Properties

Label 97.6.b.a.96.18
Level $97$
Weight $6$
Character 97.96
Analytic conductor $15.557$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [97,6,Mod(96,97)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(97, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("97.96"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 97 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 97.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.5572305219\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 96.18
Character \(\chi\) \(=\) 97.96
Dual form 97.6.b.a.96.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.57129 q^{2} +15.1707 q^{3} -25.3885 q^{4} +24.3473i q^{5} -39.0083 q^{6} -87.8859i q^{7} +147.562 q^{8} -12.8494 q^{9} -62.6040i q^{10} +375.650 q^{11} -385.161 q^{12} +791.342i q^{13} +225.980i q^{14} +369.366i q^{15} +433.005 q^{16} -346.318i q^{17} +33.0395 q^{18} +2181.77i q^{19} -618.141i q^{20} -1333.29i q^{21} -965.905 q^{22} -401.963i q^{23} +2238.63 q^{24} +2532.21 q^{25} -2034.77i q^{26} -3881.42 q^{27} +2231.29i q^{28} +8186.13i q^{29} -949.747i q^{30} +8231.63 q^{31} -5835.38 q^{32} +5698.88 q^{33} +890.484i q^{34} +2139.79 q^{35} +326.226 q^{36} +4635.74i q^{37} -5609.97i q^{38} +12005.2i q^{39} +3592.75i q^{40} +15429.3i q^{41} +3428.28i q^{42} +10051.0 q^{43} -9537.18 q^{44} -312.848i q^{45} +1033.56i q^{46} -1002.30 q^{47} +6569.00 q^{48} +9083.07 q^{49} -6511.04 q^{50} -5253.89i q^{51} -20091.0i q^{52} +10085.9 q^{53} +9980.25 q^{54} +9146.07i q^{55} -12968.7i q^{56} +33099.1i q^{57} -21048.9i q^{58} -43554.4i q^{59} -9377.64i q^{60} -49923.9 q^{61} -21165.9 q^{62} +1129.28i q^{63} +1148.28 q^{64} -19267.0 q^{65} -14653.5 q^{66} -45710.3i q^{67} +8792.48i q^{68} -6098.07i q^{69} -5502.01 q^{70} -50043.1i q^{71} -1896.09 q^{72} -56338.0 q^{73} -11919.8i q^{74} +38415.4 q^{75} -55391.9i q^{76} -33014.3i q^{77} -30868.9i q^{78} -7796.78 q^{79} +10542.5i q^{80} -55761.5 q^{81} -39673.2i q^{82} +87350.6i q^{83} +33850.2i q^{84} +8431.91 q^{85} -25844.0 q^{86} +124189. i q^{87} +55431.8 q^{88} +133363. q^{89} +804.423i q^{90} +69547.8 q^{91} +10205.2i q^{92} +124880. q^{93} +2577.21 q^{94} -53120.3 q^{95} -88526.9 q^{96} +(-47035.9 + 79843.4i) q^{97} -23355.2 q^{98} -4826.87 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 2 q^{2} + 40 q^{3} + 638 q^{4} - 130 q^{6} + 180 q^{8} + 3300 q^{9} + 382 q^{11} + 2586 q^{12} + 10174 q^{16} + 4738 q^{18} + 1996 q^{22} - 3102 q^{24} - 25178 q^{25} + 3046 q^{27} + 14796 q^{31}+ \cdots - 562238 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/97\mathbb{Z}\right)^\times\).

\(n\) \(5\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.57129 −0.454544 −0.227272 0.973831i \(-0.572981\pi\)
−0.227272 + 0.973831i \(0.572981\pi\)
\(3\) 15.1707 0.973202 0.486601 0.873624i \(-0.338237\pi\)
0.486601 + 0.873624i \(0.338237\pi\)
\(4\) −25.3885 −0.793390
\(5\) 24.3473i 0.435538i 0.976000 + 0.217769i \(0.0698779\pi\)
−0.976000 + 0.217769i \(0.930122\pi\)
\(6\) −39.0083 −0.442363
\(7\) 87.8859i 0.677913i −0.940802 0.338957i \(-0.889926\pi\)
0.940802 0.338957i \(-0.110074\pi\)
\(8\) 147.562 0.815175
\(9\) −12.8494 −0.0528781
\(10\) 62.6040i 0.197971i
\(11\) 375.650 0.936056 0.468028 0.883714i \(-0.344965\pi\)
0.468028 + 0.883714i \(0.344965\pi\)
\(12\) −385.161 −0.772128
\(13\) 791.342i 1.29869i 0.760494 + 0.649345i \(0.224957\pi\)
−0.760494 + 0.649345i \(0.775043\pi\)
\(14\) 225.980i 0.308142i
\(15\) 369.366i 0.423866i
\(16\) 433.005 0.422857
\(17\) 346.318i 0.290638i −0.989385 0.145319i \(-0.953579\pi\)
0.989385 0.145319i \(-0.0464209\pi\)
\(18\) 33.0395 0.0240355
\(19\) 2181.77i 1.38652i 0.720688 + 0.693259i \(0.243826\pi\)
−0.720688 + 0.693259i \(0.756174\pi\)
\(20\) 618.141i 0.345551i
\(21\) 1333.29i 0.659746i
\(22\) −965.905 −0.425479
\(23\) 401.963i 0.158441i −0.996857 0.0792204i \(-0.974757\pi\)
0.996857 0.0792204i \(-0.0252431\pi\)
\(24\) 2238.63 0.793330
\(25\) 2532.21 0.810307
\(26\) 2034.77i 0.590312i
\(27\) −3881.42 −1.02466
\(28\) 2231.29i 0.537849i
\(29\) 8186.13i 1.80752i 0.428037 + 0.903761i \(0.359205\pi\)
−0.428037 + 0.903761i \(0.640795\pi\)
\(30\) 949.747i 0.192666i
\(31\) 8231.63 1.53844 0.769222 0.638982i \(-0.220644\pi\)
0.769222 + 0.638982i \(0.220644\pi\)
\(32\) −5835.38 −1.00738
\(33\) 5698.88 0.910971
\(34\) 890.484i 0.132108i
\(35\) 2139.79 0.295257
\(36\) 326.226 0.0419530
\(37\) 4635.74i 0.556692i 0.960481 + 0.278346i \(0.0897862\pi\)
−0.960481 + 0.278346i \(0.910214\pi\)
\(38\) 5609.97i 0.630234i
\(39\) 12005.2i 1.26389i
\(40\) 3592.75i 0.355040i
\(41\) 15429.3i 1.43346i 0.697349 + 0.716731i \(0.254363\pi\)
−0.697349 + 0.716731i \(0.745637\pi\)
\(42\) 3428.28i 0.299884i
\(43\) 10051.0 0.828968 0.414484 0.910056i \(-0.363962\pi\)
0.414484 + 0.910056i \(0.363962\pi\)
\(44\) −9537.18 −0.742657
\(45\) 312.848i 0.0230304i
\(46\) 1033.56i 0.0720183i
\(47\) −1002.30 −0.0661843 −0.0330921 0.999452i \(-0.510535\pi\)
−0.0330921 + 0.999452i \(0.510535\pi\)
\(48\) 6569.00 0.411525
\(49\) 9083.07 0.540434
\(50\) −6511.04 −0.368320
\(51\) 5253.89i 0.282850i
\(52\) 20091.0i 1.03037i
\(53\) 10085.9 0.493203 0.246601 0.969117i \(-0.420686\pi\)
0.246601 + 0.969117i \(0.420686\pi\)
\(54\) 9980.25 0.465755
\(55\) 9146.07i 0.407688i
\(56\) 12968.7i 0.552618i
\(57\) 33099.1i 1.34936i
\(58\) 21048.9i 0.821599i
\(59\) 43554.4i 1.62893i −0.580214 0.814464i \(-0.697031\pi\)
0.580214 0.814464i \(-0.302969\pi\)
