Properties

Label 966.2
Level 966
Weight 2
Dimension 6045
Nonzero newspaces 16
Newform subspaces 70
Sturm bound 101376
Trace bound 6

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 966 = 2 \cdot 3 \cdot 7 \cdot 23 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 16 \)
Newform subspaces: \( 70 \)
Sturm bound: \(101376\)
Trace bound: \(6\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(966))\).

Total New Old
Modular forms 26400 6045 20355
Cusp forms 24289 6045 18244
Eisenstein series 2111 0 2111

Trace form

\( 6045q - 3q^{2} + q^{3} + 5q^{4} + 6q^{5} + 9q^{6} + 17q^{7} - 3q^{8} + 13q^{9} + O(q^{10}) \) \( 6045q - 3q^{2} + q^{3} + 5q^{4} + 6q^{5} + 9q^{6} + 17q^{7} - 3q^{8} + 13q^{9} + 6q^{10} + 12q^{11} + q^{12} - 10q^{13} - 15q^{14} + 26q^{15} - 3q^{16} + 58q^{17} + 61q^{18} + 60q^{19} + 70q^{20} + 31q^{21} + 52q^{22} + 141q^{23} - 15q^{24} + 131q^{25} + 70q^{26} + 133q^{27} + 53q^{28} + 46q^{29} + 94q^{30} + 72q^{31} - 3q^{32} + 56q^{33} - 6q^{34} + 50q^{35} + 13q^{36} + 174q^{37} + 12q^{38} + 102q^{39} + 6q^{40} + 58q^{41} + 45q^{42} + 204q^{43} + 12q^{44} + 6q^{45} + q^{46} + 104q^{47} + q^{48} + 129q^{49} + 3q^{50} + 10q^{51} - 58q^{52} - 2q^{53} - 83q^{54} + 32q^{55} + 9q^{56} - 48q^{57} - 114q^{58} + 4q^{59} - 86q^{60} - 106q^{61} - 48q^{62} - 157q^{63} + 5q^{64} - 84q^{65} - 212q^{66} - 156q^{67} - 30q^{68} - 243q^{69} - 90q^{70} - 72q^{71} - 67q^{72} - 118q^{73} - 42q^{74} - 281q^{75} - 28q^{76} + 36q^{77} - 126q^{78} + 88q^{79} + 6q^{80} + 21q^{81} + 18q^{82} + 76q^{83} + 15q^{84} + 148q^{85} - 12q^{86} + 162q^{87} - 12q^{88} + 10q^{89} + 6q^{90} + 102q^{91} - 23q^{92} - 40q^{93} + 120q^{95} - 15q^{96} + 258q^{97} + 37q^{98} + 184q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(966))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
966.2.a \(\chi_{966}(1, \cdot)\) 966.2.a.a 1 1
966.2.a.b 1
966.2.a.c 1
966.2.a.d 1
966.2.a.e 1
966.2.a.f 1
966.2.a.g 1
966.2.a.h 1
966.2.a.i 1
966.2.a.j 1
966.2.a.k 1
966.2.a.l 2
966.2.a.m 2
966.2.a.n 2
966.2.a.o 2
966.2.a.p 2
966.2.f \(\chi_{966}(461, \cdot)\) 966.2.f.a 4 1
966.2.f.b 24
966.2.f.c 28
966.2.g \(\chi_{966}(643, \cdot)\) 966.2.g.a 4 1
966.2.g.b 4
966.2.g.c 4
966.2.g.d 4
966.2.g.e 16
966.2.h \(\chi_{966}(827, \cdot)\) 966.2.h.a 24 1
966.2.h.b 24
966.2.i \(\chi_{966}(277, \cdot)\) 966.2.i.a 2 2
966.2.i.b 2
966.2.i.c 2
966.2.i.d 2
966.2.i.e 2
966.2.i.f 2
966.2.i.g 2
966.2.i.h 4
966.2.i.i 4
966.2.i.j 4
966.2.i.k 6
966.2.i.l 8
966.2.i.m 8
966.2.i.n 8
966.2.j \(\chi_{966}(137, \cdot)\) 966.2.j.a 128 2
966.2.k \(\chi_{966}(229, \cdot)\) 966.2.k.a 32 2
966.2.k.b 32
966.2.l \(\chi_{966}(47, \cdot)\) 966.2.l.a 4 2
966.2.l.b 4
966.2.l.c 56
966.2.l.d 56
966.2.q \(\chi_{966}(85, \cdot)\) 966.2.q.a 10 10
966.2.q.b 10
966.2.q.c 10
966.2.q.d 20
966.2.q.e 20
966.2.q.f 30
966.2.q.g 30
966.2.q.h 30
966.2.q.i 40
966.2.q.j 40
966.2.r \(\chi_{966}(113, \cdot)\) 966.2.r.a 240 10
966.2.r.b 240
966.2.s \(\chi_{966}(97, \cdot)\) 966.2.s.a 160 10
966.2.s.b 160
966.2.t \(\chi_{966}(41, \cdot)\) 966.2.t.a 640 10
966.2.y \(\chi_{966}(25, \cdot)\) 966.2.y.a 160 20
966.2.y.b 160
966.2.y.c 160
966.2.y.d 160
966.2.bd \(\chi_{966}(59, \cdot)\) 966.2.bd.a 1280 20
966.2.be \(\chi_{966}(19, \cdot)\) 966.2.be.a 320 20
966.2.be.b 320
966.2.bf \(\chi_{966}(11, \cdot)\) 966.2.bf.a 1280 20

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(966))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(966)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(42))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(46))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(69))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(138))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(161))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(322))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(483))\)\(^{\oplus 2}\)