Properties

Label 961.2.d.s.374.10
Level $961$
Weight $2$
Character 961.374
Analytic conductor $7.674$
Analytic rank $0$
Dimension $64$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(374,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.374"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.d (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [64,8,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{5})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 374.10
Character \(\chi\) \(=\) 961.374
Dual form 961.2.d.s.388.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.06472 + 0.773568i) q^{2} +(0.998704 - 0.725601i) q^{3} +(-0.0828021 - 0.254839i) q^{4} +0.00727825 q^{5} +1.62465 q^{6} +(-0.245643 - 0.756011i) q^{7} +(0.922351 - 2.83870i) q^{8} +(-0.456138 + 1.40385i) q^{9} +(0.00774933 + 0.00563022i) q^{10} +(1.22916 + 3.78297i) q^{11} +(-0.267606 - 0.194427i) q^{12} +(5.10468 - 3.70877i) q^{13} +(0.323284 - 0.994966i) q^{14} +(0.00726882 - 0.00528110i) q^{15} +(2.74442 - 1.99394i) q^{16} +(1.94089 - 5.97344i) q^{17} +(-1.57163 + 1.14186i) q^{18} +(-3.02135 - 2.19514i) q^{19} +(-0.000602654 - 0.00185478i) q^{20} +(-0.793887 - 0.576793i) q^{21} +(-1.61767 + 4.97867i) q^{22} +(0.149463 - 0.460000i) q^{23} +(-1.13861 - 3.50428i) q^{24} -4.99995 q^{25} +8.30406 q^{26} +(1.70750 + 5.25514i) q^{27} +(-0.172321 + 0.125199i) q^{28} +(1.31103 + 0.952516i) q^{29} +0.0118246 q^{30} -1.50508 q^{32} +(3.97250 + 2.88619i) q^{33} +(6.68738 - 4.85866i) q^{34} +(-0.00178785 - 0.00550244i) q^{35} +0.395524 q^{36} +7.49037 q^{37} +(-1.51882 - 4.67444i) q^{38} +(2.40698 - 7.40792i) q^{39} +(0.00671310 - 0.0206608i) q^{40} +(3.25942 + 2.36811i) q^{41} +(-0.399083 - 1.22825i) q^{42} +(-0.567529 - 0.412334i) q^{43} +(0.862271 - 0.626476i) q^{44} +(-0.00331989 + 0.0102176i) q^{45} +(0.514978 - 0.374153i) q^{46} +(-3.48307 + 2.53060i) q^{47} +(1.29406 - 3.98271i) q^{48} +(5.15191 - 3.74308i) q^{49} +(-5.32357 - 3.86780i) q^{50} +(-2.39596 - 7.37401i) q^{51} +(-1.36782 - 0.993776i) q^{52} +(-1.26069 + 3.88001i) q^{53} +(-2.24719 + 6.91615i) q^{54} +(0.00894615 + 0.0275334i) q^{55} -2.37266 q^{56} -4.61023 q^{57} +(0.659046 + 2.02833i) q^{58} +(11.0864 - 8.05477i) q^{59} +(-0.00194770 - 0.00141509i) q^{60} -5.02369 q^{61} +1.17337 q^{63} +(-7.09134 - 5.15216i) q^{64} +(0.0371531 - 0.0269933i) q^{65} +(1.99695 + 6.14599i) q^{66} -14.5255 q^{67} -1.68297 q^{68} +(-0.184507 - 0.567854i) q^{69} +(0.00235294 - 0.00724161i) q^{70} +(-2.90885 + 8.95253i) q^{71} +(3.56439 + 2.58968i) q^{72} +(1.36684 + 4.20670i) q^{73} +(7.97519 + 5.79431i) q^{74} +(-4.99347 + 3.62797i) q^{75} +(-0.309233 + 0.951720i) q^{76} +(2.55804 - 1.85852i) q^{77} +(8.29330 - 6.02544i) q^{78} +(-3.23196 + 9.94696i) q^{79} +(0.0199746 - 0.0145124i) q^{80} +(1.93587 + 1.40649i) q^{81} +(1.63849 + 5.04276i) q^{82} +(1.62460 + 1.18034i) q^{83} +(-0.0812536 + 0.250073i) q^{84} +(0.0141263 - 0.0434762i) q^{85} +(-0.285294 - 0.878044i) q^{86} +2.00047 q^{87} +11.8725 q^{88} +(-0.346834 - 1.06744i) q^{89} +(-0.0114387 + 0.00831074i) q^{90} +(-4.05780 - 2.94816i) q^{91} -0.129602 q^{92} -5.66611 q^{94} +(-0.0219902 - 0.0159768i) q^{95} +(-1.50313 + 1.09208i) q^{96} +(2.24819 + 6.91921i) q^{97} +8.38089 q^{98} -5.87139 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 8 q^{2} - 8 q^{4} - 64 q^{5} + 16 q^{7} - 8 q^{10} + 8 q^{14} + 8 q^{16} + 24 q^{18} + 32 q^{19} + 24 q^{20} + 8 q^{28} - 32 q^{32} + 32 q^{33} + 16 q^{35} - 160 q^{36} + 24 q^{38} + 32 q^{39} + 32 q^{41}+ \cdots + 64 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.06472 + 0.773568i 0.752874 + 0.546995i 0.896716 0.442605i \(-0.145946\pi\)
−0.143842 + 0.989601i \(0.545946\pi\)
\(3\) 0.998704 0.725601i 0.576602 0.418926i −0.260896 0.965367i \(-0.584018\pi\)
0.837497 + 0.546441i \(0.184018\pi\)
\(4\) −0.0828021 0.254839i −0.0414011 0.127419i
\(5\) 0.00727825 0.00325493 0.00162747 0.999999i \(-0.499482\pi\)
0.00162747 + 0.999999i \(0.499482\pi\)
\(6\) 1.62465 0.663259
\(7\) −0.245643 0.756011i −0.0928443 0.285745i 0.893842 0.448383i \(-0.148000\pi\)
−0.986686 + 0.162637i \(0.948000\pi\)
\(8\) 0.922351 2.83870i 0.326100 1.00363i
\(9\) −0.456138 + 1.40385i −0.152046 + 0.467950i
\(10\) 0.00774933 + 0.00563022i 0.00245055 + 0.00178043i
\(11\) 1.22916 + 3.78297i 0.370606 + 1.14061i 0.946395 + 0.323011i \(0.104695\pi\)
−0.575789 + 0.817598i \(0.695305\pi\)
\(12\) −0.267606 0.194427i −0.0772512 0.0561263i
\(13\) 5.10468 3.70877i 1.41578 1.02863i 0.423334 0.905974i \(-0.360860\pi\)
0.992450 0.122653i \(-0.0391403\pi\)
\(14\) 0.323284 0.994966i 0.0864013 0.265916i
\(15\) 0.00726882 0.00528110i 0.00187680 0.00136358i
\(16\) 2.74442 1.99394i 0.686106 0.498485i
\(17\) 1.94089 5.97344i 0.470735 1.44877i −0.380890 0.924621i \(-0.624382\pi\)
0.851624 0.524152i \(-0.175618\pi\)
\(18\) −1.57163 + 1.14186i −0.370438 + 0.269139i
\(19\) −3.02135 2.19514i −0.693146 0.503600i 0.184547 0.982824i \(-0.440918\pi\)
−0.877693 + 0.479224i \(0.840918\pi\)
\(20\) −0.000602654 0.00185478i −0.000134758 0.000414741i
\(21\) −0.793887 0.576793i −0.173240 0.125866i
\(22\) −1.61767 + 4.97867i −0.344888 + 1.06146i
\(23\) 0.149463 0.460000i 0.0311652 0.0959165i −0.934264 0.356582i \(-0.883942\pi\)
0.965429 + 0.260666i \(0.0839420\pi\)
\(24\) −1.13861 3.50428i −0.232418 0.715309i
\(25\) −4.99995 −0.999989
\(26\) 8.30406 1.62856
\(27\) 1.70750 + 5.25514i 0.328608 + 1.01135i
\(28\) −0.172321 + 0.125199i −0.0325656 + 0.0236603i
\(29\) 1.31103 + 0.952516i 0.243451 + 0.176878i 0.702820 0.711368i \(-0.251924\pi\)
−0.459368 + 0.888246i \(0.651924\pi\)
\(30\) 0.0118246 0.00215886
\(31\) 0 0
\(32\) −1.50508 −0.266062
\(33\) 3.97250 + 2.88619i 0.691523 + 0.502421i
\(34\) 6.68738 4.85866i 1.14688 0.833254i
\(35\) −0.00178785 0.00550244i −0.000302202 0.000930082i
\(36\) 0.395524 0.0659207
\(37\) 7.49037 1.23141 0.615705 0.787977i \(-0.288871\pi\)
0.615705 + 0.787977i \(0.288871\pi\)
\(38\) −1.51882 4.67444i −0.246385 0.758295i
\(39\) 2.40698 7.40792i 0.385425 1.18622i
\(40\) 0.00671310 0.0206608i 0.00106143 0.00326676i
\(41\) 3.25942 + 2.36811i 0.509035 + 0.369836i 0.812458 0.583020i \(-0.198129\pi\)
−0.303422 + 0.952856i \(0.598129\pi\)
\(42\) −0.399083 1.22825i −0.0615798 0.189523i
\(43\) −0.567529 0.412334i −0.0865473 0.0628803i 0.543670 0.839299i \(-0.317034\pi\)
−0.630217 + 0.776419i \(0.717034\pi\)
\(44\) 0.862271 0.626476i 0.129992 0.0944449i
\(45\) −0.00331989 + 0.0102176i −0.000494900 + 0.00152314i
\(46\) 0.514978 0.374153i 0.0759293 0.0551659i
\(47\) −3.48307 + 2.53060i −0.508059 + 0.369126i −0.812087 0.583537i \(-0.801668\pi\)
0.304028 + 0.952663i \(0.401668\pi\)
\(48\) 1.29406 3.98271i 0.186782 0.574855i
\(49\) 5.15191 3.74308i 0.735987 0.534726i
\(50\) −5.32357 3.86780i −0.752866 0.546989i
\(51\) −2.39596 7.37401i −0.335502 1.03257i
\(52\) −1.36782 0.993776i −0.189682 0.137812i
\(53\) −1.26069 + 3.88001i −0.173169 + 0.532961i −0.999545 0.0301584i \(-0.990399\pi\)
0.826376 + 0.563119i \(0.190399\pi\)
\(54\) −2.24719 + 6.91615i −0.305804 + 0.941169i
\(55\) 0.00894615 + 0.0275334i 0.00120630 + 0.00371261i
\(56\) −2.37266 −0.317060
\(57\) −4.61023 −0.610640
\(58\) 0.659046 + 2.02833i 0.0865370 + 0.266333i
\(59\) 11.0864 8.05477i 1.44333 1.04864i 0.455999 0.889980i \(-0.349282\pi\)
0.987333 0.158662i \(-0.0507181\pi\)
\(60\) −0.00194770 0.00141509i −0.000251447 0.000182687i
