Properties

Label 966.2.a
Level $966$
Weight $2$
Character orbit 966.a
Rep. character $\chi_{966}(1,\cdot)$
Character field $\Q$
Dimension $21$
Newform subspaces $16$
Sturm bound $384$
Trace bound $7$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 966 = 2 \cdot 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 966.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 16 \)
Sturm bound: \(384\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(5\), \(11\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(966))\).

Total New Old
Modular forms 200 21 179
Cusp forms 185 21 164
Eisenstein series 15 0 15

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(7\)\(23\)FrickeDim.
\(+\)\(+\)\(+\)\(+\)\(+\)\(1\)
\(+\)\(+\)\(+\)\(-\)\(-\)\(2\)
\(+\)\(+\)\(-\)\(+\)\(-\)\(1\)
\(+\)\(+\)\(-\)\(-\)\(+\)\(2\)
\(+\)\(-\)\(+\)\(+\)\(-\)\(2\)
\(+\)\(-\)\(+\)\(-\)\(+\)\(1\)
\(+\)\(-\)\(-\)\(-\)\(-\)\(3\)
\(-\)\(+\)\(+\)\(+\)\(-\)\(2\)
\(-\)\(+\)\(-\)\(+\)\(+\)\(1\)
\(-\)\(+\)\(-\)\(-\)\(-\)\(1\)
\(-\)\(-\)\(+\)\(-\)\(-\)\(2\)
\(-\)\(-\)\(-\)\(+\)\(-\)\(3\)
Plus space\(+\)\(5\)
Minus space\(-\)\(16\)

Trace form

\( 21q - 3q^{2} + q^{3} + 21q^{4} - 2q^{5} + q^{6} + q^{7} - 3q^{8} + 21q^{9} + O(q^{10}) \) \( 21q - 3q^{2} + q^{3} + 21q^{4} - 2q^{5} + q^{6} + q^{7} - 3q^{8} + 21q^{9} - 2q^{10} + 12q^{11} + q^{12} + 6q^{13} + q^{14} + 6q^{15} + 21q^{16} + 10q^{17} - 3q^{18} + 20q^{19} - 2q^{20} + q^{21} + 12q^{22} + q^{23} + q^{24} + 35q^{25} - 10q^{26} + q^{27} + q^{28} + 6q^{29} + 6q^{30} + 16q^{31} - 3q^{32} - 4q^{33} - 6q^{34} + 6q^{35} + 21q^{36} + 14q^{37} + 20q^{38} + 14q^{39} - 2q^{40} + 2q^{41} + q^{42} + 12q^{43} + 12q^{44} - 2q^{45} - 7q^{46} + 16q^{47} + q^{48} + 21q^{49} - 13q^{50} + 2q^{51} + 6q^{52} - 18q^{53} + q^{54} - 24q^{55} + q^{56} - 12q^{57} + 14q^{58} - 4q^{59} + 6q^{60} - 26q^{61} + q^{63} + 21q^{64} - 12q^{65} + 12q^{66} - 12q^{67} + 10q^{68} + q^{69} - 2q^{70} - 8q^{71} - 3q^{72} + 2q^{73} - 18q^{74} - q^{75} + 20q^{76} - 20q^{77} + 6q^{78} + 48q^{79} - 2q^{80} + 21q^{81} + 2q^{82} - 44q^{83} + q^{84} - 36q^{85} - 4q^{86} - 2q^{87} + 12q^{88} - 14q^{89} - 2q^{90} + 14q^{91} + q^{92} + 24q^{93} - 32q^{94} - 40q^{95} + q^{96} + 26q^{97} - 3q^{98} + 12q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(966))\) into newform subspaces