\(60\) 9377.64i 0.336291i
\(61\) −49923.9 −1.71785 −0.858923 0.512104i \(-0.828866\pi\)
−0.858923 + 0.512104i \(0.828866\pi\)
\(62\) −21165.9 −0.699291
\(63\) 1129.28i 0.0358468i
\(64\) 1148.28 0.0350428
\(65\) −19267.0 −0.565629
\(66\) −14653.5 −0.414077
\(67\) 45710.3i 1.24402i −0.783009 0.622010i \(-0.786316\pi\)
0.783009 0.622010i \(-0.213684\pi\)
\(68\) 8792.48i 0.230589i
\(69\) 6098.07i 0.154195i
\(70\) −5502.01 −0.134207
\(71\) 50043.1i 1.17814i −0.808080 0.589072i \(-0.799493\pi\)
0.808080 0.589072i \(-0.200507\pi\)
\(72\) −1896.09 −0.0431049
\(73\) −56338.0 −1.23736 −0.618678 0.785645i \(-0.712331\pi\)
−0.618678 + 0.785645i \(0.712331\pi\)
\(74\) 11919.8i 0.253041i
\(75\) 38415.4 0.788592
\(76\) 55391.9i 1.10005i
\(77\) 33014.3i 0.634565i
\(78\) 30868.9i 0.574493i
\(79\) −7796.78 −0.140555 −0.0702777 0.997527i \(-0.522389\pi\)
−0.0702777 + 0.997527i \(0.522389\pi\)
\(80\) 10542.5i 0.184170i
\(81\) −55761.5 −0.944326
\(82\) 39673.2i 0.651572i
\(83\) 87350.6i 1.39178i 0.718148 + 0.695890i \(0.244990\pi\)
−0.718148 + 0.695890i \(0.755010\pi\)
\(84\) 33850.2i 0.523436i
\(85\) 8431.91 0.126584
\(86\) −25844.0 −0.376803
\(87\) 124189.i 1.75908i
\(88\) 55431.8 0.763049
\(89\) 133363. 1.78468 0.892340 0.451364i \(-0.149063\pi\)
0.892340 + 0.451364i \(0.149063\pi\)
\(90\) 804.423i 0.0104684i
\(91\) 69547.8 0.880400
\(92\) 10205.2i 0.125705i
\(93\) 124880. 1.49722
\(94\) 2577.21 0.0300837
\(95\) −53120.3 −0.603881
\(96\) −88526.9 −0.980386
\(97\) −47035.9 + 79843.4i −0.507575 + 0.861608i
\(98\) −23355.2 −0.245651
\(99\) −4826.87 −0.0494969
\(100\) −64288.9 −0.642889
\(101\) 74871.0 0.730315 0.365157 0.930946i \(-0.381015\pi\)
0.365157 + 0.930946i \(0.381015\pi\)
\(102\) 13509.3i 0.128568i
\(103\) −56654.4 −0.526187 −0.263094 0.964770i \(-0.584743\pi\)
−0.263094 + 0.964770i \(0.584743\pi\)
\(104\) 116772.i 1.05866i
\(105\) 32462.1 0.287345
\(106\) −25933.8 −0.224182
\(107\) 157509.i 1.32998i −0.746852 0.664991i \(-0.768435\pi\)
0.746852 0.664991i \(-0.231565\pi\)
\(108\) 98543.3 0.812957
\(109\) 12968.0 0.104546 0.0522729 0.998633i \(-0.483353\pi\)
0.0522729 + 0.998633i \(0.483353\pi\)
\(110\) 23517.2i 0.185312i
\(111\) 70327.6i 0.541774i
\(112\) 38055.1i 0.286660i
\(113\) −113394. −0.835400 −0.417700 0.908585i \(-0.637164\pi\)
−0.417700 + 0.908585i \(0.637164\pi\)
\(114\) 85107.3i 0.613345i
\(115\) 9786.72 0.0690069
\(116\) 207833.i 1.43407i
\(117\) 10168.3i 0.0686724i
\(118\) 111991.i 0.740420i
\(119\) −30436.5 −0.197028
\(120\) 54504.5i 0.345525i
\(121\) −19938.1 −0.123800
\(122\) 128369. 0.780837
\(123\) 234073.i 1.39505i
\(124\) −208989. −1.22059
\(125\) 137738.i 0.788457i
\(126\) 2903.71i 0.0162940i
\(127\) 170629.i 0.938736i −0.883003 0.469368i \(-0.844482\pi\)
0.883003 0.469368i \(-0.155518\pi\)
\(128\) 183780. 0.991453
\(129\) 152481. 0.806754
\(130\) 49541.2 0.257103
\(131\) 140568.i 0.715661i 0.933787 + 0.357830i \(0.116483\pi\)
−0.933787 + 0.357830i \(0.883517\pi\)
\(132\) −144686. −0.722755
\(133\) 191747. 0.939939
\(134\) 117535.i 0.565462i
\(135\) 94502.1i 0.446280i
\(136\) 51103.5i 0.236921i
\(137\) 119157.i 0.542399i 0.962523 + 0.271199i \(0.0874203\pi\)
−0.962523 + 0.271199i \(0.912580\pi\)
\(138\) 15679.9i 0.0700883i
\(139\) 367663.i 1.61403i −0.590528 0.807017i \(-0.701080\pi\)
0.590528 0.807017i \(-0.298920\pi\)
\(140\) −54325.9 −0.234254
\(141\) −15205.7 −0.0644107
\(142\) 128675.i 0.535519i
\(143\) 297268.i 1.21565i
\(144\) −5563.85 −0.0223599
\(145\) −199310. −0.787244
\(146\) 144861. 0.562432
\(147\) 137797. 0.525951
\(148\) 117694.i 0.441674i
\(149\) 116429.i 0.429632i 0.976654 + 0.214816i \(0.0689153\pi\)
−0.976654 + 0.214816i \(0.931085\pi\)
\(150\) −98777.2 −0.358450
\(151\) 141257. 0.504158 0.252079 0.967707i \(-0.418886\pi\)
0.252079 + 0.967707i \(0.418886\pi\)
\(152\) 321948.i 1.13025i
\(153\) 4449.97i 0.0153684i
\(154\) 84889.4i 0.288438i
\(155\) 200418.i 0.670051i
\(156\) 304794.i 1.00276i
\(157\) 494407.i 1.60080i 0.599469 + 0.800398i \(0.295378\pi\)
−0.599469 + 0.800398i \(0.704622\pi\)
\(158\) 20047.8 0.0638886
\(159\) 153010. 0.479986
\(160\) 142076.i 0.438753i
\(161\) −35326.9 −0.107409
\(162\) 143379. 0.429238
\(163\) 41646.6 0.122775 0.0613876 0.998114i \(-0.480447\pi\)
0.0613876 + 0.998114i \(0.480447\pi\)
\(164\) 391726.i 1.13729i
\(165\) 138752.i 0.396762i
\(166\) 224604.i 0.632625i
\(167\) 208299. 0.577958 0.288979 0.957335i \(-0.406684\pi\)
0.288979 + 0.957335i \(0.406684\pi\)
\(168\) 196744.i 0.537809i
\(169\) −254929. −0.686598
\(170\) −21680.9 −0.0575380
\(171\) 28034.5i 0.0733165i
\(172\) −255179. −0.657695
\(173\) 675745.i 1.71659i 0.513153 + 0.858297i \(0.328477\pi\)
−0.513153 + 0.858297i \(0.671523\pi\)
\(174\) 319327.i 0.799581i
\(175\) 222545.i 0.549318i
\(176\) 162658. 0.395817
\(177\) 660752.i 1.58528i
\(178\) −342915. −0.811216
\(179\) 23383.5i 0.0545477i 0.999628 + 0.0272739i \(0.00868262\pi\)
−0.999628 + 0.0272739i \(0.991317\pi\)
\(180\) 7942.73i 0.0182721i
\(181\) 559928.i 1.27039i −0.772354 0.635193i \(-0.780921\pi\)
0.772354 0.635193i \(-0.219079\pi\)
\(182\) −178828. −0.400181
\(183\) −757382. −1.67181
\(184\) 59314.7i 0.129157i
\(185\) −112868. −0.242461
\(186\) −321102. −0.680551
\(187\) 130094.i 0.272054i
\(188\) 25447.0 0.0525099
\(189\) 341122.i 0.694633i
\(190\) 136588. 0.274491
\(191\) −441057. −0.874804 −0.437402 0.899266i \(-0.644101\pi\)
−0.437402 + 0.899266i \(0.644101\pi\)
\(192\) 17420.3 0.0341037