\(61\) −5.02369 −0.643218 −0.321609 0.946873i \(-0.604224\pi\)
−0.321609 + 0.946873i \(0.604224\pi\)
\(62\) 0 0
\(63\) 1.17337 0.147831
\(64\) −7.09134 5.15216i −0.886418 0.644020i
\(65\) 0.0371531 0.0269933i 0.00460828 0.00334811i
\(66\) 1.99695 + 6.14599i 0.245808 + 0.756519i
\(67\) −14.5255 −1.77457 −0.887287 0.461217i \(-0.847413\pi\)
−0.887287 + 0.461217i \(0.847413\pi\)
\(68\) −1.68297 −0.204091
\(69\) −0.184507 0.567854i −0.0222120 0.0683616i
\(70\) 0.00235294 0.00724161i 0.000281230 0.000865538i
\(71\) −2.90885 + 8.95253i −0.345217 + 1.06247i 0.616250 + 0.787551i \(0.288651\pi\)
−0.961467 + 0.274919i \(0.911349\pi\)
\(72\) 3.56439 + 2.58968i 0.420068 + 0.305197i
\(73\) 1.36684 + 4.20670i 0.159976 + 0.492357i 0.998631 0.0523068i \(-0.0166574\pi\)
−0.838655 + 0.544664i \(0.816657\pi\)
\(74\) 7.97519 + 5.79431i 0.927097 + 0.673575i
\(75\) −4.99347 + 3.62797i −0.576596 + 0.418921i
\(76\) −0.309233 + 0.951720i −0.0354714 + 0.109170i
\(77\) 2.55804 1.85852i 0.291515 0.211798i
\(78\) 8.29330 6.02544i 0.939031 0.682246i
\(79\) −3.23196 + 9.94696i −0.363624 + 1.11912i 0.587214 + 0.809432i \(0.300225\pi\)
−0.950838 + 0.309688i \(0.899775\pi\)
\(80\) 0.0199746 0.0145124i 0.00223323 0.00162254i
\(81\) 1.93587 + 1.40649i 0.215096 + 0.156277i
\(82\) 1.63849 + 5.04276i 0.180941 + 0.556880i
\(83\) 1.62460 + 1.18034i 0.178323 + 0.129559i 0.673366 0.739309i \(-0.264848\pi\)
−0.495043 + 0.868868i \(0.664848\pi\)
\(84\) −0.0812536 + 0.250073i −0.00886549 + 0.0272852i
\(85\) 0.0141263 0.0434762i 0.00153221 0.00471566i
\(86\) −0.285294 0.878044i −0.0307640 0.0946819i
\(87\) 2.00047 0.214473
\(88\) 11.8725 1.26561
\(89\) −0.346834 1.06744i −0.0367643 0.113149i 0.930990 0.365044i \(-0.118946\pi\)
−0.967754 + 0.251895i \(0.918946\pi\)
\(90\) −0.0114387 + 0.00831074i −0.00120575 + 0.000876028i
\(91\) −4.05780 2.94816i −0.425373 0.309052i
\(92\) −0.129602 −0.0135119
\(93\) 0 0
\(94\) −5.66611 −0.584414
\(95\) −0.0219902 0.0159768i −0.00225614 0.00163918i
\(96\) −1.50313 + 1.09208i −0.153412 + 0.111460i
\(97\) 2.24819 + 6.91921i 0.228269 + 0.702540i 0.997943 + 0.0641030i \(0.0204186\pi\)
−0.769674 + 0.638437i \(0.779581\pi\)
\(98\) 8.38089 0.846598
\(99\) −5.87139 −0.590097
\(100\) 0.414006 + 1.27418i 0.0414006 + 0.127418i
\(101\) −1.98773 + 6.11760i −0.197786 + 0.608724i 0.802146 + 0.597127i \(0.203691\pi\)
−0.999933 + 0.0115963i \(0.996309\pi\)
\(102\) 3.15326 9.70473i 0.312219 0.960912i
\(103\) 6.90531 + 5.01700i 0.680400 + 0.494340i 0.873490 0.486841i \(-0.161851\pi\)
−0.193090 + 0.981181i \(0.561851\pi\)
\(104\) −5.81979 17.9115i −0.570677 1.75636i
\(105\) −0.00577811 0.00419804i −0.000563886 0.000409687i
\(106\) −4.34375 + 3.15592i −0.421902 + 0.306530i
\(107\) −4.17628 + 12.8533i −0.403737 + 1.24257i 0.518209 + 0.855254i \(0.326599\pi\)
−0.921946 + 0.387319i \(0.873401\pi\)
\(108\) 1.19783 0.870274i 0.115261 0.0837422i
\(109\) −8.27699 + 6.01358i −0.792792 + 0.575997i −0.908791 0.417253i \(-0.862993\pi\)
0.115999 + 0.993249i \(0.462993\pi\)
\(110\) −0.0117738 + 0.0362360i −0.00112259 + 0.00345496i
\(111\) 7.48066 5.43502i 0.710033 0.515869i
\(112\) −2.18159 1.58502i −0.206141 0.149770i
\(113\) −2.57237 7.91695i −0.241988 0.744764i −0.996117 0.0880373i \(-0.971941\pi\)
0.754129 0.656727i \(-0.228059\pi\)
\(114\) −4.90863 3.56633i −0.459735 0.334017i
\(115\) 0.00108783 0.00334799i 0.000101441 0.000312202i
\(116\) 0.134182 0.412970i 0.0124585 0.0383433i
\(117\) 2.87811 + 8.85791i 0.266081 + 0.818914i
\(118\) 18.0349 1.66025
\(119\) −4.99276 −0.457685
\(120\) −0.00828709 0.0255051i −0.000756505 0.00232828i
\(121\) −3.90086 + 2.83414i −0.354623 + 0.257649i
\(122\) −5.34885 3.88617i −0.484262 0.351837i
\(123\) 4.97349 0.448445
\(124\) 0 0
\(125\) −0.0727821 −0.00650983
\(126\) 1.24932 + 0.907684i 0.111298 + 0.0808629i
\(127\) −9.09849 + 6.61044i −0.807361 + 0.586582i −0.913064 0.407816i \(-0.866291\pi\)
0.105704 + 0.994398i \(0.466291\pi\)
\(128\) −2.63459 8.10844i −0.232867 0.716692i
\(129\) −0.865983 −0.0762455
\(130\) 0.0604390 0.00530086
\(131\) 0.199494 + 0.613981i 0.0174299 + 0.0536437i 0.959393 0.282072i \(-0.0910218\pi\)
−0.941963 + 0.335716i \(0.891022\pi\)
\(132\) 0.406581 1.25133i 0.0353884 0.108914i
\(133\) −0.917378 + 2.82340i −0.0795468 + 0.244820i
\(134\) −15.4657 11.2365i −1.33603 0.970684i
\(135\) 0.0124276 + 0.0382482i 0.00106960 + 0.00329189i
\(136\) −15.1667 11.0192i −1.30053 0.944891i
\(137\) −2.33317 + 1.69515i −0.199336 + 0.144826i −0.682976 0.730441i \(-0.739315\pi\)
0.483640 + 0.875267i \(0.339315\pi\)
\(138\) 0.242824 0.747337i 0.0206706 0.0636175i
\(139\) −2.73354 + 1.98603i −0.231855 + 0.168453i −0.697647 0.716442i \(-0.745770\pi\)
0.465792 + 0.884894i \(0.345770\pi\)
\(140\) −0.00125420 0.000911227i −0.000105999 7.70128e-5i
\(141\) −1.64235 + 5.05464i −0.138311 + 0.425678i
\(142\) −10.0225 + 7.28179i −0.841071 + 0.611074i
\(143\) 20.3046 + 14.7522i 1.69796 + 1.23364i
\(144\) 1.54735 + 4.76227i 0.128946 + 0.396856i
\(145\) 0.00954197 + 0.00693265i 0.000792418 + 0.000575725i
\(146\) −1.79886 + 5.53632i −0.148875 + 0.458189i
\(147\) 2.42925 7.47645i 0.200361 0.616648i
\(148\) −0.620219 1.90884i −0.0509817 0.156905i
\(149\) −11.7699 −0.964230 −0.482115 0.876108i \(-0.660131\pi\)
−0.482115 + 0.876108i \(0.660131\pi\)
\(150\) −8.12315 −0.663252
\(151\) −5.52168 16.9940i −0.449348 1.38295i −0.877644 0.479313i \(-0.840886\pi\)
0.428296 0.903639i \(-0.359114\pi\)
\(152\) −9.01811 + 6.55204i −0.731465 + 0.531441i
\(153\) 7.50050 + 5.44943i 0.606379 + 0.440560i
\(154\) 4.16130 0.335327
\(155\) 0 0
\(156\) −2.08713 −0.167104
\(157\) −2.15276 1.56407i −0.171809 0.124826i 0.498558 0.866856i \(-0.333863\pi\)
−0.670367 + 0.742030i \(0.733863\pi\)
\(158\) −11.1358 + 8.09063i −0.885917 + 0.643656i
\(159\) 1.55628 + 4.78974i 0.123421 + 0.379851i
\(160\) −0.0109543 −0.000866015
\(161\) −0.384479 −0.0303012
\(162\) 0.973151 + 2.99505i 0.0764579 + 0.235313i
\(163\) −5.22391 + 16.0775i −0.409168 + 1.25929i 0.508196 + 0.861241i \(0.330312\pi\)
−0.917364 + 0.398049i \(0.869688\pi\)
\(164\) 0.333598 1.02671i 0.0260496 0.0801726i
\(165\) 0.0289128 + 0.0210064i 0.00225086 + 0.00163535i
\(166\) 0.816680 + 2.51348i 0.0633866 + 0.195084i
\(167\) 12.5257 + 9.10042i 0.969265 + 0.704212i 0.955284 0.295690i \(-0.0955496\pi\)
0.0139808 + 0.999902i \(0.495550\pi\)
\(168\) −2.36959 + 1.72161i −0.182818 + 0.132825i
\(169\) 8.28558 25.5004i 0.637353 1.96157i
\(170\) 0.0486724 0.0353626i 0.00373300 0.00271219i
\(171\) 4.45980 3.24024i 0.341050 0.247787i
\(172\) −0.0580860 + 0.178770i −0.00442902 + 0.0136311i
\(173\) −5.59083 + 4.06197i −0.425063 + 0.308826i −0.779672 0.626189i \(-0.784614\pi\)
0.354609 + 0.935015i \(0.384614\pi\)
\(174\) 2.12995 + 1.54750i 0.161471 + 0.117316i
\(175\) 1.22820 + 3.78002i 0.0928433 + 0.285742i
\(176\) 10.9164 + 7.93120i 0.822852 + 0.597837i
\(177\) 5.22752 16.0887i 0.392925 1.20930i
\(178\) 0.456458 1.40483i 0.0342130 0.105297i
\(179\) 4.47490 + 13.7723i 0.334470 + 1.02939i 0.966983 + 0.254842i \(0.0820236\pi\)
−0.632513 + 0.774550i \(0.717976\pi\)
\(180\) 0.00287872 0.000214567
\(181\) −17.3533 −1.28986 −0.644932 0.764240i \(-0.723114\pi\)
−0.644932 + 0.764240i \(0.723114\pi\)
\(182\) −2.03984 6.27797i −0.151203 0.465354i
\(183\) −5.01718 + 3.64520i −0.370881 + 0.269461i
\(184\) −1.16795 0.848562i −0.0861021 0.0625568i
\(185\) 0.0545168 0.00400815
\(186\) 0 0
\(187\) 24.9830 1.82694
