L(s) = 1 | + 9.70·2-s + 23.5·3-s + 62.0·4-s − 57.7i·5-s + 228.·6-s + 191. i·7-s + 291.·8-s + 312.·9-s − 560. i·10-s − 661.·11-s + 1.46e3·12-s + 473. i·13-s + 1.85e3i·14-s − 1.36e3i·15-s + 845.·16-s − 1.30e3i·17-s + ⋯ |
L(s) = 1 | + 1.71·2-s + 1.51·3-s + 1.94·4-s − 1.03i·5-s + 2.59·6-s + 1.47i·7-s + 1.61·8-s + 1.28·9-s − 1.77i·10-s − 1.64·11-s + 2.93·12-s + 0.777i·13-s + 2.53i·14-s − 1.56i·15-s + 0.825·16-s − 1.09i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 97 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.995 + 0.0922i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 97 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.995 + 0.0922i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(7.04255 - 0.325464i\) |
\(L(\frac12)\) |
\(\approx\) |
\(7.04255 - 0.325464i\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 97 | \( 1 + (9.22e4 + 8.54e3i)T \) |
good | 2 | \( 1 - 9.70T + 32T^{2} \) |
| 3 | \( 1 - 23.5T + 243T^{2} \) |
| 5 | \( 1 + 57.7iT - 3.12e3T^{2} \) |
| 7 | \( 1 - 191. iT - 1.68e4T^{2} \) |
| 11 | \( 1 + 661.T + 1.61e5T^{2} \) |
| 13 | \( 1 - 473. iT - 3.71e5T^{2} \) |
| 17 | \( 1 + 1.30e3iT - 1.41e6T^{2} \) |
| 19 | \( 1 + 3.09e3iT - 2.47e6T^{2} \) |
| 23 | \( 1 - 1.65e3iT - 6.43e6T^{2} \) |
| 29 | \( 1 - 2.92e3iT - 2.05e7T^{2} \) |
| 31 | \( 1 + 460.T + 2.86e7T^{2} \) |
| 37 | \( 1 - 1.03e4iT - 6.93e7T^{2} \) |
| 41 | \( 1 + 3.95e3iT - 1.15e8T^{2} \) |
| 43 | \( 1 - 2.01e4T + 1.47e8T^{2} \) |
| 47 | \( 1 + 9.22e3T + 2.29e8T^{2} \) |
| 53 | \( 1 - 3.59e4T + 4.18e8T^{2} \) |
| 59 | \( 1 + 2.35e4iT - 7.14e8T^{2} \) |
| 61 | \( 1 + 1.68e4T + 8.44e8T^{2} \) |
| 67 | \( 1 - 4.60e4iT - 1.35e9T^{2} \) |
| 71 | \( 1 + 5.43e3iT - 1.80e9T^{2} \) |
| 73 | \( 1 + 2.72e4T + 2.07e9T^{2} \) |
| 79 | \( 1 - 3.81e4T + 3.07e9T^{2} \) |
| 83 | \( 1 - 3.28e4iT - 3.93e9T^{2} \) |
| 89 | \( 1 - 5.25e4T + 5.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.24469586087526318826786828143, −12.43737213646032405620134218612, −11.38789372759942513406102416872, −9.313833029148538880947880868882, −8.625483447235735077320027968376, −7.21947904828776580563947879530, −5.39251995522460459553285334740, −4.70095905750257389615164737940, −2.92377568242152351434070720899, −2.33069221294537702522162187769,
2.31582490494896739095402263340, 3.33758862681327932956415755901, 4.10058383259350950894094831624, 5.90960115972444680970682608933, 7.39337805388158522852188289069, 7.966366427589967351612254399627, 10.38236936672976023240018640377, 10.61491970715538270990074783057, 12.62470774370920618767034826765, 13.29264036083048161876306339842