Properties

Label 97.6.b.a.96.37
Level $97$
Weight $6$
Character 97.96
Analytic conductor $15.557$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [97,6,Mod(96,97)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("97.96"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(97, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 97 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 97.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.5572305219\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 96.37
Character \(\chi\) \(=\) 97.96
Dual form 97.6.b.a.96.38

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.70046 q^{2} +23.5635 q^{3} +62.0990 q^{4} -57.7401i q^{5} +228.576 q^{6} +191.675i q^{7} +291.974 q^{8} +312.237 q^{9} -560.105i q^{10} -661.288 q^{11} +1463.27 q^{12} +473.965i q^{13} +1859.34i q^{14} -1360.56i q^{15} +845.113 q^{16} -1307.89i q^{17} +3028.84 q^{18} -3094.44i q^{19} -3585.60i q^{20} +4516.53i q^{21} -6414.80 q^{22} +1653.86i q^{23} +6879.91 q^{24} -208.916 q^{25} +4597.68i q^{26} +1631.46 q^{27} +11902.8i q^{28} +2925.37i q^{29} -13198.0i q^{30} -460.266 q^{31} -1145.17 q^{32} -15582.2 q^{33} -12687.2i q^{34} +11067.3 q^{35} +19389.6 q^{36} +10302.1i q^{37} -30017.5i q^{38} +11168.3i q^{39} -16858.6i q^{40} -3959.31i q^{41} +43812.4i q^{42} +20160.3 q^{43} -41065.3 q^{44} -18028.6i q^{45} +16043.2i q^{46} -9224.79 q^{47} +19913.8 q^{48} -19932.3 q^{49} -2026.59 q^{50} -30818.5i q^{51} +29432.8i q^{52} +35934.2 q^{53} +15825.9 q^{54} +38182.8i q^{55} +55964.1i q^{56} -72915.6i q^{57} +28377.4i q^{58} -23510.3i q^{59} -84489.1i q^{60} -16811.6 q^{61} -4464.79 q^{62} +59848.0i q^{63} -38152.3 q^{64} +27366.8 q^{65} -151155. q^{66} +46073.4i q^{67} -81218.8i q^{68} +38970.6i q^{69} +107358. q^{70} -5437.01i q^{71} +91165.0 q^{72} -27269.3 q^{73} +99935.2i q^{74} -4922.79 q^{75} -192161. i q^{76} -126752. i q^{77} +108337. i q^{78} +38189.3 q^{79} -48796.9i q^{80} -37430.7 q^{81} -38407.1i q^{82} +32842.4i q^{83} +280472. i q^{84} -75517.8 q^{85} +195565. q^{86} +68931.9i q^{87} -193079. q^{88} +52524.4 q^{89} -174886. i q^{90} -90847.3 q^{91} +102703. i q^{92} -10845.5 q^{93} -89484.7 q^{94} -178673. q^{95} -26984.2 q^{96} +(-92272.9 - 8546.86i) q^{97} -193353. q^{98} -206479. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 2 q^{2} + 40 q^{3} + 638 q^{4} - 130 q^{6} + 180 q^{8} + 3300 q^{9} + 382 q^{11} + 2586 q^{12} + 10174 q^{16} + 4738 q^{18} + 1996 q^{22} - 3102 q^{24} - 25178 q^{25} + 3046 q^{27} + 14796 q^{31}+ \cdots - 562238 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/97\mathbb{Z}\right)^\times\).

\(n\) \(5\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 9.70046 1.71482 0.857408 0.514638i \(-0.172074\pi\)
0.857408 + 0.514638i \(0.172074\pi\)
\(3\) 23.5635 1.51160 0.755799 0.654804i \(-0.227249\pi\)
0.755799 + 0.654804i \(0.227249\pi\)
\(4\) 62.0990 1.94059
\(5\) 57.7401i 1.03289i −0.856322 0.516443i \(-0.827256\pi\)
0.856322 0.516443i \(-0.172744\pi\)
\(6\) 228.576 2.59211
\(7\) 191.675i 1.47850i 0.673433 + 0.739249i \(0.264819\pi\)
−0.673433 + 0.739249i \(0.735181\pi\)
\(8\) 291.974 1.61294
\(9\) 312.237 1.28493
\(10\) 560.105i 1.77121i
\(11\) −661.288 −1.64782 −0.823909 0.566723i \(-0.808211\pi\)
−0.823909 + 0.566723i \(0.808211\pi\)
\(12\) 1463.27 2.93339
\(13\) 473.965i 0.777836i 0.921272 + 0.388918i \(0.127151\pi\)
−0.921272 + 0.388918i \(0.872849\pi\)
\(14\) 1859.34i 2.53535i
\(15\) 1360.56i 1.56131i
\(16\) 845.113 0.825306
\(17\) 1307.89i 1.09761i −0.835949 0.548807i \(-0.815082\pi\)
0.835949 0.548807i \(-0.184918\pi\)
\(18\) 3028.84 2.20341
\(19\) 3094.44i 1.96652i −0.182219 0.983258i \(-0.558328\pi\)
0.182219 0.983258i \(-0.441672\pi\)
\(20\) 3585.60i 2.00441i
\(21\) 4516.53i 2.23489i
\(22\) −6414.80 −2.82570
\(23\) 1653.86i 0.651896i 0.945388 + 0.325948i \(0.105683\pi\)
−0.945388 + 0.325948i \(0.894317\pi\)
\(24\) 6879.91 2.43812
\(25\) −208.916 −0.0668532
\(26\) 4597.68i 1.33385i
\(27\) 1631.46 0.430693
\(28\) 11902.8i 2.86916i
\(29\) 2925.37i 0.645931i 0.946411 + 0.322965i \(0.104680\pi\)
−0.946411 + 0.322965i \(0.895320\pi\)
\(30\) 13198.0i 2.67735i
\(31\) −460.266 −0.0860210 −0.0430105 0.999075i \(-0.513695\pi\)
−0.0430105 + 0.999075i \(0.513695\pi\)
\(32\) −1145.17 −0.197695
\(33\) −15582.2 −2.49084
\(34\) 12687.2i 1.88221i
\(35\) 11067.3 1.52712
\(36\) 19389.6 2.49352
\(37\) 10302.1i 1.23715i 0.785726 + 0.618574i \(0.212289\pi\)
−0.785726 + 0.618574i \(0.787711\pi\)
\(38\) 30017.5i 3.37221i
\(39\) 11168.3i 1.17578i
\(40\) 16858.6i 1.66599i
\(41\) 3959.31i 0.367841i −0.982941 0.183920i \(-0.941121\pi\)
0.982941 0.183920i \(-0.0588789\pi\)
\(42\) 43812.4i 3.83243i
\(43\) 20160.3 1.66275 0.831374 0.555713i \(-0.187555\pi\)
0.831374 + 0.555713i \(0.187555\pi\)
\(44\) −41065.3 −3.19774
\(45\) 18028.6i 1.32718i
\(46\) 16043.2i 1.11788i
\(47\) −9224.79 −0.609133 −0.304566 0.952491i \(-0.598512\pi\)
−0.304566 + 0.952491i \(0.598512\pi\)
\(48\) 19913.8 1.24753
\(49\) −19932.3 −1.18595
\(50\) −2026.59 −0.114641
\(51\) 30818.5i 1.65915i
\(52\) 29432.8i 1.50946i
\(53\) 35934.2 1.75719 0.878594 0.477570i \(-0.158482\pi\)
0.878594 + 0.477570i \(0.158482\pi\)
\(54\) 15825.9 0.738559
\(55\) 38182.8i 1.70201i
\(56\) 55964.1i 2.38473i
\(57\) 72915.6i 2.97258i
\(58\) 28377.4i 1.10765i
\(59\) 23510.3i 0.879281i −0.898174 0.439641i \(-0.855106\pi\)
0.898174 0.439641i \(-0.144894\pi\)
