Properties

Label 966.2.a.m
Level $966$
Weight $2$
Character orbit 966.a
Self dual yes
Analytic conductor $7.714$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [966,2,Mod(1,966)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(966, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("966.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 966 = 2 \cdot 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 966.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.71354883526\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{41}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{41})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + q^{3} + q^{4} - \beta q^{5} - q^{6} - q^{7} - q^{8} + q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q - q^{2} + q^{3} + q^{4} - \beta q^{5} - q^{6} - q^{7} - q^{8} + q^{9} + \beta q^{10} + q^{12} + (\beta + 2) q^{13} + q^{14} - \beta q^{15} + q^{16} - q^{18} + ( - 2 \beta + 2) q^{19} - \beta q^{20} - q^{21} - q^{23} - q^{24} + (\beta + 5) q^{25} + ( - \beta - 2) q^{26} + q^{27} - q^{28} + ( - \beta + 4) q^{29} + \beta q^{30} + 6 q^{31} - q^{32} + \beta q^{35} + q^{36} + \beta q^{37} + (2 \beta - 2) q^{38} + (\beta + 2) q^{39} + \beta q^{40} + (\beta + 4) q^{41} + q^{42} + (\beta + 2) q^{43} - \beta q^{45} + q^{46} + \beta q^{47} + q^{48} + q^{49} + ( - \beta - 5) q^{50} + (\beta + 2) q^{52} + (2 \beta + 2) q^{53} - q^{54} + q^{56} + ( - 2 \beta + 2) q^{57} + (\beta - 4) q^{58} + (2 \beta - 8) q^{59} - \beta q^{60} + 10 q^{61} - 6 q^{62} - q^{63} + q^{64} + ( - 3 \beta - 10) q^{65} + 4 q^{67} - q^{69} - \beta q^{70} + 2 \beta q^{71} - q^{72} + ( - 2 \beta + 2) q^{73} - \beta q^{74} + (\beta + 5) q^{75} + ( - 2 \beta + 2) q^{76} + ( - \beta - 2) q^{78} - \beta q^{80} + q^{81} + ( - \beta - 4) q^{82} + (2 \beta - 10) q^{83} - q^{84} + ( - \beta - 2) q^{86} + ( - \beta + 4) q^{87} + ( - 2 \beta - 8) q^{89} + \beta q^{90} + ( - \beta - 2) q^{91} - q^{92} + 6 q^{93} - \beta q^{94} + 20 q^{95} - q^{96} + ( - 3 \beta + 10) q^{97} - q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{3} + 2 q^{4} - q^{5} - 2 q^{6} - 2 q^{7} - 2 q^{8} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{2} + 2 q^{3} + 2 q^{4} - q^{5} - 2 q^{6} - 2 q^{7} - 2 q^{8} + 2 q^{9} + q^{10} + 2 q^{12} + 5 q^{13} + 2 q^{14} - q^{15} + 2 q^{16} - 2 q^{18} + 2 q^{19} - q^{20} - 2 q^{21} - 2 q^{23} - 2 q^{24} + 11 q^{25} - 5 q^{26} + 2 q^{27} - 2 q^{28} + 7 q^{29} + q^{30} + 12 q^{31} - 2 q^{32} + q^{35} + 2 q^{36} + q^{37} - 2 q^{38} + 5 q^{39} + q^{40} + 9 q^{41} + 2 q^{42} + 5 q^{43} - q^{45} + 2 q^{46} + q^{47} + 2 q^{48} + 2 q^{49} - 11 q^{50} + 5 q^{52} + 6 q^{53} - 2 q^{54} + 2 q^{56} + 2 q^{57} - 7 q^{58} - 14 q^{59} - q^{60} + 20 q^{61} - 12 q^{62} - 2 q^{63} + 2 q^{64} - 23 q^{65} + 8 q^{67} - 2 q^{69} - q^{70} + 2 q^{71} - 2 q^{72} + 2 q^{73} - q^{74} + 11 q^{75} + 2 q^{76} - 5 q^{78} - q^{80} + 2 q^{81} - 9 q^{82} - 18 q^{83} - 2 q^{84} - 5 q^{86} + 7 q^{87} - 18 q^{89} + q^{90} - 5 q^{91} - 2 q^{92} + 12 q^{93} - q^{94} + 40 q^{95} - 2 q^{96} + 17 q^{97} - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.70156
−2.70156
−1.00000 1.00000 1.00000 −3.70156 −1.00000 −1.00000 −1.00000 1.00000 3.70156
1.2 −1.00000 1.00000 1.00000 2.70156 −1.00000 −1.00000 −1.00000 1.00000 −2.70156
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(7\) \( +1 \)
\(23\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 966.2.a.m 2
3.b odd 2 1 2898.2.a.bc 2
4.b odd 2 1 7728.2.a.z 2
7.b odd 2 1 6762.2.a.bq 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
966.2.a.m 2 1.a even 1 1 trivial
2898.2.a.bc 2 3.b odd 2 1
6762.2.a.bq 2 7.b odd 2 1
7728.2.a.z 2 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(966))\):

\( T_{5}^{2} + T_{5} - 10 \) Copy content Toggle raw display
\( T_{11} \) Copy content Toggle raw display
\( T_{13}^{2} - 5T_{13} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{2} \) Copy content Toggle raw display
$3$ \( (T - 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + T - 10 \) Copy content Toggle raw display
$7$ \( (T + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 5T - 4 \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} - 2T - 40 \) Copy content Toggle raw display
$23$ \( (T + 1)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} - 7T + 2 \) Copy content Toggle raw display
$31$ \( (T - 6)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} - T - 10 \) Copy content Toggle raw display
$41$ \( T^{2} - 9T + 10 \) Copy content Toggle raw display
$43$ \( T^{2} - 5T - 4 \) Copy content Toggle raw display
$47$ \( T^{2} - T - 10 \) Copy content Toggle raw display
$53$ \( T^{2} - 6T - 32 \) Copy content Toggle raw display
$59$ \( T^{2} + 14T + 8 \) Copy content Toggle raw display
$61$ \( (T - 10)^{2} \) Copy content Toggle raw display
$67$ \( (T - 4)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} - 2T - 40 \) Copy content Toggle raw display
$73$ \( T^{2} - 2T - 40 \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 18T + 40 \) Copy content Toggle raw display
$89$ \( T^{2} + 18T + 40 \) Copy content Toggle raw display
$97$ \( T^{2} - 17T - 20 \) Copy content Toggle raw display
show more
show less