\(188\) 0.933301 + 0.678083i 0.0680680 + 0.0494543i
\(189\) 3.55351 2.58178i 0.258480 0.187797i
\(190\) −0.0110543 0.0340218i −0.000801966 0.00246820i
\(191\) 14.9051 1.07850 0.539248 0.842147i \(-0.318709\pi\)
0.539248 + 0.842147i \(0.318709\pi\)
\(192\) −10.8206 −0.780907
\(193\) 3.17531 + 9.77259i 0.228564 + 0.703446i 0.997910 + 0.0646149i \(0.0205819\pi\)
−0.769347 + 0.638832i \(0.779418\pi\)
\(194\) −2.95878 + 9.10619i −0.212428 + 0.653786i
\(195\) 0.0175186 0.0539167i 0.00125453 0.00386105i
\(196\) −1.38047 1.00297i −0.0986050 0.0716407i
\(197\) 4.51326 + 13.8904i 0.321556 + 0.989648i 0.972971 + 0.230927i \(0.0741757\pi\)
−0.651415 + 0.758722i \(0.725824\pi\)
\(198\) −6.25142 4.54192i −0.444269 0.322780i
\(199\) 8.56892 6.22569i 0.607435 0.441327i −0.241075 0.970506i \(-0.577500\pi\)
0.848510 + 0.529179i \(0.177500\pi\)
\(200\) −4.61171 + 14.1934i −0.326097 + 1.00362i
\(201\) −14.5067 + 10.5397i −1.02322 + 0.743415i
\(202\) −6.84876 + 4.97592i −0.481877 + 0.350104i
\(203\) 0.398069 1.22513i 0.0279389 0.0859872i
\(204\) −1.68079 + 1.22117i −0.117679 + 0.0854988i
\(205\) 0.0237229 + 0.0172357i 0.00165688 + 0.00120379i
\(206\) 3.47126 + 10.6834i 0.241854 + 0.744351i
\(207\) 0.577594 + 0.419647i 0.0401456 + 0.0291675i
\(208\) 6.61434 20.3569i 0.458622 1.41149i
\(209\) 4.59043 14.1279i 0.317527 0.977246i
\(210\) −0.00290463 0.00893952i −0.000200438 0.000616885i
\(211\) 16.5603 1.14006 0.570030 0.821624i \(-0.306931\pi\)
0.570030 + 0.821624i \(0.306931\pi\)
\(212\) 1.09317 0.0750789
\(213\) 3.59088 + 11.0516i 0.246043 + 0.757243i
\(214\) −14.3895 + 10.4546i −0.983644 + 0.714660i
\(215\) −0.00413062 0.00300107i −0.000281706 0.000204671i
\(216\) 16.4927 1.12219
\(217\) 0 0
\(218\) −13.4646 −0.911940
\(219\) 4.41745 + 3.20947i 0.298504 + 0.216876i
\(220\) 0.00627582 0.00455965i 0.000423116 0.000307412i
\(221\) −12.2465 37.6908i −0.823788 2.53536i
\(222\) 12.1692 0.816744
\(223\) −0.805193 −0.0539197 −0.0269599 0.999637i \(-0.508583\pi\)
−0.0269599 + 0.999637i \(0.508583\pi\)
\(224\) 0.369711 + 1.13785i 0.0247024 + 0.0760261i
\(225\) 2.28067 7.01917i 0.152044 0.467945i
\(226\) 3.38543 10.4193i 0.225195 0.693080i
\(227\) −10.9012 7.92017i −0.723537 0.525680i 0.163975 0.986464i \(-0.447568\pi\)
−0.887512 + 0.460784i \(0.847568\pi\)
\(228\) 0.381737 + 1.17487i 0.0252812 + 0.0778074i
\(229\) −10.4764 7.61153i −0.692298 0.502984i 0.185116 0.982717i \(-0.440734\pi\)
−0.877415 + 0.479732i \(0.840734\pi\)
\(230\) 0.00374814 0.00272318i 0.000247145 0.000179561i
\(231\) 1.20618 3.71223i 0.0793605 0.244246i
\(232\) 3.91314 2.84306i 0.256910 0.186656i
\(233\) −9.99617 + 7.26264i −0.654871 + 0.475791i −0.864927 0.501898i \(-0.832635\pi\)
0.210056 + 0.977689i \(0.432635\pi\)
\(234\) −3.78780 + 11.6577i −0.247616 + 0.762084i
\(235\) −0.0253507 + 0.0184183i −0.00165370 + 0.00120148i
\(236\) −2.97065 2.15830i −0.193373 0.140494i
\(237\) 3.98975 + 12.2792i 0.259162 + 0.797618i
\(238\) −5.31591 3.86224i −0.344580 0.250352i
\(239\) 4.92361 15.1533i 0.318482 0.980186i −0.655816 0.754921i \(-0.727675\pi\)
0.974298 0.225265i \(-0.0723248\pi\)
\(240\) 0.00941850 0.0289872i 0.000607962 0.00187111i
\(241\) −6.34157 19.5173i −0.408496 1.25722i −0.917940 0.396718i \(-0.870149\pi\)
0.509444 0.860504i \(-0.329851\pi\)
\(242\) −6.34574 −0.407919
\(243\) −13.6228 −0.873906
\(244\) 0.415972 + 1.28023i 0.0266299 + 0.0819584i
\(245\) 0.0374969 0.0272431i 0.00239559 0.00174050i
\(246\) 5.29540 + 3.84733i 0.337622 + 0.245297i
\(247\) −23.5643 −1.49936
\(248\) 0 0
\(249\) 2.47896 0.157097
\(250\) −0.0774929 0.0563019i −0.00490108 0.00356085i
\(251\) 3.42169 2.48600i 0.215975 0.156915i −0.474538 0.880235i \(-0.657385\pi\)
0.690513 + 0.723320i \(0.257385\pi\)
\(252\) −0.0971578 0.299021i −0.00612036 0.0188365i
\(253\) 1.92388 0.120953
\(254\) −14.8010 −0.928698
\(255\) −0.0174384 0.0536699i −0.00109204 0.00336094i
\(256\) −1.94999 + 6.00144i −0.121874 + 0.375090i
\(257\) 5.73155 17.6399i 0.357524 1.10035i −0.597007 0.802236i \(-0.703644\pi\)
0.954531 0.298110i \(-0.0963563\pi\)
\(258\) −0.922034 0.669897i −0.0574033 0.0417059i
\(259\) −1.83996 5.66281i −0.114329 0.351870i
\(260\) −0.00995530 0.00723295i −0.000617402 0.000448569i
\(261\) −1.93520 + 1.40600i −0.119786 + 0.0870294i
\(262\) −0.262549 + 0.808043i −0.0162203 + 0.0499211i
\(263\) 11.7199 8.51497i 0.722677 0.525056i −0.164561 0.986367i \(-0.552621\pi\)
0.887238 + 0.461311i \(0.152621\pi\)
\(264\) 11.8571 8.61467i 0.729752 0.530196i
\(265\) −0.00917564 + 0.0282397i −0.000563655 + 0.00173475i
\(266\) −3.16085 + 2.29649i −0.193804 + 0.140807i
\(267\) −1.12092 0.814398i −0.0685993 0.0498403i
\(268\) 1.20274 + 3.70166i 0.0734693 + 0.226115i
\(269\) 12.1686 + 8.84099i 0.741931 + 0.539045i 0.893315 0.449430i \(-0.148373\pi\)
−0.151384 + 0.988475i \(0.548373\pi\)
\(270\) −0.0163556 + 0.0503375i −0.000995372 + 0.00306344i
\(271\) −7.08115 + 21.7935i −0.430149 + 1.32386i 0.467828 + 0.883820i \(0.345037\pi\)
−0.897977 + 0.440043i \(0.854963\pi\)
\(272\) −6.58407 20.2637i −0.399218 1.22867i
\(273\) −6.19173 −0.374741
\(274\) −3.79549 −0.229294
\(275\) −6.14575 18.9147i −0.370602 1.14060i
\(276\) −0.129434 + 0.0940390i −0.00779099 + 0.00566048i
\(277\) 11.6908 + 8.49387i 0.702433 + 0.510347i 0.880724 0.473630i \(-0.157057\pi\)
−0.178291 + 0.983978i \(0.557057\pi\)
\(278\) −4.44679 −0.266701
\(279\) 0 0
\(280\) −0.0172688 −0.00103201
\(281\) 4.70657 + 3.41952i 0.280771 + 0.203992i 0.719253 0.694748i \(-0.244484\pi\)
−0.438483 + 0.898740i \(0.644484\pi\)
\(282\) −5.65876 + 4.11133i −0.336974 + 0.244826i
\(283\) 0.798195 + 2.45659i 0.0474478 + 0.146029i 0.971974 0.235090i \(-0.0755386\pi\)
−0.924526 + 0.381120i \(0.875539\pi\)
\(284\) 2.52231 0.149672
\(285\) −0.0335544 −0.00198759
\(286\) 10.2070 + 31.4140i 0.603555 + 1.85755i
\(287\) 0.989662 3.04587i 0.0584179 0.179792i
\(288\) 0.686523 2.11290i 0.0404537 0.124504i
\(289\) −18.1617 13.1952i −1.06833 0.776191i
\(290\) 0.00479670 + 0.0147627i 0.000281672 + 0.000866897i
\(291\) 7.26586 + 5.27896i 0.425932 + 0.309458i
\(292\) 0.958852 0.696647i 0.0561126 0.0407682i
\(293\) 5.70146 17.5473i 0.333083 1.02512i −0.634576 0.772861i \(-0.718825\pi\)
0.967659 0.252263i \(-0.0811750\pi\)
\(294\) 8.37003 6.08118i 0.488150 0.354662i
\(295\) 0.0806899 0.0586247i 0.00469795 0.00341326i
\(296\) 6.90875 21.2630i 0.401563 1.23588i
\(297\) −17.7813 + 12.9188i −1.03177 + 0.749628i
\(298\) −12.5317 9.10484i −0.725944 0.527429i
\(299\) −0.943071 2.90247i −0.0545392 0.167854i
\(300\) 1.33802 + 0.972125i 0.0772504 + 0.0561257i
\(301\) −0.172320 + 0.530345i −0.00993234 + 0.0305686i
\(302\) 7.26693 22.3653i 0.418165 1.28698i
\(303\) 2.45378 + 7.55196i 0.140966 + 0.433849i
\(304\) −12.6689 −0.726609
\(305\) −0.0365637 −0.00209363
\(306\) 3.77046 + 11.6043i 0.215543 + 0.663373i
\(307\) −1.33143 + 0.967344i −0.0759890 + 0.0552092i −0.625131 0.780520i \(-0.714955\pi\)
0.549142 + 0.835729i \(0.314955\pi\)
\(308\) −0.685434 0.497997i −0.0390562 0.0283760i
\(309\) 10.5367 0.599412
\(310\) 0 0
\(311\) −19.2427 −1.09115 −0.545576 0.838061i \(-0.683689\pi\)
−0.545576 + 0.838061i \(0.683689\pi\)
\(312\) −18.8088 13.6654i −1.06484 0.773651i
\(313\) 12.4613 9.05366i 0.704354 0.511743i −0.176993 0.984212i \(-0.556637\pi\)
0.881347 + 0.472469i \(0.156637\pi\)
\(314\) −1.08218 3.33061i −0.0610710 0.187957i
\(315\) 0.00854010 0.000481180
\(316\) 2.80248 0.157652
