Properties

Label 975.2.n.r.824.10
Level $975$
Weight $2$
Character 975.824
Analytic conductor $7.785$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [975,2,Mod(749,975)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(975, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("975.749"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.n (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,0,0,0,12,16,0,0,0,0,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(12)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 824.10
Character \(\chi\) \(=\) 975.824
Dual form 975.2.n.r.749.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.260415 + 0.260415i) q^{2} +(1.26244 - 1.18585i) q^{3} +1.86437i q^{4} +(-0.0199472 + 0.637571i) q^{6} +(-2.54331 + 2.54331i) q^{7} +(-1.00634 - 1.00634i) q^{8} +(0.187534 - 2.99413i) q^{9} +(0.348374 - 0.348374i) q^{11} +(2.21086 + 2.35366i) q^{12} +(-3.58949 + 0.339913i) q^{13} -1.32463i q^{14} -3.20461 q^{16} +5.28437i q^{17} +(0.730879 + 0.828552i) q^{18} +(3.44898 - 3.44898i) q^{19} +(-0.194812 + 6.22677i) q^{21} +0.181443i q^{22} +9.38135i q^{23} +(-2.46381 - 0.0770834i) q^{24} +(0.846238 - 1.02327i) q^{26} +(-3.31383 - 4.00231i) q^{27} +(-4.74167 - 4.74167i) q^{28} +6.80884i q^{29} +(-2.96376 + 2.96376i) q^{31} +(2.84720 - 2.84720i) q^{32} +(0.0266847 - 0.852920i) q^{33} +(-1.37613 - 1.37613i) q^{34} +(5.58217 + 0.349633i) q^{36} +(-1.76399 + 1.76399i) q^{37} +1.79633i q^{38} +(-4.12845 + 4.68571i) q^{39} +(-2.21539 - 2.21539i) q^{41} +(-1.57081 - 1.67227i) q^{42} -5.41717 q^{43} +(0.649497 + 0.649497i) q^{44} +(-2.44304 - 2.44304i) q^{46} +(-2.47000 - 2.47000i) q^{47} +(-4.04564 + 3.80017i) q^{48} -5.93686i q^{49} +(6.26646 + 6.67123i) q^{51} +(-0.633724 - 6.69214i) q^{52} -6.94843 q^{53} +(1.90523 + 0.179291i) q^{54} +5.11886 q^{56} +(0.264184 - 8.44410i) q^{57} +(-1.77312 - 1.77312i) q^{58} +(0.248775 - 0.248775i) q^{59} -3.60093 q^{61} -1.54361i q^{62} +(7.13805 + 8.09197i) q^{63} -4.92631i q^{64} +(0.215164 + 0.229062i) q^{66} +(-1.34019 - 1.34019i) q^{67} -9.85202 q^{68} +(11.1248 + 11.8434i) q^{69} +(11.6961 + 11.6961i) q^{71} +(-3.20183 + 2.82439i) q^{72} +(6.48532 - 6.48532i) q^{73} -0.918735i q^{74} +(6.43016 + 6.43016i) q^{76} +1.77204i q^{77} +(-0.145118 - 2.29534i) q^{78} -2.66096 q^{79} +(-8.92966 - 1.12300i) q^{81} +1.15384 q^{82} +(7.35570 - 7.35570i) q^{83} +(-11.6090 - 0.363202i) q^{84} +(1.41071 - 1.41071i) q^{86} +(8.07424 + 8.59579i) q^{87} -0.701163 q^{88} +(2.54802 - 2.54802i) q^{89} +(8.26469 - 9.99370i) q^{91} -17.4903 q^{92} +(-0.227017 + 7.25614i) q^{93} +1.28645 q^{94} +(0.218090 - 6.97078i) q^{96} +(10.4901 + 10.4901i) q^{97} +(1.54604 + 1.54604i) q^{98} +(-0.977745 - 1.10841i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 12 q^{6} + 16 q^{7} + 24 q^{12} - 24 q^{13} - 64 q^{16} - 4 q^{18} + 16 q^{19} - 12 q^{21} - 8 q^{24} - 32 q^{28} + 32 q^{31} - 4 q^{33} + 16 q^{34} - 32 q^{37} + 8 q^{39} + 32 q^{43} - 40 q^{46}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.260415 + 0.260415i −0.184141 + 0.184141i −0.793157 0.609017i \(-0.791564\pi\)
0.609017 + 0.793157i \(0.291564\pi\)
\(3\) 1.26244 1.18585i 0.728873 0.684649i
\(4\) 1.86437i 0.932184i
\(5\) 0 0
\(6\) −0.0199472 + 0.637571i −0.00814341 + 0.260287i
\(7\) −2.54331 + 2.54331i −0.961281 + 0.961281i −0.999278 0.0379967i \(-0.987902\pi\)
0.0379967 + 0.999278i \(0.487902\pi\)
\(8\) −1.00634 1.00634i −0.355794 0.355794i
\(9\) 0.187534 2.99413i 0.0625113 0.998044i
\(10\) 0 0
\(11\) 0.348374 0.348374i 0.105039 0.105039i −0.652634 0.757673i \(-0.726336\pi\)
0.757673 + 0.652634i \(0.226336\pi\)
\(12\) 2.21086 + 2.35366i 0.638219 + 0.679444i
\(13\) −3.58949 + 0.339913i −0.995546 + 0.0942750i
\(14\) 1.32463i 0.354022i
\(15\) 0 0
\(16\) −3.20461 −0.801152
\(17\) 5.28437i 1.28165i 0.767688 + 0.640824i \(0.221407\pi\)
−0.767688 + 0.640824i \(0.778593\pi\)
\(18\) 0.730879 + 0.828552i 0.172270 + 0.195292i
\(19\) 3.44898 3.44898i 0.791249 0.791249i −0.190448 0.981697i \(-0.560994\pi\)
0.981697 + 0.190448i \(0.0609940\pi\)
\(20\) 0 0
\(21\) −0.194812 + 6.22677i −0.0425115 + 1.35879i
\(22\) 0.181443i 0.0386838i
\(23\) 9.38135i 1.95615i 0.208262 + 0.978073i \(0.433219\pi\)
−0.208262 + 0.978073i \(0.566781\pi\)
\(24\) −2.46381 0.0770834i −0.502923 0.0157346i
\(25\) 0 0
\(26\) 0.846238 1.02327i 0.165961 0.200681i
\(27\) −3.31383 4.00231i −0.637747 0.770246i
\(28\) −4.74167 4.74167i −0.896091 0.896091i
\(29\) 6.80884i 1.26437i 0.774817 + 0.632185i \(0.217842\pi\)
−0.774817 + 0.632185i \(0.782158\pi\)
\(30\) 0 0
\(31\) −2.96376 + 2.96376i −0.532306 + 0.532306i −0.921258 0.388952i \(-0.872837\pi\)
0.388952 + 0.921258i \(0.372837\pi\)
\(32\) 2.84720 2.84720i 0.503319 0.503319i
\(33\) 0.0266847 0.852920i 0.00464521 0.148474i
\(34\) −1.37613 1.37613i −0.236004 0.236004i
\(35\) 0 0
\(36\) 5.58217 + 0.349633i 0.930361 + 0.0582721i
\(37\) −1.76399 + 1.76399i −0.289998 + 0.289998i −0.837079 0.547082i \(-0.815739\pi\)
0.547082 + 0.837079i \(0.315739\pi\)
\(38\) 1.79633i 0.291403i
\(39\) −4.12845 + 4.68571i −0.661081 + 0.750314i
\(40\) 0 0
\(41\) −2.21539 2.21539i −0.345986 0.345986i 0.512626 0.858612i \(-0.328673\pi\)
−0.858612 + 0.512626i \(0.828673\pi\)
\(42\) −1.57081 1.67227i −0.242381 0.258037i
\(43\) −5.41717 −0.826110 −0.413055 0.910706i \(-0.635538\pi\)
−0.413055 + 0.910706i \(0.635538\pi\)
\(44\) 0.649497 + 0.649497i 0.0979153 + 0.0979153i
\(45\) 0 0
\(46\) −2.44304 2.44304i −0.360207 0.360207i
\(47\) −2.47000 2.47000i −0.360286 0.360286i 0.503632 0.863918i \(-0.331997\pi\)
−0.863918 + 0.503632i \(0.831997\pi\)
\(48\) −4.04564 + 3.80017i −0.583938 + 0.548508i
\(49\) 5.93686i 0.848123i
\(50\) 0 0
\(51\) 6.26646 + 6.67123i 0.877480 + 0.934159i
\(52\) −0.633724 6.69214i −0.0878817 0.928032i
\(53\) −6.94843 −0.954441 −0.477220 0.878784i \(-0.658356\pi\)
−0.477220 + 0.878784i \(0.658356\pi\)
\(54\) 1.90523 + 0.179291i 0.259269 + 0.0243984i
\(55\) 0 0
\(56\) 5.11886 0.684036
\(57\) 0.264184 8.44410i 0.0349921 1.11845i
\(58\) −1.77312 1.77312i −0.232822 0.232822i
\(59\) 0.248775 0.248775i 0.0323877 0.0323877i −0.690727 0.723115i \(-0.742710\pi\)
0.723115 + 0.690727i \(0.242710\pi\)
\(60\) 0 0
\(61\) −3.60093 −0.461052 −0.230526 0.973066i \(-0.574045\pi\)
−0.230526 + 0.973066i \(0.574045\pi\)
\(62\) 1.54361i 0.196039i
\(63\) 7.13805 + 8.09197i 0.899310 + 1.01949i
\(64\) 4.92631i 0.615789i
\(65\) 0 0
\(66\) 0.215164 + 0.229062i 0.0264848 + 0.0281956i
\(67\) −1.34019 1.34019i −0.163731 0.163731i 0.620486 0.784217i \(-0.286935\pi\)
