497 19.8497i −0.853407 0.853407i 0.137144 0.990551i \(-0.456208\pi\)
−0.990551 + 0.137144i \(0.956208\pi\)
\(542\) 1.49229i 0.0640995i
\(543\) 25.3790 23.8391i 1.08912 1.02303i
\(544\) −15.0457 15.0457i −0.645078 0.645078i
\(545\) 11.3035 0.484191
\(546\) 6.20684 + 5.46867i 0.265628 + 0.234038i
\(547\) −9.53713 −0.407778 −0.203889 0.978994i \(-0.565358\pi\)
−0.203889 + 0.978994i \(0.565358\pi\)
\(548\) −15.3870 15.3870i −0.657302 0.657302i
\(549\) 0.675297 10.7817i 0.0288210 0.460150i
\(550\) 0.181443i 0.00773676i
\(551\) 23.4835 + 23.4835i 1.00043 + 1.00043i
\(552\) −23.1138 0.723146i −0.983791 0.0307791i
\(553\) 6.76766 + 6.76766i 0.287790 + 0.287790i
\(554\) 3.61407 3.61407i 0.153547 0.153547i
\(555\) 3.14936 2.95828i 0.133683 0.125572i
\(556\) 0.964369i 0.0408984i
\(557\) −13.2999 + 13.2999i −0.563537 + 0.563537i −0.930310 0.366773i \(-0.880462\pi\)
0.366773 + 0.930310i \(0.380462\pi\)
\(558\) 0.289479 4.62177i 0.0122546 0.195655i
\(559\) −19.4449 + 1.84137i −0.822431 + 0.0778815i
\(560\) 11.5263i 0.487074i
\(561\) 4.50715 + 0.141012i 0.190292 + 0.00595352i
\(562\) −7.64909 −0.322657
\(563\) −21.9634 −0.925647 −0.462823 0.886451i \(-0.653164\pi\)
−0.462823 + 0.886451i \(0.653164\pi\)
\(564\) −0.352732 + 11.2744i −0.0148527 + 0.474736i
\(565\) 8.07648 8.07648i 0.339780 0.339780i
\(566\) 1.97765 1.97765i 0.0831270 0.0831270i
\(567\) −19.8548 25.5671i −0.833821 1.07372i
\(568\) 23.5405 0.987737
\(569\) −18.1666 −0.761585 −0.380792 0.924661i \(-0.624349\pi\)
−0.380792 + 0.924661i \(0.624349\pi\)
\(570\) −0.0972943 + 3.10981i −0.00407521 + 0.130256i
\(571\) 29.6650i 1.24144i 0.784032 + 0.620720i \(0.213160\pi\)
−0.784032 + 0.620720i \(0.786840\pi\)
\(572\) −2.11059 + 2.55214i −0.0882482 + 0.106710i
\(573\) −17.6108 + 16.5422i −0.735700 + 0.691062i
\(574\) 2.93457 2.93457i 0.122487 0.122487i
\(575\) 9.38135i 0.391229i
\(576\) −14.7500 0.923850i −0.614584 0.0384938i
\(577\) 11.2277 11.2277i 0.467414 0.467414i −0.433662 0.901076i \(-0.642779\pi\)
0.901076 + 0.433662i \(0.142779\pi\)
\(578\) 2.84492 + 2.84492i 0.118333 + 0.118333i
\(579\) 0.0395919 1.26547i 0.00164538 0.0525913i
\(580\) 8.97615 + 8.97615i 0.372714 + 0.372714i
\(581\) 37.4156i 1.55226i
\(582\) 6.47895 + 6.89745i 0.268561 + 0.285908i
\(583\) −2.42065 2.42065i −0.100253 0.100253i
\(584\) 13.0529 0.540131
\(585\) −7.88831 7.40098i −0.326142 0.305993i
\(586\) 8.25035 0.340819
\(587\) 9.11946 + 9.11946i 0.376400 + 0.376400i 0.869802 0.493401i \(-0.164247\pi\)
−0.493401 + 0.869802i \(0.664247\pi\)
\(588\) 13.1255 + 13.9734i 0.541288 + 0.576252i
\(589\) 20.4438i 0.842374i
\(590\) 0.0916193 + 0.0916193i 0.00377191 + 0.00377191i
\(591\) 0.285304 9.11914i 0.0117358 0.375111i
\(592\) −5.65288 5.65288i −0.232332 0.232332i
\(593\) −6.63125 + 6.63125i −0.272313 + 0.272313i −0.830031 0.557718i \(-0.811677\pi\)
0.557718 + 0.830031i \(0.311677\pi\)
\(594\) −0.726192 + 0.601272i −0.0297960 + 0.0246705i
\(595\) 19.0068i 0.779201i
\(596\) 1.53755 1.53755i 0.0629804 0.0629804i
\(597\) 18.1364 17.0360i 0.742274 0.697237i
\(598\) −7.93885 + 9.59969i −0.324644 + 0.392561i
\(599\) 39.9553i 1.63253i −0.577679 0.816264i \(-0.696041\pi\)
0.577679 0.816264i \(-0.303959\pi\)