\(317\) −8.93858 27.5101i −0.502041 1.54512i −0.805689 0.592338i \(-0.798205\pi\)
0.303649 0.952784i \(-0.401795\pi\)
\(318\) −2.04818 + 6.30365i −0.114856 + 0.353491i
\(319\) −1.99188 + 6.13037i −0.111524 + 0.343235i
\(320\) −0.0516125 0.0374987i −0.00288523 0.00209624i
\(321\) 5.15548 + 15.8669i 0.287751 + 0.885606i
\(322\) −0.409365 0.297421i −0.0228130 0.0165746i
\(323\) −18.9767 + 13.7874i −1.05589 + 0.767149i
\(324\) 0.198134 0.609794i 0.0110075 0.0338775i
\(325\) −25.5231 + 18.5436i −1.41577 + 1.02862i
\(326\) −17.9991 + 13.0771i −0.996878 + 0.724274i
\(327\) −3.90280 + 12.0116i −0.215825 + 0.664242i
\(328\) 9.72868 7.06830i 0.537176 0.390282i
\(329\) 2.76876 + 2.01162i 0.152646 + 0.110904i
\(330\) 0.0145343 + 0.0447321i 0.000800089 + 0.00246242i
\(331\) −1.49434 1.08570i −0.0821364 0.0596756i 0.545959 0.837812i \(-0.316165\pi\)
−0.628096 + 0.778136i \(0.716165\pi\)
\(332\) 0.166277 0.511747i 0.00912561 0.0280857i
\(333\) −3.41664 + 10.5154i −0.187231 + 0.576238i
\(334\) 6.29659 + 19.3789i 0.344534 + 1.06037i
\(335\) −0.105720 −0.00577612
\(336\) −3.32885 −0.181604
\(337\) 5.70863 + 17.5694i 0.310969 + 0.957064i 0.977382 + 0.211481i \(0.0678287\pi\)
−0.666413 + 0.745583i \(0.732171\pi\)
\(338\) 28.5482 20.7415i 1.55282 1.12819i
\(339\) −8.31358 6.04017i −0.451532 0.328057i
\(340\) −0.0122491 −0.000664301
\(341\) 0 0
\(342\) 7.25501 0.392306
\(343\) −8.59705 6.24612i −0.464197 0.337259i
\(344\) −1.69395 + 1.23073i −0.0913319 + 0.0663565i
\(345\) −0.00134289 0.00413298i −7.22986e−5 0.000222512i
\(346\) −9.09490 −0.488945
\(347\) 12.1294 0.651142 0.325571 0.945518i \(-0.394444\pi\)
0.325571 + 0.945518i \(0.394444\pi\)
\(348\) −0.165643 0.509798i −0.00887942 0.0273280i
\(349\) 0.333970 1.02785i 0.0178770 0.0550197i −0.941720 0.336398i \(-0.890791\pi\)
0.959597 + 0.281378i \(0.0907914\pi\)
\(350\) −1.61640 + 4.97478i −0.0864004 + 0.265913i
\(351\) 28.2063 + 20.4931i 1.50554 + 1.09384i
\(352\) −1.84998 5.69366i −0.0986044 0.303473i
\(353\) 14.8645 + 10.7997i 0.791159 + 0.574810i 0.908307 0.418304i \(-0.137375\pi\)
−0.117149 + 0.993114i \(0.537375\pi\)
\(354\) 18.0116 13.0862i 0.957303 0.695522i
\(355\) −0.0211714 + 0.0651588i −0.00112366 + 0.00345827i
\(356\) −0.243308 + 0.176773i −0.0128953 + 0.00936897i
\(357\) −4.98629 + 3.62275i −0.263902 + 0.191736i
\(358\) −5.88930 + 18.1254i −0.311259 + 0.957957i
\(359\) 22.4047 16.2780i 1.18247 0.859118i 0.190026 0.981779i \(-0.439143\pi\)
0.992449 + 0.122661i \(0.0391427\pi\)
\(360\) 0.0259425 + 0.0188484i 0.00136729 + 0.000993396i
\(361\) −1.56139 4.80547i −0.0821786 0.252920i
\(362\) −18.4765 13.4240i −0.971105 0.705549i
\(363\) −1.83935 + 5.66093i −0.0965407 + 0.297122i
\(364\) −0.415312 + 1.27820i −0.0217683 + 0.0669958i
\(365\) 0.00994820 + 0.0306174i 0.000520712 + 0.00160259i
\(366\) −8.16173 −0.426620
\(367\) 5.52561 0.288434 0.144217 0.989546i \(-0.453934\pi\)
0.144217 + 0.989546i \(0.453934\pi\)
\(368\) −0.507022 1.56045i −0.0264304 0.0813443i
\(369\) −4.81121 + 3.49555i −0.250461 + 0.181971i
\(370\) 0.0580454 + 0.0421725i 0.00301764 + 0.00219244i
\(371\) 3.24301 0.168369
\(372\) 0 0
\(373\) 5.64476 0.292274 0.146137 0.989264i \(-0.453316\pi\)
0.146137 + 0.989264i \(0.453316\pi\)
\(374\) 26.6001 + 19.3261i 1.37546 + 0.999328i
\(375\) −0.0726878 + 0.0528108i −0.00375358 + 0.00272714i
\(376\) 3.97101 + 12.2215i 0.204789 + 0.630277i
\(377\) 10.2250 0.526616
\(378\) 5.78070 0.297327
\(379\) −3.45250 10.6257i −0.177343 0.545806i 0.822390 0.568925i \(-0.192640\pi\)
−0.999733 + 0.0231185i \(0.992640\pi\)
\(380\) −0.00225067 + 0.00692686i −0.000115457 + 0.000355340i
\(381\) −4.29016 + 13.2037i −0.219791 + 0.676448i
\(382\) 15.8698 + 11.5301i 0.811972 + 0.589932i
\(383\) −5.72315 17.6141i −0.292439 0.900036i −0.984070 0.177784i \(-0.943107\pi\)
0.691630 0.722252i \(-0.256893\pi\)
\(384\) −8.51467 6.18627i −0.434512 0.315692i
\(385\) 0.0186180 0.0135268i 0.000948862 0.000689389i
\(386\) −4.17893 + 12.8614i −0.212702 + 0.654630i
\(387\) 0.837726 0.608644i 0.0425840 0.0309391i
\(388\) 1.57713 1.14585i 0.0800666 0.0581718i
\(389\) 7.28844 22.4315i 0.369539 1.13732i −0.577551 0.816354i \(-0.695992\pi\)
0.947090 0.320968i \(-0.104008\pi\)
\(390\) 0.0603607 0.0438546i 0.00305648 0.00222067i
\(391\) −2.45769 1.78562i −0.124291 0.0903025i
\(392\) −5.87363 18.0772i −0.296663 0.913035i
\(393\) 0.644741 + 0.468432i 0.0325229 + 0.0236292i
\(394\) −5.93977 + 18.2807i −0.299241 + 0.920970i
\(395\) −0.0235230 + 0.0723964i −0.00118357 + 0.00364266i
\(396\) 0.486164 + 1.49626i 0.0244306 + 0.0751898i
\(397\) 10.9091 0.547514 0.273757 0.961799i \(-0.411734\pi\)
0.273757 + 0.961799i \(0.411734\pi\)
\(398\) 13.9395 0.698726
\(399\) 1.13247 + 3.48539i 0.0566945 + 0.174488i
\(400\) −13.7220 + 9.96960i −0.686099 + 0.498480i
\(401\) −8.63294 6.27220i −0.431109 0.313219i 0.350983 0.936382i \(-0.385847\pi\)
−0.782092 + 0.623163i \(0.785847\pi\)
\(402\) −23.5988 −1.17700
\(403\) 0 0
\(404\) 1.72359 0.0857517
\(405\) 0.0140897 + 0.0102368i 0.000700124 + 0.000508670i
\(406\) 1.37155 0.996492i 0.0680691 0.0494551i
\(407\) 9.20688 + 28.3359i 0.456368 + 1.40456i
\(408\) −23.1426 −1.14573
\(409\) 9.42592 0.466082 0.233041 0.972467i \(-0.425132\pi\)
0.233041 + 0.972467i \(0.425132\pi\)
\(410\) 0.0119254 + 0.0367025i 0.000588951 + 0.00181261i
\(411\) −1.10014 + 3.38590i −0.0542661 + 0.167014i
\(412\) 0.706752 2.17516i 0.0348192 0.107162i
\(413\) −8.81281 6.40288i −0.433650 0.315065i
\(414\) 0.290354 + 0.893617i 0.0142701 + 0.0439189i
\(415\) 0.0118243 + 0.00859083i 0.000580430 + 0.000421707i
\(416\) −7.68293 + 5.58198i −0.376687 + 0.273679i
\(417\) −1.28893 + 3.96691i −0.0631191 + 0.194260i
\(418\) 15.8164 11.4913i 0.773606 0.562058i
\(419\) 23.6286 17.1672i 1.15433 0.838671i 0.165281 0.986247i \(-0.447147\pi\)
0.989051 + 0.147575i \(0.0471469\pi\)
\(420\) −0.000591384 0.00182009i −2.88566e−5 8.88114e-5i
\(421\) −0.482705 + 0.350705i −0.0235256 + 0.0170923i −0.599486 0.800385i \(-0.704628\pi\)
0.575960 + 0.817478i \(0.304628\pi\)
\(422\) 17.6322 + 12.8105i 0.858322 + 0.623608i
\(423\) −1.96382 6.04401i −0.0954842 0.293870i
\(424\) 9.85141 + 7.15747i 0.478427 + 0.347597i
\(425\) −9.70435 + 29.8669i −0.470730 + 1.44876i
\(426\) −4.72586 + 14.5447i −0.228969 + 0.704693i
\(427\) 1.23404 + 3.79797i 0.0597191 + 0.183797i
\(428\) 3.62132 0.175043
\(429\) 30.9825 1.49585
\(430\) −0.00207644 0.00639063i −0.000100135 0.000308183i
\(431\) 19.4200 14.1095i 0.935429 0.679629i −0.0118874 0.999929i \(-0.503784\pi\)
0.947316 + 0.320301i \(0.103784\pi\)
\(432\) 15.1645 + 11.0177i 0.729605 + 0.530089i
\(433\) 12.5443 0.602840 0.301420 0.953492i \(-0.402539\pi\)
0.301420 + 0.953492i \(0.402539\pi\)
\(434\) 0 0
\(435\) 0.0145599 0.000698096
\(436\) 2.21785 + 1.61136i 0.106216 + 0.0771701i
\(437\) −1.46134 + 1.06173i −0.0699056 + 0.0507894i
\(438\) 2.22063 + 6.83440i 0.106106 + 0.326560i
\(439\) −39.1172 −1.86696 −0.933482 0.358625i \(-0.883246\pi\)
−0.933482 + 0.358625i \(0.883246\pi\)
\(440\) 0.0864107 0.00411947
\(441\) 2.90474 + 8.93986i 0.138321 + 0.425708i
\(442\) 16.1173 49.6039i 0.766620 2.35941i
\(443\) −2.31518 + 7.12538i −0.109997 + 0.338537i −0.990871 0.134815i \(-0.956956\pi\)
0.880873 + 0.473352i \(0.156956\pi\)
\(444\) −2.00447 1.45633i −0.0951279 0.0691144i
\(445\) −0.00252434 0.00776913i −0.000119665 0.000368292i
\(446\) −0.857309 0.622872i −0.0405948 0.0294938i