\(193\) 539185. 1.04194 0.520972 0.853574i \(-0.325569\pi\)
0.520972 + 0.853574i \(0.325569\pi\)
\(194\) 120943. 205300.i 0.230715 0.391639i
\(195\) −292295. −0.550471
\(196\) −230605. −0.428774
\(197\) 640552. 1.17595 0.587975 0.808879i \(-0.299925\pi\)
0.587975 + 0.808879i \(0.299925\pi\)
\(198\) 12411.3 0.0224985
\(199\) 641223.i 1.14783i −0.818916 0.573913i \(-0.805425\pi\)
0.818916 0.573913i \(-0.194575\pi\)
\(200\) 373659. 0.660542
\(201\) 693459.i 1.21068i
\(202\) −192515. −0.331960
\(203\) 719446. 1.22534
\(204\) 133388.i 0.224410i
\(205\) −375662. −0.624327
\(206\) 145675. 0.239175
\(207\) 5164.98i 0.00837805i
\(208\) 342655.i 0.549160i
\(209\) 819583.i 1.29786i
\(210\) −83469.4 −0.130611
\(211\) 151679.i 0.234541i −0.993100 0.117271i \(-0.962586\pi\)
0.993100 0.117271i \(-0.0374145\pi\)
\(212\) −256066. −0.391302
\(213\) 759190.i 1.14657i
\(214\) 405001.i 0.604535i
\(215\) 244715.i 0.361047i
\(216\) −572751. −0.835279
\(217\) 723444.i 1.04293i
\(218\) −33344.4 −0.0475206
\(219\) −854688. −1.20420
\(220\) 232205.i 0.323455i
\(221\) 274056. 0.377449
\(222\) 180833.i 0.246260i
\(223\) 498802.i 0.671685i 0.941918 + 0.335843i \(0.109021\pi\)
−0.941918 + 0.335843i \(0.890979\pi\)
\(224\) 512848.i 0.682918i
\(225\) −32537.3 −0.0428475
\(226\) 291569. 0.379726
\(227\) −196620. −0.253258 −0.126629 0.991950i \(-0.540416\pi\)
−0.126629 + 0.991950i \(0.540416\pi\)
\(228\) 840334.i 1.07057i
\(229\) 1.25697e6 1.58394 0.791968 0.610563i \(-0.209057\pi\)
0.791968 + 0.610563i \(0.209057\pi\)
\(230\) −25164.5 −0.0313667
\(231\) 500851.i 0.617559i
\(232\) 1.20796e6i 1.47345i
\(233\) 745701.i 0.899860i −0.893064 0.449930i \(-0.851449\pi\)
0.893064 0.449930i \(-0.148551\pi\)
\(234\) 26145.5i 0.0312146i
\(235\) 24403.4i 0.0288258i
\(236\) 1.10578e6i 1.29238i
\(237\) −118283. −0.136789
\(238\) 78261.0 0.0895577
\(239\) 795496.i 0.900831i 0.892819 + 0.450416i \(0.148724\pi\)
−0.892819 + 0.450416i \(0.851276\pi\)
\(240\) 159937.i 0.179235i
\(241\) −1.02665e6 −1.13863 −0.569313 0.822121i \(-0.692791\pi\)
−0.569313 + 0.822121i \(0.692791\pi\)
\(242\) 51266.7 0.0562726
\(243\) 97242.9 0.105643
\(244\) 1.26749e6 1.36292
\(245\) 221148.i 0.235379i
\(246\) 601871.i 0.634111i
\(247\) −1.72653e6 −1.80066
\(248\) 1.21468e6 1.25410
\(249\) 1.32517e6i 1.35448i
\(250\) 354164.i 0.358389i
\(251\) 478147.i 0.479046i −0.970891 0.239523i \(-0.923009\pi\)
0.970891 0.239523i \(-0.0769911\pi\)
\(252\) 28670.7i 0.0284405i
\(253\) 150997.i 0.148309i
\(254\) 438736.i 0.426697i
\(255\) 127918. 0.123192
\(256\) −509296. −0.485702
\(257\) 787316.i 0.743560i −0.928321 0.371780i \(-0.878748\pi\)
0.928321 0.371780i \(-0.121252\pi\)
\(258\) −392072. −0.366705
\(259\) 407417. 0.377389
\(260\) 489161. 0.448764
\(261\) 105187.i 0.0955784i
\(262\) 361440.i 0.325299i
\(263\) 856552.i 0.763598i 0.924245 + 0.381799i \(0.124695\pi\)
−0.924245 + 0.381799i \(0.875305\pi\)
\(264\) 840940. 0.742601
\(265\) 245565.i 0.214808i
\(266\) −493037. −0.427244
\(267\) 2.02321e6 1.73685
\(268\) 1.16052e6i 0.986993i
\(269\) −1.99953e6 −1.68480 −0.842399 0.538854i \(-0.818857\pi\)
−0.842399 + 0.538854i \(0.818857\pi\)
\(270\) 242992.i 0.202854i
\(271\) 592998.i 0.490490i 0.969461 + 0.245245i \(0.0788684\pi\)
−0.969461 + 0.245245i \(0.921132\pi\)
\(272\) 149958.i 0.122898i
\(273\) 1.05509e6 0.856807
\(274\) 306388.i 0.246544i
\(275\) 951224. 0.758492
\(276\) 154821.i 0.122337i
\(277\) 1.28291e6i 1.00461i −0.864691 0.502305i \(-0.832486\pi\)
0.864691 0.502305i \(-0.167514\pi\)
\(278\) 945368.i 0.733650i
\(279\) −105771. −0.0813501
\(280\) 315752. 0.240686
\(281\) 630665.i 0.476467i 0.971208 + 0.238233i \(0.0765683\pi\)
−0.971208 + 0.238233i \(0.923432\pi\)
\(282\) 39098.2 0.0292775
\(283\) −565144. −0.419462 −0.209731 0.977759i \(-0.567259\pi\)
−0.209731 + 0.977759i \(0.567259\pi\)
\(284\) 1.27052e6i 0.934727i
\(285\) −805873. −0.587698
\(286\) 764361.i 0.552565i
\(287\) 1.35602e6 0.971764
\(288\) 74981.1 0.0532685
\(289\) 1.29992e6 0.915529
\(290\) 512484. 0.357837
\(291\) −713568. + 1.21128e6i −0.493973 + 0.838518i
\(292\) 1.43034e6 0.981705
\(293\) −1.17160e6 −0.797281 −0.398641 0.917107i \(-0.630518\pi\)
−0.398641 + 0.917107i \(0.630518\pi\)
\(294\) −354315. −0.239068
\(295\) 1.06043e6 0.709460
\(296\) 684062.i 0.453801i
\(297\) −1.45805e6 −0.959141
\(298\) 299374.i 0.195287i
\(299\) 318090. 0.205765
\(300\) −975309. −0.625661
\(301\) 883341.i 0.561969i
\(302\) −363212. −0.229162
\(303\) 1.13585e6 0.710744
\(304\) 944719.i 0.586299i
\(305\) 1.21551e6i 0.748187i
\(306\) 11442.2i 0.00698562i
\(307\) −554500. −0.335781 −0.167890 0.985806i \(-0.553695\pi\)
−0.167890 + 0.985806i \(0.553695\pi\)
\(308\) 838183.i 0.503457i
\(309\) −859487. −0.512087
\(310\) 515333.i 0.304568i
\(311\) 1.14535e6i 0.671489i 0.941953 + 0.335744i \(0.108988\pi\)
−0.941953 + 0.335744i \(0.891012\pi\)
\(312\) 1.77152e6i 1.03029i
\(313\) −2.50494e6 −1.44523 −0.722616 0.691250i \(-0.757060\pi\)
−0.722616 + 0.691250i \(0.757060\pi\)
\(314\) 1.27126e6i 0.727632i
\(315\) −27494.9 −0.0156126
\(316\) 197948. 0.111515
\(317\) 2.90194e6i 1.62196i −0.585073 0.810981i \(-0.698934\pi\)
0.585073 0.810981i \(-0.301066\pi\)
\(318\) −393434. −0.218175
\(319\) 3.07512e6i 1.69194i
\(320\) 27957.6i 0.0152625i
\(321\) 2.38952e6i 1.29434i
\(322\) 90835.7 0.0488222
\(323\) 755587. 0.402975
\(324\) 1.41570e6 0.749218
\(325\) 2.00384e6i 1.05234i
\(326\) −107085. −0.0558067
\(327\) 196734. 0.101744