\(60\) 84489.1i 3.02986i
\(61\) −16811.6 −0.578475 −0.289237 0.957257i \(-0.593402\pi\)
−0.289237 + 0.957257i \(0.593402\pi\)
\(62\) −4464.79 −0.147510
\(63\) 59848.0i 1.89976i
\(64\) −38152.3 −1.16432
\(65\) 27366.8 0.803416
\(66\) −151155. −4.27132
\(67\) 46073.4i 1.25390i 0.779059 + 0.626951i \(0.215697\pi\)
−0.779059 + 0.626951i \(0.784303\pi\)
\(68\) 81218.8i 2.13002i
\(69\) 38970.6i 0.985405i
\(70\) 107358. 2.61873
\(71\) 5437.01i 0.128001i −0.997950 0.0640006i \(-0.979614\pi\)
0.997950 0.0640006i \(-0.0203860\pi\)
\(72\) 91165.0 2.07251
\(73\) −27269.3 −0.598917 −0.299458 0.954109i \(-0.596806\pi\)
−0.299458 + 0.954109i \(0.596806\pi\)
\(74\) 99935.2i 2.12148i
\(75\) −4922.79 −0.101055
\(76\) 192161.i 3.81621i
\(77\) 126752.i 2.43629i
\(78\) 108337.i 2.01624i
\(79\) 38189.3 0.688453 0.344227 0.938887i \(-0.388141\pi\)
0.344227 + 0.938887i \(0.388141\pi\)
\(80\) 48796.9i 0.852447i
\(81\) −37430.7 −0.633892
\(82\) 38407.1i 0.630779i
\(83\) 32842.4i 0.523287i 0.965165 + 0.261643i \(0.0842644\pi\)
−0.965165 + 0.261643i \(0.915736\pi\)
\(84\) 280472.i 4.33701i
\(85\) −75517.8 −1.13371
\(86\) 195565. 2.85131
\(87\) 68931.9i 0.976387i
\(88\) −193079. −2.65783
\(89\) 52524.4 0.702888 0.351444 0.936209i \(-0.385691\pi\)
0.351444 + 0.936209i \(0.385691\pi\)
\(90\) 174886.i 2.27587i
\(91\) −90847.3 −1.15003
\(92\) 102703.i 1.26506i
\(93\) −10845.5 −0.130029
\(94\) −89484.7 −1.04455
\(95\) −178673. −2.03119
\(96\) −26984.2 −0.298835
\(97\) −92272.9 8546.86i −0.995738 0.0922311i
\(98\) −193353. −2.03369
\(99\) −206479. −2.11732
\(100\) −12973.5 −0.129735
\(101\) −21490.7 −0.209627 −0.104814 0.994492i \(-0.533425\pi\)
−0.104814 + 0.994492i \(0.533425\pi\)
\(102\) 298954.i 2.84514i
\(103\) 67840.6 0.630082 0.315041 0.949078i \(-0.397982\pi\)
0.315041 + 0.949078i \(0.397982\pi\)
\(104\) 138385.i 1.25460i
\(105\) 260785. 2.30839
\(106\) 348578. 3.01325
\(107\) 135184.i 1.14147i −0.821133 0.570736i \(-0.806658\pi\)
0.821133 0.570736i \(-0.193342\pi\)
\(108\) 101312. 0.835799
\(109\) 47718.9 0.384702 0.192351 0.981326i \(-0.438389\pi\)
0.192351 + 0.981326i \(0.438389\pi\)
\(110\) 370391.i 2.91863i
\(111\) 242753.i 1.87007i
\(112\) 161987.i 1.22021i
\(113\) 69251.3 0.510190 0.255095 0.966916i \(-0.417893\pi\)
0.255095 + 0.966916i \(0.417893\pi\)
\(114\) 707315.i 5.09743i
\(115\) 95493.9 0.673334
\(116\) 181662.i 1.25349i
\(117\) 147989.i 0.999462i
\(118\) 228061.i 1.50781i
\(119\) 250690. 1.62282
\(120\) 397247.i 2.51830i
\(121\) 276251. 1.71530
\(122\) −163080. −0.991977
\(123\) 93295.1i 0.556027i
\(124\) −28582.0 −0.166932
\(125\) 168375.i 0.963834i
\(126\) 580554.i 3.25774i
\(127\) 171478.i 0.943407i 0.881757 + 0.471704i \(0.156361\pi\)
−0.881757 + 0.471704i \(0.843639\pi\)
\(128\) −333449. −1.79889
\(129\) 475047. 2.51341
\(130\) 265471. 1.37771
\(131\) 204901.i 1.04320i −0.853191 0.521599i \(-0.825336\pi\)
0.853191 0.521599i \(-0.174664\pi\)
\(132\) −967641. −4.83370
\(133\) 593126. 2.90749
\(134\) 446933.i 2.15021i
\(135\) 94200.8i 0.444857i
\(136\) 381870.i 1.77039i
\(137\) 62997.3i 0.286761i −0.989668 0.143381i \(-0.954203\pi\)
0.989668 0.143381i \(-0.0457973\pi\)
\(138\) 378033.i 1.68979i
\(139\) 207637.i 0.911523i 0.890102 + 0.455762i \(0.150633\pi\)
−0.890102 + 0.455762i \(0.849367\pi\)
\(140\) 687270. 2.96352
\(141\) −217368. −0.920763
\(142\) 52741.5i 0.219498i
\(143\) 313428.i 1.28173i
\(144\) 263876. 1.06046
\(145\) 168911. 0.667173
\(146\) −264524. −1.02703
\(147\) −469675. −1.79269
\(148\) 639750.i 2.40080i
\(149\) 335525.i 1.23811i 0.785348 + 0.619055i \(0.212484\pi\)
−0.785348 + 0.619055i \(0.787516\pi\)
\(150\) −47753.4 −0.173291
\(151\) −18818.4 −0.0671645 −0.0335823 0.999436i \(-0.510692\pi\)
−0.0335823 + 0.999436i \(0.510692\pi\)
\(152\) 903494.i 3.17188i
\(153\) 408372.i 1.41035i
\(154\) 1.22956e6i 4.17779i
\(155\) 26575.8i 0.0888498i
\(156\) 693538.i 2.28170i
\(157\) 47153.9i 0.152675i −0.997082 0.0763377i \(-0.975677\pi\)
0.997082 0.0763377i \(-0.0243227\pi\)
\(158\) 370454. 1.18057
\(159\) 846734. 2.65616
\(160\) 66122.2i 0.204196i
\(161\) −317003. −0.963827
\(162\) −363095. −1.08701
\(163\) 164631. 0.485337 0.242668 0.970109i \(-0.421977\pi\)
0.242668 + 0.970109i \(0.421977\pi\)
\(164\) 245869.i 0.713829i
\(165\) 899720.i 2.57275i
\(166\) 318586.i 0.897340i
\(167\) −317807. −0.881806 −0.440903 0.897555i \(-0.645342\pi\)
−0.440903 + 0.897555i \(0.645342\pi\)
\(168\) 1.31871e6i 3.60475i
\(169\) 146650. 0.394971
\(170\) −732558. −1.94410
\(171\) 966197.i 2.52683i
\(172\) 1.25194e6 3.22672
\(173\) 177367.i 0.450566i −0.974293 0.225283i \(-0.927669\pi\)
0.974293 0.225283i \(-0.0723307\pi\)
\(174\) 668671.i 1.67432i
\(175\) 40044.1i 0.0988423i
\(176\) −558863. −1.35995
\(177\) 553984.i 1.32912i
\(178\) 509511. 1.20532
\(179\) 131293.i 0.306272i 0.988205 + 0.153136i \(0.0489373\pi\)
−0.988205 + 0.153136i \(0.951063\pi\)
\(180\) 1.11956e6i 2.57552i
\(181\) 797784.i 1.81004i −0.425366 0.905021i \(-0.639855\pi\)
0.425366 0.905021i \(-0.360145\pi\)
\(182\) −881261. −1.97209
\(183\) −396139. −0.874421
\(184\) 482883.i 1.05147i
\(185\) 594844. 1.27783
\(186\) −105206. −0.222976
\(187\) 864894.i 1.80867i
\(188\) −572850. −1.18208
\(189\) 312711.i 0.636778i
\(190\) −1.73321e6 −3.48311
\(191\) 290855. 0.576890 0.288445 0.957496i \(-0.406862\pi\)
0.288445 + 0.957496i \(0.406862\pi\)
\(192\) −899000. −1.75998
\(193\) −582439. −1.12553 −0.562766 0.826617i \(-0.690263\pi\)