\(447\) −11.7547 + 8.54027i −0.555977 + 0.403941i
\(448\) −2.15315 + 6.62673i −0.101727 + 0.313083i
\(449\) 14.1692 10.2945i 0.668686 0.485829i −0.200899 0.979612i \(-0.564386\pi\)
0.869585 + 0.493783i \(0.164386\pi\)
\(450\) 7.85809 5.70924i 0.370434 0.269136i
\(451\) −4.95212 + 15.2411i −0.233186 + 0.717674i
\(452\) −1.80455 + 1.31108i −0.0848788 + 0.0616680i
\(453\) −17.8454 12.9654i −0.838449 0.609169i
\(454\) −5.47997 16.8656i −0.257188 0.791543i
\(455\) −0.0295337 0.0214575i −0.00138456 0.00100594i
\(456\) −4.25225 + 13.0871i −0.199130 + 0.612859i
\(457\) 1.51235 4.65453i 0.0707446 0.217730i −0.909433 0.415851i \(-0.863484\pi\)
0.980178 + 0.198121i \(0.0634839\pi\)
\(458\) −5.26642 16.2084i −0.246084 0.757368i
\(459\) 34.7054 1.61991
\(460\) −0.000943272 0 −4.39803e−5 0
\(461\) −6.26602 19.2848i −0.291837 0.898183i −0.984265 0.176696i \(-0.943459\pi\)
0.692428 0.721487i \(-0.256541\pi\)
\(462\) 4.15590 3.01944i 0.193350 0.140477i
\(463\) −18.5716 13.4931i −0.863097 0.627077i 0.0656286 0.997844i \(-0.479095\pi\)
−0.928726 + 0.370767i \(0.879095\pi\)
\(464\) 5.49727 0.255204
\(465\) 0 0
\(466\) −16.2613 −0.753291
\(467\) −22.0760 16.0391i −1.02155 0.742203i −0.0549533 0.998489i \(-0.517501\pi\)
−0.966601 + 0.256286i \(0.917501\pi\)
\(468\) 2.01902 1.46691i 0.0933295 0.0678078i
\(469\) 3.56809 + 10.9815i 0.164759 + 0.507077i
\(470\) −0.0412394 −0.00190223
\(471\) −3.28486 −0.151358
\(472\) −12.6395 38.9005i −0.581782 1.79054i
\(473\) 0.862263 2.65377i 0.0396469 0.122021i
\(474\) −5.25080 + 16.1603i −0.241177 + 0.742267i
\(475\) 15.1066 + 10.9756i 0.693139 + 0.503595i
\(476\) 0.413411 + 1.27235i 0.0189487 + 0.0583180i
\(477\) −4.87190 3.53964i −0.223069 0.162069i
\(478\) 16.9644 12.3254i 0.775934 0.563749i
\(479\) −10.6278 + 32.7089i −0.485594 + 1.49451i 0.345524 + 0.938410i \(0.387701\pi\)
−0.831118 + 0.556096i \(0.812299\pi\)
\(480\) −0.0109401 + 0.00794846i −0.000499346 + 0.000362796i
\(481\) 38.2360 27.7800i 1.74341 1.26666i
\(482\) 8.34596 25.6862i 0.380148 1.16998i
\(483\) −0.383981 + 0.278979i −0.0174717 + 0.0126940i
\(484\) 1.04525 + 0.759416i 0.0475112 + 0.0345189i
\(485\) 0.0163629 + 0.0503598i 0.000743000 + 0.00228672i
\(486\) −14.5046 10.5382i −0.657941 0.478022i
\(487\) −8.43857 + 25.9713i −0.382388 + 1.17687i 0.555969 + 0.831203i \(0.312347\pi\)
−0.938357 + 0.345667i \(0.887653\pi\)
\(488\) −4.63361 + 14.2608i −0.209754 + 0.645555i
\(489\) 6.44874 + 19.8472i 0.291622 + 0.897520i
\(490\) 0.0609982 0.00275562
\(491\) 35.5025 1.60221 0.801103 0.598526i \(-0.204247\pi\)
0.801103 + 0.598526i \(0.204247\pi\)
\(492\) −0.411816 1.26744i −0.0185661 0.0571405i
\(493\) 8.23436 5.98261i 0.370857 0.269443i
\(494\) −25.0895 18.2286i −1.12883 0.820143i
\(495\) −0.0427334 −0.00192073
\(496\) 0 0
\(497\) 7.48275 0.335647
\(498\) 2.63941 + 1.91764i 0.118275 + 0.0859315i
\(499\) −9.06727 + 6.58776i −0.405907 + 0.294908i −0.771943 0.635692i \(-0.780715\pi\)
0.366036 + 0.930601i \(0.380715\pi\)
\(500\) 0.00602651 + 0.0185477i 0.000269514 + 0.000829478i
\(501\) 19.1127 0.853892
\(502\) 5.56625 0.248434
\(503\) −0.525127 1.61617i −0.0234142 0.0720616i 0.938667 0.344826i \(-0.112062\pi\)
−0.962081 + 0.272764i \(0.912062\pi\)
\(504\) 1.08226 3.33086i 0.0482078 0.148368i
\(505\) −0.0144672 + 0.0445254i −0.000643781 + 0.00198135i
\(506\) 2.04840 + 1.48825i 0.0910626 + 0.0661609i
\(507\) −10.2283 31.4794i −0.454253 1.39805i
\(508\) 2.43797 + 1.77129i 0.108167 + 0.0785883i
\(509\) 33.5807 24.3978i 1.48844 1.08141i 0.513724 0.857956i \(-0.328266\pi\)
0.974714 0.223458i \(-0.0717344\pi\)
\(510\) 0.0229502 0.0706335i 0.00101625 0.00312770i
\(511\) 2.84456 2.06669i 0.125836 0.0914251i
\(512\) −20.5136 + 14.9040i −0.906583 + 0.658671i
\(513\) 6.37683 19.6259i 0.281544 0.866503i
\(514\) 19.7482 14.3479i 0.871055 0.632858i
\(515\) 0.0502585 + 0.0365150i 0.00221466 + 0.00160904i
\(516\) 0.0717052 + 0.220686i 0.00315665 + 0.00971516i
\(517\) −13.8545 10.0659i −0.609318 0.442696i
\(518\) 2.42152 7.45266i 0.106395 0.327451i
\(519\) −2.63621 + 8.11341i −0.115717 + 0.356139i
\(520\) −0.0423579 0.130364i −0.00185752 0.00571684i
\(521\) −32.5673 −1.42680 −0.713399 0.700758i \(-0.752845\pi\)
−0.713399 + 0.700758i \(0.752845\pi\)
\(522\) −3.14809 −0.137788
\(523\) 4.49129 + 13.8228i 0.196390 + 0.604428i 0.999958 + 0.00921351i \(0.00293279\pi\)
−0.803567 + 0.595214i \(0.797067\pi\)
\(524\) 0.139947 0.101678i 0.00611363 0.00444182i
\(525\) 3.96939 + 2.88393i 0.173239 + 0.125865i
\(526\) 19.0653 0.831288
\(527\) 0 0
\(528\) 16.6571 0.724907
\(529\) 18.4181 + 13.3816i 0.800788 + 0.581807i
\(530\) −0.0316149 + 0.0229695i −0.00137326 + 0.000997733i
\(531\) 6.25074 + 19.2378i 0.271259 + 0.834849i
\(532\) 0.795472 0.0344881
\(533\) 25.4210 1.10111
\(534\) −0.563482 1.73422i −0.0243843 0.0750470i
\(535\) −0.0303960 + 0.0935494i −0.00131414 + 0.00404449i
\(536\) −13.3976 + 41.2337i −0.578689 + 1.78102i
\(537\) 14.4623 + 10.5075i 0.624095 + 0.453432i
\(538\) 6.11708 + 18.8264i 0.263726 + 0.811666i
\(539\) 20.4925 + 14.8887i 0.882674 + 0.641300i
\(540\) 0.00871810 0.00633407i 0.000375167 0.000272575i
\(541\) −2.59517 + 7.98712i −0.111575 + 0.343393i −0.991217 0.132243i \(-0.957782\pi\)
0.879642 + 0.475636i \(0.157782\pi\)
\(542\) −24.3983 + 17.7264i −1.04799 + 0.761413i
\(543\) −17.3309 + 12.5916i −0.743738 + 0.540357i
\(544\) −2.92119 + 8.99049i −0.125245 + 0.385464i
\(545\) −0.0602420 + 0.0437684i −0.00258048 + 0.00187483i
\(546\) −6.59249 4.78972i −0.282132 0.204981i
\(547\) 3.86046 + 11.8813i 0.165062 + 0.508007i 0.999041 0.0437886i \(-0.0139428\pi\)
−0.833979 + 0.551796i \(0.813943\pi\)
\(548\) 0.625180 + 0.454220i 0.0267064 + 0.0194033i
\(549\) 2.29150 7.05251i 0.0977988 0.300994i
\(550\) 8.08825 24.8931i 0.344884 1.06144i
\(551\) −1.87016 5.75577i −0.0796717 0.245204i
\(552\) −1.78215 −0.0758533
\(553\) 8.31392 0.353544
\(554\) 5.87691 + 18.0873i 0.249686 + 0.768455i
\(555\) 0.0544461 0.0395574i 0.00231111 0.00167912i
\(556\) 0.732460 + 0.532163i 0.0310632 + 0.0225687i
\(557\) −16.8308 −0.713144 −0.356572 0.934268i \(-0.616054\pi\)
−0.356572 + 0.934268i \(0.616054\pi\)
\(558\) 0 0
\(559\) −4.42630 −0.187213
\(560\) −0.0158782 0.0115362i −0.000670975 0.000487492i
\(561\) 24.9507 18.1277i 1.05342 0.765353i
\(562\) 2.36597 + 7.28171i 0.0998024 + 0.307160i
\(563\) −16.7349 −0.705291 −0.352645 0.935757i \(-0.614718\pi\)
−0.352645 + 0.935757i \(0.614718\pi\)
\(564\) 1.42411 0.0599658
\(565\) −0.0187224 0.0576215i −0.000787656 0.00242416i
\(566\) −1.05048 + 3.23305i −0.0441551 + 0.135895i
\(567\) 0.587790 1.80903i 0.0246849 0.0759722i
\(568\) 22.7306 + 16.5148i 0.953755 + 0.692944i
\(569\) 1.64962 + 5.07700i 0.0691556 + 0.212839i 0.979662 0.200657i \(-0.0643076\pi\)
−0.910506 + 0.413496i \(0.864308\pi\)
\(570\) −0.0357262 0.0259566i −0.00149641 0.00108720i
\(571\) −29.1251 + 21.1606i −1.21885 + 0.885545i −0.996004 0.0893088i \(-0.971534\pi\)
−0.222844 + 0.974854i \(0.571534\pi\)
\(572\) 2.07816 6.39592i 0.0868923 0.267427i
\(573\) 14.8858 10.8152i 0.621863 0.451810i
\(574\) 3.40990 2.47744i 0.142327 0.103406i
\(575\) −0.747307 + 2.29997i −0.0311648 + 0.0959155i
\(576\) 10.4675 7.60507i 0.436145 0.316878i
\(577\) −1.85205 1.34559i −0.0771017 0.0560176i 0.548567 0.836107i \(-0.315174\pi\)
−0.625668 + 0.780089i \(0.715174\pi\)
\(578\) −9.12979 28.0986i −0.379749 1.16875i
\(579\) 10.2622 + 7.45592i 0.426482 + 0.309857i
