L(s) = 1 | − 2.57·2-s + 15.1·3-s − 25.3·4-s + 24.3i·5-s − 39.0·6-s − 87.8i·7-s + 147.·8-s − 12.8·9-s − 62.6i·10-s + 375.·11-s − 385.·12-s + 791. i·13-s + 225. i·14-s + 369. i·15-s + 433.·16-s − 346. i·17-s + ⋯ |
L(s) = 1 | − 0.454·2-s + 0.973·3-s − 0.793·4-s + 0.435i·5-s − 0.442·6-s − 0.677i·7-s + 0.815·8-s − 0.0528·9-s − 0.197i·10-s + 0.936·11-s − 0.772·12-s + 1.29i·13-s + 0.308i·14-s + 0.423i·15-s + 0.422·16-s − 0.290i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 97 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.507 - 0.861i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 97 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.507 - 0.861i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(1.33437 + 0.762618i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.33437 + 0.762618i\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 97 | \( 1 + (4.70e4 - 7.98e4i)T \) |
good | 2 | \( 1 + 2.57T + 32T^{2} \) |
| 3 | \( 1 - 15.1T + 243T^{2} \) |
| 5 | \( 1 - 24.3iT - 3.12e3T^{2} \) |
| 7 | \( 1 + 87.8iT - 1.68e4T^{2} \) |
| 11 | \( 1 - 375.T + 1.61e5T^{2} \) |
| 13 | \( 1 - 791. iT - 3.71e5T^{2} \) |
| 17 | \( 1 + 346. iT - 1.41e6T^{2} \) |
| 19 | \( 1 - 2.18e3iT - 2.47e6T^{2} \) |
| 23 | \( 1 + 401. iT - 6.43e6T^{2} \) |
| 29 | \( 1 - 8.18e3iT - 2.05e7T^{2} \) |
| 31 | \( 1 - 8.23e3T + 2.86e7T^{2} \) |
| 37 | \( 1 - 4.63e3iT - 6.93e7T^{2} \) |
| 41 | \( 1 - 1.54e4iT - 1.15e8T^{2} \) |
| 43 | \( 1 - 1.00e4T + 1.47e8T^{2} \) |
| 47 | \( 1 + 1.00e3T + 2.29e8T^{2} \) |
| 53 | \( 1 - 1.00e4T + 4.18e8T^{2} \) |
| 59 | \( 1 + 4.35e4iT - 7.14e8T^{2} \) |
| 61 | \( 1 + 4.99e4T + 8.44e8T^{2} \) |
| 67 | \( 1 + 4.57e4iT - 1.35e9T^{2} \) |
| 71 | \( 1 + 5.00e4iT - 1.80e9T^{2} \) |
| 73 | \( 1 + 5.63e4T + 2.07e9T^{2} \) |
| 79 | \( 1 + 7.79e3T + 3.07e9T^{2} \) |
| 83 | \( 1 - 8.73e4iT - 3.93e9T^{2} \) |
| 89 | \( 1 - 1.33e5T + 5.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.59737173044812175011706595436, −12.13423248052373626542839794094, −10.74516453550421086347927622051, −9.607122681778104849671280587692, −8.855752448376269789284041930177, −7.84499557879090373747023835055, −6.59273735348368704003562190927, −4.50146485556698867694965844543, −3.37098724050211422184719082069, −1.40343217868065727357001371667,
0.73203681721398646777752015685, 2.69347615053871269348817149973, 4.25723215038917387752090754867, 5.70935659890865215462906802503, 7.65362423156223472662338898853, 8.754262813103414025255003425693, 9.041733646863258995656360171664, 10.29856296101961397067969993079, 11.85562400282812806513310116204, 13.06206201704111222212206489164