−0.784217 + 0.620486i \(0.786935\pi\)
\(68\) −9.85202 −1.19473
\(69\) 11.1248 + 11.8434i 1.33927 + 1.42578i
\(70\) 0 0
\(71\) 11.6961 + 11.6961i 1.38807 + 1.38807i 0.829361 + 0.558713i \(0.188705\pi\)
0.558713 + 0.829361i \(0.311295\pi\)
\(72\) −3.20183 + 2.82439i −0.377339 + 0.332857i
\(73\) 6.48532 6.48532i 0.759050 0.759050i −0.217100 0.976149i \(-0.569660\pi\)
0.976149 + 0.217100i \(0.0696597\pi\)
\(74\) 0.918735i 0.106801i
\(75\) 0 0
\(76\) 6.43016 + 6.43016i 0.737590 + 0.737590i
\(77\) 1.77204i 0.201943i
\(78\) −0.145118 2.29534i −0.0164314 0.259896i
\(79\) −2.66096 −0.299382 −0.149691 0.988733i \(-0.547828\pi\)
−0.149691 + 0.988733i \(0.547828\pi\)
\(80\) 0 0
\(81\) −8.92966 1.12300i −0.992185 0.124778i
\(82\) 1.15384 0.127420
\(83\) 7.35570 7.35570i 0.807393 0.807393i −0.176846 0.984239i \(-0.556589\pi\)
0.984239 + 0.176846i \(0.0565894\pi\)
\(84\) −11.6090 0.363202i −1.26664 0.0396286i
\(85\) 0 0
\(86\) 1.41071 1.41071i 0.152121 0.152121i
\(87\) 8.07424 + 8.59579i 0.865650 + 0.921565i
\(88\) −0.701163 −0.0747442
\(89\) 2.54802 2.54802i 0.270090 0.270090i −0.559046 0.829136i \(-0.688833\pi\)
0.829136 + 0.559046i \(0.188833\pi\)
\(90\) 0 0
\(91\) 8.26469 9.99370i 0.866375 1.04762i
\(92\) −17.4903 −1.82349
\(93\) −0.227017 + 7.25614i −0.0235406 + 0.752426i
\(94\) 1.28645 0.132687
\(95\) 0 0
\(96\) 0.218090 6.97078i 0.0222587 0.711452i
\(97\) 10.4901 + 10.4901i 1.06511 + 1.06511i 0.997727 + 0.0673840i \(0.0214653\pi\)
0.0673840 + 0.997727i \(0.478535\pi\)
\(98\) 1.54604 + 1.54604i 0.156174 + 0.156174i
\(99\) −0.977745 1.10841i −0.0982670 0.111399i
\(100\) 0 0
\(101\) 2.56854 0.255579 0.127790 0.991801i \(-0.459212\pi\)
0.127790 + 0.991801i \(0.459212\pi\)
\(102\) −3.36916 0.105409i −0.333597 0.0104370i
\(103\) −15.2419 −1.50183 −0.750914 0.660400i \(-0.770387\pi\)
−0.750914 + 0.660400i \(0.770387\pi\)
\(104\) 3.95431 + 3.27017i 0.387752 + 0.320667i
\(105\) 0 0
\(106\) 1.80947 1.80947i 0.175752 0.175752i
\(107\) 8.85806 0.856341 0.428171 0.903698i \(-0.359158\pi\)
0.428171 + 0.903698i \(0.359158\pi\)
\(108\) 7.46179 6.17820i 0.718011 0.594498i
\(109\) 7.99281 7.99281i 0.765573 0.765573i −0.211751 0.977324i \(-0.567917\pi\)
0.977324 + 0.211751i \(0.0679166\pi\)
\(110\) 0 0
\(111\) −0.135118 + 4.31875i −0.0128248 + 0.409918i
\(112\) 8.15031 8.15031i 0.770132 0.770132i
\(113\) 11.4219 1.07448 0.537239 0.843430i \(-0.319467\pi\)
0.537239 + 0.843430i \(0.319467\pi\)
\(114\) 2.13017 + 2.26776i 0.199509 + 0.212396i
\(115\) 0 0
\(116\) −12.6942 −1.17863
\(117\) 0.344594 + 10.8112i 0.0318577 + 0.999492i
\(118\) 0.129569i 0.0119278i
\(119\) −13.4398 13.4398i −1.23202 1.23202i
\(120\) 0 0
\(121\) 10.7573i 0.977934i
\(122\) 0.937735 0.937735i 0.0848986 0.0848986i
\(123\) −5.42392 0.169694i −0.489058 0.0153008i
\(124\) −5.52553 5.52553i −0.496207 0.496207i
\(125\) 0 0
\(126\) −3.96612 0.248413i −0.353330 0.0221304i
\(127\) −2.64759 −0.234936 −0.117468 0.993077i \(-0.537478\pi\)
−0.117468 + 0.993077i \(0.537478\pi\)
\(128\) 6.97729 + 6.97729i 0.616711 + 0.616711i
\(129\) −6.83887 + 6.42393i −0.602129 + 0.565595i
\(130\) 0 0
\(131\) 5.12086i 0.447412i 0.974657 + 0.223706i \(0.0718155\pi\)
−0.974657 + 0.223706i \(0.928184\pi\)
\(132\) 1.59016 + 0.0497501i 0.138405 + 0.00433019i
\(133\) 17.5436i 1.52123i
\(134\) 0.698012 0.0602991
\(135\) 0 0
\(136\) 5.31786 5.31786i 0.456003 0.456003i
\(137\) 8.25322 + 8.25322i 0.705120 + 0.705120i 0.965505 0.260385i \(-0.0838494\pi\)
−0.260385 + 0.965505i \(0.583849\pi\)
\(138\) −5.98127 0.187132i −0.509160 0.0159297i
\(139\) 0.517263 0.0438737 0.0219369 0.999759i \(-0.493017\pi\)
0.0219369 + 0.999759i \(0.493017\pi\)
\(140\) 0 0
\(141\) −6.04728 0.189197i −0.509273 0.0159332i
\(142\) −6.09168 −0.511202
\(143\) −1.13207 + 1.36890i −0.0946682 + 0.114473i
\(144\) −0.600973 + 9.59502i −0.0500811 + 0.799585i
\(145\) 0 0
\(146\) 3.37774i 0.279544i
\(147\) −7.04021 7.49496i −0.580666 0.618174i
\(148\) −3.28872 3.28872i −0.270331 0.270331i
\(149\) −0.824702 0.824702i −0.0675622 0.0675622i 0.672518 0.740080i \(-0.265213\pi\)
−0.740080 + 0.672518i \(0.765213\pi\)
\(150\) 0 0
\(151\) −6.80265 6.80265i −0.553591 0.553591i 0.373884 0.927475i \(-0.378026\pi\)
−0.927475 + 0.373884i \(0.878026\pi\)
\(152\) −6.94167 −0.563044
\(153\) 15.8221 + 0.991000i 1.27914 + 0.0801176i
\(154\) −0.461466 0.461466i −0.0371860 0.0371860i
\(155\) 0 0
\(156\) −8.73589 7.69696i −0.699431 0.616250i
\(157\) 8.40663i 0.670922i 0.942054 + 0.335461i \(0.108892\pi\)
−0.942054 + 0.335461i \(0.891108\pi\)
\(158\) 0.692954 0.692954i 0.0551284 0.0551284i
\(159\) −8.77202 + 8.23978i −0.695666 + 0.653457i
\(160\) 0 0
\(161\) −23.8597 23.8597i −1.88041 1.88041i
\(162\) 2.61786 2.03297i 0.205679 0.159725i
\(163\) 6.91500 6.91500i 0.541625 0.541625i −0.382380 0.924005i \(-0.624896\pi\)
0.924005 + 0.382380i \(0.124896\pi\)
\(164\) 4.13030 4.13030i 0.322522 0.322522i
\(165\) 0 0
\(166\) 3.83106i 0.297348i
\(167\) 2.11987 + 2.11987i 0.164040 + 0.164040i 0.784354 0.620314i \(-0.212995\pi\)
−0.620314 + 0.784354i \(0.712995\pi\)
\(168\) 6.46228 6.07018i 0.498576 0.468325i
\(169\) 12.7689 2.44023i 0.982224 0.187710i
\(170\) 0 0
\(171\) −9.67989 10.9735i −0.740240 0.839164i
\(172\) 10.0996i 0.770087i
\(173\) 21.2987i 1.61931i −0.586906 0.809655i \(-0.699654\pi\)
0.586906 0.809655i \(-0.300346\pi\)
\(174\) −4.34112 0.135817i −0.329099 0.0102963i
\(175\) 0 0
\(176\) −1.11640 + 1.11640i −0.0841518 + 0.0841518i
\(177\) 0.0190556 0.609074i 0.00143231 0.0457808i
\(178\) 1.32708i 0.0994692i
\(179\) 2.77071 0.207093 0.103546 0.994625i \(-0.466981\pi\)
0.103546 + 0.994625i \(0.466981\pi\)
\(180\) 0 0
\(181\) 20.1030i 1.49425i −0.664686 0.747123i \(-0.731435\pi\)
0.664686 0.747123i \(-0.268565\pi\)
\(182\) 0.450260 + 4.75475i 0.0333755 + 0.352446i
\(183\) −4.54598 + 4.27015i −0.336048 + 0.315659i
\(184\) 9.44081 9.44081i 0.695985 0.695985i
\(185\) 0 0
\(186\) −1.83049 1.94872i −0.134218 0.142887i
\(187\) 1.84094 + 1.84094i 0.134623 + 0.134623i
\(188\) 4.60499 4.60499i 0.335853 0.335853i
\(189\) 18.6072 + 1.75102i 1.35348 + 0.127368i
\(190\) 0 0
\(191\) 13.9497i 1.00937i 0.863304 + 0.504684i \(0.168391\pi\)
−0.863304 + 0.504684i \(0.831609\pi\)
\(192\) −5.84185 6.21919i −0.421599 0.448832i
\(193\) −0.516880 + 0.516880i −0.0372058 + 0.0372058i −0.725465 0.688259i \(-0.758375\pi\)
0.688259 + 0.725465i \(0.258375\pi\)
\(194\) −5.46356 −0.392261
\(195\) 0 0
\(196\) 11.0685 0.790607
\(197\) 3.72469 3.72469i 0.265373 0.265373i −0.561859 0.827233i \(-0.689914\pi\)