\(580\) 0.000976612 0.00300570i 4.05516e−5 0.000124805i
\(581\) 0.493281 1.51816i 0.0204647 0.0629840i
\(582\) 3.65251 + 11.2413i 0.151402 + 0.465966i
\(583\) −16.2276 −0.672078
\(584\) 13.2023 0.546314
\(585\) 0.0209476 + 0.0644701i 0.000866077 + 0.00266551i
\(586\) 19.6445 14.2726i 0.811508 0.589595i
\(587\) −1.69705 1.23298i −0.0700446 0.0508904i 0.552212 0.833704i \(-0.313784\pi\)
−0.622257 + 0.782813i \(0.713784\pi\)
\(588\) −2.10644 −0.0868680
\(589\) 0 0
\(590\) 0.131263 0.00540400
\(591\) 14.5863 + 10.5975i 0.599999 + 0.435925i
\(592\) 20.5568 14.9354i 0.844877 0.613839i
\(593\) −2.05214 6.31583i −0.0842711 0.259360i 0.900038 0.435811i \(-0.143538\pi\)
−0.984309 + 0.176451i \(0.943538\pi\)
\(594\) −28.9258 −1.18684
\(595\) −0.0363385 −0.00148973
\(596\) 0.974575 + 2.99943i 0.0399201 + 0.122862i
\(597\) 4.04045 12.4352i 0.165365 0.508940i
\(598\) 1.24115 3.81987i 0.0507544 0.156206i
\(599\) −24.8553 18.0584i −1.01556 0.737847i −0.0501917 0.998740i \(-0.515983\pi\)
−0.965368 + 0.260892i \(0.915983\pi\)
\(600\) 5.69299 + 17.5212i 0.232416 + 0.715301i
\(601\) −13.7212 9.96901i −0.559698 0.406645i 0.271650 0.962396i \(-0.412431\pi\)
−0.831348 + 0.555751i \(0.812431\pi\)
\(602\) −0.593731 + 0.431371i −0.0241987 + 0.0175814i
\(603\) 6.62564 20.3916i 0.269817 0.830412i
\(604\) −3.87352 + 2.81428i −0.157611 + 0.114511i
\(605\) −0.0283914 + 0.0206276i −0.00115427 + 0.000838630i
\(606\) −3.22935 + 9.93893i −0.131184 + 0.403742i
\(607\) −14.4948 + 10.5311i −0.588327 + 0.427445i −0.841717 0.539920i \(-0.818455\pi\)
0.253389 + 0.967364i \(0.418455\pi\)
\(608\) 4.54737 + 3.30386i 0.184420 + 0.133989i
\(609\) −0.491402 1.51238i −0.0199126 0.0612847i
\(610\) −0.0389303 0.0282845i −0.00157624 0.00114521i
\(611\) −8.39457 + 25.8358i −0.339608 + 1.04521i
\(612\) 0.767669 2.36264i 0.0310312 0.0955041i
\(613\) −5.45553 16.7904i −0.220347 0.678158i −0.998731 0.0503690i \(-0.983960\pi\)
0.778384 0.627789i \(-0.216040\pi\)
\(614\) −2.16592 −0.0874093
\(615\) 0.0361983 0.00145966
\(616\) −2.91639 8.97572i −0.117505 0.361642i
\(617\) −16.4572 + 11.9569i −0.662544 + 0.481366i −0.867521 0.497401i \(-0.834288\pi\)
0.204977 + 0.978767i \(0.434288\pi\)
\(618\) 11.2187 + 8.15085i 0.451282 + 0.327875i
\(619\) 16.4294 0.660354 0.330177 0.943919i \(-0.392892\pi\)
0.330177 + 0.943919i \(0.392892\pi\)
\(620\) 0 0
\(621\) 2.67257 0.107247
\(622\) −20.4882 14.8855i −0.821500 0.596855i
\(623\) −0.721803 + 0.524420i −0.0289184 + 0.0210105i
\(624\) −8.16518 25.1298i −0.326869 1.00600i
\(625\) 24.9992 0.999968
\(626\) 20.2715 0.810211
\(627\) −5.66673 17.4404i −0.226307 0.696502i
\(628\) −0.220333 + 0.678114i −0.00879223 + 0.0270597i
\(629\) 14.5380 44.7433i 0.579667 1.78403i
\(630\) 0.00909286 + 0.00660635i 0.000362268 + 0.000263203i
\(631\) 3.21869 + 9.90612i 0.128134 + 0.394357i 0.994459 0.105124i \(-0.0335241\pi\)
−0.866325 + 0.499481i \(0.833524\pi\)
\(632\) 25.2555 + 18.3492i 1.00461 + 0.729891i
\(633\) 16.5389 12.0162i 0.657361 0.477601i
\(634\) 11.7638 36.2053i 0.467201 1.43790i
\(635\) −0.0662211 + 0.0481124i −0.00262790 + 0.00190928i
\(636\) 1.09175 0.793202i 0.0432907 0.0314525i
\(637\) 12.4166 38.2144i 0.491965 1.51411i
\(638\) −6.86306 + 4.98631i −0.271711 + 0.197410i
\(639\) −11.2412 8.16718i −0.444693 0.323089i
\(640\) −0.0191752 0.0590153i −0.000757967 0.00233278i
\(641\) 18.4567 + 13.4095i 0.728994 + 0.529645i 0.889245 0.457431i \(-0.151230\pi\)
−0.160251 + 0.987076i \(0.551230\pi\)
\(642\) −6.78498 + 20.8820i −0.267782 + 0.824148i
\(643\) −7.41261 + 22.8137i −0.292325 + 0.899683i 0.691782 + 0.722106i \(0.256826\pi\)
−0.984107 + 0.177577i \(0.943174\pi\)
\(644\) 0.0318357 + 0.0979803i 0.00125450 + 0.00386096i
\(645\) −0.00630284 −0.000248174
\(646\) −30.8704 −1.21458
\(647\) 6.08563 + 18.7296i 0.239251 + 0.736338i 0.996529 + 0.0832458i \(0.0265287\pi\)
−0.757278 + 0.653092i \(0.773471\pi\)
\(648\) 5.77816 4.19808i 0.226988 0.164916i
\(649\) 44.0980 + 32.0391i 1.73100 + 1.25764i
\(650\) −41.5199 −1.62854
\(651\) 0 0
\(652\) 4.52973 0.177398
\(653\) 4.01925 + 2.92015i 0.157285 + 0.114274i 0.663644 0.748048i \(-0.269009\pi\)
−0.506359 + 0.862323i \(0.669009\pi\)
\(654\) −13.4472 + 9.76995i −0.525826 + 0.382035i
\(655\) 0.00145197 + 0.00446870i 5.67332e−5 + 0.000174607i
\(656\) 13.6671 0.533610
\(657\) −6.52904 −0.254722
\(658\) 1.39184 + 4.28364i 0.0542596 + 0.166994i
\(659\) 0.477032 1.46815i 0.0185825 0.0571911i −0.941335 0.337473i \(-0.890428\pi\)
0.959918 + 0.280282i \(0.0904279\pi\)
\(660\) 0.00295920 0.00910748i 0.000115187 0.000354508i
\(661\) −12.9739 9.42612i −0.504628 0.366634i 0.306154 0.951982i \(-0.400958\pi\)
−0.810782 + 0.585348i \(0.800958\pi\)
\(662\) −0.751198 2.31195i −0.0291961 0.0898565i
\(663\) −39.5791 28.7559i −1.53713 1.11679i
\(664\) 4.84910 3.52308i 0.188182 0.136722i
\(665\) −0.00667691 + 0.0205494i −0.000258919 + 0.000796872i
\(666\) −11.7721 + 8.55295i −0.456161 + 0.331420i
\(667\) 0.634107 0.460705i 0.0245527 0.0178386i
\(668\) 1.28199 3.94556i 0.0496017 0.152658i
\(669\) −0.804150 + 0.584249i −0.0310902 + 0.0225884i
\(670\) −0.112563 0.0817819i −0.00434869 0.00315951i
\(671\) −6.17493 19.0045i −0.238381 0.733660i
\(672\) 1.19486 + 0.868117i 0.0460928 + 0.0334883i
\(673\) 12.3833 38.1117i 0.477339 1.46910i −0.365438 0.930836i \(-0.619081\pi\)
0.842777 0.538263i \(-0.180919\pi\)
\(674\) −7.51297 + 23.1225i −0.289389 + 0.890647i
\(675\) −8.53741 26.2754i −0.328605 1.01134i
\(676\) −7.18455 −0.276329
\(677\) −36.5467 −1.40461 −0.702303 0.711879i \(-0.747845\pi\)
−0.702303 + 0.711879i \(0.747845\pi\)
\(678\) −4.17920 12.8622i −0.160501 0.493971i
\(679\) 4.67875 3.39931i 0.179554 0.130454i
\(680\) −0.110387 0.0802007i −0.00423314 0.00307556i
\(681\) −16.6339 −0.637414
\(682\) 0 0
\(683\) −37.5447 −1.43661 −0.718303 0.695730i \(-0.755081\pi\)
−0.718303 + 0.695730i \(0.755081\pi\)
\(684\) −1.19502 0.868232i −0.0456927 0.0331977i
\(685\) −0.0169814 + 0.0123377i −0.000648825 + 0.000471399i
\(686\) −4.32169 13.3008i −0.165003 0.507827i
\(687\) −15.9857 −0.609894
\(688\) −2.37971 −0.0907255
\(689\) 7.95463 + 24.4818i 0.303047 + 0.932684i
\(690\) 0.00176734 0.00543930i 6.72814e−5 0.000207071i
\(691\) 0.574543 1.76826i 0.0218566 0.0672678i −0.939533 0.342458i \(-0.888741\pi\)
0.961390 + 0.275190i \(0.0887407\pi\)
\(692\) 1.49808 + 1.08842i 0.0569485 + 0.0413755i
\(693\) 1.44227 + 4.43884i 0.0547871 + 0.168618i
\(694\) 12.9145 + 9.38294i 0.490228 + 0.356171i
\(695\) −0.0198954 + 0.0144548i −0.000754674 + 0.000548303i
\(696\) 1.84514 5.67875i 0.0699398 0.215252i
\(697\) 20.4719 14.8737i 0.775429 0.563382i
\(698\) 1.15070 0.836033i 0.0435547 0.0316443i
\(699\) −4.71343 + 14.5065i −0.178278 + 0.548685i
\(700\) 0.861597 0.625987i 0.0325653 0.0236601i
\(701\) −34.9431 25.3876i −1.31978 0.958878i −0.999935 0.0114087i \(-0.996368\pi\)
−0.319847 0.947469i \(-0.603632\pi\)
\(702\) 14.1792 + 43.6390i 0.535159 + 1.64705i
\(703\) −22.6311 16.4424i −0.853547 0.620138i
\(704\) 10.7741 33.1592i 0.406063 1.24973i
\(705\) −0.0119535 + 0.0367890i −0.000450193 + 0.00138555i
\(706\) 7.47232 + 22.9974i 0.281224 + 0.865520i
\(707\) 5.11324 0.192303
\(708\) −4.53287 −0.170356
\(709\) 14.9906 + 46.1365i 0.562986 + 1.73269i 0.673862 + 0.738857i \(0.264634\pi\)
−0.110876 + 0.993834i \(0.535366\pi\)
\(710\) −0.0729464 + 0.0529987i −0.00273763 + 0.00198900i
\(711\) −12.4898 9.07437i −0.468404 0.340316i