Label Dim. \(A\) Field CM Traces A-L signs $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\) 2 3 7 23
966.2.a.a \(1\) \(7.714\) \(\Q\) None \(-1\) \(-1\) \(-4\) \(1\) \(+\) \(+\) \(-\) \(-\) \(q-q^{2}-q^{3}+q^{4}-4q^{5}+q^{6}+q^{7}+\cdots\)
966.2.a.b \(1\) \(7.714\) \(\Q\) None \(-1\) \(-1\) \(-2\) \(-1\) \(+\) \(+\) \(+\) \(+\) \(q-q^{2}-q^{3}+q^{4}-2q^{5}+q^{6}-q^{7}+\cdots\)
966.2.a.c \(1\) \(7.714\) \(\Q\) None \(-1\) \(-1\) \(2\) \(1\) \(+\) \(+\) \(-\) \(-\) \(q-q^{2}-q^{3}+q^{4}+2q^{5}+q^{6}+q^{7}+\cdots\)
966.2.a.d \(1\) \(7.714\) \(\Q\) None \(-1\) \(-1\) \(3\) \(1\) \(+\) \(+\) \(-\) \(+\) \(q-q^{2}-q^{3}+q^{4}+3q^{5}+q^{6}+q^{7}+\cdots\)
966.2.a.e \(1\) \(7.714\) \(\Q\) None \(-1\) \(1\) \(0\) \(-1\) \(+\) \(-\) \(+\) \(-\) \(q-q^{2}+q^{3}+q^{4}-q^{6}-q^{7}-q^{8}+\cdots\)
966.2.a.f \(1\) \(7.714\) \(\Q\) None \(-1\) \(1\) \(0\) \(1\) \(+\) \(-\) \(-\) \(-\) \(q-q^{2}+q^{3}+q^{4}-q^{6}+q^{7}-q^{8}+\cdots\)
966.2.a.g \(1\) \(7.714\) \(\Q\) None \(1\) \(-1\) \(-2\) \(1\) \(-\) \(+\) \(-\) \(+\) \(q+q^{2}-q^{3}+q^{4}-2q^{5}-q^{6}+q^{7}+\cdots\)
966.2.a.h \(1\) \(7.714\) \(\Q\) None \(1\) \(-1\) \(1\) \(1\) \(-\) \(+\) \(-\) \(-\) \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}+q^{7}+\cdots\)
966.2.a.i \(1\) \(7.714\) \(\Q\) None \(1\) \(1\) \(-3\) \(1\) \(-\) \(-\) \(-\) \(+\) \(q+q^{2}+q^{3}+q^{4}-3q^{5}+q^{6}+q^{7}+\cdots\)
966.2.a.j \(1\) \(7.714\) \(\Q\) None \(1\) \(1\) \(-2\) \(-1\) \(-\) \(-\) \(+\) \(-\) \(q+q^{2}+q^{3}+q^{4}-2q^{5}+q^{6}-q^{7}+\cdots\)
966.2.a.k \(1\) \(7.714\) \(\Q\) None \(1\) \(1\) \(3\) \(-1\) \(-\) \(-\) \(+\) \(-\) \(q+q^{2}+q^{3}+q^{4}+3q^{5}+q^{6}-q^{7}+\cdots\)
966.2.a.l \(2\) \(7.714\) \(\Q(\sqrt{17}) \) None \(-2\) \(-2\) \(1\) \(-2\) \(+\) \(+\) \(+\) \(-\) \(q-q^{2}-q^{3}+q^{4}+\beta q^{5}+q^{6}-q^{7}+\cdots\)
966.2.a.m \(2\) \(7.714\) \(\Q(\sqrt{41}) \) None \(-2\) \(2\) \(-1\) \(-2\) \(+\) \(-\) \(+\) \(+\) \(q-q^{2}+q^{3}+q^{4}-\beta q^{5}-q^{6}-q^{7}+\cdots\)
966.2.a.n \(2\) \(7.714\) \(\Q(\sqrt{41}) \) None \(-2\) \(2\) \(1\) \(2\) \(+\) \(-\) \(-\) \(-\) \(q-q^{2}+q^{3}+q^{4}+\beta q^{5}-q^{6}+q^{7}+\cdots\)
966.2.a.o \(2\) \(7.714\) \(\Q(\sqrt{33}) \) None \(2\) \(-2\) \(-3\) \(-2\) \(-\) \(+\) \(+\) \(+\) \(q+q^{2}-q^{3}+q^{4}+(-1-\beta )q^{5}-q^{6}+\cdots\)
966.2.a.p \(2\) \(7.714\) \(\Q(\sqrt{5}) \) None \(2\) \(2\) \(4\) \(2\) \(-\) \(-\) \(-\) \(+\) \(q+q^{2}+q^{3}+q^{4}+2q^{5}+q^{6}+q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(966))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(966)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(46))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(69))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(138))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(161))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(322))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(483))\)\(^{\oplus 2}\)