0.827233 + 0.561859i \(0.189914\pi\)
\(198\) 0.543265 + 0.0340268i 0.0386081 + 0.00241818i
\(199\) 14.3661i 1.01839i 0.860652 + 0.509193i \(0.170056\pi\)
−0.860652 + 0.509193i \(0.829944\pi\)
\(200\) 0 0
\(201\) −3.28119 0.102656i −0.231437 0.00724080i
\(202\) −0.668886 + 0.668886i −0.0470626 + 0.0470626i
\(203\) −17.3170 17.3170i −1.21542 1.21542i
\(204\) −12.4376 + 11.6830i −0.870808 + 0.817973i
\(205\) 0 0
\(206\) 3.96921 3.96921i 0.276548 0.276548i
\(207\) 28.0890 + 1.75932i 1.95232 + 0.122281i
\(208\) 11.5029 1.08929i 0.797584 0.0755286i
\(209\) 2.40306i 0.166223i
\(210\) 0 0
\(211\) 9.49226 0.653474 0.326737 0.945115i \(-0.394051\pi\)
0.326737 + 0.945115i \(0.394051\pi\)
\(212\) 12.9544i 0.889715i
\(213\) 28.6355 + 0.895898i 1.96207 + 0.0613859i
\(214\) −2.30677 + 2.30677i −0.157687 + 0.157687i
\(215\) 0 0
\(216\) −0.692846 + 7.36251i −0.0471422 + 0.500956i
\(217\) 15.0755i 1.02339i
\(218\) 4.16289i 0.281947i
\(219\) 0.496762 15.8780i 0.0335681 1.07293i
\(220\) 0 0
\(221\) −1.79623 18.9682i −0.120827 1.27594i
\(222\) −1.08948 1.15985i −0.0731211 0.0778442i
\(223\) −4.69628 4.69628i −0.314486 0.314486i 0.532159 0.846645i \(-0.321381\pi\)
−0.846645 + 0.532159i \(0.821381\pi\)
\(224\) 14.4826i 0.967662i
\(225\) 0 0
\(226\) −2.97442 + 2.97442i −0.197855 + 0.197855i
\(227\) −7.76531 + 7.76531i −0.515402 + 0.515402i −0.916177 0.400775i \(-0.868741\pi\)
0.400775 + 0.916177i \(0.368741\pi\)
\(228\) 15.7429 + 0.492537i 1.04260 + 0.0326191i
\(229\) 5.52070 + 5.52070i 0.364818 + 0.364818i 0.865583 0.500765i \(-0.166948\pi\)
−0.500765 + 0.865583i \(0.666948\pi\)
\(230\) 0 0
\(231\) 2.10137 + 2.23711i 0.138260 + 0.147191i
\(232\) 6.85200 6.85200i 0.449856 0.449856i
\(233\) 9.73604i 0.637829i 0.947783 + 0.318915i \(0.103318\pi\)
−0.947783 + 0.318915i \(0.896682\pi\)
\(234\) −2.90512 2.72565i −0.189914 0.178181i
\(235\) 0 0
\(236\) 0.463808 + 0.463808i 0.0301913 + 0.0301913i
\(237\) −3.35932 + 3.15550i −0.218211 + 0.204971i
\(238\) 6.99984 0.453732
\(239\) 16.1376 + 16.1376i 1.04385 + 1.04385i 0.998993 + 0.0448582i \(0.0142836\pi\)
0.0448582 + 0.998993i \(0.485716\pi\)
\(240\) 0 0
\(241\) −6.35964 6.35964i −0.409660 0.409660i 0.471960 0.881620i \(-0.343547\pi\)
−0.881620 + 0.471960i \(0.843547\pi\)
\(242\) −2.80135 2.80135i −0.180078 0.180078i
\(243\) −12.6049 + 9.17148i −0.808606 + 0.588351i
\(244\) 6.71346i 0.429786i
\(245\) 0 0
\(246\) 1.45666 1.36828i 0.0928731 0.0872381i
\(247\) −11.2077 + 13.5524i −0.713130 + 0.862320i
\(248\) 5.96508 0.378783
\(249\) 0.563431 18.0089i 0.0357060 1.14127i
\(250\) 0 0
\(251\) 4.33610 0.273692 0.136846 0.990592i \(-0.456303\pi\)
0.136846 + 0.990592i \(0.456303\pi\)
\(252\) −15.0864 + 13.3080i −0.950354 + 0.838323i
\(253\) 3.26821 + 3.26821i 0.205471 + 0.205471i
\(254\) 0.689471 0.689471i 0.0432612 0.0432612i
\(255\) 0 0
\(256\) 6.21864 0.388665
\(257\) 4.95572i 0.309129i −0.987983 0.154565i \(-0.950602\pi\)
0.987983 0.154565i \(-0.0493975\pi\)
\(258\) 0.108057 3.45383i 0.00672736 0.215026i
\(259\) 8.97273i 0.557538i
\(260\) 0 0
\(261\) 20.3866 + 1.27689i 1.26190 + 0.0790375i
\(262\) −1.33355 1.33355i −0.0823868 0.0823868i
\(263\) 21.5950 1.33160 0.665801 0.746129i \(-0.268090\pi\)
0.665801 + 0.746129i \(0.268090\pi\)
\(264\) −0.885180 + 0.831472i −0.0544790 + 0.0511736i
\(265\) 0 0
\(266\) −4.56862 4.56862i −0.280120 0.280120i
\(267\) 0.195173 6.23830i 0.0119444 0.381778i
\(268\) 2.49862 2.49862i 0.152627 0.152627i
\(269\) 4.12228i 0.251340i 0.992072 + 0.125670i \(0.0401080\pi\)
−0.992072 + 0.125670i \(0.959892\pi\)
\(270\) 0 0
\(271\) −2.86523 2.86523i −0.174050 0.174050i 0.614706 0.788756i \(-0.289275\pi\)
−0.788756 + 0.614706i \(0.789275\pi\)
\(272\) 16.9343i 1.02680i
\(273\) −1.41728 22.4172i −0.0857779 1.35675i
\(274\) −4.29852 −0.259683
\(275\) 0 0
\(276\) −22.0805 + 20.7408i −1.32909 + 1.24845i
\(277\) 13.8782 0.833857 0.416929 0.908939i \(-0.363106\pi\)
0.416929 + 0.908939i \(0.363106\pi\)
\(278\) −0.134703 + 0.134703i −0.00807894 + 0.00807894i
\(279\) 8.31807 + 9.42968i 0.497990 + 0.564540i
\(280\) 0 0
\(281\) −14.6864 + 14.6864i −0.876116 + 0.876116i −0.993130 0.117015i \(-0.962668\pi\)
0.117015 + 0.993130i \(0.462668\pi\)
\(282\) 1.62407 1.52553i 0.0967119 0.0908439i
\(283\) −7.59425 −0.451431 −0.225716 0.974193i \(-0.572472\pi\)
−0.225716 + 0.974193i \(0.572472\pi\)
\(284\) −21.8059 + 21.8059i −1.29394 + 1.29394i
\(285\) 0 0
\(286\) −0.0616749 0.651289i −0.00364692 0.0385115i
\(287\) 11.2688 0.665179
\(288\) −7.99095 9.05885i −0.470871 0.533798i
\(289\) −10.9246 −0.642623
\(290\) 0 0
\(291\) 25.6829 + 0.803522i 1.50556 + 0.0471033i
\(292\) 12.0910 + 12.0910i 0.707574 + 0.707574i
\(293\) −15.8408 15.8408i −0.925429 0.925429i 0.0719771 0.997406i \(-0.477069\pi\)
−0.997406 + 0.0719771i \(0.977069\pi\)
\(294\) 3.78517 + 0.118424i 0.220756 + 0.00690662i
\(295\) 0 0
\(296\) 3.55033 0.206359
\(297\) −2.54875 0.239849i −0.147894 0.0139175i
\(298\) 0.429529 0.0248819
\(299\) −3.18885 33.6743i −0.184416 1.94743i
\(300\) 0 0
\(301\) 13.7775 13.7775i 0.794124 0.794124i
\(302\) 3.54302 0.203878
\(303\) 3.24264 3.04590i 0.186285 0.174982i
\(304\) −11.0526 + 11.0526i −0.633911 + 0.633911i
\(305\) 0 0
\(306\) −4.37838 + 3.86224i −0.250295 + 0.220789i
\(307\) −19.6820 + 19.6820i −1.12331 + 1.12331i −0.132074 + 0.991240i \(0.542164\pi\)
−0.991240 + 0.132074i \(0.957836\pi\)
\(308\) −3.30374 −0.188248
\(309\) −19.2421 + 18.0746i −1.09464 + 1.02823i
\(310\) 0 0
\(311\) 15.5168 0.879877 0.439938 0.898028i \(-0.355000\pi\)
0.439938 + 0.898028i \(0.355000\pi\)
\(312\) 8.87003 0.560791i 0.502166 0.0317486i
\(313\) 3.72939i 0.210797i 0.994430 + 0.105399i \(0.0336119\pi\)
−0.994430 + 0.105399i \(0.966388\pi\)
\(314\) −2.18921 2.18921i −0.123544 0.123544i
\(315\) 0 0
\(316\) 4.96102i 0.279079i
\(317\) 18.4547 18.4547i 1.03652 1.03652i 0.0372111 0.999307i \(-0.488153\pi\)
0.999307 0.0372111i \(-0.0118474\pi\)
\(318\) 0.138602 4.43012i 0.00777241 0.248429i
\(319\) 2.37202 + 2.37202i 0.132808 + 0.132808i
\(320\) 0 0
\(321\) 11.1828 10.5043i 0.624164 0.586293i
\(322\) 12.4268 0.692519
\(323\) 18.2257 + 18.2257i 1.01410 + 1.01410i
\(324\) 2.09369 16.6482i 0.116316 0.924899i
\(325\) 0 0
\(326\) 3.60154i 0.199471i
\(327\) 0.612233 19.5687i 0.0338566 1.08215i
\(328\) 4.45886i 0.246199i
\(329\) 12.5639 0.692673
\(330\) 0 0
\(331\) −15.0140 + 15.0140i −0.825244 + 0.825244i −0.986855 0.161611i \(-0.948331\pi\)
0.161611 + 0.986855i \(0.448331\pi\)
\(332\) 13.7137 + 13.7137i 0.752639 + 0.752639i