\(328\) 2.27678e6i 1.16852i
\(329\) 88088.4i 0.0448672i
\(330\) 356773.i 0.180346i
\(331\) 770810.i 0.386703i −0.981130 0.193351i \(-0.938064\pi\)
0.981130 0.193351i \(-0.0619358\pi\)
\(332\) 2.21770e6i 1.10422i
\(333\) 59566.5i 0.0294369i
\(334\) −535597. −0.262707
\(335\) 1.11292e6 0.541818
\(336\) 577323.i 0.278978i
\(337\) 34775.1i 0.0166799i 0.999965 + 0.00833994i \(0.00265472\pi\)
−0.999965 + 0.00833994i \(0.997345\pi\)
\(338\) 655496. 0.312089
\(339\) −1.72027e6 −0.813013
\(340\) −214073. −0.100430
\(341\) 3.09221e6 1.44007
\(342\) 72084.7i 0.0333256i
\(343\) 2.27537e6i 1.04428i
\(344\) 1.48315e6 0.675754
\(345\) 148472. 0.0671577
\(346\) 1.73754e6i 0.780268i
\(347\) 210053.i 0.0936496i 0.998903 + 0.0468248i \(0.0149103\pi\)
−0.998903 + 0.0468248i \(0.985090\pi\)
\(348\) 3.15298e6i 1.39564i
\(349\) 591507.i 0.259954i −0.991517 0.129977i \(-0.958510\pi\)
0.991517 0.129977i \(-0.0414903\pi\)
\(350\) 572229.i 0.249689i
\(351\) 3.07153e6i 1.33072i
\(352\) −2.19206e6 −0.942965
\(353\) −2.37565e6 −1.01472 −0.507360 0.861734i \(-0.669379\pi\)
−0.507360 + 0.861734i \(0.669379\pi\)
\(354\) 1.69898e6i 0.720578i
\(355\) 1.21842e6 0.513126
\(356\) −3.38588e6 −1.41595
\(357\) −461743. −0.191748
\(358\) 60125.7i 0.0247944i
\(359\) 414310.i 0.169664i 0.996395 + 0.0848320i \(0.0270353\pi\)
−0.996395 + 0.0848320i \(0.972965\pi\)
\(360\) 46164.6i 0.0187738i
\(361\) −2.28404e6 −0.922433
\(362\) 1.43974e6i 0.577446i
\(363\) −302475. −0.120482
\(364\) −1.76571e6 −0.698500
\(365\) 1.37168e6i 0.538915i
\(366\) 1.94745e6 0.759912
\(367\) 4.62883e6i 1.79393i −0.442100 0.896966i \(-0.645766\pi\)
0.442100 0.896966i \(-0.354234\pi\)
\(368\) 174052.i 0.0669977i
\(369\) 198257.i 0.0757989i
\(370\) 290216. 0.110209
\(371\) 886409.i 0.334349i
\(372\) −3.17051e6 −1.18788
\(373\) 1.62371e6i 0.604277i −0.953264 0.302139i \(-0.902299\pi\)
0.953264 0.302139i \(-0.0977005\pi\)
\(374\) 334510.i 0.123660i
\(375\) 2.08958e6i 0.767328i
\(376\) −147902. −0.0539518
\(377\) −6.47803e6 −2.34741
\(378\) 877124.i 0.315741i
\(379\) −377022. −0.134825 −0.0674123 0.997725i \(-0.521474\pi\)
−0.0674123 + 0.997725i \(0.521474\pi\)
\(380\) 1.34864e6 0.479113
\(381\) 2.58856e6i 0.913579i
\(382\) 1.13408e6 0.397637
\(383\) 2.66711e6i 0.929060i 0.885557 + 0.464530i \(0.153777\pi\)
−0.885557 + 0.464530i \(0.846223\pi\)
\(384\) 2.78807e6 0.964884
\(385\) 803810. 0.276377
\(386\) −1.38640e6 −0.473610
\(387\) −129149. −0.0438343
\(388\) 1.19417e6 2.02710e6i 0.402705 0.683591i
\(389\) 3.14086e6 1.05239 0.526193 0.850365i \(-0.323619\pi\)
0.526193 + 0.850365i \(0.323619\pi\)
\(390\) 751575. 0.250213
\(391\) −139207. −0.0460489
\(392\) 1.34032e6 0.440548
\(393\) 2.13251e6i 0.696482i
\(394\) −1.64705e6 −0.534521
\(395\) 189831.i 0.0612172i
\(396\) 122547. 0.0392703
\(397\) 294384. 0.0937428 0.0468714 0.998901i \(-0.485075\pi\)
0.0468714 + 0.998901i \(0.485075\pi\)
\(398\) 1.64877e6i 0.521738i
\(399\) 2.90894e6 0.914751
\(400\) 1.09646e6 0.342644
\(401\) 2.41035e6i 0.748549i 0.927318 + 0.374274i \(0.122108\pi\)
−0.927318 + 0.374274i \(0.877892\pi\)
\(402\) 1.78308e6i 0.550309i
\(403\) 6.51403e6i 1.99796i
\(404\) −1.90086e6 −0.579424
\(405\) 1.35764e6i 0.411290i
\(406\) −1.84990e6 −0.556973
\(407\) 1.74142e6i 0.521095i
\(408\) 775277.i 0.230572i
\(409\) 4.55688e6i 1.34697i −0.739200 0.673487i \(-0.764796\pi\)
0.739200 0.673487i \(-0.235204\pi\)
\(410\) 965936. 0.283784
\(411\) 1.80770e6i 0.527864i
\(412\) 1.43837e6 0.417472
\(413\) −3.82782e6 −1.10427
\(414\) 13280.7i 0.00380819i
\(415\) −2.12675e6 −0.606173
\(416\) 4.61778e6i 1.30828i
\(417\) 5.57771e6i 1.57078i
\(418\) 2.10739e6i 0.589934i
\(419\) 362869. 0.100975 0.0504877 0.998725i \(-0.483922\pi\)
0.0504877 + 0.998725i \(0.483922\pi\)
\(420\) −824162. −0.227976
\(421\) 4.21847e6 1.15998 0.579989 0.814624i \(-0.303057\pi\)
0.579989 + 0.814624i \(0.303057\pi\)
\(422\) 390010.i 0.106609i
\(423\) 12879.0 0.00349970
\(424\) 1.48830e6 0.402046
\(425\) 876949.i 0.235506i
\(426\) 1.95210e6i 0.521168i
\(427\) 4.38761e6i 1.16455i
\(428\) 3.99891e6i 1.05519i
\(429\) 4.50976e6i 1.18307i
\(430\) 629233.i 0.164112i
\(431\) 6.16266e6 1.59799 0.798997 0.601336i \(-0.205365\pi\)
0.798997 + 0.601336i \(0.205365\pi\)
\(432\) −1.68067e6 −0.433286
\(433\) 6.66190e6i 1.70757i −0.520626 0.853785i \(-0.674302\pi\)
0.520626 0.853785i \(-0.325698\pi\)
\(434\) 1.86019e6i 0.474059i
\(435\) −3.02368e6 −0.766148
\(436\) −329237. −0.0829455
\(437\) 876993. 0.219681
\(438\) 2.19765e6 0.547360
\(439\) 835315.i 0.206866i 0.994636 + 0.103433i \(0.0329827\pi\)
−0.994636 + 0.103433i \(0.967017\pi\)
\(440\) 1.34962e6i 0.332337i
\(441\) −116712. −0.0285771
\(442\) −704677. −0.171567
\(443\) 674670.i 0.163336i −0.996660 0.0816680i \(-0.973975\pi\)
0.996660 0.0816680i \(-0.0260247\pi\)
\(444\) 1.78551e6i 0.429838i
\(445\) 3.24703e6i 0.777296i
\(446\) 1.28256e6i 0.305311i
\(447\) 1.76632e6i 0.418119i
\(448\) 100918.i 0.0237560i
\(449\) 2.57200e6 0.602081 0.301041 0.953611i \(-0.402666\pi\)
0.301041 + 0.953611i \(0.402666\pi\)
\(450\) 83662.9 0.0194761
\(451\) 5.79601e6i 1.34180i
\(452\) 2.87890e6 0.662798
\(453\) 2.14296e6 0.490647
\(454\) 505568. 0.115117
\(455\) 1.69330e6i 0.383447i
\(456\) 4.88418e6i 1.09997i
\(457\) 28944.3i 0.00648294i 0.999995 + 0.00324147i \(0.00103179\pi\)
−0.999995 + 0.00324147i \(0.998968\pi\)
\(458\) −3.23204e6 −0.719968
\(459\) 1.34420e6i 0.297806i
\(460\) −248470. −0.0547494