\(600\) −0.0770834 + 2.46381i −0.00314692 + 0.100585i
\(601\) 20.6271 0.841398 0.420699 0.907200i \(-0.361785\pi\)
0.420699 + 0.907200i \(0.361785\pi\)
\(602\) 7.17574 0.292461
\(603\) −3.76139 4.26405i −0.153176 0.173646i
\(604\) −12.6826 + 12.6826i −0.516049 + 0.516049i
\(605\) 7.60654 7.60654i 0.309250 0.309250i
\(606\) −0.0512353 + 1.63763i −0.00208129 + 0.0665241i
\(607\) 1.59959 0.0649252 0.0324626 0.999473i \(-0.489665\pi\)
0.0324626 + 0.999473i \(0.489665\pi\)
\(608\) 19.6399 0.796502
\(609\) 42.3971 + 1.32645i 1.71802 + 0.0537503i
\(610\) 1.32616i 0.0536946i
\(611\) 9.70563 + 8.02646i 0.392648 + 0.324716i
\(612\) 29.4983 + 1.84759i 1.19240 + 0.0746843i
\(613\) 10.4572 10.4572i 0.422362 0.422362i −0.463654 0.886016i \(-0.653462\pi\)
0.886016 + 0.463654i \(0.153462\pi\)
\(614\) 10.2510i 0.413696i
\(615\) −3.95528 + 3.71530i −0.159492 + 0.149815i
\(616\) 1.78328 1.78328i 0.0718502 0.0718502i
\(617\) −7.17003 7.17003i −0.288654 0.288654i 0.547894 0.836548i \(-0.315430\pi\)
−0.836548 + 0.547894i \(0.815430\pi\)
\(618\) 9.71779 + 0.304033i 0.390907 + 0.0122300i
\(619\) −34.7195 34.7195i −1.39550 1.39550i −0.812411 0.583085i \(-0.801846\pi\)
−0.583085 0.812411i \(-0.698154\pi\)
\(620\) 7.81428i 0.313829i
\(621\) 37.5471 31.0882i 1.50671 1.24753i
\(622\) 4.04080 + 4.04080i 0.162021 + 0.162021i
\(623\) −12.9608 −0.519265
\(624\) −13.2301 + 15.0159i −0.529626 + 0.601116i
\(625\) −1.00000 −0.0400000
\(626\) −0.971187 0.971187i −0.0388164 0.0388164i
\(627\) −3.03374 + 2.84967i −0.121156 + 0.113805i
\(628\) 15.6730i 0.625423i
\(629\) 9.32156 + 9.32156i 0.371675 + 0.371675i
\(630\) 2.62882 + 2.98012i 0.104734 + 0.118731i
\(631\) 15.2658 + 15.2658i 0.607723 + 0.607723i 0.942351 0.334627i \(-0.108610\pi\)
−0.334627 + 0.942351i \(0.608610\pi\)
\(632\) 2.67783 2.67783i 0.106518 0.106518i
\(633\) 11.2564 + 11.9835i 0.447400 + 0.476300i
\(634\) 9.61174i 0.381731i
\(635\) 1.87213 1.87213i 0.0742932 0.0742932i
\(636\) −15.3620 16.3543i −0.609142 0.648489i
\(637\) 21.3103 2.01802i 0.844345 0.0799568i
\(638\) 1.23542i 0.0489106i
\(639\) −37.2132 + 32.8263i −1.47213 + 1.29859i
\(640\) 9.86737 0.390042
\(641\) 25.8774 1.02210 0.511048 0.859552i \(-0.329258\pi\)
0.511048 + 0.859552i \(0.329258\pi\)
\(642\) 5.64764 + 0.176694i 0.222895 + 0.00697354i
\(643\) −5.93694 + 5.93694i −0.234130 + 0.234130i −0.814414 0.580284i \(-0.802942\pi\)
0.580284 + 0.814414i \(0.302942\pi\)
\(644\) −44.4832 + 44.4832i −1.75289 + 1.75289i
\(645\) −9.37822 0.293409i −0.369267 0.0115530i
\(646\) −9.49246 −0.373476
\(647\) −8.94367 −0.351612 −0.175806 0.984425i \(-0.556253\pi\)
−0.175806 + 0.984425i \(0.556253\pi\)
\(648\) −10.1164 + 7.85614i −0.397409 + 0.308618i
\(649\) 0.173333i 0.00680392i
\(650\) 1.02327 + 0.846238i 0.0401361 + 0.0331922i
\(651\) −17.8772 19.0320i −0.700664 0.745922i
\(652\) 12.8921 12.8921i 0.504894 0.504894i
\(653\) 29.3417i 1.14823i 0.818775 + 0.574115i \(0.194654\pi\)
−0.818775 + 0.574115i \(0.805346\pi\)
\(654\) −4.93655 5.25542i −0.193034 0.205503i
\(655\) 3.62100 3.62100i 0.141484 0.141484i
\(656\) 7.09945 + 7.09945i 0.277187 + 0.277187i
\(657\) −20.6341 + 18.2017i −0.805014 + 0.710116i