−0.562766 + 0.826617i \(0.690263\pi\)
\(194\) −895090. 82908.5i −1.70751 0.158159i
\(195\) 644857. 1.21444
\(196\) −1.23778e6 −2.30145
\(197\) −397516. −0.729775 −0.364887 0.931052i \(-0.618892\pi\)
−0.364887 + 0.931052i \(0.618892\pi\)
\(198\) −2.00294e6 −3.63082
\(199\) 825010.i 1.47682i −0.674354 0.738408i \(-0.735578\pi\)
0.674354 0.738408i \(-0.264422\pi\)
\(200\) −60998.1 −0.107830
\(201\) 1.08565e6i 1.89539i
\(202\) −208470. −0.359472
\(203\) −560721. −0.955007
\(204\) 1.91380e6i 3.21973i
\(205\) −228611. −0.379938
\(206\) 658085. 1.08047
\(207\) 516395.i 0.837638i
\(208\) 400554.i 0.641953i
\(209\) 2.04631e6i 3.24046i
\(210\) 2.52973e6 3.95846
\(211\) 1.13061e6i 1.74826i 0.485688 + 0.874132i \(0.338569\pi\)
−0.485688 + 0.874132i \(0.661431\pi\)
\(212\) 2.23148e6 3.40998
\(213\) 128115.i 0.193486i
\(214\) 1.31135e6i 1.95742i
\(215\) 1.16406e6i 1.71743i
\(216\) 476344. 0.694683
\(217\) 88221.4i 0.127182i
\(218\) 462895. 0.659693
\(219\) −642558. −0.905321
\(220\) 2.37111e6i 3.30290i
\(221\) 619896. 0.853764
\(222\) 2.35482e6i 3.20682i
\(223\) 241698.i 0.325470i 0.986670 + 0.162735i \(0.0520316\pi\)
−0.986670 + 0.162735i \(0.947968\pi\)
\(224\) 219501.i 0.292291i
\(225\) −65231.4 −0.0859014
\(226\) 671769. 0.874881
\(227\) 1.18467e6 1.52592 0.762960 0.646445i \(-0.223745\pi\)
0.762960 + 0.646445i \(0.223745\pi\)
\(228\) 4.52798e6i 5.76856i
\(229\) −878967. −1.10760 −0.553801 0.832649i \(-0.686823\pi\)
−0.553801 + 0.832649i \(0.686823\pi\)
\(230\) 926334. 1.15464
\(231\) 2.98673e6i 3.68269i
\(232\) 854131.i 1.04185i
\(233\) 1.11250e6i 1.34249i −0.741236 0.671244i \(-0.765760\pi\)
0.741236 0.671244i \(-0.234240\pi\)
\(234\) 1.43557e6i 1.71389i
\(235\) 532640.i 0.629165i
\(236\) 1.45996e6i 1.70633i
\(237\) 899873. 1.04066
\(238\) 2.43181e6 2.78284
\(239\) 517616.i 0.586155i 0.956089 + 0.293078i \(0.0946794\pi\)
−0.956089 + 0.293078i \(0.905321\pi\)
\(240\) 1.14982e6i 1.28856i
\(241\) −1.14130e6 −1.26578 −0.632888 0.774244i \(-0.718131\pi\)
−0.632888 + 0.774244i \(0.718131\pi\)
\(242\) 2.67976e6 2.94143
\(243\) −1.27844e6 −1.38888
\(244\) −1.04398e6 −1.12258
\(245\) 1.15089e6i 1.22496i
\(246\) 905006.i 0.953484i
\(247\) 1.46666e6 1.52963
\(248\) −134385. −0.138747
\(249\) 773881.i 0.790999i
\(250\) 1.63331e6i 1.65280i
\(251\) 611595.i 0.612745i 0.951912 + 0.306372i \(0.0991153\pi\)
−0.951912 + 0.306372i \(0.900885\pi\)
\(252\) 3.71650e6i 3.68666i
\(253\) 1.09368e6i 1.07421i
\(254\) 1.66342e6i 1.61777i
\(255\) −1.77946e6 −1.71371
\(256\) −2.01374e6 −1.92045
\(257\) 777179.i 0.733986i −0.930224 0.366993i \(-0.880387\pi\)
0.930224 0.366993i \(-0.119613\pi\)
\(258\) 4.60818e6 4.31003
\(259\) −1.97466e6 −1.82912
\(260\) 1.69945e6 1.55910
\(261\) 913409.i 0.829973i
\(262\) 1.98764e6i 1.78889i
\(263\) 1.63239e6i 1.45524i 0.685982 + 0.727619i \(0.259373\pi\)
−0.685982 + 0.727619i \(0.740627\pi\)
\(264\) −4.54960e6 −4.01757
\(265\) 2.07484e6i 1.81497i
\(266\) 5.75360e6 4.98581
\(267\) 1.23766e6 1.06248
\(268\) 2.86111e6i 2.43331i
\(269\) −1.64501e6 −1.38608 −0.693040 0.720899i \(-0.743729\pi\)
−0.693040 + 0.720899i \(0.743729\pi\)
\(270\) 913791.i 0.762847i
\(271\) 1.32613e6i 1.09689i 0.836187 + 0.548445i \(0.184780\pi\)
−0.836187 + 0.548445i \(0.815220\pi\)
\(272\) 1.10532e6i 0.905868i
\(273\) −2.14068e6 −1.73838
\(274\) 611103.i 0.491742i
\(275\) 138154. 0.110162
\(276\) 2.42003e6i 1.91227i
\(277\) 1.34949e6i 1.05674i −0.849013 0.528372i \(-0.822803\pi\)
0.849013 0.528372i \(-0.177197\pi\)
\(278\) 2.01418e6i 1.56309i
\(279\) −143712. −0.110531
\(280\) 3.23137e6 2.46315
\(281\) 1.78038e6i 1.34508i −0.740063 0.672538i \(-0.765204\pi\)
0.740063 0.672538i \(-0.234796\pi\)
\(282\) −2.10857e6 −1.57894
\(283\) −346444. −0.257139 −0.128569 0.991701i \(-0.541038\pi\)
−0.128569 + 0.991701i \(0.541038\pi\)
\(284\) 337632.i 0.248398i
\(285\) −4.21015e6 −3.07034
\(286\) 3.04039e6i 2.19793i
\(287\) 758901. 0.543852
\(288\) −357564. −0.254023
\(289\) −290726. −0.204757
\(290\) 1.63852e6 1.14408
\(291\) −2.17427e6 201394.i −1.50515 0.139416i
\(292\) −1.69339e6 −1.16225
\(293\) 1.51300e6 1.02961 0.514803 0.857309i \(-0.327865\pi\)
0.514803 + 0.857309i \(0.327865\pi\)
\(294\) −4.55606e6 −3.07412
\(295\) −1.35749e6 −0.908197
\(296\) 3.00794e6i 1.99545i
\(297\) −1.07887e6 −0.709703
\(298\) 3.25475e6i 2.12313i
\(299\) −783871. −0.507069
\(300\) −305700. −0.196107
\(301\) 3.86423e6i 2.45837i
\(302\) −182547. −0.115175
\(303\) −506396. −0.316872
\(304\) 2.61515e6i 1.62298i
\(305\) 970703.i 0.597498i
\(306\) 3.96140e6i 2.41850i
\(307\) 2.58820e6 1.56730 0.783649 0.621204i \(-0.213356\pi\)
0.783649 + 0.621204i \(0.213356\pi\)
\(308\) 7.87120e6i 4.72785i
\(309\) 1.59856e6 0.952430
\(310\) 257797.i 0.152361i
\(311\) 1.68515e6i 0.987955i −0.869475 0.493977i \(-0.835543\pi\)
0.869475 0.493977i \(-0.164457\pi\)
\(312\) 3.26084e6i 1.89646i
\(313\) −1.23809e6 −0.714320 −0.357160 0.934043i \(-0.616255\pi\)
−0.357160 + 0.934043i \(0.616255\pi\)
\(314\) 457415.i 0.261810i
\(315\) 3.45563e6 1.96223
\(316\) 2.37152e6 1.33601
\(317\) 1.37569e6i 0.768906i −0.923145 0.384453i \(-0.874390\pi\)
0.923145 0.384453i \(-0.125610\pi\)
\(318\) 8.21371e6 4.55482
\(319\) 1.93451e6i 1.06438i
\(320\) 2.20292e6i 1.20261i
\(321\) 3.18540e6i 1.72545i
\(322\) −3.07508e6 −1.65279
\(323\) −4.04719e6 −2.15848
\(324\) −2.32441e6 −1.23013
\(325\) 99019.1i 0.0520009i
\(326\) 1.59700e6 0.832263