\(461\) −1.79846e6 −0.394138 −0.197069 0.980390i \(-0.563142\pi\)
−0.197069 + 0.980390i \(0.563142\pi\)
\(462\) 1.28783e6i 0.280708i
\(463\) 2.99972e6 0.650321 0.325160 0.945659i \(-0.394582\pi\)
0.325160 + 0.945659i \(0.394582\pi\)
\(464\) 3.54464e6i 0.764323i
\(465\) 3.04049e6i 0.652095i
\(466\) 1.91741e6i 0.409026i
\(467\) 6.20467e6 1.31652 0.658258 0.752792i \(-0.271294\pi\)
0.658258 + 0.752792i \(0.271294\pi\)
\(468\) 258157.i 0.0544839i
\(469\) −4.01729e6 −0.843338
\(470\) 62748.2i 0.0131026i
\(471\) 7.50051e6i 1.55790i
\(472\) 6.42699e6i 1.32786i
\(473\) 3.77566e6 0.775961
\(474\) 304139. 0.0621765
\(475\) 5.52470e6i 1.12351i
\(476\) 772735. 0.156320
\(477\) −129598. −0.0260796
\(478\) 2.04545e6i 0.409468i
\(479\) 1.94514e6 0.387357 0.193678 0.981065i \(-0.437958\pi\)
0.193678 + 0.981065i \(0.437958\pi\)
\(480\) 2.15539e6i 0.426995i
\(481\) −3.66846e6 −0.722971
\(482\) 2.63982e6 0.517556
\(483\) −535934. −0.104531
\(484\) 506198. 0.0982216
\(485\) −1.94397e6 1.14520e6i −0.375263 0.221068i
\(486\) −250040. −0.0480196
\(487\) −8.31786e6 −1.58924 −0.794620 0.607107i \(-0.792330\pi\)
−0.794620 + 0.607107i \(0.792330\pi\)
\(488\) −7.36690e6 −1.40034
\(489\) 631808. 0.119485
\(490\) 568636.i 0.106990i
\(491\) 2.87535e6 0.538254 0.269127 0.963105i \(-0.413265\pi\)
0.269127 + 0.963105i \(0.413265\pi\)
\(492\) 5.94277e6i 1.10682i
\(493\) 2.83500e6 0.525335
\(494\) 4.43941e6 0.818479
\(495\) 117521.i 0.0215578i
\(496\) 3.56434e6 0.650541
\(497\) −4.39808e6 −0.798680
\(498\) 3.40740e6i 0.615672i
\(499\) 1.09463e7i 1.96796i −0.178281 0.983980i \(-0.557054\pi\)
0.178281 0.983980i \(-0.442946\pi\)
\(500\) 3.49695e6i 0.625554i
\(501\) 3.16005e6 0.562470
\(502\) 1.22946e6i 0.217748i
\(503\) 7.70213e6 1.35735 0.678674 0.734440i \(-0.262555\pi\)
0.678674 + 0.734440i \(0.262555\pi\)
\(504\) 166639.i 0.0292214i
\(505\) 1.82291e6i 0.318080i
\(506\) 388258.i 0.0674131i
\(507\) −3.86745e6 −0.668198
\(508\) 4.33201e6i 0.744783i
\(509\) −754034. −0.129002 −0.0645010 0.997918i \(-0.520546\pi\)
−0.0645010 + 0.997918i \(0.520546\pi\)
\(510\) −328915. −0.0559961
\(511\) 4.95132e6i 0.838819i
\(512\) −4.57140e6 −0.770680
\(513\) 8.46837e6i 1.42071i
\(514\) 2.02442e6i 0.337981i
\(515\) 1.37938e6i 0.229175i
\(516\) −3.87125e6 −0.640070
\(517\) −376515. −0.0619522
\(518\) −1.04759e6 −0.171540
\(519\) 1.02515e7i 1.67059i
\(520\) −2.84309e6 −0.461087
\(521\) −1.49212e6 −0.240829 −0.120414 0.992724i \(-0.538422\pi\)
−0.120414 + 0.992724i \(0.538422\pi\)
\(522\) 270466.i 0.0434446i
\(523\) 5.49797e6i 0.878918i −0.898263 0.439459i \(-0.855170\pi\)
0.898263 0.439459i \(-0.144830\pi\)
\(524\) 3.56880e6i 0.567798i
\(525\) 3.37617e6i 0.534597i
\(526\) 2.20244e6i 0.347089i
\(527\) 2.85076e6i 0.447131i
\(528\) 2.46764e6 0.385210
\(529\) 6.27477e6 0.974897
\(530\) 631418.i 0.0976399i
\(531\) 559648.i 0.0861347i
\(532\) −4.86817e6 −0.745738
\(533\) −1.22098e7 −1.86162
\(534\) −5.20226e6 −0.789477
\(535\) 3.83492e6 0.579257
\(536\) 6.74513e6i 1.01409i
\(537\) 354744.i 0.0530860i
\(538\) 5.14138e6 0.765815
\(539\) 3.41205e6 0.505876
\(540\) 2.39926e6i 0.354074i
\(541\) 667061.i 0.0979878i 0.998799 + 0.0489939i \(0.0156015\pi\)
−0.998799 + 0.0489939i \(0.984399\pi\)
\(542\) 1.52477e6i 0.222949i
\(543\) 8.49450e6i 1.23634i
\(544\) 2.02090e6i 0.292784i
\(545\) 315736.i 0.0455336i
\(546\) −2.71294e6 −0.389456
\(547\) 1.25496e7 1.79333 0.896665 0.442710i \(-0.145983\pi\)
0.896665 + 0.442710i \(0.145983\pi\)
\(548\) 3.02522e6i 0.430334i
\(549\) 641492. 0.0908365
\(550\) −2.44587e6 −0.344768
\(551\) −1.78603e7 −2.50616
\(552\) 899846.i 0.125696i
\(553\) 685227.i 0.0952843i
\(554\) 3.29874e6i 0.456639i
\(555\) −1.71229e6 −0.235963
\(556\) 9.33440e6i 1.28056i
\(557\) 4.51817e6 0.617056 0.308528 0.951215i \(-0.400164\pi\)
0.308528 + 0.951215i \(0.400164\pi\)
\(558\) 271969. 0.0369772
\(559\) 7.95377e6i 1.07657i
\(560\) 926538. 0.124851
\(561\) 1.97362e6i 0.264763i
\(562\) 1.62162e6i 0.216575i
\(563\) 530832.i 0.0705807i −0.999377 0.0352903i \(-0.988764\pi\)
0.999377 0.0352903i \(-0.0112356\pi\)
\(564\) 386049. 0.0511028
\(565\) 2.76084e6i 0.363849i
\(566\) 1.45315e6 0.190664
\(567\) 4.90065e6i 0.640171i
\(568\) 7.38448e6i 0.960393i
\(569\) 1.18565e6i 0.153524i 0.997049 + 0.0767618i \(0.0244581\pi\)
−0.997049 + 0.0767618i \(0.975542\pi\)
\(570\) 2.07213e6 0.267135
\(571\) 4.80573e6 0.616835 0.308417 0.951251i \(-0.400201\pi\)
0.308417 + 0.951251i \(0.400201\pi\)
\(572\) 7.54717e6i 0.964481i
\(573\) −6.69114e6 −0.851361
\(574\) −3.48671e6 −0.441709
\(575\) 1.01785e6i 0.128386i
\(576\) −14754.7 −0.00185300
\(577\) 244609.i 0.0305867i −0.999883 0.0152933i \(-0.995132\pi\)
0.999883 0.0152933i \(-0.00486821\pi\)
\(578\) −3.34247e6 −0.416149
\(579\) 8.17983e6 1.01402
\(580\) 5.06018e6 0.624592
\(581\) 7.67689e6 0.943506
\(582\) 1.83479e6 3.11455e6i 0.224533 0.381143i
\(583\) 3.78877e6 0.461665
\(584\) −8.31337e6 −1.00866
\(585\) 247570. 0.0299094
\(586\) 3.01253e6 0.362400
\(587\) 7.47122e6i 0.894945i 0.894298 + 0.447473i \(0.147676\pi\)
−0.894298 + 0.447473i \(0.852324\pi\)
\(588\) −3.49845e6 −0.417284
\(589\) 1.79596e7i 2.13308i
\(590\) −2.72668e6 −0.322481
\(591\) 9.71764e6 1.14444
\(592\) 2.00730e6i 0.235401i
\(593\) −1.14284e7 −1.33459 −0.667294 0.744794i \(-0.732548\pi\)
−0.667294 + 0.744794i \(0.732548\pi\)
\(594\) 3.74908e6 0.435972
\(595\) 741046.i 0.0858129i
\(596\) 2.95597e6i 0.340866i
\(597\) 9.72781e6i 1.11707i
\(598\) −817902. −0.0935295