\(712\) −3.35006 −0.125549
\(713\) 0 0
\(714\) −8.11147 −0.303564
\(715\) 0.147782 + 0.107370i 0.00552674 + 0.00401541i
\(716\) 3.13919 2.28076i 0.117317 0.0852359i
\(717\) −6.07802 18.7062i −0.226988 0.698597i
\(718\) 36.4470 1.36019
\(719\) −26.6658 −0.994466 −0.497233 0.867617i \(-0.665651\pi\)
−0.497233 + 0.867617i \(0.665651\pi\)
\(720\) 0.0112620 + 0.0346610i 0.000419711 + 0.00129174i
\(721\) 2.09667 6.45288i 0.0780840 0.240318i
\(722\) 2.05491 6.32435i 0.0764757 0.235368i
\(723\) −20.4951 14.8906i −0.762222 0.553787i
\(724\) 1.43689 + 4.42230i 0.0534017 + 0.164354i
\(725\) −6.55506 4.76253i −0.243449 0.176876i
\(726\) −6.33751 + 4.60447i −0.235207 + 0.170888i
\(727\) −11.3616 + 34.9675i −0.421380 + 1.29687i 0.485038 + 0.874493i \(0.338806\pi\)
−0.906418 + 0.422381i \(0.861194\pi\)
\(728\) −12.1117 + 8.79965i −0.448889 + 0.326137i
\(729\) −19.4128 + 14.1042i −0.718992 + 0.522378i
\(730\) −0.0130925 + 0.0402947i −0.000484577 + 0.00149137i
\(731\) −3.56456 + 2.58981i −0.131840 + 0.0957875i
\(732\) 1.34437 + 0.976742i 0.0496894 + 0.0361014i
\(733\) 15.3238 + 47.1618i 0.565997 + 1.74196i 0.664969 + 0.746871i \(0.268445\pi\)
−0.0989720 + 0.995090i \(0.531555\pi\)
\(734\) 5.88325 + 4.27443i 0.217155 + 0.157772i
\(735\) 0.0176807 0.0544155i 0.000652161 0.00200715i
\(736\) −0.224953 + 0.692335i −0.00829188 + 0.0255198i
\(737\) −17.8542 54.9496i −0.657669 2.02410i
\(738\) −7.82666 −0.288103
\(739\) 30.9679 1.13917 0.569587 0.821931i \(-0.307103\pi\)
0.569587 + 0.821931i \(0.307103\pi\)
\(740\) −0.00451411 0.0138930i −0.000165942 0.000510717i
\(741\) −23.5338 + 17.0983i −0.864535 + 0.628121i
\(742\) 3.45292 + 2.50869i 0.126761 + 0.0920970i
\(743\) 45.6267 1.67388 0.836940 0.547294i \(-0.184342\pi\)
0.836940 + 0.547294i \(0.184342\pi\)
\(744\) 0 0
\(745\) −0.0856644 −0.00313850
\(746\) 6.01011 + 4.36660i 0.220046 + 0.159873i
\(747\) −2.39807 + 1.74230i −0.0877407 + 0.0637473i
\(748\) −2.06865 6.36665i −0.0756373 0.232788i
\(749\) 10.7431 0.392544
\(750\) −0.118245 −0.00431770
\(751\) 8.83461 + 27.1901i 0.322380 + 0.992183i 0.972610 + 0.232445i \(0.0746726\pi\)
−0.650230 + 0.759738i \(0.725327\pi\)
\(752\) −4.51316 + 13.8901i −0.164578 + 0.506519i
\(753\) 1.61341 4.96556i 0.0587958 0.180955i
\(754\) 10.8868 + 7.90975i 0.396475 + 0.288056i
\(755\) −0.0401882 0.123687i −0.00146260 0.00450141i
\(756\) −0.952176 0.691796i −0.0346303 0.0251604i
\(757\) 6.40269 4.65183i 0.232710 0.169074i −0.465319 0.885143i \(-0.654061\pi\)
0.698029 + 0.716069i \(0.254061\pi\)
\(758\) 4.54375 13.9842i 0.165036 0.507929i
\(759\) 1.92139 1.39597i 0.0697419 0.0506705i
\(760\) −0.0656360 + 0.0476874i −0.00238087 + 0.00172980i
\(761\) −7.06738 + 21.7512i −0.256192 + 0.788479i 0.737400 + 0.675456i \(0.236053\pi\)
−0.993592 + 0.113023i \(0.963947\pi\)
\(762\) −14.7818 + 10.7396i −0.535489 + 0.389056i
\(763\) 6.57952 + 4.78030i 0.238195 + 0.173059i
\(764\) −1.23417 3.79840i −0.0446509 0.137421i
\(765\) 0.0545905 + 0.0396623i 0.00197372 + 0.00143399i
\(766\) 7.53208 23.1814i 0.272145 0.837577i
\(767\) 26.7195 82.2341i 0.964784 2.96930i
\(768\) 2.40719 + 7.40858i 0.0868621 + 0.267334i
\(769\) −23.2138 −0.837110 −0.418555 0.908191i \(-0.637463\pi\)
−0.418555 + 0.908191i \(0.637463\pi\)
\(770\) 0.0302870 0.00109147
\(771\) −7.07540 21.7758i −0.254814 0.784238i
\(772\) 2.22751 1.61838i 0.0801699 0.0582469i
\(773\) −18.0972 13.1484i −0.650912 0.472915i 0.212670 0.977124i \(-0.431784\pi\)
−0.863582 + 0.504209i \(0.831784\pi\)
\(774\) 1.36277 0.0489839
\(775\) 0 0
\(776\) 21.7152 0.779531
\(777\) −5.94651 4.32039i −0.213330 0.154993i
\(778\) 25.1125 18.2453i 0.900326 0.654125i
\(779\) −4.64953 14.3098i −0.166587 0.512701i
\(780\) −0.0151906 −0.000543912
\(781\) −37.4426 −1.33980
\(782\) −1.23547 3.80238i −0.0441803 0.135973i
\(783\) −2.76703 + 8.51605i −0.0988856 + 0.304339i
\(784\) 6.67554 20.5452i 0.238412 0.733757i
\(785\) −0.0156683 0.0113837i −0.000559226 0.000406301i
\(786\) 0.324108 + 0.997502i 0.0115605 + 0.0355797i
\(787\) 9.27391 + 6.73789i 0.330579 + 0.240180i 0.740676 0.671862i \(-0.234505\pi\)
−0.410097 + 0.912042i \(0.634505\pi\)
\(788\) 3.16610 2.30030i 0.112788 0.0819450i
\(789\) 5.52619 17.0079i 0.196738 0.605496i
\(790\) −0.0810491 + 0.0588856i −0.00288360 + 0.00209506i
\(791\) −5.35342 + 3.88949i −0.190346 + 0.138294i
\(792\) −5.41548 + 16.6671i −0.192431 + 0.592241i
\(793\) −25.6443 + 18.6317i −0.910657 + 0.661631i
\(794\) 11.6152 + 8.43896i 0.412209 + 0.299487i
\(795\) 0.0113270 + 0.0348610i 0.000401728 + 0.00123639i
\(796\) −2.29607 1.66819i −0.0813821 0.0591275i
\(797\) 10.9362 33.6582i 0.387380 1.19223i −0.547359 0.836898i \(-0.684367\pi\)
0.934739 0.355335i \(-0.115633\pi\)
\(798\) −1.49041 + 4.58703i −0.0527601 + 0.162379i
\(799\) 8.35614 + 25.7176i 0.295619 + 0.909822i
\(800\) 7.52530 0.266060
\(801\) 1.65673 0.0585378
\(802\) −4.33974 13.3563i −0.153241 0.471629i
\(803\) −14.2338 + 10.3414i −0.502298 + 0.364941i
\(804\) 3.88712 + 2.82415i 0.137088 + 0.0996003i
\(805\) −0.00279834 −9.86284e−5
\(806\) 0 0
\(807\) 18.5678 0.653619
\(808\) 15.5327 + 11.2851i 0.546437 + 0.397010i
\(809\) 8.78598 6.38339i 0.308899 0.224428i −0.422525 0.906351i \(-0.638856\pi\)
0.731424 + 0.681923i \(0.238856\pi\)
\(810\) 0.00708283 + 0.0217987i 0.000248865 + 0.000765929i
\(811\) 41.2607 1.44886 0.724429 0.689349i \(-0.242103\pi\)
0.724429 + 0.689349i \(0.242103\pi\)
\(812\) −0.345171 −0.0121131
\(813\) 8.74143 + 26.9034i 0.306575 + 0.943542i
\(814\) −12.1169 + 37.2921i −0.424698 + 1.30709i
\(815\) −0.0380209 + 0.117016i −0.00133181 + 0.00409890i
\(816\) −21.2789 15.4600i −0.744910 0.541209i
\(817\) 0.809574 + 2.49161i 0.0283234 + 0.0871705i
\(818\) 10.0360 + 7.29159i 0.350901 + 0.254944i
\(819\) 5.98969 4.35177i 0.209297 0.152063i
\(820\) 0.00242801 0.00747265i 8.47898e−5 0.000260956i
\(821\) −4.78145 + 3.47393i −0.166874 + 0.121241i −0.668088 0.744083i \(-0.732887\pi\)
0.501214 + 0.865323i \(0.332887\pi\)
\(822\) −3.79057 + 2.75401i −0.132211 + 0.0960572i
\(823\) 3.43254 10.5643i 0.119651 0.368247i −0.873238 0.487294i \(-0.837984\pi\)
0.992889 + 0.119047i \(0.0379839\pi\)
\(824\) 20.6109 14.9747i 0.718015 0.521668i
\(825\) −19.8623 14.4308i −0.691516 0.502416i
\(826\) −4.43015 13.6346i −0.154145 0.474409i
\(827\) 4.43731 + 3.22389i 0.154300 + 0.112106i 0.662257 0.749277i \(-0.269599\pi\)
−0.507956 + 0.861383i \(0.669599\pi\)
\(828\) 0.0591162 0.181941i 0.00205443 0.00632289i
\(829\) −11.4773 + 35.3234i −0.398622 + 1.22683i 0.527483 + 0.849565i \(0.323136\pi\)
−0.926105 + 0.377266i \(0.876864\pi\)
\(830\) 0.00594400 + 0.0182937i 0.000206319 + 0.000634985i
\(831\) 17.8388 0.618822
\(832\) −55.3072 −1.91743
\(833\) −12.3598 38.0395i −0.428241 1.31799i
\(834\) −4.44103 + 3.22660i −0.153780 + 0.111728i
\(835\) 0.0911649 + 0.0662352i 0.00315489 + 0.00229216i
\(836\) −3.98043 −0.137666
\(837\) 0 0
\(838\) 38.4379 1.32782
\(839\) −29.2866 21.2780i −1.01109 0.734597i −0.0466496 0.998911i \(-0.514854\pi\)
−0.964437 + 0.264314i \(0.914854\pi\)
\(840\) −0.0172464 + 0.0125303i −0.000595059 + 0.000432336i
\(841\) −8.14999 25.0831i −0.281034 0.864934i
\(842\) −0.785242 −0.0270612
\(843\) 7.18168 0.247350
\(844\) −1.37123 4.22022i −0.0471997 0.145266i
\(845\) 0.0603045 0.185598i 0.00207454 0.00638478i
\(846\) 2.58453 7.95436i 0.0888579 0.273477i
\(847\) 3.10086 + 2.25291i 0.106547 + 0.0774107i
