L(s) = 1 | − 8.40·2-s + 27.7·3-s + 38.6·4-s + 56.8i·5-s − 233.·6-s − 175. i·7-s − 55.6·8-s + 528.·9-s − 477. i·10-s + 230.·11-s + 1.07e3·12-s − 567. i·13-s + 1.47e3i·14-s + 1.57e3i·15-s − 768.·16-s − 1.40e3i·17-s + ⋯ |
L(s) = 1 | − 1.48·2-s + 1.78·3-s + 1.20·4-s + 1.01i·5-s − 2.64·6-s − 1.35i·7-s − 0.307·8-s + 2.17·9-s − 1.51i·10-s + 0.573·11-s + 2.15·12-s − 0.932i·13-s + 2.01i·14-s + 1.81i·15-s − 0.750·16-s − 1.18i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 97 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.951 + 0.308i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 97 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.951 + 0.308i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(1.69363 - 0.267990i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.69363 - 0.267990i\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 97 | \( 1 + (8.81e4 + 2.86e4i)T \) |
good | 2 | \( 1 + 8.40T + 32T^{2} \) |
| 3 | \( 1 - 27.7T + 243T^{2} \) |
| 5 | \( 1 - 56.8iT - 3.12e3T^{2} \) |
| 7 | \( 1 + 175. iT - 1.68e4T^{2} \) |
| 11 | \( 1 - 230.T + 1.61e5T^{2} \) |
| 13 | \( 1 + 567. iT - 3.71e5T^{2} \) |
| 17 | \( 1 + 1.40e3iT - 1.41e6T^{2} \) |
| 19 | \( 1 - 204. iT - 2.47e6T^{2} \) |
| 23 | \( 1 - 5.06e3iT - 6.43e6T^{2} \) |
| 29 | \( 1 + 4.84e3iT - 2.05e7T^{2} \) |
| 31 | \( 1 - 5.92e3T + 2.86e7T^{2} \) |
| 37 | \( 1 + 2.32e3iT - 6.93e7T^{2} \) |
| 41 | \( 1 + 2.12e3iT - 1.15e8T^{2} \) |
| 43 | \( 1 + 1.12e4T + 1.47e8T^{2} \) |
| 47 | \( 1 - 1.92e4T + 2.29e8T^{2} \) |
| 53 | \( 1 - 1.99e4T + 4.18e8T^{2} \) |
| 59 | \( 1 + 9.52e3iT - 7.14e8T^{2} \) |
| 61 | \( 1 - 4.22e4T + 8.44e8T^{2} \) |
| 67 | \( 1 - 6.36e4iT - 1.35e9T^{2} \) |
| 71 | \( 1 + 2.83e4iT - 1.80e9T^{2} \) |
| 73 | \( 1 + 5.88e4T + 2.07e9T^{2} \) |
| 79 | \( 1 + 1.65e4T + 3.07e9T^{2} \) |
| 83 | \( 1 - 8.71e4iT - 3.93e9T^{2} \) |
| 89 | \( 1 + 1.25e5T + 5.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.52970041564995745736213002338, −11.34742403699854329707656156663, −10.10798745103898867356083459812, −9.758083237283043936132070854868, −8.496958762093263041297491091662, −7.44619949879926798442299289450, −7.12506596526346357329217749518, −3.86760149229756970482466110515, −2.66655437525657785433944936710, −1.06528567198981444363008458079,
1.41238083592332626370036209254, 2.45049847992895633247657725125, 4.40282451335759987843134824018, 6.72641604838293329296031944510, 8.315473499994994034936407546321, 8.696044230639999024143731875961, 9.139536960379607344794316013057, 10.26121044474749880485289934949, 12.03808055003020115171319777507, 12.98787861678863814434642174944