\(658\) −3.27183 3.27183i −0.127549 0.127549i
\(659\) 20.2846i 0.790175i −0.918644 0.395087i \(-0.870714\pi\)
0.918644 0.395087i \(-0.129286\pi\)
\(660\) −1.15959 + 1.08923i −0.0451370 + 0.0423983i
\(661\) −13.3192 13.3192i −0.518055 0.518055i 0.398927 0.916983i \(-0.369383\pi\)
−0.916983 + 0.398927i \(0.869383\pi\)
\(662\) −7.81973 −0.303922
\(663\) 21.8163 24.7610i 0.847274 0.961639i
\(664\) 14.8046 0.574531
\(665\) 12.4052 + 12.4052i 0.481054 + 0.481054i
\(666\) −2.75082 0.172294i −0.106592 0.00667626i
\(667\) 63.8761i 2.47329i
\(668\) −3.95221 3.95221i −0.152916 0.152916i
\(669\) 11.4979 + 0.359725i 0.444533 + 0.0139078i
\(670\) 0.493569 + 0.493569i 0.0190682 + 0.0190682i
\(671\) −1.25447 + 1.25447i −0.0484283 + 0.0484283i
\(672\) 18.2835 17.1742i 0.705303 0.662509i
\(673\) 26.5074i 1.02179i 0.859644 + 0.510893i \(0.170685\pi\)
−0.859644 + 0.510893i \(0.829315\pi\)
\(674\) −4.69293 + 4.69293i −0.180765 + 0.180765i
\(675\) −3.31383 4.00231i −0.127549 0.154049i
\(676\) 4.54949 + 23.8060i 0.174981 + 0.915614i
\(677\) 24.4044i 0.937939i −0.883214 0.468970i \(-0.844625\pi\)
0.883214 0.468970i \(-0.155375\pi\)
\(678\) −7.28225 0.227834i −0.279673 0.00874993i
\(679\) 53.3593 2.04774
\(680\) −7.52060 −0.288402
\(681\) −0.594807 + 19.0117i −0.0227930 + 0.728532i
\(682\) −0.537753 + 0.537753i −0.0205916 + 0.0205916i
\(683\) 24.2961 24.2961i 0.929666 0.929666i −0.0680180 0.997684i \(-0.521668\pi\)
0.997684 + 0.0680180i \(0.0216675\pi\)
\(684\) −20.4586 + 18.0469i −0.782256 + 0.690040i
\(685\) −11.6718 −0.445957
\(686\) 1.40827 0.0537679
\(687\) 0.422874 13.5163i 0.0161337 0.515679i
\(688\) 17.3599i 0.661839i
\(689\) −24.9414 + 2.36187i −0.950190 + 0.0899799i
\(690\) −4.36172 + 4.09708i −0.166048 + 0.155973i
\(691\) −20.5928 + 20.5928i −0.783388 + 0.783388i −0.980401 0.197013i \(-0.936876\pi\)
0.197013 + 0.980401i \(0.436876\pi\)
\(692\) 39.7086i 1.50950i
\(693\) −0.332319 + 5.30574i −0.0126237 + 0.201548i
\(694\) −3.16280 + 3.16280i −0.120058 + 0.120058i
\(695\) 0.365760 + 0.365760i 0.0138741 + 0.0138741i
\(696\) 0.524849 16.7757i 0.0198943 0.635881i
\(697\) −11.7069 11.7069i −0.443432 0.443432i
\(698\) 11.6120i 0.439520i
\(699\) −11.5455 12.2912i −0.436689 0.464897i
\(700\) 4.74167 + 4.74167i 0.179218 + 0.179218i
\(701\) −20.2981 −0.766648 −0.383324 0.923614i \(-0.625221\pi\)
−0.383324 + 0.923614i \(0.625221\pi\)
\(702\) 0.00405037 + 6.89976i 0.000152871 + 0.260415i
\(703\) −12.1679 −0.458921
\(704\) 1.71620 + 1.71620i 0.0646816 + 0.0646816i
\(705\) 4.14229 + 4.40985i 0.156008 + 0.166085i
\(706\) 3.67660i 0.138371i
\(707\) 6.53260 + 6.53260i 0.245684 + 0.245684i
\(708\) −0.0355267 + 1.13554i −0.00133518 + 0.0426761i
\(709\) −24.9325 24.9325i −0.936361 0.936361i 0.0617322 0.998093i \(-0.480338\pi\)
−0.998093 + 0.0617322i \(0.980338\pi\)
\(710\) 4.30747 4.30747i 0.161656 0.161656i
\(711\) −0.499021 + 7.96728i −0.0187148 + 0.298796i
\(712\) 5.12834i 0.192193i
\(713\) 27.8040 27.8040i 1.04127 1.04127i
\(714\) −8.83691 + 8.30074i −0.330713 + 0.310647i
\(715\) 0.167467 + 1.76845i 0.00626290 + 0.0661364i
\(716\) 5.16563i 0.193049i
\(717\) 1.23610 39.5094i 0.0461631 1.47551i
\(718\) −9.37268 −0.349785