\(333\) 4.95080 + 5.61242i 0.271302 + 0.307559i
\(334\) −1.10409 −0.0604131
\(335\) 0 0
\(336\) 0.624297 19.9543i 0.0340582 1.08860i
\(337\) −18.0210 −0.981666 −0.490833 0.871254i \(-0.663308\pi\)
−0.490833 + 0.871254i \(0.663308\pi\)
\(338\) −2.68974 + 3.96068i −0.146303 + 0.215433i
\(339\) 14.4195 13.5446i 0.783158 0.735641i
\(340\) 0 0
\(341\) 2.06499i 0.111825i
\(342\) 5.37844 + 0.336873i 0.290833 + 0.0182160i
\(343\) −2.70390 2.70390i −0.145997 0.145997i
\(344\) 5.45150 + 5.45150i 0.293925 + 0.293925i
\(345\) 0 0
\(346\) 5.54649 + 5.54649i 0.298181 + 0.298181i
\(347\) −12.1453 −0.651991 −0.325996 0.945371i \(-0.605700\pi\)
−0.325996 + 0.945371i \(0.605700\pi\)
\(348\) −16.0257 + 15.0534i −0.859069 + 0.806945i
\(349\) −22.2952 22.2952i −1.19343 1.19343i −0.976097 0.217337i \(-0.930263\pi\)
−0.217337 0.976097i \(-0.569737\pi\)
\(350\) 0 0
\(351\) 13.2554 + 13.2399i 0.707522 + 0.706692i
\(352\) 1.98378i 0.105736i
\(353\) −7.05913 + 7.05913i −0.375720 + 0.375720i −0.869555 0.493836i \(-0.835594\pi\)
0.493836 + 0.869555i \(0.335594\pi\)
\(354\) 0.153649 + 0.163574i 0.00816637 + 0.00869386i
\(355\) 0 0
\(356\) 4.75045 + 4.75045i 0.251774 + 0.251774i
\(357\) −32.9046 1.02946i −1.74149 0.0544848i
\(358\) −0.721534 + 0.721534i −0.0381343 + 0.0381343i
\(359\) 17.9957 17.9957i 0.949776 0.949776i −0.0490218 0.998798i \(-0.515610\pi\)
0.998798 + 0.0490218i \(0.0156104\pi\)
\(360\) 0 0
\(361\) 4.79088i 0.252151i
\(362\) 5.23512 + 5.23512i 0.275152 + 0.275152i
\(363\) 12.7565 + 13.5805i 0.669541 + 0.712789i
\(364\) 18.6319 + 15.4084i 0.976579 + 0.807621i
\(365\) 0 0
\(366\) 0.0718286 2.29585i 0.00375454 0.120006i
\(367\) 17.4749i 0.912181i 0.889933 + 0.456090i \(0.150751\pi\)
−0.889933 + 0.456090i \(0.849249\pi\)
\(368\) 30.0635i 1.56717i
\(369\) −7.04863 + 6.21771i −0.366937 + 0.323681i
\(370\) 0 0
\(371\) 17.6720 17.6720i 0.917486 0.917486i
\(372\) −13.5281 0.423244i −0.701400 0.0219442i
\(373\) 12.9747i 0.671805i −0.941897 0.335903i \(-0.890959\pi\)
0.941897 0.335903i \(-0.109041\pi\)
\(374\) −0.958813 −0.0495790
\(375\) 0 0
\(376\) 4.97131i 0.256376i
\(377\) −2.31442 24.4403i −0.119199 1.25874i
\(378\) −5.30159 + 4.38960i −0.272684 + 0.225777i
\(379\) 4.51436 4.51436i 0.231887 0.231887i −0.581593 0.813480i \(-0.697570\pi\)
0.813480 + 0.581593i \(0.197570\pi\)
\(380\) 0 0
\(381\) −3.34244 + 3.13964i −0.171238 + 0.160848i
\(382\) −3.63271 3.63271i −0.185866 0.185866i
\(383\) −24.9851 + 24.9851i −1.27668 + 1.27668i −0.334161 + 0.942516i \(0.608453\pi\)
−0.942516 + 0.334161i \(0.891547\pi\)
\(384\) 17.0824 + 0.534446i 0.871734 + 0.0272733i
\(385\) 0 0
\(386\) 0.269206i 0.0137022i
\(387\) −1.01590 + 16.2197i −0.0516412 + 0.824494i
\(388\) −19.5575 + 19.5575i −0.992880 + 0.992880i
\(389\) 5.36318 0.271924 0.135962 0.990714i \(-0.456587\pi\)
0.135962 + 0.990714i \(0.456587\pi\)
\(390\) 0 0
\(391\) −49.5745 −2.50709
\(392\) −5.97449 + 5.97449i −0.301757 + 0.301757i
\(393\) 6.07256 + 6.46481i 0.306320 + 0.326106i
\(394\) 1.93993i 0.0977322i
\(395\) 0 0
\(396\) 2.06648 1.82288i 0.103845 0.0916030i
\(397\) 2.52951 2.52951i 0.126952 0.126952i −0.640776 0.767728i \(-0.721387\pi\)
0.767728 + 0.640776i \(0.221387\pi\)
\(398\) −3.74114 3.74114i −0.187527 0.187527i
\(399\) 20.8041 + 22.1479i 1.04151 + 1.10878i
\(400\) 0 0
\(401\) −11.1604 + 11.1604i −0.557326 + 0.557326i −0.928545 0.371219i \(-0.878940\pi\)
0.371219 + 0.928545i \(0.378940\pi\)
\(402\) 0.881202 0.827736i 0.0439504 0.0412837i
\(403\) 9.63096 11.6458i 0.479752 0.580119i
\(404\) 4.78871i 0.238247i
\(405\) 0 0
\(406\) 9.01920 0.447615
\(407\) 1.22905i 0.0609219i
\(408\) 0.407337 13.0197i 0.0201662 0.644570i
\(409\) 12.4909 12.4909i 0.617634 0.617634i −0.327290 0.944924i \(-0.606135\pi\)
0.944924 + 0.327290i \(0.106135\pi\)
\(410\) 0 0
\(411\) 20.2063 + 0.632179i 0.996703 + 0.0311831i
\(412\) 28.4165i 1.39998i
\(413\) 1.26542i 0.0622674i
\(414\) −7.77294 + 6.85663i −0.382019 + 0.336985i
\(415\) 0 0
\(416\) −9.25221 + 11.1878i −0.453627 + 0.548528i
\(417\) 0.653016 0.613395i 0.0319784 0.0300381i
\(418\) 0.625793 + 0.625793i 0.0306085 + 0.0306085i
\(419\) 6.25022i 0.305343i −0.988277 0.152672i \(-0.951212\pi\)
0.988277 0.152672i \(-0.0487877\pi\)
\(420\) 0 0
\(421\) −24.9169 + 24.9169i −1.21438 + 1.21438i −0.244803 + 0.969573i \(0.578723\pi\)
−0.969573 + 0.244803i \(0.921277\pi\)
\(422\) −2.47192 + 2.47192i −0.120331 + 0.120331i
\(423\) −7.85871 + 6.93229i −0.382104 + 0.337060i
\(424\) 6.99247 + 6.99247i 0.339585 + 0.339585i
\(425\) 0 0
\(426\) −7.69041 + 7.22380i −0.372602 + 0.349994i
\(427\) 9.15829 9.15829i 0.443201 0.443201i
\(428\) 16.5147i 0.798268i
\(429\) 0.194134 + 3.07062i 0.00937290 + 0.148251i
\(430\) 0 0
\(431\) 3.03234 + 3.03234i 0.146063 + 0.146063i 0.776357 0.630294i \(-0.217066\pi\)
−0.630294 + 0.776357i \(0.717066\pi\)
\(432\) 10.6195 + 12.8258i 0.510932 + 0.617084i
\(433\) 30.0237 1.44285 0.721424 0.692493i \(-0.243488\pi\)
0.721424 + 0.692493i \(0.243488\pi\)
\(434\) 3.92588 + 3.92588i 0.188448 + 0.188448i
\(435\) 0 0
\(436\) 14.9016 + 14.9016i 0.713655 + 0.713655i
\(437\) 32.3560 + 32.3560i 1.54780 + 1.54780i
\(438\) 4.00549 + 4.26422i 0.191390 + 0.203752i
\(439\) 13.8417i 0.660629i 0.943871 + 0.330314i \(0.107155\pi\)
−0.943871 + 0.330314i \(0.892845\pi\)
\(440\) 0 0
\(441\) −17.7757 1.11336i −0.846464 0.0530173i
\(442\) 5.40736 + 4.47184i 0.257202 + 0.212704i
\(443\) −5.89439 −0.280051 −0.140026 0.990148i \(-0.544718\pi\)
−0.140026 + 0.990148i \(0.544718\pi\)
\(444\) −8.05175 0.251909i −0.382119 0.0119551i
\(445\) 0 0
\(446\) 2.44596 0.115819
\(447\) −2.01911 0.0631704i −0.0955006 0.00298786i
\(448\) 12.5291 + 12.5291i 0.591946 + 0.591946i
\(449\) −15.1945 + 15.1945i −0.717073 + 0.717073i −0.968005 0.250932i \(-0.919263\pi\)
0.250932 + 0.968005i \(0.419263\pi\)
\(450\) 0 0
\(451\) −1.54357 −0.0726837
\(452\) 21.2946i 1.00161i
\(453\) −16.6549 0.521068i −0.782514 0.0244819i
\(454\) 4.04440i 0.189813i
\(455\) 0 0
\(456\) −8.76348 + 8.23176i −0.410387 + 0.385487i
\(457\) 5.58713 + 5.58713i 0.261355 + 0.261355i 0.825604 0.564250i \(-0.190834\pi\)
−0.564250 + 0.825604i \(0.690834\pi\)
\(458\) −2.87534 −0.134356
\(459\) 21.1497 17.5115i 0.987184 0.817368i
\(460\) 0 0
\(461\) −14.7907 14.7907i −0.688870 0.688870i 0.273113 0.961982i \(-0.411947\pi\)
−0.961982 + 0.273113i \(0.911947\pi\)
\(462\) −1.12980 0.0353473i −0.0525632 0.00164451i
\(463\) 8.79012 8.79012i 0.408512 0.408512i −0.472708 0.881219i \(-0.656723\pi\)
0.881219 + 0.472708i \(0.156723\pi\)
\(464\) 21.8197i 1.01295i