\(327\) 1.12442e6 0.581514
\(328\) 1.15601e6i 0.593306i
\(329\) 1.76816e6i 0.900601i
\(330\) 8.72770e6i 4.41179i
\(331\) 3.41063e6i 1.71106i 0.517756 + 0.855528i \(0.326768\pi\)
−0.517756 + 0.855528i \(0.673232\pi\)
\(332\) 2.03948e6i 1.01549i
\(333\) 3.21670e6i 1.58964i
\(334\) −3.08288e6 −1.51213
\(335\) 2.66028e6 1.29514
\(336\) 3.81698e6i 1.84447i
\(337\) 2.17425e6i 1.04288i 0.853287 + 0.521441i \(0.174605\pi\)
−0.853287 + 0.521441i \(0.825395\pi\)
\(338\) 1.42257e6 0.677302
\(339\) 1.63180e6 0.771201
\(340\) −4.68958e6 −2.20007
\(341\) 304368. 0.141747
\(342\) 9.37256e6i 4.33304i
\(343\) 599049.i 0.274933i
\(344\) 5.88629e6 2.68192
\(345\) 2.25017e6 1.01781
\(346\) 1.72055e6i 0.772638i
\(347\) 1.49404e6i 0.666099i −0.942909 0.333050i \(-0.891922\pi\)
0.942909 0.333050i \(-0.108078\pi\)
\(348\) 4.28060e6i 1.89477i
\(349\) 2.63957e6i 1.16003i 0.814605 + 0.580016i \(0.196954\pi\)
−0.814605 + 0.580016i \(0.803046\pi\)
\(350\) 388446.i 0.169496i
\(351\) 773257.i 0.335009i
\(352\) 757287. 0.325765
\(353\) 1.31513e6 0.561733 0.280867 0.959747i \(-0.409378\pi\)
0.280867 + 0.959747i \(0.409378\pi\)
\(354\) 5.37390e6i 2.27919i
\(355\) −313933. −0.132211
\(356\) 3.26171e6 1.36402
\(357\) 5.90714e6 2.45305
\(358\) 1.27360e6i 0.525200i
\(359\) 533264.i 0.218377i 0.994021 + 0.109188i \(0.0348252\pi\)
−0.994021 + 0.109188i \(0.965175\pi\)
\(360\) 5.26387e6i 2.14067i
\(361\) −7.09943e6 −2.86718
\(362\) 7.73887e6i 3.10389i
\(363\) 6.50943e6 2.59285
\(364\) −5.64153e6 −2.23174
\(365\) 1.57453e6i 0.618612i
\(366\) −3.84274e6 −1.49947
\(367\) 99446.9i 0.0385413i 0.999814 + 0.0192706i \(0.00613441\pi\)
−0.999814 + 0.0192706i \(0.993866\pi\)
\(368\) 1.39770e6i 0.538014i
\(369\) 1.23624e6i 0.472648i
\(370\) 5.77026e6 2.19125
\(371\) 6.88769e6i 2.59800i
\(372\) −673491. −0.252333
\(373\) 3.54276e6i 1.31847i −0.751938 0.659234i \(-0.770881\pi\)
0.751938 0.659234i \(-0.229119\pi\)
\(374\) 8.38987e6i 3.10153i
\(375\) 3.96750e6i 1.45693i
\(376\) −2.69340e6 −0.982496
\(377\) −1.38652e6 −0.502428
\(378\) 3.03344e6i 1.09196i
\(379\) −1.97849e6 −0.707514 −0.353757 0.935337i \(-0.615096\pi\)
−0.353757 + 0.935337i \(0.615096\pi\)
\(380\) −1.10954e7 −3.94170
\(381\) 4.04062e6i 1.42605i
\(382\) 2.82143e6 0.989260
\(383\) 295922.i 0.103082i 0.998671 + 0.0515408i \(0.0164132\pi\)
−0.998671 + 0.0515408i \(0.983587\pi\)
\(384\) −7.85723e6 −2.71920
\(385\) −7.31870e6 −2.51641
\(386\) −5.64993e6 −1.93008
\(387\) 6.29480e6 2.13651
\(388\) −5.73005e6 530751.i −1.93232 0.178983i
\(389\) 239087. 0.0801090 0.0400545 0.999197i \(-0.487247\pi\)
0.0400545 + 0.999197i \(0.487247\pi\)
\(390\) 6.25541e6 2.08254
\(391\) 2.16307e6 0.715531
\(392\) −5.81972e6 −1.91288
\(393\) 4.82819e6i 1.57689i
\(394\) −3.85609e6 −1.25143
\(395\) 2.20506e6i 0.711093i
\(396\) −1.28221e7 −4.10886
\(397\) −5.04030e6 −1.60502 −0.802509 0.596640i \(-0.796502\pi\)
−0.802509 + 0.596640i \(0.796502\pi\)
\(398\) 8.00298e6i 2.53247i
\(399\) 1.39761e7 4.39495
\(400\) −176558. −0.0551744
\(401\) 66388.0i 0.0206172i −0.999947 0.0103086i \(-0.996719\pi\)
0.999947 0.0103086i \(-0.00328138\pi\)
\(402\) 1.05313e7i 3.25025i
\(403\) 218150.i 0.0669102i
\(404\) −1.33455e6 −0.406801
\(405\) 2.16125e6i 0.654738i
\(406\) −5.43925e6 −1.63766
\(407\) 6.81266e6i 2.03859i
\(408\) 8.99819e6i 2.67611i
\(409\) 3.41121e6i 1.00832i −0.863609 0.504162i \(-0.831801\pi\)
0.863609 0.504162i \(-0.168199\pi\)
\(410\) −2.21763e6 −0.651523
\(411\) 1.48443e6i 0.433467i
\(412\) 4.21283e6 1.22273
\(413\) 4.50634e6 1.30002
\(414\) 5.00927e6i 1.43640i
\(415\) 1.89632e6 0.540495
\(416\) 542771.i 0.153774i
\(417\) 4.89265e6i 1.37786i
\(418\) 1.98502e7i 5.55679i
\(419\) 2.39154e6 0.665491 0.332745 0.943017i \(-0.392025\pi\)
0.332745 + 0.943017i \(0.392025\pi\)
\(420\) 1.61945e7 4.47964
\(421\) −4.07829e6 −1.12143 −0.560715 0.828009i \(-0.689474\pi\)
−0.560715 + 0.828009i \(0.689474\pi\)
\(422\) 1.09674e7i 2.99795i
\(423\) −2.88032e6 −0.782690
\(424\) 1.04918e7 2.83424
\(425\) 273240.i 0.0733791i
\(426\) 1.24277e6i 0.331793i
\(427\) 3.22236e6i 0.855273i
\(428\) 8.39478e6i 2.21513i
\(429\) 7.38544e6i 1.93746i
\(430\) 1.12919e7i 2.94507i
\(431\) 949783. 0.246281 0.123141 0.992389i \(-0.460703\pi\)
0.123141 + 0.992389i \(0.460703\pi\)
\(432\) 1.37877e6 0.355453
\(433\) 708127.i 0.181506i 0.995873 + 0.0907531i \(0.0289274\pi\)
−0.995873 + 0.0907531i \(0.971073\pi\)
\(434\) 855789.i 0.218093i
\(435\) 3.98013e6 1.00850
\(436\) 2.96329e6 0.746549
\(437\) 5.11776e6 1.28196
\(438\) −6.23311e6 −1.55246
\(439\) 685572.i 0.169782i −0.996390 0.0848910i \(-0.972946\pi\)
0.996390 0.0848910i \(-0.0270542\pi\)
\(440\) 1.11484e7i 2.74524i
\(441\) −6.22361e6 −1.52386
\(442\) 6.01328e6 1.46405
\(443\) 3.48228e6i 0.843053i 0.906816 + 0.421527i \(0.138506\pi\)
−0.906816 + 0.421527i \(0.861494\pi\)
\(444\) 1.50747e7i 3.62904i
\(445\) 3.03276e6i 0.726003i
\(446\) 2.34458e6i 0.558121i
\(447\) 7.90613e6i 1.87152i
\(448\) 7.31285e6i 1.72144i
\(449\) −5.72250e6 −1.33958 −0.669792 0.742548i \(-0.733617\pi\)
−0.669792 + 0.742548i \(0.733617\pi\)
\(450\) −632775. −0.147305
\(451\) 2.61825e6i 0.606135i
\(452\) 4.30043e6 0.990070
\(453\) −443426. −0.101526
\(454\) 1.14918e7 2.61667
\(455\) 5.24553e6i 1.18785i
\(456\) 2.12894e7i 4.79460i
\(457\) 2.42337e6i 0.542788i 0.962468 + 0.271394i \(0.0874846\pi\)
−0.962468 + 0.271394i \(0.912515\pi\)
\(458\) −8.52638e6 −1.89933
\(459\) 2.13378e6i 0.472735i