\(719\) −44.3697 −1.65471 −0.827355 0.561679i \(-0.810156\pi\)
−0.827355 + 0.561679i \(0.810156\pi\)
\(720\) −7.20965 + 6.35975i −0.268688 + 0.237014i
\(721\) 38.7649 38.7649i 1.44368 1.44368i
\(722\) 1.24761 1.24761i 0.0464314 0.0464314i
\(723\) 0.487135 15.5703i 0.0181168 0.579064i
\(724\) −37.4794 −1.39291
\(725\) 6.80884 0.252874
\(726\) −6.85852 0.214578i −0.254544 0.00796372i
\(727\) 19.3095i 0.716150i −0.933693 0.358075i \(-0.883433\pi\)
0.933693 0.358075i \(-0.116567\pi\)
\(728\) −1.73997 18.3741i −0.0644875 0.680990i
\(729\) 5.03704 26.5260i 0.186557 0.982444i
\(730\) 2.38843 2.38843i 0.0883996 0.0883996i
\(731\) 28.6263i 1.05878i
\(732\) −8.47538 + 7.96114i −0.313259 + 0.294252i
\(733\) −8.23013 + 8.23013i −0.303987 + 0.303987i −0.842571 0.538585i \(-0.818959\pi\)
0.538585 + 0.842571i \(0.318959\pi\)
\(734\) 4.55071 + 4.55071i 0.167970 + 0.167970i
\(735\) 10.2779 + 0.321558i 0.379107 + 0.0118608i
\(736\) 26.7106 + 26.7106i 0.984565 + 0.984565i
\(737\) 0.933777i 0.0343961i
\(738\) 3.45475 + 0.216384i 0.127171 + 0.00796521i
\(739\) −11.8446 11.8446i −0.435710 0.435710i 0.454855 0.890565i \(-0.349691\pi\)
−0.890565 + 0.454855i \(0.849691\pi\)
\(740\) −4.65095 −0.170972
\(741\) 1.92197 + 30.3998i 0.0706055 + 1.11677i
\(742\) 9.20411 0.337893
\(743\) −7.55046 7.55046i −0.276999 0.276999i 0.554911 0.831910i \(-0.312752\pi\)
−0.831910 + 0.554911i \(0.812752\pi\)
\(744\) −7.53058 + 7.07367i −0.276085 + 0.259333i
\(745\) 1.16630i 0.0427301i
\(746\) 3.37880 + 3.37880i 0.123707 + 0.123707i
\(747\) −23.4034 + 20.6445i −0.856285 + 0.755342i
\(748\) −3.43218 3.43218i −0.125493 0.125493i
\(749\) 22.5288 22.5288i 0.823185 0.823185i
\(750\) 0.436726 + 0.464935i 0.0159470 + 0.0169770i
\(751\) 0.869234i 0.0317188i 0.999874 + 0.0158594i \(0.00504841\pi\)
−0.999874 + 0.0158594i \(0.994952\pi\)
\(752\) 7.91537 7.91537i 0.288644 0.288644i
\(753\) 5.14195 + 5.47409i 0.187383 + 0.199487i
\(754\) −6.96732 5.76190i −0.253735 0.209836i
\(755\) 9.62039i 0.350122i
\(756\) −3.26456 + 34.6907i −0.118731 + 1.26169i
\(757\) −32.3586 −1.17609 −0.588046 0.808828i \(-0.700103\pi\)
−0.588046 + 0.808828i \(0.700103\pi\)
\(758\) −2.35121 −0.0853998
\(759\) −8.00154 0.250338i −0.290438 0.00908670i
\(760\) 4.90850 4.90850i 0.178050 0.178050i
\(761\) 30.6519 30.6519i 1.11113 1.11113i 0.118133 0.992998i \(-0.462309\pi\)
0.992998 0.118133i \(-0.0376908\pi\)
\(762\) −1.68803 0.0528120i −0.0611507 0.00191318i
\(763\) −40.6564 −1.47186
\(764\) 26.0074 0.940916
\(765\) 11.8887 10.4872i 0.429836 0.379165i
\(766\) 13.0129i 0.470177i
\(767\) 0.977538 + 0.808414i 0.0352968 + 0.0291901i
\(768\) 7.37436 + 7.85069i 0.266099 + 0.283287i
\(769\) −10.9540 + 10.9540i −0.395013 + 0.395013i −0.876470 0.481457i \(-0.840108\pi\)
0.481457 + 0.876470i \(0.340108\pi\)
\(770\) 0.652612i 0.0235185i
\(771\) −5.87673 6.25633i −0.211645 0.225316i
\(772\) −0.963655 + 0.963655i −0.0346827 + 0.0346827i
\(773\) 27.0891 + 27.0891i 0.974326 + 0.974326i 0.999679 0.0253530i \(-0.00807098\pi\)
−0.0253530 + 0.999679i \(0.508071\pi\)
\(774\) 3.95929 + 4.48841i 0.142314 + 0.161332i
\(775\) −2.96376 2.96376i −0.106461 0.106461i
\(776\) 21.1132i 0.757921i
\(777\) −11.3276 + 10.6403i −0.406375 + 0.381718i