\(599\) 1.36625e7i 1.55584i 0.628366 + 0.777918i \(0.283724\pi\)
−0.628366 + 0.777918i \(0.716276\pi\)
\(600\) 5.66867e6 0.642840
\(601\) 5.07797e6i 0.573461i −0.958011 0.286730i \(-0.907432\pi\)
0.958011 0.286730i \(-0.0925684\pi\)
\(602\) 2.27133e6i 0.255440i
\(603\) 587350.i 0.0657815i
\(604\) −3.58629e6 −0.399993
\(605\) 485439.i 0.0539196i
\(606\) −2.92059e6 −0.323064
\(607\) −1.66710e7 −1.83649 −0.918246 0.396010i \(-0.870395\pi\)
−0.918246 + 0.396010i \(0.870395\pi\)
\(608\) 1.27315e7i 1.39675i
\(609\) 1.09145e7 1.19251
\(610\) 3.12544e6i 0.340084i
\(611\) 793165.i 0.0859529i
\(612\) 112978.i 0.0121931i
\(613\) −1.76021e7 −1.89196 −0.945982 0.324220i \(-0.894898\pi\)
−0.945982 + 0.324220i \(0.894898\pi\)
\(614\) 1.42578e6 0.152627
\(615\) −5.69906e6 −0.607597
\(616\) 4.87167e6i 0.517281i
\(617\) −2.07301e6 −0.219224 −0.109612 0.993974i \(-0.534961\pi\)
−0.109612 + 0.993974i \(0.534961\pi\)
\(618\) 2.20999e6 0.232766
\(619\) 9.22938e6i 0.968158i −0.875024 0.484079i \(-0.839155\pi\)
0.875024 0.484079i \(-0.160845\pi\)
\(620\) 5.08831e6i 0.531611i
\(621\) 1.56019e6i 0.162348i
\(622\) 2.94504e6i 0.305221i
\(623\) 1.17207e7i 1.20986i
\(624\) 5.19832e6i 0.534444i
\(625\) 4.55961e6 0.466904
\(626\) 6.44094e6 0.656921
\(627\) 1.24337e7i 1.26308i
\(628\) 1.25522e7i 1.27005i
\(629\) 1.60544e6 0.161796
\(630\) 70697.5 0.00709663
\(631\) 7.80444e6 0.780312 0.390156 0.920749i \(-0.372421\pi\)
0.390156 + 0.920749i \(0.372421\pi\)
\(632\) −1.15051e6 −0.114577
\(633\) 2.30108e6i 0.228256i
\(634\) 7.46173e6i 0.737253i
\(635\) 4.15435e6 0.408855
\(636\) −3.88470e6 −0.380816
\(637\) 7.18781e6i 0.701856i
\(638\) 7.90702e6i 0.769062i
\(639\) 643023.i 0.0622981i
\(640\) 4.47454e6i 0.431815i
\(641\) 4.09193e6i 0.393354i −0.980468 0.196677i \(-0.936985\pi\)
0.980468 0.196677i \(-0.0630150\pi\)
\(642\) 6.14415e6i 0.588335i
\(643\) 3.02431e6 0.288469 0.144235 0.989544i \(-0.453928\pi\)
0.144235 + 0.989544i \(0.453928\pi\)
\(644\) 896896. 0.0852172
\(645\) 3.71250e6i 0.351372i
\(646\) −1.94283e6 −0.183170
\(647\) −9.25208e6 −0.868918 −0.434459 0.900692i \(-0.643060\pi\)
−0.434459 + 0.900692i \(0.643060\pi\)
\(648\) −8.22830e6 −0.769791
\(649\) 1.63612e7i 1.52477i
\(650\) 5.15246e6i 0.478334i
\(651\) 1.09752e7i 1.01498i
\(652\) −1.05734e6 −0.0974085
\(653\) 6.50852e6i 0.597310i −0.954361 0.298655i \(-0.903462\pi\)
0.954361 0.298655i \(-0.0965379\pi\)
\(654\) −505859. −0.0462472
\(655\) −3.42244e6 −0.311697
\(656\) 6.68097e6i 0.606149i
\(657\) 723909. 0.0654290
\(658\) 226501.i 0.0203941i
\(659\) 8.25644e6i 0.740593i −0.928914 0.370296i \(-0.879256\pi\)
0.928914 0.370296i \(-0.120744\pi\)
\(660\) 3.52271e6i 0.314787i
\(661\) 1.52658e7 1.35899 0.679495 0.733680i \(-0.262199\pi\)
0.679495 + 0.733680i \(0.262199\pi\)
\(662\) 1.98198e6i 0.175774i
\(663\) 4.15762e6 0.367334
\(664\) 1.28897e7i 1.13454i
\(665\) 4.66853e6i 0.409379i
\(666\) 153163.i 0.0133803i
\(667\) 3.29052e6 0.286385
\(668\) −5.28840e6 −0.458546
\(669\) 7.56718e6i 0.653685i
\(670\) −2.86165e6 −0.246280
\(671\) −1.87539e7 −1.60800
\(672\) 7.78026e6i 0.664617i
\(673\) −1.03502e7 −0.880872 −0.440436 0.897784i \(-0.645176\pi\)
−0.440436 + 0.897784i \(0.645176\pi\)
\(674\) 89416.8i 0.00758175i
\(675\) −9.82856e6 −0.830291
\(676\) 6.47225e6 0.544739
\(677\) 1.98761e7 1.66671 0.833354 0.552740i \(-0.186418\pi\)
0.833354 + 0.552740i \(0.186418\pi\)
\(678\) 4.42332e6 0.369550
\(679\) 7.01711e6 + 4.13379e6i 0.584095 + 0.344092i
\(680\) 1.24423e6 0.103188
\(681\) −2.98287e6 −0.246471
\(682\) −7.95097e6 −0.654575
\(683\) −4.85855e6 −0.398525 −0.199262 0.979946i \(-0.563855\pi\)
−0.199262 + 0.979946i \(0.563855\pi\)
\(684\) 711752.i 0.0581686i
\(685\) −2.90116e6 −0.236235
\(686\) 5.85064e6i 0.474672i
\(687\) 1.90692e7 1.54149
\(688\) 4.35213e6 0.350535
\(689\) 7.98140e6i 0.640518i
\(690\) −381764. −0.0305261
\(691\) 1.13296e6 0.0902651 0.0451325 0.998981i \(-0.485629\pi\)
0.0451325 + 0.998981i \(0.485629\pi\)
\(692\) 1.71561e7i 1.36193i
\(693\) 424214.i 0.0335546i
\(694\) 540108.i 0.0425679i
\(695\) 8.95160e6 0.702973
\(696\) 1.83257e7i 1.43396i
\(697\) 5.34344e6 0.416619
\(698\) 1.52094e6i 0.118161i
\(699\) 1.13128e7i 0.875745i
\(700\) 5.65009e6i 0.435823i
\(701\) 4.74384e6 0.364616 0.182308 0.983242i \(-0.441643\pi\)
0.182308 + 0.983242i \(0.441643\pi\)
\(702\) 7.89779e6i 0.604871i
\(703\) −1.01141e7 −0.771864
\(704\) 431352. 0.0328020
\(705\) 370217.i 0.0280533i
\(706\) 6.10849e6 0.461235
\(707\) 6.58010e6i 0.495090i
\(708\) 1.67755e7i 1.25774i
\(709\) 1.60442e7i 1.19868i 0.800494 + 0.599340i \(0.204570\pi\)
−0.800494 + 0.599340i \(0.795430\pi\)
\(710\) −3.13290e6 −0.233239
\(711\) 100184. 0.00743231
\(712\) 1.96794e7 1.45483
\(713\) 3.30881e6i 0.243752i
\(714\) 1.18728e6 0.0871577
\(715\) −7.23766e6 −0.529460
\(716\) 593671.i 0.0432776i
\(717\) 1.20682e7i 0.876691i
\(718\) 1.06531e6i 0.0771198i
\(719\) 4.64749e6i 0.335271i 0.985849 + 0.167636i \(0.0536132\pi\)
−0.985849 + 0.167636i \(0.946387\pi\)
\(720\) 135465.i 0.00973858i
\(721\) 4.97912e6i 0.356709i
\(722\) 5.87292e6 0.419286
\(723\) −1.55751e7 −1.10811
\(724\) 1.42157e7i 1.00791i
\(725\) 2.07290e7i 1.46465i
\(726\) 777752. 0.0547646
\(727\) 4.87644e6 0.342190 0.171095 0.985255i \(-0.445270\pi\)
0.171095 + 0.985255i \(0.445270\pi\)
\(728\) 1.02626e7 0.717680
\(729\) 1.50253e7 1.04714
\(730\) 3.52698e6i 0.244961i
\(731\) 3.48084e6i 0.240930i
\(732\) 1.92288e7 1.32640
