Properties

Label 966.2.a.k
Level $966$
Weight $2$
Character orbit 966.a
Self dual yes
Analytic conductor $7.714$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 966 = 2 \cdot 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 966.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(7.71354883526\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{2} + q^{3} + q^{4} + 3q^{5} + q^{6} - q^{7} + q^{8} + q^{9} + O(q^{10}) \) \( q + q^{2} + q^{3} + q^{4} + 3q^{5} + q^{6} - q^{7} + q^{8} + q^{9} + 3q^{10} + 4q^{11} + q^{12} - 3q^{13} - q^{14} + 3q^{15} + q^{16} - 4q^{17} + q^{18} + 3q^{20} - q^{21} + 4q^{22} + q^{23} + q^{24} + 4q^{25} - 3q^{26} + q^{27} - q^{28} + 3q^{29} + 3q^{30} - 6q^{31} + q^{32} + 4q^{33} - 4q^{34} - 3q^{35} + q^{36} - 9q^{37} - 3q^{39} + 3q^{40} + 9q^{41} - q^{42} - 3q^{43} + 4q^{44} + 3q^{45} + q^{46} - 7q^{47} + q^{48} + q^{49} + 4q^{50} - 4q^{51} - 3q^{52} - 4q^{53} + q^{54} + 12q^{55} - q^{56} + 3q^{58} + 6q^{59} + 3q^{60} + 10q^{61} - 6q^{62} - q^{63} + q^{64} - 9q^{65} + 4q^{66} + 4q^{67} - 4q^{68} + q^{69} - 3q^{70} - 6q^{71} + q^{72} - 8q^{73} - 9q^{74} + 4q^{75} - 4q^{77} - 3q^{78} + 8q^{79} + 3q^{80} + q^{81} + 9q^{82} + 4q^{83} - q^{84} - 12q^{85} - 3q^{86} + 3q^{87} + 4q^{88} - 14q^{89} + 3q^{90} + 3q^{91} + q^{92} - 6q^{93} - 7q^{94} + q^{96} - 7q^{97} + q^{98} + 4q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 1.00000 1.00000 3.00000 1.00000 −1.00000 1.00000 1.00000 3.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(7\) \(1\)
\(23\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 966.2.a.k 1
3.b odd 2 1 2898.2.a.a 1
4.b odd 2 1 7728.2.a.j 1
7.b odd 2 1 6762.2.a.y 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
966.2.a.k 1 1.a even 1 1 trivial
2898.2.a.a 1 3.b odd 2 1
6762.2.a.y 1 7.b odd 2 1
7728.2.a.j 1 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(966))\):

\( T_{5} - 3 \)
\( T_{11} - 4 \)
\( T_{13} + 3 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( -1 + T \)
$3$ \( -1 + T \)
$5$ \( -3 + T \)
$7$ \( 1 + T \)
$11$ \( -4 + T \)
$13$ \( 3 + T \)
$17$ \( 4 + T \)
$19$ \( T \)
$23$ \( -1 + T \)
$29$ \( -3 + T \)
$31$ \( 6 + T \)
$37$ \( 9 + T \)
$41$ \( -9 + T \)
$43$ \( 3 + T \)
$47$ \( 7 + T \)
$53$ \( 4 + T \)
$59$ \( -6 + T \)
$61$ \( -10 + T \)
$67$ \( -4 + T \)
$71$ \( 6 + T \)
$73$ \( 8 + T \)
$79$ \( -8 + T \)
$83$ \( -4 + T \)
$89$ \( 14 + T \)
$97$ \( 7 + T \)
show more
show less