\(778\) −1.39665 1.39665i −0.0500723 0.0500723i
\(779\) 15.2816 0.547522
\(780\) 0.734639 + 11.6198i 0.0263043 + 0.416055i
\(781\) 8.14924 0.291603
\(782\) −12.9099 12.9099i −0.461658 0.461658i
\(783\) 22.5634 + 27.2511i 0.806349 + 0.973876i
\(784\) 19.0253i 0.679475i
\(785\) −5.94438 5.94438i −0.212164 0.212164i
\(786\) −3.26491 0.102147i −0.116456 0.00364346i
\(787\) −36.5342 36.5342i −1.30230 1.30230i −0.926836 0.375468i \(-0.877482\pi\)
−0.375468 0.926836i \(-0.622518\pi\)
\(788\) −6.94420 + 6.94420i −0.247377 + 0.247377i
\(789\) −27.2625 + 25.6083i −0.970569 + 0.911681i
\(790\) 0.979985i 0.0348663i
\(791\) −29.0494 + 29.0494i −1.03288 + 1.03288i
\(792\) 2.09938 + 0.131492i 0.0745980 + 0.00467236i
\(793\) 1.22401 + 12.9255i 0.0434657 + 0.458999i
\(794\) 1.31744i 0.0467543i
\(795\) −12.0292 0.376347i −0.426630 0.0133477i
\(796\) −26.7837 −0.949324
\(797\) 29.5724 1.04751 0.523754 0.851870i \(-0.324531\pi\)
0.523754 + 0.851870i \(0.324531\pi\)
\(798\) 0.349947 11.1853i 0.0123880 0.395956i
\(799\) −13.0524 + 13.0524i −0.461760 + 0.461760i
\(800\) 2.84720 2.84720i 0.100664 0.100664i
\(801\) −7.15128 8.10696i −0.252678 0.286445i
\(802\) −5.81269 −0.205253
\(803\) 4.51863 0.159459
\(804\) −0.191389 + 6.11734i −0.00674976 + 0.215742i
\(805\) 33.7427i 1.18927i
\(806\) 0.524694 + 5.54078i 0.0184815 + 0.195166i
\(807\) 5.20415 4.88840i 0.183195 0.172080i
\(808\) 2.58482 2.58482i 0.0909337 0.0909337i
\(809\) 53.6701i 1.88694i −0.331455 0.943471i \(-0.607540\pi\)
0.331455 0.943471i \(-0.392460\pi\)
\(810\) −0.413582 + 3.28863i −0.0145318 + 0.115551i
\(811\) 22.4475 22.4475i 0.788238 0.788238i −0.192967 0.981205i \(-0.561811\pi\)
0.981205 + 0.192967i \(0.0618110\pi\)
\(812\) −32.2853 32.2853i −1.13299 1.13299i
\(813\) 0.219470 7.01491i 0.00769717 0.246024i
\(814\) 0.320063 + 0.320063i 0.0112182 + 0.0112182i
\(815\) 9.77929i 0.342554i
\(816\) −20.0815 21.3787i −0.702994 0.748403i
\(817\) 18.6837 + 18.6837i 0.653659 + 0.653659i
\(818\) −6.50562 −0.227464
\(819\) 28.3726 + 26.6197i 0.991417 + 0.930169i
\(820\) 5.84113 0.203981
\(821\) −33.6801 33.6801i −1.17544 1.17544i −0.980892 0.194553i \(-0.937674\pi\)
−0.194553 0.980892i \(-0.562326\pi\)
\(822\) 5.09738 + 5.42664i 0.177792 + 0.189276i
\(823\) 43.9680i 1.53263i 0.642467 + 0.766313i \(0.277911\pi\)
−0.642467 + 0.766313i \(0.722089\pi\)
\(824\) −15.3385 15.3385i −0.534342 0.534342i
\(825\) −0.0266847 + 0.852920i −0.000929042 + 0.0296949i
\(826\) −0.329535 0.329535i −0.0114660 0.0114660i
\(827\) −30.1945 + 30.1945i −1.04996 + 1.04996i −0.0512796 + 0.998684i \(0.516330\pi\)
−0.998684 + 0.0512796i \(0.983670\pi\)
\(828\) −52.3682 3.28002i −1.81992 0.113989i
\(829\) 34.9574i 1.21412i 0.794656 + 0.607060i \(0.207651\pi\)
−0.794656 + 0.607060i \(0.792349\pi\)
\(830\) 2.70897 2.70897i 0.0940297 0.0940297i
\(831\) 17.5204 16.4574i 0.607776 0.570900i
\(832\) 17.6829 1.67452i 0.613046 0.0580535i
\(833\) 31.3726i 1.08700i
\(834\) 0.0103180 0.329792i 0.000357282 0.0114198i
\(835\) −2.99795 −0.103748
\(836\) 4.48020 0.154951
\(837\) 2.04049 21.6833i 0.0705298 0.749483i
\(838\) −1.62765 + 1.62765i −0.0562262 + 0.0562262i