\(733\) −6.62004e6 −0.455093 −0.227547 0.973767i \(-0.573070\pi\)
−0.227547 + 0.973767i \(0.573070\pi\)
\(734\) 1.19021e7i 0.815421i
\(735\) 3.35498e6i 0.229072i
\(736\) 2.34561e6i 0.159610i
\(737\) 1.71711e7i 1.16447i
\(738\) 509776.i 0.0344539i
\(739\) 1.30312e7i 0.877753i 0.898547 + 0.438877i \(0.144623\pi\)
−0.898547 + 0.438877i \(0.855377\pi\)
\(740\) 2.86554e6 0.192366
\(741\) −2.61927e7 −1.75240
\(742\) 2.27922e6i 0.151976i
\(743\) 3.14891e6 0.209261 0.104630 0.994511i \(-0.466634\pi\)
0.104630 + 0.994511i \(0.466634\pi\)
\(744\) 1.84276e7 1.22049
\(745\) −2.83474e6 −0.187121
\(746\) 4.17503e6i 0.274671i
\(747\) 1.12240e6i 0.0735947i
\(748\) 3.30290e6i 0.215844i
\(749\) −1.38428e7 −0.901612
\(750\) 5.37292e6i 0.348784i
\(751\) −2.11967e7 −1.37141 −0.685706 0.727879i \(-0.740506\pi\)
−0.685706 + 0.727879i \(0.740506\pi\)
\(752\) −434003. −0.0279865
\(753\) 7.25384e6i 0.466209i
\(754\) 1.66569e7 1.06700
\(755\) 3.43922e6i 0.219580i
\(756\) 8.66056e6i 0.551114i
\(757\) 1.95552e7i 1.24029i 0.784489 + 0.620143i \(0.212925\pi\)
−0.784489 + 0.620143i \(0.787075\pi\)
\(758\) 969434. 0.0612837
\(759\) 2.29074e6i 0.144335i
\(760\) −7.83856e6 −0.492269
\(761\) 2.02984e7i 1.27058i −0.772275 0.635288i \(-0.780881\pi\)
0.772275 0.635288i \(-0.219119\pi\)
\(762\) 6.65594e6i 0.415262i
\(763\) 1.13970e6i 0.0708729i
\(764\) 1.11978e7 0.694061
\(765\) −108345. −0.00669353
\(766\) 6.85791e6i 0.422299i
\(767\) 3.44664e7 2.11547
\(768\) −7.72638e6 −0.472686
\(769\) 2.47299e7i 1.50802i −0.656864 0.754009i \(-0.728117\pi\)
0.656864 0.754009i \(-0.271883\pi\)
\(770\) −2.06683e6 −0.125626
\(771\) 1.19441e7i 0.723634i
\(772\) −1.36891e7 −0.826668
\(773\) 2.10848e7 1.26917 0.634587 0.772851i \(-0.281170\pi\)
0.634587 + 0.772851i \(0.281170\pi\)
\(774\) 332080. 0.0199246
\(775\) 2.08442e7 1.24661
\(776\) −6.94073e6 + 1.17819e7i −0.413762 + 0.702361i
\(777\) 6.18080e6 0.367276
\(778\) −8.07607e6 −0.478356
\(779\) −3.36632e7 −1.98752
\(780\) 7.42092e6 0.436738
\(781\) 1.87987e7i 1.10281i
\(782\) 357942. 0.0209313
\(783\) 3.17738e7i 1.85210i
\(784\) 3.93302e6 0.228526
\(785\) −1.20375e7 −0.697207
\(786\) 5.48331e6i 0.316582i
\(787\) 1.34144e6 0.0772030 0.0386015 0.999255i \(-0.487710\pi\)
0.0386015 + 0.999255i \(0.487710\pi\)
\(788\) −1.62626e7 −0.932987
\(789\) 1.29945e7i 0.743135i
\(790\) 488109.i 0.0278259i
\(791\) 9.96575e6i 0.566329i
\(792\) −712265. −0.0403486
\(793\) 3.95069e7i 2.23095i
\(794\) −756946. −0.0426102
\(795\) 3.72539e6i 0.209052i
\(796\) 1.62797e7i 0.910674i
\(797\) 1.88645e7i 1.05196i −0.850497 0.525979i \(-0.823699\pi\)
0.850497 0.525979i \(-0.176301\pi\)
\(798\) −7.47973e6 −0.415795
\(799\) 347116.i 0.0192357i
\(800\) −1.47764e7 −0.816288
\(801\) −1.71363e6 −0.0943705
\(802\) 6.19772e6i 0.340248i
\(803\) −2.11634e7 −1.15823
\(804\) 1.76059e7i 0.960543i
\(805\) 860115.i 0.0467807i
\(806\) 1.67495e7i 0.908162i
\(807\) −3.03344e7 −1.63965
\(808\) 1.10481e7 0.595334
\(809\) 5.74554e6 0.308645 0.154323 0.988021i \(-0.450680\pi\)
0.154323 + 0.988021i \(0.450680\pi\)
\(810\) 3.49089e6i 0.186949i
\(811\) −1.40167e7 −0.748329 −0.374165 0.927362i \(-0.622071\pi\)
−0.374165 + 0.927362i \(0.622071\pi\)
\(812\) −1.82656e7 −0.972175
\(813\) 8.99621e6i 0.477346i
\(814\) 4.47769e6i 0.236861i
\(815\) 1.01398e6i 0.0534732i
\(816\) 2.27496e6i 0.119605i
\(817\) 2.19290e7i 1.14938i
\(818\) 1.17170e7i 0.612259i
\(819\) −893647. −0.0465539
\(820\) 9.53748e6 0.495335
\(821\) 3.27780e7i 1.69717i −0.529062 0.848583i \(-0.677456\pi\)
0.529062 0.848583i \(-0.322544\pi\)
\(822\) 4.64812e6i 0.239937i
\(823\) 1.61869e7 0.833034 0.416517 0.909128i \(-0.363251\pi\)
0.416517 + 0.909128i \(0.363251\pi\)
\(824\) −8.36006e6 −0.428935
\(825\) 1.44307e7 0.738166
\(826\) 9.84243e6 0.501941
\(827\) 5.32434e6i 0.270709i 0.990797 + 0.135354i \(0.0432173\pi\)
−0.990797 + 0.135354i \(0.956783\pi\)
\(828\) 131131.i 0.00664706i
\(829\) 3.38643e7 1.71142 0.855709 0.517457i \(-0.173121\pi\)
0.855709 + 0.517457i \(0.173121\pi\)
\(830\) 5.46850e6 0.275532
\(831\) 1.94627e7i 0.977688i
\(832\) 908683.i 0.0455097i
\(833\) 3.14563e6i 0.157071i
\(834\) 1.43419e7i 0.713990i
\(835\) 5.07152e6i 0.251723i
\(836\) 2.08080e7i 1.02971i
\(837\) −3.19504e7 −1.57639
\(838\) −933043. −0.0458978
\(839\) 2.67032e7i 1.30966i −0.755775 0.654831i \(-0.772740\pi\)
0.755775 0.654831i \(-0.227260\pi\)
\(840\) 4.79018e6 0.234236
\(841\) −4.65016e7 −2.26714
\(842\) −1.08469e7 −0.527262
\(843\) 9.56763e6i 0.463698i
\(844\) 3.85090e6i 0.186083i
\(845\) 6.20683e6i 0.299039i
\(846\) −33115.6 −0.00159077
\(847\) 1.75228e6i 0.0839257i
\(848\) 4.36725e6 0.208554
\(849\) −8.57364e6 −0.408221
\(850\) 2.25489e6i 0.107048i
\(851\) 1.86340e6 0.0882027
\(852\) 1.92747e7i 0.909678i
\(853\) 8.97404e6i 0.422294i 0.977454 + 0.211147i \(0.0677199\pi\)
−0.977454 + 0.211147i \(0.932280\pi\)
\(854\) 1.12818e7i 0.529340i
\(855\) 682564. 0.0319321
\(856\) 2.32424e7i 1.08417i
\(857\) −3.24570e7 −1.50958 −0.754791 0.655966i \(-0.772262\pi\)
−0.754791 + 0.655966i \(0.772262\pi\)
\(858\) 1.15959e7i 0.537757i
\(859\) 1.84931e7i 0.855121i −0.903987 0.427560i \(-0.859373\pi\)
0.903987 0.427560i \(-0.140627\pi\)
\(860\) 6.21293e6i 0.286451i
\(861\) 2.05718e7 0.945722
\(862\) −1.58460e7 −0.726358
\(863\) 4.44853e6i 0.203325i −0.994819 0.101662i \(-0.967584\pi\)
0.994819 0.101662i \(-0.0324161\pi\)
\(864\) 2.26495e7 1.03223
\(865\) −1.64526e7 −0.747642
\(866\) 1.71297e7i 0.776166i
\(867\) 1.97207e7 0.890995