\(460\) 5.93007e6 1.30667
\(461\) 2.99163e6 0.655625 0.327813 0.944743i \(-0.393689\pi\)
0.327813 + 0.944743i \(0.393689\pi\)
\(462\) 2.89726e7i 6.31514i
\(463\) 736176. 0.159599 0.0797993 0.996811i \(-0.474572\pi\)
0.0797993 + 0.996811i \(0.474572\pi\)
\(464\) 2.47227e6i 0.533091i
\(465\) 626217.i 0.134305i
\(466\) 1.07918e7i 2.30212i
\(467\) 2.80630e6 0.595445 0.297722 0.954653i \(-0.403773\pi\)
0.297722 + 0.954653i \(0.403773\pi\)
\(468\) 9.18999e6i 1.93955i
\(469\) −8.83113e6 −1.85389
\(470\) 5.16686e6i 1.07890i
\(471\) 1.11111e6i 0.230784i
\(472\) 6.86439e6i 1.41823i
\(473\) −1.33318e7 −2.73991
\(474\) 8.72918e6 1.78455
\(475\) 646478.i 0.131468i
\(476\) 1.55676e7 3.14923
\(477\) 1.12200e7 2.25786
\(478\) 5.02111e6i 1.00515i
\(479\) −3.19140e6 −0.635540 −0.317770 0.948168i \(-0.602934\pi\)
−0.317770 + 0.948168i \(0.602934\pi\)
\(480\) 1.55807e6i 0.308662i
\(481\) −4.88284e6 −0.962299
\(482\) −1.10711e7 −2.17057
\(483\) −7.46970e6 −1.45692
\(484\) 1.71549e7 3.32870
\(485\) −493496. + 5.32785e6i −0.0952642 + 1.02848i
\(486\) −1.24015e7 −2.38168
\(487\) −1.31903e6 −0.252018 −0.126009 0.992029i \(-0.540217\pi\)
−0.126009 + 0.992029i \(0.540217\pi\)
\(488\) −4.90854e6 −0.933046
\(489\) 3.87928e6 0.733634
\(490\) 1.11642e7i 2.10057i
\(491\) −959814. −0.179673 −0.0898366 0.995957i \(-0.528634\pi\)
−0.0898366 + 0.995957i \(0.528634\pi\)
\(492\) 5.79353e6i 1.07902i
\(493\) 3.82607e6 0.708983
\(494\) 1.42272e7 2.62303
\(495\) 1.19221e7i 2.18695i
\(496\) −388977. −0.0709936
\(497\) 1.04214e6 0.189249
\(498\) 7.50700e6i 1.35642i
\(499\) 3.37705e6i 0.607135i −0.952810 0.303568i \(-0.901822\pi\)
0.952810 0.303568i \(-0.0981778\pi\)
\(500\) 1.04559e7i 1.87041i
\(501\) −7.48864e6 −1.33293
\(502\) 5.93276e6i 1.05074i
\(503\) 992609. 0.174928 0.0874638 0.996168i \(-0.472124\pi\)
0.0874638 + 0.996168i \(0.472124\pi\)
\(504\) 1.74741e7i 3.06420i
\(505\) 1.24088e6i 0.216521i
\(506\) 1.06092e7i 1.84207i
\(507\) 3.45558e6 0.597036
\(508\) 1.06486e7i 1.83077i
\(509\) −3.89296e6 −0.666017 −0.333009 0.942924i \(-0.608064\pi\)
−0.333009 + 0.942924i \(0.608064\pi\)
\(510\) −1.72616e7 −2.93870
\(511\) 5.22684e6i 0.885497i
\(512\) −8.86383e6 −1.49433
\(513\) 5.04845e6i 0.846964i
\(514\) 7.53899e6i 1.25865i
\(515\) 3.91712e6i 0.650802i
\(516\) 2.94999e7 4.87750
\(517\) 6.10025e6 1.00374
\(518\) −1.91551e7 −3.13660
\(519\) 4.17939e6i 0.681075i
\(520\) 7.99039e6 1.29586
\(521\) −1.14595e7 −1.84957 −0.924784 0.380492i \(-0.875755\pi\)
−0.924784 + 0.380492i \(0.875755\pi\)
\(522\) 8.86049e6i 1.42325i
\(523\) 4.90469e6i 0.784075i −0.919949 0.392037i \(-0.871770\pi\)
0.919949 0.392037i \(-0.128230\pi\)
\(524\) 1.27242e7i 2.02442i
\(525\) 943577.i 0.149410i
\(526\) 1.58349e7i 2.49546i
\(527\) 601978.i 0.0944178i
\(528\) −1.31688e7 −2.05570
\(529\) 3.70110e6 0.575031
\(530\) 2.01269e7i 3.11235i
\(531\) 7.34078e6i 1.12981i
\(532\) 3.68325e7 5.64225
\(533\) 1.87658e6 0.286120
\(534\) 1.20058e7 1.82196
\(535\) −7.80553e6 −1.17901
\(536\) 1.34522e7i 2.02247i
\(537\) 3.09371e6i 0.462960i
\(538\) −1.59574e7 −2.37687
\(539\) 1.31810e7 1.95424
\(540\) 5.84977e6i 0.863285i
\(541\) 4.21250e6i 0.618795i 0.950933 + 0.309397i \(0.100127\pi\)
−0.950933 + 0.309397i \(0.899873\pi\)
\(542\) 1.28641e7i 1.88096i
\(543\) 1.87986e7i 2.73606i
\(544\) 1.49776e6i 0.216993i
\(545\) 2.75529e6i 0.397353i
\(546\) −2.07656e7 −2.98100
\(547\) 9.69218e6 1.38501 0.692506 0.721413i \(-0.256507\pi\)
0.692506 + 0.721413i \(0.256507\pi\)
\(548\) 3.91206e6i 0.556486i
\(549\) −5.24920e6 −0.743297
\(550\) 1.34016e6 0.188907
\(551\) 9.05237e6 1.27023
\(552\) 1.13784e7i 1.58940i
\(553\) 7.31994e6i 1.01788i
\(554\) 1.30907e7i 1.81212i
\(555\) 1.40166e7 1.93157
\(556\) 1.28940e7i 1.76890i
\(557\) 9.66293e6 1.31969 0.659843 0.751403i \(-0.270623\pi\)
0.659843 + 0.751403i \(0.270623\pi\)
\(558\) −1.39407e6 −0.189539
\(559\) 9.55530e6i 1.29335i
\(560\) 9.35315e6 1.26034
\(561\) 2.03799e7i 2.73398i
\(562\) 1.72705e7i 2.30656i
\(563\) 3.87178e6i 0.514801i 0.966305 + 0.257400i \(0.0828659\pi\)
−0.966305 + 0.257400i \(0.917134\pi\)
\(564\) −1.34983e7 −1.78683
\(565\) 3.99857e6i 0.526968i
\(566\) −3.36067e6 −0.440945
\(567\) 7.17453e6i 0.937207i
\(568\) 1.58746e6i 0.206458i
\(569\) 9.94208e6i 1.28735i 0.765299 + 0.643675i \(0.222591\pi\)
−0.765299 + 0.643675i \(0.777409\pi\)
\(570\) −4.08404e7 −5.26506
\(571\) −4.17403e6 −0.535754 −0.267877 0.963453i \(-0.586322\pi\)
−0.267877 + 0.963453i \(0.586322\pi\)
\(572\) 1.94635e7i 2.48732i
\(573\) 6.85355e6 0.872025
\(574\) 7.36169e6 0.932606
\(575\) 345518.i 0.0435814i
\(576\) −1.19126e7 −1.49606
\(577\) 3.12854e6i 0.391203i −0.980683 0.195601i \(-0.937334\pi\)
0.980683 0.195601i \(-0.0626659\pi\)
\(578\) −2.82018e6 −0.351121
\(579\) −1.37243e7 −1.70135
\(580\) 1.04892e7 1.29471
\(581\) −6.29507e6 −0.773678
\(582\) −2.10914e7 1.95361e6i −2.58106 0.239073i
\(583\) −2.37629e7 −2.89552
\(584\) −7.96191e6 −0.966018
\(585\) 8.54492e6 1.03233
\(586\) 1.46768e7 1.76558
\(587\) 8.96319e6i 1.07366i 0.843690 + 0.536831i \(0.180379\pi\)
−0.843690 + 0.536831i \(0.819621\pi\)
\(588\) −2.91663e7 −3.47887
\(589\) 1.42426e6i 0.169162i
\(590\) −1.31682e7 −1.55739
\(591\) −9.36685e6 −1.10313
\(592\) 8.70645e6i 1.02103i
\(593\) 3.75344e6 0.438322 0.219161 0.975689i \(-0.429668\pi\)
0.219161 + 0.975689i \(0.429668\pi\)
\(594\) −1.04655e7 −1.21701
\(595\) 1.44749e7i 1.67619i
\(596\) 2.08357e7i 2.40267i