\(839\) 3.70208 3.70208i 0.127810 0.127810i −0.640308 0.768118i \(-0.721193\pi\)
0.768118 + 0.640308i \(0.221193\pi\)
\(840\) 0.277252 8.86179i 0.00956611 0.305761i
\(841\) −17.3603 −0.598632
\(842\) −12.9775 −0.447233
\(843\) −35.9565 1.12495i −1.23841 0.0387452i
\(844\) 17.6971i 0.609158i
\(845\) 10.7545 + 7.30348i 0.369966 + 0.251247i
\(846\) 0.241253 3.85179i 0.00829444 0.132427i
\(847\) −27.3591 + 27.3591i −0.940069 + 0.940069i
\(848\) 22.2670i 0.764652i
\(849\) 9.58732 9.00562i 0.329036 0.309072i
\(850\) −1.37613 + 1.37613i −0.0472008 + 0.0472008i
\(851\) −16.5486 16.5486i −0.567278 0.567278i
\(852\) 53.3871 + 1.67028i 1.82901 + 0.0572230i
\(853\) 19.6790 + 19.6790i 0.673797 + 0.673797i 0.958589 0.284792i \(-0.0919245\pi\)
−0.284792 + 0.958589i \(0.591925\pi\)
\(854\) 4.76990i 0.163223i
\(855\) −0.914714 + 14.6042i −0.0312826 + 0.499451i
\(856\) −8.91420 8.91420i −0.304681 0.304681i
\(857\) −13.8696 −0.473777 −0.236889 0.971537i \(-0.576128\pi\)
−0.236889 + 0.971537i \(0.576128\pi\)
\(858\) 0.749079 0.850190i 0.0255731 0.0290250i
\(859\) 47.5429 1.62214 0.811072 0.584946i \(-0.198884\pi\)
0.811072 + 0.584946i \(0.198884\pi\)
\(860\) 7.14149 + 7.14149i 0.243523 + 0.243523i
\(861\) 14.2263 13.3631i 0.484831 0.455414i
\(862\) 1.57933i 0.0537922i
\(863\) −18.8498 18.8498i −0.641654 0.641654i 0.309308 0.950962i \(-0.399903\pi\)
−0.950962 + 0.309308i \(0.899903\pi\)
\(864\) 20.8305 + 1.96025i 0.708670 + 0.0666890i
\(865\) −15.0605 15.0605i −0.512071 0.512071i
\(866\) −7.81862 + 7.81862i −0.265687 + 0.265687i
\(867\) 12.9549 + 13.7917i 0.439972 + 0.468391i
\(868\) 28.1063i 0.953990i
\(869\) 0.927010 0.927010i 0.0314466 0.0314466i
\(870\) −2.97360 3.16567i −0.100814 0.107326i
\(871\) 5.26617 + 4.35507i 0.178437 + 0.147566i
\(872\) 16.0869i 0.544773i
\(873\) 29.4416 + 33.3761i 0.996447 + 1.12961i
\(874\) 16.8520 0.570026
\(875\) 3.59678 0.121594
\(876\) 29.6024 + 0.926148i 1.00017 + 0.0312916i
\(877\) 37.6363 37.6363i 1.27089 1.27089i 0.325265 0.945623i \(-0.394546\pi\)
0.945623 0.325265i \(-0.105454\pi\)
\(878\) 3.60458 3.60458i 0.121649 0.121649i
\(879\) 38.7829 + 1.21337i 1.30811 + 0.0409260i
\(880\) 1.57883 0.0532223
\(881\) −48.6517 −1.63912 −0.819559 0.572995i \(-0.805781\pi\)
−0.819559 + 0.572995i \(0.805781\pi\)
\(882\) −4.33913 4.91900i −0.146106 0.165631i
\(883\) 27.2665i 0.917592i −0.888542 0.458796i \(-0.848281\pi\)
0.888542 0.458796i \(-0.151719\pi\)
\(884\) −35.3638 + 3.34883i −1.18941 + 0.112633i
\(885\) 0.417206 + 0.444154i 0.0140242 + 0.0149301i
\(886\) 1.53499 1.53499i 0.0515689 0.0515689i
\(887\) 32.1996i 1.08116i 0.841294 + 0.540578i \(0.181794\pi\)
−0.841294 + 0.540578i \(0.818206\pi\)
\(888\) 4.21015 + 4.48210i 0.141283 + 0.150409i
\(889\) −6.73364 + 6.73364i −0.225839 + 0.225839i
\(890\) 0.938391 + 0.938391i 0.0314549 + 0.0314549i
\(891\) −3.50208 + 2.71963i −0.117324 + 0.0911111i
\(892\) −8.75559 8.75559i −0.293159 0.293159i
\(893\) 17.0379i 0.570153i
\(894\) −0.542256 + 0.509355i −0.0181358 + 0.0170354i
\(895\) 1.95919 + 1.95919i 0.0654885 + 0.0654885i
\(896\) −35.4908 −1.18566
\(897\) −38.7304 + 43.9583i −1.29317 + 1.46772i
\(898\) 7.91374 0.264085
\(899\) 20.1797 + 20.1797i 0.673032 + 0.673032i
