L(s) = 1 | − 4.70·2-s + 18.5·3-s − 9.83·4-s + 69.5i·5-s − 87.4·6-s + 119. i·7-s + 196.·8-s + 101.·9-s − 327. i·10-s − 565.·11-s − 182.·12-s − 521. i·13-s − 563. i·14-s + 1.29e3i·15-s − 612.·16-s − 375. i·17-s + ⋯ |
L(s) = 1 | − 0.832·2-s + 1.19·3-s − 0.307·4-s + 1.24i·5-s − 0.991·6-s + 0.922i·7-s + 1.08·8-s + 0.418·9-s − 1.03i·10-s − 1.40·11-s − 0.366·12-s − 0.856i·13-s − 0.768i·14-s + 1.48i·15-s − 0.598·16-s − 0.314i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 97 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.994 - 0.105i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 97 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.994 - 0.105i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(0.0315155 + 0.595960i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0315155 + 0.595960i\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 97 | \( 1 + (-9.21e4 - 9.77e3i)T \) |
good | 2 | \( 1 + 4.70T + 32T^{2} \) |
| 3 | \( 1 - 18.5T + 243T^{2} \) |
| 5 | \( 1 - 69.5iT - 3.12e3T^{2} \) |
| 7 | \( 1 - 119. iT - 1.68e4T^{2} \) |
| 11 | \( 1 + 565.T + 1.61e5T^{2} \) |
| 13 | \( 1 + 521. iT - 3.71e5T^{2} \) |
| 17 | \( 1 + 375. iT - 1.41e6T^{2} \) |
| 19 | \( 1 - 732. iT - 2.47e6T^{2} \) |
| 23 | \( 1 + 2.83e3iT - 6.43e6T^{2} \) |
| 29 | \( 1 - 5.82e3iT - 2.05e7T^{2} \) |
| 31 | \( 1 + 9.32e3T + 2.86e7T^{2} \) |
| 37 | \( 1 - 9.18e3iT - 6.93e7T^{2} \) |
| 41 | \( 1 + 1.24e4iT - 1.15e8T^{2} \) |
| 43 | \( 1 + 9.40e3T + 1.47e8T^{2} \) |
| 47 | \( 1 + 3.99e3T + 2.29e8T^{2} \) |
| 53 | \( 1 + 8.58e3T + 4.18e8T^{2} \) |
| 59 | \( 1 - 5.06e4iT - 7.14e8T^{2} \) |
| 61 | \( 1 - 1.54e4T + 8.44e8T^{2} \) |
| 67 | \( 1 - 3.85e4iT - 1.35e9T^{2} \) |
| 71 | \( 1 + 5.64e4iT - 1.80e9T^{2} \) |
| 73 | \( 1 + 2.99e3T + 2.07e9T^{2} \) |
| 79 | \( 1 - 9.14e4T + 3.07e9T^{2} \) |
| 83 | \( 1 - 7.74e4iT - 3.93e9T^{2} \) |
| 89 | \( 1 + 7.45e4T + 5.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.66404877744880955538406934897, −12.65129879694033078500658546643, −10.82739512376303326997501282206, −10.16479430571520282087850473996, −8.943045775663037458875160914594, −8.179120502761933654431805890105, −7.26411862481531906974376642465, −5.37439944105885189717478117732, −3.25724797631856903043177783667, −2.30626933928126007867713148022,
0.25970535160416462362791688546, 1.81825460728254989283777153294, 3.87375869810610673430736260296, 5.07918751789410521762860056567, 7.52270266302436107199581214412, 8.152201781559045435079532677525, 9.118460502636746267360902784568, 9.781546652685690229931954095411, 11.10495722470191851190183553314, 13.02588307807949602844182423076