\(597\) 1.94401e7i 2.23235i
\(598\) −7.60391e6 −0.869529
\(599\) 8.77495e6i 0.999258i −0.866240 0.499629i \(-0.833470\pi\)
0.866240 0.499629i \(-0.166530\pi\)
\(600\) −1.43733e6 −0.162996
\(601\) 8.88683e6i 1.00360i 0.864984 + 0.501800i \(0.167329\pi\)
−0.864984 + 0.501800i \(0.832671\pi\)
\(602\) 3.74848e7i 4.21565i
\(603\) 1.43858e7i 1.61117i
\(604\) −1.16860e6 −0.130339
\(605\) 1.59508e7i 1.77171i
\(606\) −4.91228e6 −0.543377
\(607\) 1.63838e7 1.80486 0.902431 0.430834i \(-0.141781\pi\)
0.902431 + 0.430834i \(0.141781\pi\)
\(608\) 3.54365e6i 0.388770i
\(609\) −1.32125e7 −1.44359
\(610\) 9.41627e6i 1.02460i
\(611\) 4.37223e6i 0.473806i
\(612\) 2.53595e7i 2.73692i
\(613\) 3.47067e6 0.373045 0.186523 0.982451i \(-0.440278\pi\)
0.186523 + 0.982451i \(0.440278\pi\)
\(614\) 2.51067e7 2.68763
\(615\) −5.38687e6 −0.574313
\(616\) 3.70084e7i 3.92960i
\(617\) 1.34349e7 1.42077 0.710384 0.703815i \(-0.248521\pi\)
0.710384 + 0.703815i \(0.248521\pi\)
\(618\) 1.55068e7 1.63324
\(619\) 7.89404e6i 0.828081i −0.910258 0.414041i \(-0.864117\pi\)
0.910258 0.414041i \(-0.135883\pi\)
\(620\) 1.65033e6i 0.172421i
\(621\) 2.69821e6i 0.280767i
\(622\) 1.63467e7i 1.69416i
\(623\) 1.00676e7i 1.03922i
\(624\) 9.43845e6i 0.970374i
\(625\) −1.03748e7 −1.06238
\(626\) −1.20101e7 −1.22493
\(627\) 4.82182e7i 4.89827i
\(628\) 2.92821e6i 0.296281i
\(629\) 1.34740e7 1.35791
\(630\) 3.35212e7 3.36487
\(631\) 7.12267e6 0.712146 0.356073 0.934458i \(-0.384115\pi\)
0.356073 + 0.934458i \(0.384115\pi\)
\(632\) 1.11503e7 1.11043
\(633\) 2.66411e7i 2.64267i
\(634\) 1.33449e7i 1.31853i
\(635\) 9.90116e6 0.974432
\(636\) 5.25813e7 5.15452
\(637\) 9.44724e6i 0.922478i
\(638\) 1.87657e7i 1.82521i
\(639\) 1.69763e6i 0.164472i
\(640\) 1.92534e7i 1.85805i
\(641\) 2.03585e7i 1.95704i −0.206149 0.978521i \(-0.566093\pi\)
0.206149 0.978521i \(-0.433907\pi\)
\(642\) 3.08999e7i 2.95882i
\(643\) 401967. 0.0383409 0.0191705 0.999816i \(-0.493897\pi\)
0.0191705 + 0.999816i \(0.493897\pi\)
\(644\) −1.96856e7 −1.87040
\(645\) 2.74293e7i 2.59606i
\(646\) −3.92596e7 −3.70139
\(647\) −9.83652e6 −0.923806 −0.461903 0.886930i \(-0.652833\pi\)
−0.461903 + 0.886930i \(0.652833\pi\)
\(648\) −1.09288e7 −1.02243
\(649\) 1.55471e7i 1.44890i
\(650\) 960531.i 0.0891719i
\(651\) 2.07880e6i 0.192248i
\(652\) 1.02234e7 0.941841
\(653\) 1.05010e6i 0.0963714i 0.998838 + 0.0481857i \(0.0153439\pi\)
−0.998838 + 0.0481857i \(0.984656\pi\)
\(654\) 1.09074e7 0.997189
\(655\) −1.18310e7 −1.07750
\(656\) 3.34607e6i 0.303581i
\(657\) −8.51447e6 −0.769563
\(658\) 1.71520e7i 1.54436i
\(659\) 1.57505e7i 1.41280i 0.707811 + 0.706402i \(0.249683\pi\)
−0.707811 + 0.706402i \(0.750317\pi\)
\(660\) 5.58717e7i 4.99266i
\(661\) 2.03566e7 1.81218 0.906090 0.423085i \(-0.139053\pi\)
0.906090 + 0.423085i \(0.139053\pi\)
\(662\) 3.30847e7i 2.93415i
\(663\) 1.46069e7 1.29055
\(664\) 9.58912e6i 0.844031i
\(665\) 3.42472e7i 3.00310i
\(666\) 3.12035e7i 2.72595i
\(667\) −4.83815e6 −0.421080
\(668\) −1.97355e7 −1.71123
\(669\) 5.69525e6i 0.491980i
\(670\) 2.58060e7 2.22092
\(671\) 1.11173e7 0.953221
\(672\) 5.17219e6i 0.441826i
\(673\) −1.21197e7 −1.03147 −0.515734 0.856749i \(-0.672481\pi\)
−0.515734 + 0.856749i \(0.672481\pi\)
\(674\) 2.10913e7i 1.78835i
\(675\) −340839. −0.0287932
\(676\) 9.10680e6 0.766477
\(677\) −6.84814e6 −0.574250 −0.287125 0.957893i \(-0.592699\pi\)
−0.287125 + 0.957893i \(0.592699\pi\)
\(678\) 1.58292e7 1.32247
\(679\) 1.63822e6 1.76864e7i 0.136363 1.47220i
\(680\) −2.20492e7 −1.82861
\(681\) 2.79149e7 2.30658
\(682\) 2.95251e6 0.243070
\(683\) −8.95904e6 −0.734868 −0.367434 0.930050i \(-0.619764\pi\)
−0.367434 + 0.930050i \(0.619764\pi\)
\(684\) 5.99998e7i 4.90354i
\(685\) −3.63747e6 −0.296192
\(686\) 5.81105e6i 0.471460i
\(687\) −2.07115e7 −1.67425
\(688\) 1.70378e7 1.37228
\(689\) 1.70316e7i 1.36680i
\(690\) 2.18277e7 1.74536
\(691\) −1.08420e7 −0.863806 −0.431903 0.901920i \(-0.642158\pi\)
−0.431903 + 0.901920i \(0.642158\pi\)
\(692\) 1.10143e7i 0.874366i
\(693\) 3.95768e7i 3.13046i
\(694\) 1.44929e7i 1.14224i
\(695\) 1.19890e7 0.941500
\(696\) 2.01263e7i 1.57486i
\(697\) −5.17835e6 −0.403747
\(698\) 2.56051e7i 1.98924i
\(699\) 2.62144e7i 2.02930i
\(700\) 2.48669e6i 0.191813i
\(701\) −2.11068e7 −1.62229 −0.811144 0.584846i \(-0.801155\pi\)
−0.811144 + 0.584846i \(0.801155\pi\)
\(702\) 7.50095e6i 0.574478i
\(703\) 3.18792e7 2.43287
\(704\) 2.52297e7 1.91858
\(705\) 1.25508e7i 0.951043i
\(706\) 1.27573e7 0.963269
\(707\) 4.11924e6i 0.309933i
\(708\) 3.44018e7i 2.57928i
\(709\) 2.58722e7i 1.93294i 0.256780 + 0.966470i \(0.417338\pi\)
−0.256780 + 0.966470i \(0.582662\pi\)
\(710\) −3.04530e6 −0.226717
\(711\) 1.19241e7 0.884611
\(712\) 1.53357e7 1.13372
\(713\) 761214.i 0.0560767i
\(714\) 5.73019e7 4.20653
\(715\) −1.80973e7 −1.32388
\(716\) 8.15313e6i 0.594349i
\(717\) 1.21968e7i 0.886030i
\(718\) 5.17291e6i 0.374476i
\(719\) 1.98306e7i 1.43059i 0.698824 + 0.715293i \(0.253707\pi\)
−0.698824 + 0.715293i \(0.746293\pi\)
\(720\) 1.52362e7i 1.09533i
\(721\) 1.30034e7i 0.931574i
\(722\) −6.88678e7 −4.91669
\(723\) −2.68929e7 −1.91334
\(724\) 4.95415e7i 3.51256i
\(725\) 611158.i 0.0431826i
\(726\) 6.31445e7 4.44625
\(727\) 6.28783e6 0.441230 0.220615 0.975361i \(-0.429194\pi\)
0.220615 + 0.975361i \(0.429194\pi\)
\(728\) −2.65250e7 −1.85493
\(729\) −2.10289e7 −1.46554
\(730\) 1.52737e7i 1.06081i
\(731\) 2.63676e7i 1.82506i