\(900\) −0.349633 + 5.58217i −0.0116544 + 0.186072i
\(901\) 36.7181i 1.22326i
\(902\) −0.401967 0.401967i −0.0133840 0.0133840i
\(903\) 33.7314 + 1.05533i 1.12251 + 0.0351192i
\(904\) 11.4943 + 11.4943i 0.382293 + 0.382293i
\(905\) −14.2150 + 14.2150i −0.472522 + 0.472522i
\(906\) 4.47286 4.20147i 0.148601 0.139585i
\(907\) 52.9829i 1.75927i −0.475651 0.879634i \(-0.657787\pi\)
0.475651 0.879634i \(-0.342213\pi\)
\(908\) 14.4774 14.4774i 0.480449 0.480449i
\(909\) −0.481689 + 7.69056i −0.0159766 + 0.255080i
\(910\) −3.68050 3.04374i −0.122007 0.100899i
\(911\) 16.3239i 0.540835i −0.962743 0.270417i \(-0.912838\pi\)
0.962743 0.270417i \(-0.0871617\pi\)
\(912\) 27.0600 + 0.846607i 0.896047 + 0.0280340i
\(913\) 5.12506 0.169615
\(914\) 2.90994 0.0962522
\(915\) −0.195037 + 6.23395i −0.00644772 + 0.206088i
\(916\) −10.2926 + 10.2926i −0.340078 + 0.340078i
\(917\) −13.0239 + 13.0239i −0.430089 + 0.430089i
\(918\) −10.0680 0.947440i −0.332292 0.0312702i
\(919\) 46.3976 1.53051 0.765257 0.643725i \(-0.222612\pi\)
0.765257 + 0.643725i \(0.222612\pi\)
\(920\) 13.3513 0.440180
\(921\) −1.50760 + 48.1874i −0.0496772 + 1.58783i
\(922\) 7.70340i 0.253698i
\(923\) 38.0075 45.9588i 1.25103 1.51275i
\(924\) 4.17079 3.91773i 0.137209 0.128884i
\(925\) −1.76399 + 1.76399i −0.0579995 + 0.0579995i
\(926\) 4.57815i 0.150447i
\(927\) 45.6363 + 2.85837i 1.49889 + 0.0938813i
\(928\) −19.3861 + 19.3861i −0.636382 + 0.636382i
\(929\) −20.0595 20.0595i −0.658131 0.658131i 0.296807 0.954938i \(-0.404078\pi\)
−0.954938 + 0.296807i \(0.904078\pi\)
\(930\) −0.0836064 + 2.67230i −0.00274156 + 0.0876283i
\(931\) −20.4761 20.4761i −0.671077 0.671077i
\(932\) 18.1516i 0.594575i
\(933\) 18.4005 + 19.5891i 0.602407 + 0.641318i
\(934\) 2.42467 + 2.42467i 0.0793376 + 0.0793376i
\(935\) −2.60348 −0.0851428
\(936\) 10.5329 11.2265i 0.344279 0.366948i
\(937\) −23.7901 −0.777188 −0.388594 0.921409i \(-0.627039\pi\)
−0.388594 + 0.921409i \(0.627039\pi\)
\(938\) −1.77526 1.77526i −0.0579644 0.0579644i
\(939\) −4.42248 4.70815i −0.144322 0.153645i
\(940\) 6.51244i 0.212412i
\(941\) 31.8370 + 31.8370i 1.03786 + 1.03786i 0.999255 + 0.0386033i \(0.0122909\pi\)
0.0386033 + 0.999255i \(0.487709\pi\)
\(942\) −0.167689 + 5.35982i −0.00546359 + 0.174632i
\(943\) 20.7833 + 20.7833i 0.676798 + 0.676798i
\(944\) 0.797226 0.797226i 0.0259475 0.0259475i
\(945\) 11.9191 + 14.3955i 0.387730 + 0.468284i
\(946\) 0.982907i 0.0319571i
\(947\) 37.4100 37.4100i 1.21566 1.21566i 0.246523 0.969137i \(-0.420712\pi\)
0.969137 0.246523i \(-0.0792881\pi\)
\(948\) 6.26301 5.88301i 0.203413 0.191071i
\(949\) 21.0746 25.4835i 0.684109 0.827228i
\(950\) 1.79633i 0.0582806i
\(951\) 1.41359 45.1825i 0.0458388 1.46514i
\(952\) 27.0500 0.876694
\(953\) 17.7294 0.574311 0.287156 0.957884i \(-0.407290\pi\)
0.287156 + 0.957884i \(0.407290\pi\)
\(954\) 5.07847 + 5.75714i 0.164421 + 0.186394i
\(955\) 9.86395 9.86395i 0.319190 0.319190i
\(956\) −30.0863 + 30.0863i −0.973062 + 0.973062i
\(957\) 0.181692 5.80740i 0.00587326 0.187727i
\(958\) 11.0607 0.357355
\(959\) 41.9810 1.35564
\(960\) 8.52844 + 0.266823i 0.275254 + 0.00861168i
\(961\) 13.4323i 0.433300i
\(962\) 3.29779 0.312290i 0.106325 0.0100686i