\(465\) 0 0
\(466\) −2.53541 2.53541i −0.117450 0.117450i
\(467\) 9.31080i 0.430853i 0.976520 + 0.215426i \(0.0691141\pi\)
−0.976520 + 0.215426i \(0.930886\pi\)
\(468\) −20.1560 + 0.642450i −0.931711 + 0.0296972i
\(469\) 6.81706 0.314783
\(470\) 0 0
\(471\) 9.96897 + 10.6129i 0.459346 + 0.489017i
\(472\) −0.500703 −0.0230467
\(473\) −1.88720 + 1.88720i −0.0867734 + 0.0867734i
\(474\) 0.0530788 1.69655i 0.00243799 0.0779253i
\(475\) 0 0
\(476\) 25.0567 25.0567i 1.14847 1.14847i
\(477\) −1.30307 + 20.8045i −0.0596634 + 0.952574i
\(478\) −8.40491 −0.384432
\(479\) −21.2367 + 21.2367i −0.970331 + 0.970331i −0.999572 0.0292411i \(-0.990691\pi\)
0.0292411 + 0.999572i \(0.490691\pi\)
\(480\) 0 0
\(481\) 5.73221 6.93142i 0.261366 0.316045i
\(482\) 3.31229 0.150870
\(483\) −58.4155 1.82760i −2.65800 0.0831588i
\(484\) −20.0555 −0.911614
\(485\) 0 0
\(486\) 0.894116 5.67089i 0.0405579 0.257237i
\(487\) −11.9347 11.9347i −0.540814 0.540814i 0.382954 0.923768i \(-0.374907\pi\)
−0.923768 + 0.382954i \(0.874907\pi\)
\(488\) 3.62375 + 3.62375i 0.164040 + 0.164040i
\(489\) 0.529675 16.9299i 0.0239527 0.765599i
\(490\) 0 0
\(491\) −8.47582 −0.382508 −0.191254 0.981541i \(-0.561255\pi\)
−0.191254 + 0.981541i \(0.561255\pi\)
\(492\) 0.316372 10.1122i 0.0142632 0.455892i
\(493\) −35.9805 −1.62048
\(494\) −0.610596 6.44790i −0.0274720 0.290105i
\(495\) 0 0
\(496\) 9.49767 9.49767i 0.426458 0.426458i
\(497\) −59.4937 −2.66866
\(498\) 4.54305 + 4.83650i 0.203579 + 0.216729i
\(499\) −25.0163 + 25.0163i −1.11988 + 1.11988i −0.128124 + 0.991758i \(0.540896\pi\)
−0.991758 + 0.128124i \(0.959104\pi\)
\(500\) 0 0
\(501\) 5.19005 + 0.162377i 0.231875 + 0.00725449i
\(502\) −1.12918 + 1.12918i −0.0503979 + 0.0503979i
\(503\) 20.4948 0.913820 0.456910 0.889513i \(-0.348956\pi\)
0.456910 + 0.889513i \(0.348956\pi\)
\(504\) 0.959960 15.3265i 0.0427600 0.682699i
\(505\) 0 0
\(506\) −1.70218 −0.0756712
\(507\) 13.2263 18.2226i 0.587401 0.809296i
\(508\) 4.93608i 0.219003i
\(509\) −25.6979 25.6979i −1.13904 1.13904i −0.988623 0.150415i \(-0.951939\pi\)
−0.150415 0.988623i \(-0.548061\pi\)
\(510\) 0 0
\(511\) 32.9884i 1.45932i
\(512\) −15.5740 + 15.5740i −0.688280 + 0.688280i
\(513\) −25.2332 2.37456i −1.11407 0.104839i
\(514\) 1.29054 + 1.29054i 0.0569234 + 0.0569234i
\(515\) 0 0
\(516\) −11.9766 12.7502i −0.527239 0.561295i
\(517\) −1.72096 −0.0756879
\(518\) 2.33663 + 2.33663i 0.102666 + 0.102666i
\(519\) −25.2570 26.8884i −1.10866 1.18027i
\(520\) 0 0
\(521\) 5.36438i 0.235018i 0.993072 + 0.117509i \(0.0374909\pi\)
−0.993072 + 0.117509i \(0.962509\pi\)
\(522\) −5.64148 + 4.97644i −0.246921 + 0.217813i
\(523\) 18.4316i 0.805960i 0.915209 + 0.402980i \(0.132026\pi\)
−0.915209 + 0.402980i \(0.867974\pi\)
\(524\) −9.54718 −0.417070
\(525\) 0 0
\(526\) −5.62365 + 5.62365i −0.245203 + 0.245203i
\(527\) −15.6616 15.6616i −0.682230 0.682230i
\(528\) −0.0855139 + 2.73327i −0.00372152 + 0.118950i
\(529\) −65.0097 −2.82651
\(530\) 0 0
\(531\) −0.698211 0.791519i −0.0302998 0.0343490i
\(532\) −32.7078 −1.41806
\(533\) 8.70516 + 7.19908i 0.377062 + 0.311827i
\(534\) 1.57372 + 1.67537i 0.0681015 + 0.0725004i
\(535\) 0 0
\(536\) 2.69738i 0.116509i
\(537\) 3.49787 3.28564i 0.150944 0.141786i
\(538\) −1.07350 1.07350i −0.0462820 0.0462820i
\(539\) −2.06824 2.06824i −0.0890856 0.0890856i
\(540\) 0 0
\(541\) −19.8497 19.8497i −0.853407 0.853407i 0.137144 0.990551i \(-0.456208\pi\)
−0.990551 + 0.137144i \(0.956208\pi\)
\(542\) 1.49229 0.0640995
\(543\) −23.8391 25.3790i −1.02303 1.08912i
\(544\) 15.0457 + 15.0457i 0.645078 + 0.645078i
\(545\) 0 0
\(546\) 6.20684 + 5.46867i 0.265628 + 0.234038i
\(547\) 9.53713i 0.407778i −0.978994 0.203889i \(-0.934642\pi\)
0.978994 0.203889i \(-0.0653582\pi\)
\(548\) −15.3870 + 15.3870i −0.657302 + 0.657302i
\(549\) −0.675297 + 10.7817i −0.0288210 + 0.460150i
\(550\) 0 0
\(551\) 23.4835 + 23.4835i 1.00043 + 1.00043i
\(552\) 0.723146 23.1138i 0.0307791 0.983791i
\(553\) 6.76766 6.76766i 0.287790 0.287790i
\(554\) −3.61407 + 3.61407i −0.153547 + 0.153547i
\(555\) 0 0
\(556\) 0.964369i 0.0408984i
\(557\) −13.2999 13.2999i −0.563537 0.563537i 0.366773 0.930310i \(-0.380462\pi\)
−0.930310 + 0.366773i \(0.880462\pi\)
\(558\) −4.62177 0.289479i −0.195655 0.0122546i
\(559\) 19.4449 1.84137i 0.822431 0.0778815i
\(560\) 0 0
\(561\) 4.50715 + 0.141012i 0.190292 + 0.00595352i
\(562\) 7.64909i 0.322657i
\(563\) 21.9634i 0.925647i 0.886451 + 0.462823i \(0.153164\pi\)
−0.886451 + 0.462823i \(0.846836\pi\)
\(564\) 0.352732 11.2744i 0.0148527 0.474736i
\(565\) 0 0
\(566\) 1.97765 1.97765i 0.0831270 0.0831270i
\(567\) 25.5671 19.8548i 1.07372 0.833821i
\(568\) 23.5405i 0.987737i
\(569\) 18.1666 0.761585 0.380792 0.924661i \(-0.375651\pi\)
0.380792 + 0.924661i \(0.375651\pi\)
\(570\) 0 0
\(571\) 29.6650i 1.24144i 0.784032 + 0.620720i \(0.213160\pi\)
−0.784032 + 0.620720i \(0.786840\pi\)
\(572\) −2.55214 2.11059i −0.106710 0.0882482i
\(573\) 16.5422 + 17.6108i 0.691062 + 0.735700i
\(574\) −2.93457 + 2.93457i −0.122487 + 0.122487i
\(575\) 0 0
\(576\) −14.7500 0.923850i −0.614584 0.0384938i
\(577\) 11.2277 + 11.2277i 0.467414 + 0.467414i 0.901076 0.433662i \(-0.142779\pi\)
−0.433662 + 0.901076i \(0.642779\pi\)
\(578\) 2.84492 2.84492i 0.118333 0.118333i
\(579\) −0.0395919 + 1.26547i −0.00164538 + 0.0525913i
\(580\) 0 0
\(581\) 37.4156i 1.55226i
\(582\) −6.89745 + 6.47895i −0.285908 + 0.268561i
\(583\) −2.42065 + 2.42065i −0.100253 + 0.100253i
\(584\) −13.0529 −0.540131
\(585\) 0 0
\(586\) 8.25035 0.340819
\(587\) −9.11946 + 9.11946i −0.376400 + 0.376400i −0.869802 0.493401i \(-0.835753\pi\)
0.493401 + 0.869802i \(0.335753\pi\)
\(588\) 13.9734 13.1255i 0.576252 0.541288i
\(589\) 20.4438i 0.842374i
\(590\) 0 0
\(591\) 0.285304 9.11914i 0.0117358 0.375111i
\(592\) 5.65288 5.65288i 0.232332 0.232332i
\(593\) 6.63125 + 6.63125i 0.272313 + 0.272313i 0.830031 0.557718i \(-0.188323\pi\)
−0.557718 + 0.830031i \(0.688323\pi\)
\(594\) 0.726192 0.601272i 0.0297960 0.0246705i
\(595\) 0 0
\(596\) 1.53755 1.53755i 0.0629804 0.0629804i
\(597\) 17.0360 + 18.1364i 0.697237 + 0.742274i
\(598\) 9.59969 + 7.93885i 0.392561 + 0.324644i
\(599\) 39.9553i 1.63253i 0.577679 + 0.816264i \(0.303959\pi\)
−0.577679 + 0.816264i \(0.696041\pi\)
\(600\) 0 0
\(601\) 20.6271 0.841398 0.420699 0.907200i \(-0.361785\pi\)
0.420699 + 0.907200i \(0.361785\pi\)
\(602\) 7.17574i 0.292461i
\(603\) −4.26405 + 3.76139i −0.173646 + 0.153176i
\(604\) 12.6826 12.6826i 0.516049 0.516049i
\(605\) 0 0