\(732\) −2.45998e7 −1.69689
\(733\) −2.49951e7 −1.71828 −0.859142 0.511738i \(-0.829002\pi\)
−0.859142 + 0.511738i \(0.829002\pi\)
\(734\) 964680.i 0.0660912i
\(735\) 2.71191e7i 1.85164i
\(736\) 1.89395e6i 0.128876i
\(737\) 3.04678e7i 2.06620i
\(738\) 1.19921e7i 0.810504i
\(739\) 2.42965e6i 0.163656i 0.996646 + 0.0818280i \(0.0260758\pi\)
−0.996646 + 0.0818280i \(0.973924\pi\)
\(740\) 3.69392e7 2.47975
\(741\) 3.45595e7 2.31218
\(742\) 6.68138e7i 4.45509i
\(743\) 7.20809e6 0.479014 0.239507 0.970895i \(-0.423014\pi\)
0.239507 + 0.970895i \(0.423014\pi\)
\(744\) −3.16659e6 −0.209729
\(745\) 1.93732e7 1.27883
\(746\) 3.43664e7i 2.26093i
\(747\) 1.02546e7i 0.672385i
\(748\) 5.37090e7i 3.50989i
\(749\) 2.59114e7 1.68766
\(750\) 3.84865e7i 2.49836i
\(751\) 5.54053e6 0.358469 0.179234 0.983806i \(-0.442638\pi\)
0.179234 + 0.983806i \(0.442638\pi\)
\(752\) −7.79599e6 −0.502721
\(753\) 1.44113e7i 0.926223i
\(754\) −1.34499e7 −0.861572
\(755\) 1.08657e6i 0.0693733i
\(756\) 1.94190e7i 1.23573i
\(757\) 632395.i 0.0401096i −0.999799 0.0200548i \(-0.993616\pi\)
0.999799 0.0200548i \(-0.00638407\pi\)
\(758\) −1.91922e7 −1.21326
\(759\) 2.57708e7i 1.62377i
\(760\) −5.21678e7 −3.27619
\(761\) 1.50102e7i 0.939558i 0.882784 + 0.469779i \(0.155666\pi\)
−0.882784 + 0.469779i \(0.844334\pi\)
\(762\) 3.91959e7i 2.44542i
\(763\) 9.14652e6i 0.568781i
\(764\) 1.80618e7 1.11951
\(765\) −2.35795e7 −1.45673
\(766\) 2.87058e6i 0.176766i
\(767\) 1.11431e7 0.683937
\(768\) −4.74507e7 −2.90295
\(769\) 671338.i 0.0409379i −0.999790 0.0204689i \(-0.993484\pi\)
0.999790 0.0204689i \(-0.00651592\pi\)
\(770\) −7.09947e7 −4.31518
\(771\) 1.83130e7i 1.10949i
\(772\) −3.61689e7 −2.18420
\(773\) 1.97585e7 1.18934 0.594669 0.803971i \(-0.297283\pi\)
0.594669 + 0.803971i \(0.297283\pi\)
\(774\) 6.10625e7 3.66372
\(775\) 96157.0 0.00575078
\(776\) −2.69413e7 2.49546e6i −1.60607 0.148763i
\(777\) −4.65298e7 −2.76489
\(778\) 2.31925e6 0.137372
\(779\) −1.22518e7 −0.723365
\(780\) 4.00449e7 2.35674
\(781\) 3.59543e6i 0.210923i
\(782\) 2.09828e7 1.22700
\(783\) 4.77263e6i 0.278198i
\(784\) −1.68451e7 −0.978775
\(785\) −2.72267e6 −0.157696
\(786\) 4.68356e7i 2.70408i
\(787\) −9.54969e6 −0.549607 −0.274804 0.961500i \(-0.588613\pi\)
−0.274804 + 0.961500i \(0.588613\pi\)
\(788\) −2.46853e7 −1.41619
\(789\) 3.84647e7i 2.19973i
\(790\) 2.13901e7i 1.21939i
\(791\) 1.32737e7i 0.754314i
\(792\) −6.02863e7 −3.41512
\(793\) 7.96811e6i 0.449959i
\(794\) −4.88932e7 −2.75231
\(795\) 4.88905e7i 2.74351i
\(796\) 5.12323e7i 2.86590i
\(797\) 1.13269e7i 0.631634i 0.948820 + 0.315817i \(0.102279\pi\)
−0.948820 + 0.315817i \(0.897721\pi\)
\(798\) 1.35575e8 7.53653
\(799\) 1.20650e7i 0.668593i
\(800\) 239245. 0.0132165
\(801\) 1.64000e7 0.903158
\(802\) 643994.i 0.0353546i
\(803\) 1.80328e7 0.986905
\(804\) 6.74177e7i 3.67819i
\(805\) 1.83038e7i 0.995523i
\(806\) 2.11616e6i 0.114739i
\(807\) −3.87622e7 −2.09519
\(808\) −6.27473e6 −0.338117
\(809\) 3.64994e7 1.96072 0.980358 0.197228i \(-0.0631938\pi\)
0.980358 + 0.197228i \(0.0631938\pi\)
\(810\) 2.09651e7i 1.12275i
\(811\) −253235. −0.0135198 −0.00675992 0.999977i \(-0.502152\pi\)
−0.00675992 + 0.999977i \(0.502152\pi\)
\(812\) −3.48202e7 −1.85328
\(813\) 3.12482e7i 1.65806i
\(814\) 6.60860e7i 3.49581i
\(815\) 9.50582e6i 0.501298i
\(816\) 2.60451e7i 1.36931i
\(817\) 6.23849e7i 3.26982i
\(818\) 3.30903e7i 1.72909i
\(819\) −2.83659e7 −1.47770
\(820\) −1.41965e7 −0.737304
\(821\) 4.70020e6i 0.243365i 0.992569 + 0.121683i \(0.0388290\pi\)
−0.992569 + 0.121683i \(0.961171\pi\)
\(822\) 1.43997e7i 0.743316i
\(823\) −2.81815e6 −0.145032 −0.0725161 0.997367i \(-0.523103\pi\)
−0.0725161 + 0.997367i \(0.523103\pi\)
\(824\) 1.98077e7 1.01629
\(825\) 3.25539e6 0.166520
\(826\) 4.37135e7 2.22929
\(827\) 1.21172e7i 0.616082i 0.951373 + 0.308041i \(0.0996734\pi\)
−0.951373 + 0.308041i \(0.900327\pi\)
\(828\) 3.20676e7i 1.62551i
\(829\) −5.73952e6 −0.290061 −0.145030 0.989427i \(-0.546328\pi\)
−0.145030 + 0.989427i \(0.546328\pi\)
\(830\) 1.83952e7 0.926850
\(831\) 3.17986e7i 1.59737i
\(832\) 1.80829e7i 0.905647i
\(833\) 2.60694e7i 1.30172i
\(834\) 4.74609e7i 2.36277i
\(835\) 1.83502e7i 0.910805i
\(836\) 1.27074e8i 6.28841i
\(837\) −750906. −0.0370486
\(838\) 2.31990e7 1.14119
\(839\) 1.82913e7i 0.897096i −0.893759 0.448548i \(-0.851941\pi\)
0.893759 0.448548i \(-0.148059\pi\)
\(840\) 7.61423e7 3.72330
\(841\) 1.19534e7 0.582773
\(842\) −3.95613e7 −1.92305
\(843\) 4.19519e7i 2.03321i
\(844\) 7.02098e7i 3.39267i
\(845\) 8.46757e6i 0.407960i
\(846\) −2.79404e7 −1.34217
\(847\) 5.29504e7i 2.53607i
\(848\) 3.03685e7 1.45022
\(849\) −8.16343e6 −0.388690
\(850\) 2.65056e6i 0.125832i
\(851\) −1.70382e7 −0.806492
\(852\) 7.95579e6i 0.375478i
\(853\) 1.92665e7i 0.906631i −0.891350 0.453316i \(-0.850241\pi\)
0.891350 0.453316i \(-0.149759\pi\)
\(854\) 3.12584e7i 1.46664i
\(855\) −5.57883e7 −2.60992
\(856\) 3.94701e7i 1.84113i
\(857\) 3.12095e7 1.45156 0.725780 0.687927i \(-0.241479\pi\)
0.725780 + 0.687927i \(0.241479\pi\)
\(858\) 7.16422e7i 3.32239i
\(859\) 5.53964e6i 0.256153i 0.991764 + 0.128076i \(0.0408803\pi\)
−0.991764 + 0.128076i \(0.959120\pi\)
\(860\) 7.22869e7i 3.33283i
\(861\) 1.78823e7 0.822085
\(862\) 9.21333e6 0.422327
\(863\) 1.56403e7i 0.714854i −0.933941 0.357427i \(-0.883654\pi\)
0.933941 0.357427i \(-0.116346\pi\)
\(864\) −1.86830e6 −0.0851457
\(865\) −1.02412e7 −0.465384
