Newspace parameters
Level: | \( N \) | \(=\) | \( 97 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 97.b (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(15.5572305219\) |
Analytic rank: | \(0\) |
Dimension: | \(40\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
96.1 | −10.9603 | 12.4768 | 88.1276 | − | 77.3203i | −136.749 | − | 129.228i | −615.173 | −87.3297 | 847.452i | ||||||||||||||||
96.2 | −10.9603 | 12.4768 | 88.1276 | 77.3203i | −136.749 | 129.228i | −615.173 | −87.3297 | − | 847.452i | |||||||||||||||||
96.3 | −9.84944 | −20.3089 | 65.0114 | − | 53.6529i | 200.031 | − | 56.8568i | −325.144 | 169.450 | 528.451i | ||||||||||||||||
96.4 | −9.84944 | −20.3089 | 65.0114 | 53.6529i | 200.031 | 56.8568i | −325.144 | 169.450 | − | 528.451i | |||||||||||||||||
96.5 | −8.53310 | 4.72888 | 40.8138 | − | 19.3202i | −40.3520 | 95.2642i | −75.2089 | −220.638 | 164.861i | |||||||||||||||||
96.6 | −8.53310 | 4.72888 | 40.8138 | 19.3202i | −40.3520 | − | 95.2642i | −75.2089 | −220.638 | − | 164.861i | ||||||||||||||||
96.7 | −8.40356 | 27.7780 | 38.6199 | − | 56.8413i | −233.434 | 175.534i | −55.6305 | 528.618 | 477.669i | |||||||||||||||||
96.8 | −8.40356 | 27.7780 | 38.6199 | 56.8413i | −233.434 | − | 175.534i | −55.6305 | 528.618 | − | 477.669i | ||||||||||||||||
96.9 | −6.78566 | −6.83487 | 14.0452 | − | 60.7818i | 46.3791 | 183.728i | 121.835 | −196.285 | 412.445i | |||||||||||||||||
96.10 | −6.78566 | −6.83487 | 14.0452 | 60.7818i | 46.3791 | − | 183.728i | 121.835 | −196.285 | − | 412.445i | ||||||||||||||||
96.11 | −5.09653 | −8.23001 | −6.02536 | − | 103.917i | 41.9445 | − | 183.907i | 193.797 | −175.267 | 529.617i | ||||||||||||||||
96.12 | −5.09653 | −8.23001 | −6.02536 | 103.917i | 41.9445 | 183.907i | 193.797 | −175.267 | − | 529.617i | |||||||||||||||||
96.13 | −4.70798 | 18.5644 | −9.83488 | − | 69.5512i | −87.4008 | − | 119.658i | 196.958 | 101.636 | 327.446i | ||||||||||||||||
96.14 | −4.70798 | 18.5644 | −9.83488 | 69.5512i | −87.4008 | 119.658i | 196.958 | 101.636 | − | 327.446i | |||||||||||||||||
96.15 | −4.61222 | −26.0544 | −10.7275 | − | 41.0639i | 120.169 | 132.637i | 197.068 | 435.832 | 189.396i | |||||||||||||||||
96.16 | −4.61222 | −26.0544 | −10.7275 | 41.0639i | 120.169 | − | 132.637i | 197.068 | 435.832 | − | 189.396i | ||||||||||||||||
96.17 | −2.57129 | 15.1707 | −25.3885 | − | 24.3473i | −39.0083 | 87.8859i | 147.562 | −12.8494 | 62.6040i | |||||||||||||||||
96.18 | −2.57129 | 15.1707 | −25.3885 | 24.3473i | −39.0083 | − | 87.8859i | 147.562 | −12.8494 | − | 62.6040i | ||||||||||||||||
96.19 | −0.466290 | −9.91982 | −31.7826 | − | 23.6226i | 4.62551 | − | 97.7284i | 29.7412 | −144.597 | 11.0150i | ||||||||||||||||
96.20 | −0.466290 | −9.91982 | −31.7826 | 23.6226i | 4.62551 | 97.7284i | 29.7412 | −144.597 | − | 11.0150i | |||||||||||||||||
See all 40 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
97.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 97.6.b.a | ✓ | 40 |
97.b | even | 2 | 1 | inner | 97.6.b.a | ✓ | 40 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
97.6.b.a | ✓ | 40 | 1.a | even | 1 | 1 | trivial |
97.6.b.a | ✓ | 40 | 97.b | even | 2 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{6}^{\mathrm{new}}(97, [\chi])\).