\(606\) −0.0512353 + 1.63763i −0.00208129 + 0.0665241i
\(607\) 1.59959i 0.0649252i 0.999473 + 0.0324626i \(0.0103350\pi\)
−0.999473 + 0.0324626i \(0.989665\pi\)
\(608\) 19.6399i 0.796502i
\(609\) −42.3971 1.32645i −1.71802 0.0537503i
\(610\) 0 0
\(611\) 9.70563 + 8.02646i 0.392648 + 0.324716i
\(612\) −1.84759 + 29.4983i −0.0746843 + 1.19240i
\(613\) −10.4572 10.4572i −0.422362 0.422362i 0.463654 0.886016i \(-0.346538\pi\)
−0.886016 + 0.463654i \(0.846538\pi\)
\(614\) 10.2510i 0.413696i
\(615\) 0 0
\(616\) 1.78328 1.78328i 0.0718502 0.0718502i
\(617\) 7.17003 7.17003i 0.288654 0.288654i −0.547894 0.836548i \(-0.684570\pi\)
0.836548 + 0.547894i \(0.184570\pi\)
\(618\) 0.304033 9.71779i 0.0122300 0.390907i
\(619\) 34.7195 + 34.7195i 1.39550 + 1.39550i 0.812411 + 0.583085i \(0.198154\pi\)
0.583085 + 0.812411i \(0.301846\pi\)
\(620\) 0 0
\(621\) 37.5471 31.0882i 1.50671 1.24753i
\(622\) −4.04080 + 4.04080i −0.162021 + 0.162021i
\(623\) 12.9608i 0.519265i
\(624\) 13.2301 15.0159i 0.529626 0.601116i
\(625\) 0 0
\(626\) −0.971187 0.971187i −0.0388164 0.0388164i
\(627\) −2.84967 3.03374i −0.113805 0.121156i
\(628\) −15.6730 −0.625423
\(629\) −9.32156 9.32156i −0.371675 0.371675i
\(630\) 0 0
\(631\) 15.2658 + 15.2658i 0.607723 + 0.607723i 0.942351 0.334627i \(-0.108610\pi\)
−0.334627 + 0.942351i \(0.608610\pi\)
\(632\) 2.67783 + 2.67783i 0.106518 + 0.106518i
\(633\) 11.9835 11.2564i 0.476300 0.447400i
\(634\) 9.61174i 0.381731i
\(635\) 0 0
\(636\) −15.3620 16.3543i −0.609142 0.648489i
\(637\) 2.01802 + 21.3103i 0.0799568 + 0.844345i
\(638\) −1.23542 −0.0489106
\(639\) 37.2132 32.8263i 1.47213 1.29859i
\(640\) 0 0
\(641\) 25.8774 1.02210 0.511048 0.859552i \(-0.329258\pi\)
0.511048 + 0.859552i \(0.329258\pi\)
\(642\) −0.176694 + 5.64764i −0.00697354 + 0.222895i
\(643\) 5.93694 + 5.93694i 0.234130 + 0.234130i 0.814414 0.580284i \(-0.197058\pi\)
−0.580284 + 0.814414i \(0.697058\pi\)
\(644\) 44.4832 44.4832i 1.75289 1.75289i
\(645\) 0 0
\(646\) −9.49246 −0.373476
\(647\) 8.94367i 0.351612i −0.984425 0.175806i \(-0.943747\pi\)
0.984425 0.175806i \(-0.0562531\pi\)
\(648\) 7.85614 + 10.1164i 0.308618 + 0.397409i
\(649\) 0.173333i 0.00680392i
\(650\) 0 0
\(651\) −17.8772 19.0320i −0.700664 0.745922i
\(652\) 12.8921 + 12.8921i 0.504894 + 0.504894i
\(653\) 29.3417 1.14823 0.574115 0.818775i \(-0.305346\pi\)
0.574115 + 0.818775i \(0.305346\pi\)
\(654\) 4.93655 + 5.25542i 0.193034 + 0.205503i
\(655\) 0 0
\(656\) 7.09945 + 7.09945i 0.277187 + 0.277187i
\(657\) −18.2017 20.6341i −0.710116 0.805014i
\(658\) −3.27183 + 3.27183i −0.127549 + 0.127549i
\(659\) 20.2846i 0.790175i 0.918644 + 0.395087i \(0.129286\pi\)
−0.918644 + 0.395087i \(0.870714\pi\)
\(660\) 0 0
\(661\) −13.3192 13.3192i −0.518055 0.518055i 0.398927 0.916983i \(-0.369383\pi\)
−0.916983 + 0.398927i \(0.869383\pi\)
\(662\) 7.81973i 0.303922i
\(663\) −24.7610 21.8163i −0.961639 0.847274i
\(664\) −14.8046 −0.574531
\(665\) 0 0
\(666\) −2.75082 0.172294i −0.106592 0.00667626i
\(667\) −63.8761 −2.47329
\(668\) −3.95221 + 3.95221i −0.152916 + 0.152916i
\(669\) −11.4979 0.359725i −0.444533 0.0139078i
\(670\) 0 0
\(671\) −1.25447 + 1.25447i −0.0484283 + 0.0484283i
\(672\) 17.1742 + 18.2835i 0.662509 + 0.705303i
\(673\) 26.5074 1.02179 0.510893 0.859644i \(-0.329315\pi\)
0.510893 + 0.859644i \(0.329315\pi\)
\(674\) 4.69293 4.69293i 0.180765 0.180765i
\(675\) 0 0
\(676\) 4.54949 + 23.8060i 0.174981 + 0.915614i
\(677\) 24.4044 0.937939 0.468970 0.883214i \(-0.344625\pi\)
0.468970 + 0.883214i \(0.344625\pi\)
\(678\) −0.227834 + 7.28225i −0.00874993 + 0.279673i
\(679\) −53.3593 −2.04774
\(680\) 0 0
\(681\) −0.594807 + 19.0117i −0.0227930 + 0.728532i
\(682\) −0.537753 0.537753i −0.0205916 0.0205916i
\(683\) −24.2961 24.2961i −0.929666 0.929666i 0.0680180 0.997684i \(-0.478332\pi\)
−0.997684 + 0.0680180i \(0.978332\pi\)
\(684\) 20.4586 18.0469i 0.782256 0.690040i
\(685\) 0 0
\(686\) 1.40827 0.0537679
\(687\) 13.5163 + 0.422874i 0.515679 + 0.0161337i
\(688\) 17.3599 0.661839
\(689\) 24.9414 2.36187i 0.950190 0.0899799i
\(690\) 0 0
\(691\) −20.5928 + 20.5928i −0.783388 + 0.783388i −0.980401 0.197013i \(-0.936876\pi\)
0.197013 + 0.980401i \(0.436876\pi\)
\(692\) 39.7086 1.50950
\(693\) 5.30574 + 0.332319i 0.201548 + 0.0126237i
\(694\) 3.16280 3.16280i 0.120058 0.120058i
\(695\) 0 0
\(696\) 0.524849 16.7757i 0.0198943 0.635881i
\(697\) 11.7069 11.7069i 0.443432 0.443432i
\(698\) 11.6120 0.439520
\(699\) 11.5455 + 12.2912i 0.436689 + 0.464897i
\(700\) 0 0
\(701\) −20.2981 −0.766648 −0.383324 0.923614i \(-0.625221\pi\)
−0.383324 + 0.923614i \(0.625221\pi\)
\(702\) −6.89976 + 0.00405037i −0.260415 + 0.000152871i
\(703\) 12.1679i 0.458921i
\(704\) −1.71620 1.71620i −0.0646816 0.0646816i
\(705\) 0 0
\(706\) 3.67660i 0.138371i
\(707\) −6.53260 + 6.53260i −0.245684 + 0.245684i
\(708\) 1.13554 + 0.0355267i 0.0426761 + 0.00133518i
\(709\) 24.9325 + 24.9325i 0.936361 + 0.936361i 0.998093 0.0617322i \(-0.0196625\pi\)
−0.0617322 + 0.998093i \(0.519662\pi\)
\(710\) 0 0
\(711\) −0.499021 + 7.96728i −0.0187148 + 0.298796i
\(712\) −5.12834 −0.192193
\(713\) −27.8040 27.8040i −1.04127 1.04127i
\(714\) 8.83691 8.30074i 0.330713 0.310647i
\(715\) 0 0
\(716\) 5.16563i 0.193049i
\(717\) 39.5094 + 1.23610i 1.47551 + 0.0461631i
\(718\) 9.37268i 0.349785i
\(719\) 44.3697 1.65471 0.827355 0.561679i \(-0.189844\pi\)
0.827355 + 0.561679i \(0.189844\pi\)
\(720\) 0 0
\(721\) 38.7649 38.7649i 1.44368 1.44368i
\(722\) 1.24761 + 1.24761i 0.0464314 + 0.0464314i
\(723\) −15.5703 0.487135i −0.579064 0.0181168i
\(724\) 37.4794 1.39291
\(725\) 0 0
\(726\) −6.85852 0.214578i −0.254544 0.00796372i
\(727\) 19.3095 0.716150 0.358075 0.933693i \(-0.383433\pi\)
0.358075 + 0.933693i \(0.383433\pi\)
\(728\) −18.3741 + 1.73997i −0.680990 + 0.0644875i
\(729\) −5.03704 + 26.5260i −0.186557 + 0.982444i
\(730\) 0 0
\(731\) 28.6263i 1.05878i
\(732\) −7.96114 8.47538i −0.294252 0.313259i
\(733\) 8.23013 + 8.23013i 0.303987 + 0.303987i 0.842571 0.538585i \(-0.181041\pi\)
−0.538585 + 0.842571i \(0.681041\pi\)
\(734\) −4.55071 4.55071i −0.167970 0.167970i
\(735\) 0 0
\(736\) 26.7106 + 26.7106i 0.984565 + 0.984565i
\(737\) −0.933777 −0.0343961
\(738\) 0.216384 3.45475i 0.00796521 0.127171i
\(739\) 11.8446 + 11.8446i 0.435710 + 0.435710i 0.890565 0.454855i \(-0.150309\pi\)
−0.454855 + 0.890565i \(0.650309\pi\)
\(740\) 0 0
\(741\) 1.92197 + 30.3998i 0.0706055 + 1.11677i
\(742\) 9.20411i 0.337893i
\(743\) −7.55046 + 7.55046i −0.276999 + 0.276999i −0.831910 0.554911i \(-0.812752\pi\)