\(866\) 6.86916e6i 0.311250i
\(867\) −6.85052e6 −0.309511
\(868\) 5.47846e6i 0.246808i
\(869\) −2.52542e7 −1.13444
\(870\) 3.86091e7 1.72939
\(871\) −2.18372e7 −0.975330
\(872\) 1.39327e7 0.620502
\(873\) −2.88110e7 2.66865e6i −1.27945 0.118510i
\(874\) 4.96446e7 2.19833
\(875\) 3.22733e7 1.42503
\(876\) −3.99022e7 −1.75686
\(877\) 9.61848e6 0.422287 0.211143 0.977455i \(-0.432281\pi\)
0.211143 + 0.977455i \(0.432281\pi\)
\(878\) 6.65036e6i 0.291145i
\(879\) 3.56516e7 1.55635
\(880\) 3.22688e7i 1.40468i
\(881\) −3.13390e7 −1.36033 −0.680166 0.733058i \(-0.738092\pi\)
−0.680166 + 0.733058i \(0.738092\pi\)
\(882\) −6.03719e7 −2.61314
\(883\) 2.20929e7i 0.953566i −0.879021 0.476783i \(-0.841803\pi\)
0.879021 0.476783i \(-0.158197\pi\)
\(884\) 3.84949e7 1.65681
\(885\) −3.19871e7 −1.37283
\(886\) 3.37798e7i 1.44568i
\(887\) 3.97008e7i 1.69430i 0.531355 + 0.847149i \(0.321683\pi\)
−0.531355 + 0.847149i \(0.678317\pi\)
\(888\) 7.08776e7i 3.01631i
\(889\) −3.28681e7 −1.39483
\(890\) 2.94192e7i 1.24496i
\(891\) 2.47525e7 1.04454
\(892\) 1.50092e7i 0.631605i
\(893\) 2.85455e7i 1.19787i
\(894\) 7.66931e7i 3.20932i
\(895\) 7.58084e6 0.316344
\(896\) 6.39140e7i 2.65966i
\(897\) −1.84707e7 −0.766483
\(898\) −5.55109e7 −2.29714
\(899\) 1.34645e6i 0.0555636i
\(900\) −4.05080e6 −0.166700
\(901\) 4.69981e7i 1.92871i
\(902\) 2.53982e7i 1.03941i
\(903\) 9.10547e7i 3.71606i
\(904\) 2.02195e7 0.822906
\(905\) −4.60641e7 −1.86957
\(906\) −4.30144e6 −0.174098
\(907\) 2.47665e7i 0.999646i 0.866128 + 0.499823i \(0.166602\pi\)
−0.866128 + 0.499823i \(0.833398\pi\)
\(908\) 7.35666e7 2.96119
\(909\) −6.71020e6 −0.269355
\(910\) 5.08841e7i 2.03694i
\(911\) 1.94358e7i 0.775903i 0.921680 + 0.387951i \(0.126817\pi\)
−0.921680 + 0.387951i \(0.873183\pi\)
\(912\) 6.16220e7i 2.45329i
\(913\) 2.17183e7i 0.862281i
\(914\) 2.35079e7i 0.930781i
\(915\) 2.28731e7i 0.903177i
\(916\) −5.45829e7 −2.14940
\(917\) 3.92745e7 1.54236
\(918\) 2.06986e7i 0.810653i
\(919\) 3.41588e7i 1.33418i −0.744977 0.667090i \(-0.767540\pi\)
0.744977 0.667090i \(-0.232460\pi\)
\(920\) 2.78817e7 1.08605
\(921\) 6.09869e7 2.36912
\(922\) 2.90202e7 1.12428
\(923\) 2.57695e6 0.0995640
\(924\) 1.85473e8i 7.14661i
\(925\) 2.15228e6i 0.0827074i
\(926\) 7.14124e6 0.273682
\(927\) 2.11824e7 0.809608
\(928\) 3.35005e6i 0.127697i
\(929\) 3.53563e7i 1.34409i −0.740511 0.672044i \(-0.765417\pi\)
0.740511 0.672044i \(-0.234583\pi\)
\(930\) 6.07460e6i 0.230309i
\(931\) 6.16793e7i 2.33220i
\(932\) 6.90851e7i 2.60522i
\(933\) 3.97079e7i 1.49339i
\(934\) 2.72224e7 1.02108
\(935\) 4.99390e7 1.86815
\(936\) 4.32090e7i 1.61207i
\(937\) 3.40217e7 1.26592 0.632962 0.774183i \(-0.281839\pi\)
0.632962 + 0.774183i \(0.281839\pi\)
\(938\) −8.56660e7 −3.17908
\(939\) −2.91738e7 −1.07976
\(940\) 3.30764e7i 1.22095i
\(941\) 2.01303e7i 0.741098i 0.928813 + 0.370549i \(0.120831\pi\)
−0.928813 + 0.370549i \(0.879169\pi\)
\(942\) 1.07783e7i 0.395751i
\(943\) 6.54814e6 0.239794
\(944\) 1.98689e7i 0.725676i
\(945\) 1.80559e7 0.657719
\(946\) −1.29325e8 −4.69843
\(947\) 4.07602e6i 0.147694i 0.997270 + 0.0738468i \(0.0235276\pi\)
−0.997270 + 0.0738468i \(0.976472\pi\)
\(948\) 5.58812e7 2.01950
\(949\) 1.29247e7i 0.465859i
\(950\) 6.27114e6i 0.225443i
\(951\) 3.24161e7i 1.16228i
\(952\) 7.31950e7 2.61751
\(953\) 1.86597e7i 0.665539i −0.943008 0.332769i \(-0.892017\pi\)
0.943008 0.332769i \(-0.107983\pi\)
\(954\) 1.08839e8 3.87181
\(955\) 1.67940e7i 0.595862i
\(956\) 3.21434e7i 1.13749i
\(957\) 4.55838e7i 1.60891i
\(958\) −3.09581e7 −1.08983
\(959\) 1.20750e7 0.423976
\(960\) 5.19084e7i 1.81785i
\(961\) −2.84173e7 −0.992600
\(962\) −4.73658e7 −1.65016
\(963\) 4.22094e7i 1.46671i
\(964\) −7.08734e7 −2.45635
\(965\) 3.36301e7i 1.16255i
\(966\) −7.24595e7 −2.49835
\(967\) −3.36773e6 −0.115817 −0.0579084 0.998322i \(-0.518443\pi\)
−0.0579084 + 0.998322i \(0.518443\pi\)
\(968\) 8.06580e7 2.76668
\(969\) −9.53658e7 −3.26275
\(970\) −4.78714e6 + 5.16826e7i −0.163361 + 1.76366i
\(971\) 4.48103e6 0.152521 0.0762606 0.997088i \(-0.475702\pi\)
0.0762606 + 0.997088i \(0.475702\pi\)
\(972\) −7.93899e7 −2.69525
\(973\) −3.97988e7 −1.34768
\(974\) −1.27952e7 −0.432165
\(975\) 2.33323e6i 0.0786044i
\(976\) −1.42077e7 −0.477419
\(977\) 4.64168e7i 1.55575i −0.628421 0.777873i \(-0.716299\pi\)
0.628421 0.777873i \(-0.283701\pi\)
\(978\) 3.76308e7 1.25805
\(979\) −3.47337e7 −1.15823
\(980\) 7.14694e7i 2.37714i
\(981\) 1.48996e7 0.494313
\(982\) −9.31064e6 −0.308107
\(983\) 2.72607e7i 0.899815i −0.893075 0.449907i \(-0.851457\pi\)
0.893075 0.449907i \(-0.148543\pi\)
\(984\) 2.72397e7i 0.896840i
\(985\) 2.29526e7i 0.753774i
\(986\) 3.71147e7 1.21577
\(987\) 4.16640e7i 1.36135i
\(988\) 9.10778e7 2.96838
\(989\) 3.33423e7i 1.08394i
\(990\) 1.15650e8i 3.75022i
\(991\) 2.17415e7i 0.703243i −0.936142 0.351622i \(-0.885630\pi\)
0.936142 0.351622i \(-0.114370\pi\)
\(992\) 527082. 0.0170059
\(993\) 8.03662e7i 2.58643i
\(994\) 1.01092e7 0.324528
\(995\) −4.76361e7 −1.52538
\(996\) 4.80572e7i 1.53501i
\(997\) 1.21628e7 0.387520 0.193760 0.981049i \(-0.437932\pi\)
0.193760 + 0.981049i \(0.437932\pi\)
\(998\) 3.27589e7i 1.04113i
\(999\) 1.68075e7i 0.532831i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 97.6.b.a.96.37 40
97.96 even 2 inner 97.6.b.a.96.38 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
97.6.b.a.96.37 40 1.1 even 1 trivial
97.6.b.a.96.38 yes 40 97.96 even 2 inner