\(868\) 1.83671e7i 0.827451i
\(869\) −2.92886e6 −0.131568
\(870\) 7.77476e6 0.348248
\(871\) 3.61725e7 1.61560
\(872\) 1.91359e6 0.0852230
\(873\) 604383. 1.02594e6i 0.0268396 0.0455602i
\(874\) −2.25500e6 −0.0998547
\(875\) 1.21052e7 0.534506
\(876\) 2.16992e7 0.955397
\(877\) 2.80744e7 1.23257 0.616285 0.787523i \(-0.288637\pi\)
0.616285 + 0.787523i \(0.288637\pi\)
\(878\) 2.14784e6i 0.0940297i
\(879\) −1.77741e7 −0.775916
\(880\) 3.96029e6i 0.172393i
\(881\) −414085. −0.0179742 −0.00898711 0.999960i \(-0.502861\pi\)
−0.00898711 + 0.999960i \(0.502861\pi\)
\(882\) 300100. 0.0129896
\(883\) 4.39361e7i 1.89636i −0.317739 0.948178i \(-0.602924\pi\)
0.317739 0.948178i \(-0.397076\pi\)
\(884\) −6.95786e6 −0.299464
\(885\) 1.60875e7 0.690448
\(886\) 1.73477e6i 0.0742435i
\(887\) 2.38336e7i 1.01714i 0.861021 + 0.508570i \(0.169826\pi\)
−0.861021 + 0.508570i \(0.830174\pi\)
\(888\) 1.03777e7i 0.441640i
\(889\) −1.49959e7 −0.636381
\(890\) 8.34905e6i 0.353315i
\(891\) −2.09468e7 −0.883941
\(892\) 1.26638e7i 0.532908i
\(893\) 2.18680e6i 0.0917657i
\(894\) 4.54172e6i 0.190054i
\(895\) −569325. −0.0237576
\(896\) 1.61516e7i 0.672119i
\(897\) 4.82566e6 0.200251
\(898\) −6.61336e6 −0.273672
\(899\) 6.73852e7i 2.78077i
\(900\) 826073. 0.0339948
\(901\) 3.49293e6i 0.143344i
\(902\) 1.49032e7i 0.609908i
\(903\) 1.34009e7i 0.546909i
\(904\) −1.67327e7 −0.680997
\(905\) 1.36327e7 0.553301
\(906\) −5.51018e6 −0.223021
\(907\) 939045.i 0.0379025i 0.999820 + 0.0189513i \(0.00603274\pi\)
−0.999820 + 0.0189513i \(0.993967\pi\)
\(908\) 4.99189e6 0.200932
\(909\) −962046. −0.0386177
\(910\) 4.35397e6i 0.174294i
\(911\) 2.28020e7i 0.910284i 0.890419 + 0.455142i \(0.150412\pi\)
−0.890419 + 0.455142i \(0.849588\pi\)
\(912\) 1.43321e7i 0.570587i
\(913\) 3.28132e7i 1.30278i
\(914\) 74424.1i 0.00294678i
\(915\) 1.84402e7i 0.728137i
\(916\) −3.19126e7 −1.25668
\(917\) 1.23539e7 0.485156
\(918\) 3.45634e6i 0.135366i
\(919\) 1.95364e7i 0.763054i 0.924358 + 0.381527i \(0.124602\pi\)
−0.924358 + 0.381527i \(0.875398\pi\)
\(920\) 1.44415e6 0.0562527
\(921\) −8.41217e6 −0.326782
\(922\) 4.62436e6 0.179153
\(923\) 3.96012e7 1.53004
\(924\) 1.27158e7i 0.489965i
\(925\) 1.17387e7i 0.451091i
\(926\) −7.71314e6 −0.295599
\(927\) 727974. 0.0278238
\(928\) 4.77692e7i 1.82087i
\(929\) 3.68087e7i 1.39930i 0.714485 + 0.699650i \(0.246661\pi\)
−0.714485 + 0.699650i \(0.753339\pi\)
\(930\) 7.81797e6i 0.296406i
\(931\) 1.98172e7i 0.749321i
\(932\) 1.89322e7i 0.713940i
\(933\) 1.73758e7i 0.653494i
\(934\) −1.59540e7 −0.598415
\(935\) 3.16745e6 0.118490
\(936\) 1.50045e6i 0.0559800i
\(937\) −5.99307e6 −0.222998 −0.111499 0.993765i \(-0.535565\pi\)
−0.111499 + 0.993765i \(0.535565\pi\)
\(938\) 1.03296e7 0.383334
\(939\) −3.80018e7 −1.40650
\(940\) 619565.i 0.0228701i
\(941\) 1.54215e7i 0.567744i 0.958862 + 0.283872i \(0.0916191\pi\)
−0.958862 + 0.283872i \(0.908381\pi\)
\(942\) 1.92860e7i 0.708133i
\(943\) 6.20201e6 0.227119
\(944\) 1.88593e7i 0.688803i
\(945\) −8.30540e6 −0.302539
\(946\) −9.70831e6 −0.352708
\(947\) 4.13797e7i 1.49938i −0.661789 0.749690i \(-0.730202\pi\)
0.661789 0.749690i \(-0.269798\pi\)
\(948\) 3.00302e6 0.108527
\(949\) 4.45826e7i 1.60694i
\(950\) 1.42056e7i 0.510683i
\(951\) 4.40245e7i 1.57850i
\(952\) −4.49128e6 −0.160612
\(953\) 3.14677e7i 1.12236i 0.827693 + 0.561182i \(0.189653\pi\)
−0.827693 + 0.561182i \(0.810347\pi\)
\(954\) 333233. 0.0118543
\(955\) 1.07385e7i 0.381010i
\(956\) 2.01964e7i 0.714710i
\(957\) 4.66518e7i 1.64660i
\(958\) −5.00151e6 −0.176071
\(959\) 1.04722e7 0.367699
\(960\) 424136.i 0.0148535i
\(961\) 3.91306e7 1.36681
\(962\) 9.43267e6 0.328622
\(963\) 2.02389e6i 0.0703270i
\(964\) 2.60651e7 0.903374
\(965\) 1.31277e7i 0.453806i
\(966\) 1.37804e6 0.0475138
\(967\) 9.96199e6 0.342594 0.171297 0.985219i \(-0.445204\pi\)
0.171297 + 0.985219i \(0.445204\pi\)
\(968\) −2.94212e6 −0.100919
\(969\) 1.14628e7 0.392176
\(970\) 4.99851e6 + 2.94464e6i 0.170573 + 0.100485i
\(971\) −4.70460e7 −1.60131 −0.800653 0.599129i \(-0.795514\pi\)
−0.800653 + 0.599129i \(0.795514\pi\)
\(972\) −2.46885e6 −0.0838164
\(973\) −3.23124e7 −1.09418
\(974\) 2.13876e7 0.722380
\(975\) 3.03997e7i 1.02414i
\(976\) −2.16173e7 −0.726403
\(977\) 39607.4i 0.00132752i −1.00000 0.000663758i \(-0.999789\pi\)
1.00000 0.000663758i \(-0.000211281\pi\)
\(978\) −1.62456e6 −0.0543112
\(979\) 5.00978e7 1.67056
\(980\) 5.61461e6i 0.186747i
\(981\) −166631. −0.00552818
\(982\) −7.39336e6 −0.244660
\(983\) 2.73256e7i 0.901957i 0.892535 + 0.450979i \(0.148925\pi\)
−0.892535 + 0.450979i \(0.851075\pi\)
\(984\) 3.45404e7i 1.13721i
\(985\) 1.55957e7i 0.512171i
\(986\) −7.28962e6 −0.238788
\(987\) 1.33636e6i 0.0436648i
\(988\) 4.38339e7 1.42862
\(989\) 4.04013e6i 0.131342i
\(990\) 302181.i 0.00979896i
\(991\) 2.55110e7i 0.825170i 0.910919 + 0.412585i \(0.135374\pi\)
−0.910919 + 0.412585i \(0.864626\pi\)
\(992\) −4.80347e7 −1.54980
\(993\) 1.16937e7i 0.376340i
\(994\) 1.13088e7 0.363035
\(995\) 1.56121e7 0.499922
\(996\) 3.36441e7i 1.07463i
\(997\) −1.25435e7 −0.399651 −0.199826 0.979831i \(-0.564038\pi\)
−0.199826 + 0.979831i \(0.564038\pi\)
\(998\) 2.81461e7i 0.894524i
\(999\) 1.79933e7i 0.570422i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 97.6.b.a.96.18 yes 40
97.96 even 2 inner 97.6.b.a.96.17 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
97.6.b.a.96.17 40 97.96 even 2 inner
97.6.b.a.96.18 yes 40 1.1 even 1 trivial