0.554911 + 0.831910i \(0.312752\pi\)
\(744\) 7.53058 7.07367i 0.276085 0.259333i
\(745\) 0 0
\(746\) 3.37880 + 3.37880i 0.123707 + 0.123707i
\(747\) −20.6445 23.4034i −0.755342 0.856285i
\(748\) −3.43218 + 3.43218i −0.125493 + 0.125493i
\(749\) −22.5288 + 22.5288i −0.823185 + 0.823185i
\(750\) 0 0
\(751\) 0.869234i 0.0317188i 0.999874 + 0.0158594i \(0.00504841\pi\)
−0.999874 + 0.0158594i \(0.994952\pi\)
\(752\) 7.91537 + 7.91537i 0.288644 + 0.288644i
\(753\) 5.47409 5.14195i 0.199487 0.187383i
\(754\) 6.96732 + 5.76190i 0.253735 + 0.209836i
\(755\) 0 0
\(756\) −3.26456 + 34.6907i −0.118731 + 1.26169i
\(757\) 32.3586i 1.17609i −0.808828 0.588046i \(-0.799897\pi\)
0.808828 0.588046i \(-0.200103\pi\)
\(758\) 2.35121i 0.0853998i
\(759\) 8.00154 + 0.250338i 0.290438 + 0.00908670i
\(760\) 0 0
\(761\) 30.6519 30.6519i 1.11113 1.11113i 0.118133 0.992998i \(-0.462309\pi\)
0.992998 0.118133i \(-0.0376908\pi\)
\(762\) 0.0528120 1.68803i 0.00191318 0.0611507i
\(763\) 40.6564i 1.47186i
\(764\) −26.0074 −0.940916
\(765\) 0 0
\(766\) 13.0129i 0.470177i
\(767\) −0.808414 + 0.977538i −0.0291901 + 0.0352968i
\(768\) 7.85069 7.37436i 0.283287 0.266099i
\(769\) 10.9540 10.9540i 0.395013 0.395013i −0.481457 0.876470i \(-0.659892\pi\)
0.876470 + 0.481457i \(0.159892\pi\)
\(770\) 0 0
\(771\) −5.87673 6.25633i −0.211645 0.225316i
\(772\) −0.963655 0.963655i −0.0346827 0.0346827i
\(773\) 27.0891 27.0891i 0.974326 0.974326i −0.0253530 0.999679i \(-0.508071\pi\)
0.999679 + 0.0253530i \(0.00807098\pi\)
\(774\) −3.95929 4.48841i −0.142314 0.161332i
\(775\) 0 0
\(776\) 21.1132i 0.757921i
\(777\) −10.6403 11.3276i −0.381718 0.406375i
\(778\) −1.39665 + 1.39665i −0.0500723 + 0.0500723i
\(779\) −15.2816 −0.547522
\(780\) 0 0
\(781\) 8.14924 0.291603
\(782\) 12.9099 12.9099i 0.461658 0.461658i
\(783\) 27.2511 22.5634i 0.973876 0.806349i
\(784\) 19.0253i 0.679475i
\(785\) 0 0
\(786\) −3.26491 0.102147i −0.116456 0.00364346i
\(787\) 36.5342 36.5342i 1.30230 1.30230i 0.375468 0.926836i \(-0.377482\pi\)
0.926836 0.375468i \(-0.122518\pi\)
\(788\) 6.94420 + 6.94420i 0.247377 + 0.247377i
\(789\) 27.2625 25.6083i 0.970569 0.911681i
\(790\) 0 0
\(791\) −29.0494 + 29.0494i −1.03288 + 1.03288i
\(792\) −0.131492 + 2.09938i −0.00467236 + 0.0745980i
\(793\) 12.9255 1.22401i 0.458999 0.0434657i
\(794\) 1.31744i 0.0467543i
\(795\) 0 0
\(796\) −26.7837 −0.949324
\(797\) 29.5724i 1.04751i 0.851870 + 0.523754i \(0.175469\pi\)
−0.851870 + 0.523754i \(0.824531\pi\)
\(798\) −11.1853 0.349947i −0.395956 0.0123880i
\(799\) 13.0524 13.0524i 0.461760 0.461760i
\(800\) 0 0
\(801\) −7.15128 8.10696i −0.252678 0.286445i
\(802\) 5.81269i 0.205253i
\(803\) 4.51863i 0.159459i
\(804\) 0.191389 6.11734i 0.00674976 0.215742i
\(805\) 0 0
\(806\) 0.524694 + 5.54078i 0.0184815 + 0.195166i
\(807\) 4.88840 + 5.20415i 0.172080 + 0.183195i
\(808\) −2.58482 2.58482i −0.0909337 0.0909337i
\(809\) 53.6701i 1.88694i 0.331455 + 0.943471i \(0.392460\pi\)
−0.331455 + 0.943471i \(0.607540\pi\)
\(810\) 0 0
\(811\) 22.4475 22.4475i 0.788238 0.788238i −0.192967 0.981205i \(-0.561811\pi\)
0.981205 + 0.192967i \(0.0618110\pi\)
\(812\) 32.2853 32.2853i 1.13299 1.13299i
\(813\) −7.01491 0.219470i −0.246024 0.00769717i
\(814\) −0.320063 0.320063i −0.0112182 0.0112182i
\(815\) 0 0
\(816\) −20.0815 21.3787i −0.702994 0.748403i
\(817\) −18.6837 + 18.6837i −0.653659 + 0.653659i
\(818\) 6.50562i 0.227464i
\(819\) −28.3726 26.6197i −0.991417 0.930169i
\(820\) 0 0
\(821\) −33.6801 33.6801i −1.17544 1.17544i −0.980892 0.194553i \(-0.937674\pi\)
−0.194553 0.980892i \(-0.562326\pi\)
\(822\) −5.42664 + 5.09738i −0.189276 + 0.177792i
\(823\) 43.9680 1.53263 0.766313 0.642467i \(-0.222089\pi\)
0.766313 + 0.642467i \(0.222089\pi\)
\(824\) 15.3385 + 15.3385i 0.534342 + 0.534342i
\(825\) 0 0
\(826\) −0.329535 0.329535i −0.0114660 0.0114660i
\(827\) −30.1945 30.1945i −1.04996 1.04996i −0.998684 0.0512796i \(-0.983670\pi\)
−0.0512796 0.998684i \(-0.516330\pi\)
\(828\) −3.28002 + 52.3682i −0.113989 + 1.81992i
\(829\) 34.9574i 1.21412i −0.794656 0.607060i \(-0.792349\pi\)
0.794656 0.607060i \(-0.207651\pi\)
\(830\) 0 0
\(831\) 17.5204 16.4574i 0.607776 0.570900i
\(832\) 1.67452 + 17.6829i 0.0580535 + 0.613046i
\(833\) 31.3726 1.08700
\(834\) −0.0103180 + 0.329792i −0.000357282 + 0.0114198i
\(835\) 0 0
\(836\) 4.48020 0.154951
\(837\) 21.6833 + 2.04049i 0.749483 + 0.0705298i
\(838\) 1.62765 + 1.62765i 0.0562262 + 0.0562262i
\(839\) −3.70208 + 3.70208i −0.127810 + 0.127810i −0.768118 0.640308i \(-0.778807\pi\)
0.640308 + 0.768118i \(0.278807\pi\)
\(840\) 0 0
\(841\) −17.3603 −0.598632
\(842\) 12.9775i 0.447233i
\(843\) −1.12495 + 35.9565i −0.0387452 + 1.23841i
\(844\) 17.6971i 0.609158i
\(845\) 0 0
\(846\) 0.241253 3.85179i 0.00829444 0.132427i
\(847\) −27.3591 27.3591i −0.940069 0.940069i
\(848\) 22.2670 0.764652
\(849\) −9.58732 + 9.00562i −0.329036 + 0.309072i
\(850\) 0 0
\(851\) −16.5486 16.5486i −0.567278 0.567278i
\(852\) −1.67028 + 53.3871i −0.0572230 + 1.82901i
\(853\) 19.6790 19.6790i 0.673797 0.673797i −0.284792 0.958589i \(-0.591925\pi\)
0.958589 + 0.284792i \(0.0919245\pi\)
\(854\) 4.76990i 0.163223i
\(855\) 0 0
\(856\) −8.91420 8.91420i −0.304681 0.304681i
\(857\) 13.8696i 0.473777i −0.971537 0.236889i \(-0.923872\pi\)
0.971537 0.236889i \(-0.0761277\pi\)
\(858\) −0.850190 0.749079i −0.0290250 0.0255731i
\(859\) −47.5429 −1.62214 −0.811072 0.584946i \(-0.801116\pi\)
−0.811072 + 0.584946i \(0.801116\pi\)
\(860\) 0 0
\(861\) 14.2263 13.3631i 0.484831 0.455414i
\(862\) −1.57933 −0.0537922
\(863\) −18.8498 + 18.8498i −0.641654 + 0.641654i −0.950962 0.309308i \(-0.899903\pi\)
0.309308 + 0.950962i \(0.399903\pi\)
\(864\) −20.8305 1.96025i −0.708670 0.0666890i
\(865\) 0 0
\(866\) −7.81862 + 7.81862i −0.265687 + 0.265687i
\(867\) −13.7917 + 12.9549i −0.468391 + 0.439972i
\(868\) 28.1063 0.953990
\(869\) −0.927010 + 0.927010i −0.0314466 + 0.0314466i
\(870\) 0 0
\(871\) 5.26617 + 4.35507i 0.178437 + 0.147566i
\(872\) −16.0869 −0.544773
\(873\) 33.3761 29.4416i 1.12961 0.996447i
\(874\) −16.8520 −0.570026
\(875\) 0 0
\(876\) 29.6024 + 0.926148i 1.00017 + 0.0312916i
\(877\) 37.6363 + 37.6363i 1.27089 + 1.27089i 0.945623 + 0.325265i \(0.105454\pi\)
0.325265 + 0.945623i \(0.394546\pi\)
\(878\) −3.60458 3.60458i −0.121649 0.121649i
\(879\) −38.7829 1.21337i −1.30811 0.0409260i
\(880\) 0 0
\(881\) −48.6517 −1.63912 −0.819559 0.572995i \(-0.805781\pi\)
−0.819559 + 0.572995i \(0.805781\pi\)
\(882\) 4.91900 4.33913i 0.165631 0.146106i
