# Properties

 Label 966.2.a.e Level $966$ Weight $2$ Character orbit 966.a Self dual yes Analytic conductor $7.714$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [966,2,Mod(1,966)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(966, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("966.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$966 = 2 \cdot 3 \cdot 7 \cdot 23$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 966.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$7.71354883526$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: yes Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q - q^{2} + q^{3} + q^{4} - q^{6} - q^{7} - q^{8} + q^{9}+O(q^{10})$$ q - q^2 + q^3 + q^4 - q^6 - q^7 - q^8 + q^9 $$q - q^{2} + q^{3} + q^{4} - q^{6} - q^{7} - q^{8} + q^{9} - 2 q^{11} + q^{12} - 6 q^{13} + q^{14} + q^{16} + 2 q^{17} - q^{18} - 6 q^{19} - q^{21} + 2 q^{22} + q^{23} - q^{24} - 5 q^{25} + 6 q^{26} + q^{27} - q^{28} - 6 q^{29} - q^{32} - 2 q^{33} - 2 q^{34} + q^{36} + 6 q^{38} - 6 q^{39} + 6 q^{41} + q^{42} - 6 q^{43} - 2 q^{44} - q^{46} + 8 q^{47} + q^{48} + q^{49} + 5 q^{50} + 2 q^{51} - 6 q^{52} - 4 q^{53} - q^{54} + q^{56} - 6 q^{57} + 6 q^{58} - 8 q^{61} - q^{63} + q^{64} + 2 q^{66} - 2 q^{67} + 2 q^{68} + q^{69} - q^{72} - 2 q^{73} - 5 q^{75} - 6 q^{76} + 2 q^{77} + 6 q^{78} + 8 q^{79} + q^{81} - 6 q^{82} - 2 q^{83} - q^{84} + 6 q^{86} - 6 q^{87} + 2 q^{88} - 2 q^{89} + 6 q^{91} + q^{92} - 8 q^{94} - q^{96} + 14 q^{97} - q^{98} - 2 q^{99}+O(q^{100})$$ q - q^2 + q^3 + q^4 - q^6 - q^7 - q^8 + q^9 - 2 * q^11 + q^12 - 6 * q^13 + q^14 + q^16 + 2 * q^17 - q^18 - 6 * q^19 - q^21 + 2 * q^22 + q^23 - q^24 - 5 * q^25 + 6 * q^26 + q^27 - q^28 - 6 * q^29 - q^32 - 2 * q^33 - 2 * q^34 + q^36 + 6 * q^38 - 6 * q^39 + 6 * q^41 + q^42 - 6 * q^43 - 2 * q^44 - q^46 + 8 * q^47 + q^48 + q^49 + 5 * q^50 + 2 * q^51 - 6 * q^52 - 4 * q^53 - q^54 + q^56 - 6 * q^57 + 6 * q^58 - 8 * q^61 - q^63 + q^64 + 2 * q^66 - 2 * q^67 + 2 * q^68 + q^69 - q^72 - 2 * q^73 - 5 * q^75 - 6 * q^76 + 2 * q^77 + 6 * q^78 + 8 * q^79 + q^81 - 6 * q^82 - 2 * q^83 - q^84 + 6 * q^86 - 6 * q^87 + 2 * q^88 - 2 * q^89 + 6 * q^91 + q^92 - 8 * q^94 - q^96 + 14 * q^97 - q^98 - 2 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
−1.00000 1.00000 1.00000 0 −1.00000 −1.00000 −1.00000 1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$1$$
$$3$$ $$-1$$
$$7$$ $$1$$
$$23$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 966.2.a.e 1
3.b odd 2 1 2898.2.a.n 1
4.b odd 2 1 7728.2.a.g 1
7.b odd 2 1 6762.2.a.f 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
966.2.a.e 1 1.a even 1 1 trivial
2898.2.a.n 1 3.b odd 2 1
6762.2.a.f 1 7.b odd 2 1
7728.2.a.g 1 4.b odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(966))$$:

 $$T_{5}$$ T5 $$T_{11} + 2$$ T11 + 2 $$T_{13} + 6$$ T13 + 6

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T + 1$$
$3$ $$T - 1$$
$5$ $$T$$
$7$ $$T + 1$$
$11$ $$T + 2$$
$13$ $$T + 6$$
$17$ $$T - 2$$
$19$ $$T + 6$$
$23$ $$T - 1$$
$29$ $$T + 6$$
$31$ $$T$$
$37$ $$T$$
$41$ $$T - 6$$
$43$ $$T + 6$$
$47$ $$T - 8$$
$53$ $$T + 4$$
$59$ $$T$$
$61$ $$T + 8$$
$67$ $$T + 2$$
$71$ $$T$$
$73$ $$T + 2$$
$79$ $$T - 8$$
$83$ $$T + 2$$
$89$ $$T + 2$$
$97$ $$T - 14$$