\(963\) 26.5222 + 1.66119i 0.854666 + 0.0535310i
\(964\) −11.8567 + 11.8567i −0.381879 + 0.381879i
\(965\) 0.730979i 0.0235310i
\(966\) 15.6882 14.7363i 0.504759 0.474133i
\(967\) −1.98285 + 1.98285i −0.0637640 + 0.0637640i −0.738270 0.674506i \(-0.764357\pi\)
0.674506 + 0.738270i \(0.264357\pi\)
\(968\) 10.8254 + 10.8254i 0.347943 + 0.347943i
\(969\) −44.6218 1.39605i −1.43346 0.0448476i
\(970\) −3.86332 3.86332i −0.124044 0.124044i
\(971\) 45.7568i 1.46841i −0.678930 0.734203i \(-0.737556\pi\)
0.678930 0.734203i \(-0.262444\pi\)
\(972\) −23.5002 + 17.0990i −0.753770 + 0.548451i
\(973\) −1.31556 1.31556i −0.0421750 0.0421750i
\(974\) −6.21595 −0.199172
\(975\) 4.68571 + 4.12845i 0.150063 + 0.132216i
\(976\) 11.5396 0.369373
\(977\) −4.54207 4.54207i −0.145314 0.145314i 0.630707 0.776021i \(-0.282765\pi\)
−0.776021 + 0.630707i \(0.782765\pi\)
\(978\) −4.54674 + 4.27087i −0.145389 + 0.136567i
\(979\) 1.77533i 0.0567397i
\(980\) −7.82661 7.82661i −0.250012 0.250012i
\(981\) −22.4326 25.4305i −0.716218 0.811932i
\(982\) −2.20723 2.20723i −0.0704354 0.0704354i
\(983\) −22.8720 + 22.8720i −0.729505 + 0.729505i −0.970521 0.241016i \(-0.922519\pi\)
0.241016 + 0.970521i \(0.422519\pi\)
\(984\) −5.28752 5.62906i −0.168560 0.179448i
\(985\) 5.26751i 0.167837i
\(986\) 9.36984 9.36984i 0.298396 0.298396i
\(987\) −14.8989 15.8613i −0.474238 0.504870i
\(988\) 20.8953 25.2667i 0.664769 0.803842i
\(989\) 50.8203i 1.61599i
\(990\) 0.408207 0.360086i 0.0129737 0.0114443i
\(991\) −13.1807 −0.418700 −0.209350 0.977841i \(-0.567135\pi\)
−0.209350 + 0.977841i \(0.567135\pi\)
\(992\) 16.8768 0.535840
\(993\) −36.7586 1.15004i −1.16650 0.0364954i
\(994\) −15.4930 + 15.4930i −0.491409 + 0.491409i
\(995\) −10.1584 + 10.1584i −0.322042 + 0.322042i
\(996\) 33.5752 + 1.05044i 1.06387 + 0.0332846i
\(997\) 9.27082 0.293610 0.146805 0.989165i \(-0.453101\pi\)
0.146805 + 0.989165i \(0.453101\pi\)
\(998\) 13.0292 0.412432
\(999\) −12.9056 1.21447i −0.408314 0.0384242i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 195.2.o.a.161.11 yes 40
3.2 odd 2 inner 195.2.o.a.161.10 yes 40
5.2 odd 4 975.2.n.r.824.10 40
5.3 odd 4 975.2.n.q.824.11 40
5.4 even 2 975.2.o.p.551.10 40
13.8 odd 4 inner 195.2.o.a.86.10 40
15.2 even 4 975.2.n.r.824.11 40
15.8 even 4 975.2.n.q.824.10 40
15.14 odd 2 975.2.o.p.551.11 40
39.8 even 4 inner 195.2.o.a.86.11 yes 40
65.8 even 4 975.2.n.r.749.11 40
65.34 odd 4 975.2.o.p.476.11 40
65.47 even 4 975.2.n.q.749.10 40
195.8 odd 4 975.2.n.r.749.10 40
195.47 odd 4 975.2.n.q.749.11 40
195.164 even 4 975.2.o.p.476.10 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.o.a.86.10 40 13.8 odd 4 inner
195.2.o.a.86.11 yes 40 39.8 even 4 inner
195.2.o.a.161.10 yes 40 3.2 odd 2 inner
195.2.o.a.161.11 yes 40 1.1 even 1 trivial
975.2.n.q.749.10 40 65.47 even 4
975.2.n.q.749.11 40 195.47 odd 4
975.2.n.q.824.10 40 15.8 even 4
975.2.n.q.824.11 40 5.3 odd 4
975.2.n.r.749.10 40 195.8 odd 4
975.2.n.r.749.11 40 65.8 even 4
975.2.n.r.824.10 40 5.2 odd 4
975.2.n.r.824.11 40 15.2 even 4
975.2.o.p.476.10 40 195.164 even 4
975.2.o.p.476.11 40 65.34 odd 4
975.2.o.p.551.10 40 5.4 even 2
975.2.o.p.551.11 40 15.14 odd 2