\(883\) −27.2665 −0.917592 −0.458796 0.888542i \(-0.651719\pi\)
−0.458796 + 0.888542i \(0.651719\pi\)
\(884\) 35.3638 3.34883i 1.18941 0.112633i
\(885\) 0 0
\(886\) 1.53499 1.53499i 0.0515689 0.0515689i
\(887\) −32.1996 −1.08116 −0.540578 0.841294i \(-0.681794\pi\)
−0.540578 + 0.841294i \(0.681794\pi\)
\(888\) 4.48210 4.21015i 0.150409 0.141283i
\(889\) 6.73364 6.73364i 0.225839 0.225839i
\(890\) 0 0
\(891\) −3.50208 + 2.71963i −0.117324 + 0.0911111i
\(892\) 8.75559 8.75559i 0.293159 0.293159i
\(893\) −17.0379 −0.570153
\(894\) 0.542256 0.509355i 0.0181358 0.0170354i
\(895\) 0 0
\(896\) −35.4908 −1.18566
\(897\) −43.9583 38.7304i −1.46772 1.29317i
\(898\) 7.91374i 0.264085i
\(899\) −20.1797 20.1797i −0.673032 0.673032i
\(900\) 0 0
\(901\) 36.7181i 1.22326i
\(902\) 0.401967 0.401967i 0.0133840 0.0133840i
\(903\) 1.05533 33.7314i 0.0351192 1.12251i
\(904\) −11.4943 11.4943i −0.382293 0.382293i
\(905\) 0 0
\(906\) 4.47286 4.20147i 0.148601 0.139585i
\(907\) 52.9829 1.75927 0.879634 0.475651i \(-0.157787\pi\)
0.879634 + 0.475651i \(0.157787\pi\)
\(908\) −14.4774 14.4774i −0.480449 0.480449i
\(909\) 0.481689 7.69056i 0.0159766 0.255080i
\(910\) 0 0
\(911\) 16.3239i 0.540835i −0.962743 0.270417i \(-0.912838\pi\)
0.962743 0.270417i \(-0.0871617\pi\)
\(912\) −0.846607 + 27.0600i −0.0280340 + 0.896047i
\(913\) 5.12506i 0.169615i
\(914\) −2.90994 −0.0962522
\(915\) 0 0
\(916\) −10.2926 + 10.2926i −0.340078 + 0.340078i
\(917\) −13.0239 13.0239i −0.430089 0.430089i
\(918\) −0.947440 + 10.0680i −0.0312702 + 0.332292i
\(919\) −46.3976 −1.53051 −0.765257 0.643725i \(-0.777388\pi\)
−0.765257 + 0.643725i \(0.777388\pi\)
\(920\) 0 0
\(921\) −1.50760 + 48.1874i −0.0496772 + 1.58783i
\(922\) 7.70340 0.253698
\(923\) −45.9588 38.0075i −1.51275 1.25103i
\(924\) −4.17079 + 3.91773i −0.137209 + 0.128884i
\(925\) 0 0
\(926\) 4.57815i 0.150447i
\(927\) −2.85837 + 45.6363i −0.0938813 + 1.49889i
\(928\) 19.3861 + 19.3861i 0.636382 + 0.636382i
\(929\) 20.0595 + 20.0595i 0.658131 + 0.658131i 0.954938 0.296807i \(-0.0959217\pi\)
−0.296807 + 0.954938i \(0.595922\pi\)
\(930\) 0 0
\(931\) −20.4761 20.4761i −0.671077 0.671077i
\(932\) −18.1516 −0.594575
\(933\) 19.5891 18.4005i 0.641318 0.602407i
\(934\) −2.42467 2.42467i −0.0793376 0.0793376i
\(935\) 0 0
\(936\) 10.5329 11.2265i 0.344279 0.366948i
\(937\) 23.7901i 0.777188i −0.921409 0.388594i \(-0.872961\pi\)
0.921409 0.388594i \(-0.127039\pi\)
\(938\) −1.77526 + 1.77526i −0.0579644 + 0.0579644i
\(939\) 4.42248 + 4.70815i 0.144322 + 0.153645i
\(940\) 0 0
\(941\) 31.8370 + 31.8370i 1.03786 + 1.03786i 0.999255 + 0.0386033i \(0.0122909\pi\)
0.0386033 + 0.999255i \(0.487709\pi\)
\(942\) −5.35982 0.167689i −0.174632 0.00546359i
\(943\) 20.7833 20.7833i 0.676798 0.676798i
\(944\) −0.797226 + 0.797226i −0.0259475 + 0.0259475i
\(945\) 0 0
\(946\) 0.982907i 0.0319571i
\(947\) 37.4100 + 37.4100i 1.21566 + 1.21566i 0.969137 + 0.246523i \(0.0792881\pi\)
0.246523 + 0.969137i \(0.420712\pi\)
\(948\) −5.88301 6.26301i −0.191071 0.203413i
\(949\) −21.0746 + 25.4835i −0.684109 + 0.827228i
\(950\) 0 0
\(951\) 1.41359 45.1825i 0.0458388 1.46514i
\(952\) 27.0500i 0.876694i
\(953\) 17.7294i 0.574311i −0.957884 0.287156i \(-0.907290\pi\)
0.957884 0.287156i \(-0.0927097\pi\)
\(954\) −5.07847 5.75714i −0.164421 0.186394i
\(955\) 0 0
\(956\) −30.0863 + 30.0863i −0.973062 + 0.973062i
\(957\) 5.80740 + 0.181692i 0.187727 + 0.00587326i
\(958\) 11.0607i 0.357355i
\(959\) −41.9810 −1.35564
\(960\) 0 0
\(961\) 13.4323i 0.433300i
\(962\) 0.312290 + 3.29779i 0.0100686 + 0.106325i
\(963\) 1.66119 26.5222i 0.0535310 0.854666i
\(964\) 11.8567 11.8567i 0.381879 0.381879i
\(965\) 0 0
\(966\) 15.6882 14.7363i 0.504759 0.474133i
\(967\) −1.98285 1.98285i −0.0637640 0.0637640i 0.674506 0.738270i \(-0.264357\pi\)
−0.738270 + 0.674506i \(0.764357\pi\)
\(968\) 10.8254 10.8254i 0.347943 0.347943i
\(969\) 44.6218 + 1.39605i 1.43346 + 0.0448476i
\(970\) 0 0
\(971\) 45.7568i 1.46841i −0.678930 0.734203i \(-0.737556\pi\)
0.678930 0.734203i \(-0.262444\pi\)
\(972\) −17.0990 23.5002i −0.548451 0.753770i
\(973\) −1.31556 + 1.31556i −0.0421750 + 0.0421750i
\(974\) 6.21595 0.199172
\(975\) 0 0
\(976\) 11.5396 0.369373
\(977\) 4.54207 4.54207i 0.145314 0.145314i −0.630707 0.776021i \(-0.717235\pi\)
0.776021 + 0.630707i \(0.217235\pi\)
\(978\) 4.27087 + 4.54674i 0.136567 + 0.145389i
\(979\) 1.77533i 0.0567397i
\(980\) 0 0
\(981\) −22.4326 25.4305i −0.716218 0.811932i
\(982\) 2.20723 2.20723i 0.0704354 0.0704354i
\(983\) 22.8720 + 22.8720i 0.729505 + 0.729505i 0.970521 0.241016i \(-0.0774808\pi\)
−0.241016 + 0.970521i \(0.577481\pi\)
\(984\) 5.28752 + 5.62906i 0.168560 + 0.179448i
\(985\) 0 0
\(986\) 9.36984 9.36984i 0.298396 0.298396i
\(987\) 15.8613 14.8989i 0.504870 0.474238i
\(988\) −25.2667 20.8953i −0.803842 0.664769i
\(989\) 50.8203i 1.61599i
\(990\) 0 0
\(991\) −13.1807 −0.418700 −0.209350 0.977841i \(-0.567135\pi\)
−0.209350 + 0.977841i \(0.567135\pi\)
\(992\) 16.8768i 0.535840i
\(993\) −1.15004 + 36.7586i −0.0364954 + 1.16650i
\(994\) 15.4930 15.4930i 0.491409 0.491409i
\(995\) 0 0
\(996\) 33.5752 + 1.05044i 1.06387 + 0.0332846i
\(997\) 9.27082i 0.293610i 0.989165 + 0.146805i \(0.0468989\pi\)
−0.989165 + 0.146805i \(0.953101\pi\)
\(998\) 13.0292i 0.412432i
\(999\) 12.9056 + 1.21447i 0.408314 + 0.0384242i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.n.r.824.10 40
3.2 odd 2 inner 975.2.n.r.824.11 40
5.2 odd 4 975.2.o.p.551.10 40
5.3 odd 4 195.2.o.a.161.11 yes 40
5.4 even 2 975.2.n.q.824.11 40
13.8 odd 4 975.2.n.q.749.10 40
15.2 even 4 975.2.o.p.551.11 40
15.8 even 4 195.2.o.a.161.10 yes 40
15.14 odd 2 975.2.n.q.824.10 40
39.8 even 4 975.2.n.q.749.11 40
65.8 even 4 195.2.o.a.86.10 40
65.34 odd 4 inner 975.2.n.r.749.11 40
65.47 even 4 975.2.o.p.476.11 40
195.8 odd 4 195.2.o.a.86.11 yes 40
195.47 odd 4 975.2.o.p.476.10 40
195.164 even 4 inner 975.2.n.r.749.10 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.o.a.86.10 40 65.8 even 4
195.2.o.a.86.11 yes 40 195.8 odd 4
195.2.o.a.161.10 yes 40 15.8 even 4
195.2.o.a.161.11 yes 40 5.3 odd 4
975.2.n.q.749.10 40 13.8 odd 4
975.2.n.q.749.11 40 39.8 even 4
975.2.n.q.824.10 40 15.14 odd 2
975.2.n.q.824.11 40 5.4 even 2
975.2.n.r.749.10 40 195.164 even 4 inner
975.2.n.r.749.11 40 65.34 odd 4 inner
975.2.n.r.824.10 40 1.1 even 1 trivial
975.2.n.r.824.11 40 3.2 odd 2 inner
975.2.o.p.476.10 40 195.47 odd 4
975.2.o.p.476.11 40 65.47 even 4
975.2.o.p.551.10 40 5.2 odd 4
975.2.o.p.551.11 40 15.2 even 4