L(s) = 1 | + (−0.260 + 0.260i)2-s + (−1.18 + 1.26i)3-s + 1.86i·4-s + (−0.0199 − 0.637i)6-s + (−2.54 + 2.54i)7-s + (−1.00 − 1.00i)8-s + (−0.187 − 2.99i)9-s + (0.348 + 0.348i)11-s + (−2.35 − 2.21i)12-s + (0.339 − 3.58i)13-s − 1.32i·14-s − 3.20·16-s − 5.28·17-s + (0.828 + 0.730i)18-s + (−3.44 − 3.44i)19-s + ⋯ |
L(s) = 1 | + (−0.184 + 0.184i)2-s + (−0.684 + 0.728i)3-s + 0.932i·4-s + (−0.00814 − 0.260i)6-s + (−0.961 + 0.961i)7-s + (−0.355 − 0.355i)8-s + (−0.0625 − 0.998i)9-s + (0.105 + 0.105i)11-s + (−0.679 − 0.638i)12-s + (0.0942 − 0.995i)13-s − 0.354i·14-s − 0.801·16-s − 1.28·17-s + (0.195 + 0.172i)18-s + (−0.791 − 0.791i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.415 + 0.909i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.415 + 0.909i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.104594 - 0.0672291i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.104594 - 0.0672291i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.18 - 1.26i)T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (-0.339 + 3.58i)T \) |
good | 2 | \( 1 + (0.260 - 0.260i)T - 2iT^{2} \) |
| 7 | \( 1 + (2.54 - 2.54i)T - 7iT^{2} \) |
| 11 | \( 1 + (-0.348 - 0.348i)T + 11iT^{2} \) |
| 17 | \( 1 + 5.28T + 17T^{2} \) |
| 19 | \( 1 + (3.44 + 3.44i)T + 19iT^{2} \) |
| 23 | \( 1 - 9.38T + 23T^{2} \) |
| 29 | \( 1 - 6.80iT - 29T^{2} \) |
| 31 | \( 1 + (2.96 + 2.96i)T + 31iT^{2} \) |
| 37 | \( 1 + (1.76 - 1.76i)T - 37iT^{2} \) |
| 41 | \( 1 + (2.21 - 2.21i)T - 41iT^{2} \) |
| 43 | \( 1 + 5.41iT - 43T^{2} \) |
| 47 | \( 1 + (-2.46 - 2.46i)T + 47iT^{2} \) |
| 53 | \( 1 + 6.94iT - 53T^{2} \) |
| 59 | \( 1 + (0.248 + 0.248i)T + 59iT^{2} \) |
| 61 | \( 1 + 3.60T + 61T^{2} \) |
| 67 | \( 1 + (-1.34 - 1.34i)T + 67iT^{2} \) |
| 71 | \( 1 + (-11.6 + 11.6i)T - 71iT^{2} \) |
| 73 | \( 1 + (6.48 - 6.48i)T - 73iT^{2} \) |
| 79 | \( 1 - 2.66T + 79T^{2} \) |
| 83 | \( 1 + (7.35 - 7.35i)T - 83iT^{2} \) |
| 89 | \( 1 + (2.54 + 2.54i)T + 89iT^{2} \) |
| 97 | \( 1 + (10.4 + 10.4i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.664593150521333944260219303623, −8.947009499582204876300143253986, −8.584952140663050932737988854710, −7.02369778585066386066836262774, −6.59094759363418719280014902429, −5.50737696677903670149266185157, −4.60650384057287383219543433417, −3.43186910829931640712403868000, −2.71143564503179442209217195965, −0.07181608987334717141490034342,
1.21069391289839799204592733696, 2.39133608913741070864920606797, 4.04820037614769437658790350546, 5.00246433092549571199761791691, 6.19094192010283860202385695093, 6.62688232052357376217393993908, 7.29259536765145617098042452558, 8.675580925614239695178697670366, 9.408529980008734844705628936279, 10.37553084003700731852128210303