\(848\) 4.27664 + 13.1621i 0.146860 + 0.451990i
\(849\) 2.57967 + 1.87424i 0.0885339 + 0.0643237i
\(850\) −33.4365 + 24.2931i −1.14686 + 0.833245i
\(851\) 1.11953 3.44557i 0.0383771 0.118113i
\(852\) 2.51904 1.83019i 0.0863009 0.0627013i
\(853\) 9.04001 6.56795i 0.309524 0.224882i −0.422168 0.906517i \(-0.638731\pi\)
0.731692 + 0.681635i \(0.238731\pi\)
\(854\) −1.62408 + 4.99840i −0.0555749 + 0.171042i
\(855\) 0.0324596 0.0235832i 0.00111009 0.000806530i
\(856\) 32.6347 + 23.7105i 1.11543 + 0.810407i
\(857\) 16.9546 + 52.1808i 0.579157 + 1.78246i 0.621568 + 0.783360i \(0.286496\pi\)
−0.0424114 + 0.999100i \(0.513504\pi\)
\(858\) 32.9879 + 23.9671i 1.12619 + 0.818223i
\(859\) 6.15280 18.9364i 0.209931 0.646101i −0.789544 0.613694i \(-0.789683\pi\)
0.999475 0.0324067i \(-0.0103172\pi\)
\(860\) −0.000422765 0.00130114i −1.44162e−5 4.43684e-5i
\(861\) −1.22170 3.76002i −0.0416355 0.128141i
\(862\) 31.5916 1.07601
\(863\) −11.1772 −0.380477 −0.190238 0.981738i \(-0.560926\pi\)
−0.190238 + 0.981738i \(0.560926\pi\)
\(864\) −2.56992 7.90939i −0.0874304 0.269083i
\(865\) −0.0406914 + 0.0295640i −0.00138355 + 0.00100521i
\(866\) 13.3562 + 9.70385i 0.453862 + 0.329750i
\(867\) −27.7126 −0.941170
\(868\) 0 0
\(869\) −41.6017 −1.41124
\(870\) 0.0155023 + 0.0112631i 0.000525578 + 0.000381855i
\(871\) −74.1481 + 53.8718i −2.51241 + 1.82538i
\(872\) 9.43650 + 29.0426i 0.319560 + 0.983505i
\(873\) −10.7390 −0.363461
\(874\) −2.37725 −0.0804117
\(875\) 0.0178784 + 0.0550241i 0.000604401 + 0.00186015i
\(876\) 0.452122 1.39149i 0.0152758 0.0470140i
\(877\) −8.51296 + 26.2002i −0.287462 + 0.884718i 0.698187 + 0.715915i \(0.253990\pi\)
−0.985650 + 0.168803i \(0.946010\pi\)
\(878\) −41.6491 30.2598i −1.40559 1.02122i
\(879\) −7.03826 21.6615i −0.237395 0.730626i
\(880\) 0.0794520 + 0.0577253i 0.00267833 + 0.00194592i
\(881\) 11.5386 8.38325i 0.388744 0.282439i −0.376197 0.926540i \(-0.622768\pi\)
0.764941 + 0.644101i \(0.222768\pi\)
\(882\) −3.82284 + 11.7655i −0.128722 + 0.396165i
\(883\) −15.1083 + 10.9768i −0.508434 + 0.369399i −0.812229 0.583338i \(-0.801746\pi\)
0.303795 + 0.952737i \(0.401746\pi\)
\(884\) −8.59105 + 6.24176i −0.288948 + 0.209933i
\(885\) 0.0380472 0.117097i 0.00127894 0.00393618i
\(886\) −7.97699 + 5.79563i −0.267992 + 0.194708i
\(887\) 28.1040 + 20.4188i 0.943641 + 0.685595i 0.949294 0.314389i \(-0.101800\pi\)
−0.00565356 + 0.999984i \(0.501800\pi\)
\(888\) −8.52862 26.2484i −0.286202 0.880838i
\(889\) 7.23255 + 5.25475i 0.242572 + 0.176239i
\(890\) 0.00332222 0.0102247i 0.000111361 0.000342734i
\(891\) −2.94122 + 9.05214i −0.0985345 + 0.303258i
\(892\) 0.0666717 + 0.205194i 0.00223233 + 0.00687042i
\(893\) 16.0786 0.538051
\(894\) −19.1220 −0.639534
\(895\) 0.0325695 + 0.100238i 0.00108868 + 0.00335060i
\(896\) −5.48291 + 3.98356i −0.183171 + 0.133082i
\(897\) −3.04789 2.21442i −0.101766 0.0739373i
\(898\) 23.0498 0.769183
\(899\) 0 0
\(900\) −1.97760 −0.0659200
\(901\) 20.7302 + 15.0614i 0.690622 + 0.501767i
\(902\) −17.0627 + 12.3967i −0.568124 + 0.412767i
\(903\) 0.212723 + 0.654693i 0.00707897 + 0.0217868i
\(904\) −24.8465 −0.826383
\(905\) −0.126302 −0.00419842
\(906\) −8.97078 27.6092i −0.298034 0.917255i
\(907\) −1.96839 + 6.05808i −0.0653593 + 0.201155i −0.978403 0.206706i \(-0.933725\pi\)
0.913044 + 0.407862i \(0.133725\pi\)
\(908\) −1.11573 + 3.43385i −0.0370267 + 0.113956i
\(909\) −7.68150 5.58094i −0.254779 0.185108i
\(910\) −0.0148464 0.0456926i −0.000492154 0.00151470i
\(911\) −43.9635 31.9414i −1.45658 1.05827i −0.984238 0.176848i \(-0.943410\pi\)
−0.472339 0.881417i \(-0.656590\pi\)
\(912\) −12.6524 + 9.19253i −0.418964 + 0.304395i
\(913\) −2.46831 + 7.59666i −0.0816890 + 0.251413i
\(914\) 5.21083 3.78589i 0.172359 0.125226i
\(915\) −0.0365163 + 0.0265306i −0.00120719 + 0.000877076i
\(916\) −1.07225 + 3.30004i −0.0354280 + 0.109036i
\(917\) 0.415172 0.301640i 0.0137102 0.00996103i
\(918\) 36.9517 + 26.8470i 1.21959 + 0.886082i
\(919\) −13.8120 42.5091i −0.455617 1.40225i −0.870409 0.492329i \(-0.836146\pi\)
0.414792 0.909916i \(-0.363854\pi\)
\(920\) −0.00850060 0.00617605i −0.000280257 0.000203618i
\(921\) −0.627803 + 1.93218i −0.0206868 + 0.0636675i
\(922\) 8.24653 25.3802i 0.271585 0.835853i
\(923\) 18.3541 + 56.4881i 0.604132 + 1.85933i
\(924\) −1.04589 −0.0344073
\(925\) −37.4515 −1.23140
\(926\) −9.33587 28.7328i −0.306796 0.944220i
\(927\) −10.1929 + 7.40556i −0.334778 + 0.243231i
\(928\) −1.97319 1.43361i −0.0647732 0.0470605i
\(929\) 15.4573 0.507139 0.253569 0.967317i \(-0.418395\pi\)
0.253569 + 0.967317i \(0.418395\pi\)
\(930\) 0 0
\(931\) −23.7823 −0.779434
\(932\) 2.67851 + 1.94605i 0.0877374 + 0.0637449i
\(933\) −19.2177 + 13.9625i −0.629160 + 0.457112i
\(934\) −11.0975 34.1545i −0.363121 1.11757i
\(935\) 0.181833 0.00594657
\(936\) 27.7996 0.908659
\(937\) −1.64333 5.05765i −0.0536852 0.165226i 0.920619 0.390462i \(-0.127685\pi\)
−0.974304 + 0.225236i \(0.927685\pi\)
\(938\) −4.69587 + 14.4524i −0.153326 + 0.471887i
\(939\) 5.87580 18.0839i 0.191750 0.590144i
\(940\) 0.00679280 + 0.00493526i 0.000221557 + 0.000160970i
\(941\) 4.13429 + 12.7240i 0.134774 + 0.414791i 0.995555 0.0941844i \(-0.0300243\pi\)
−0.860781 + 0.508976i \(0.830024\pi\)
\(942\) −3.49747 2.54106i −0.113954 0.0827922i
\(943\) 1.57649 1.14539i 0.0513376 0.0372989i
\(944\) 14.3652 44.2114i 0.467546 1.43896i
\(945\) 0.0258634 0.0187908i 0.000841335 0.000611266i
\(946\) 2.97094 2.15852i 0.0965938 0.0701795i
\(947\) −2.07588 + 6.38890i −0.0674570 + 0.207611i −0.979103 0.203365i \(-0.934812\pi\)
0.911646 + 0.410976i \(0.134812\pi\)
\(948\) 2.79885 2.03348i 0.0909025 0.0660445i
\(949\) 22.5789 + 16.4046i 0.732943 + 0.532515i
\(950\) 7.59402 + 23.3720i 0.246382 + 0.758287i
\(951\) −28.8884 20.9886i −0.936769 0.680603i
\(952\) −4.60508 + 14.1730i −0.149251 + 0.459348i
\(953\) 6.36940 19.6030i 0.206325 0.635003i −0.793331 0.608790i \(-0.791655\pi\)
0.999656 0.0262129i \(-0.00834479\pi\)
\(954\) −2.44908 7.53750i −0.0792919 0.244035i
\(955\) 0.108483 0.00351043
\(956\) −4.26933 −0.138080
\(957\) 2.45891 + 7.56773i 0.0794851 + 0.244630i
\(958\) −36.6182 + 26.6047i −1.18308 + 0.859557i
\(959\) 1.85468 + 1.34750i 0.0598906 + 0.0435131i
\(960\) −0.0787547 −0.00254180
\(961\) 0 0
\(962\) 62.2005 2.00543
\(963\) −16.1391 11.7257i −0.520075 0.377857i
\(964\) −4.44868 + 3.23215i −0.143282 + 0.104101i
\(965\) 0.0231107 + 0.0711273i 0.000743959 + 0.00228967i
\(966\) −0.624643 −0.0200976
\(967\) −59.1290 −1.90146 −0.950731 0.310018i \(-0.899665\pi\)
−0.950731 + 0.310018i \(0.899665\pi\)
\(968\) 4.44732 + 13.6874i 0.142942 + 0.439931i
\(969\) −8.94796 + 27.5390i −0.287450 + 0.884679i
\(970\) −0.0215347 + 0.0662771i −0.000691439 + 0.00212803i
\(971\) 37.0382 + 26.9098i 1.18861 + 0.863577i 0.993117 0.117128i \(-0.0373688\pi\)
0.195494 + 0.980705i \(0.437369\pi\)
\(972\) 1.12800 + 3.47163i 0.0361806 + 0.111353i
\(973\) 2.17294 + 1.57873i 0.0696611 + 0.0506118i
\(974\) −29.0753 + 21.1244i −0.931633 + 0.676871i
\(975\) −12.0348 + 37.0392i −0.385421 + 1.18620i
\(976\) −13.7871 + 10.0169i −0.441316 + 0.320635i
\(977\) −6.01653 + 4.37127i −0.192486 + 0.139849i −0.679854 0.733347i \(-0.737957\pi\)
0.487368 + 0.873197i \(0.337957\pi\)
\(978\) −8.48701 + 26.1203i −0.271385 + 0.835236i
\(979\) 3.61180 2.62412i 0.115434 0.0838674i
\(980\) −0.0100474 0.00729987i −0.000320953 0.000233186i
\(981\) −4.66671 14.3627i −0.148997 0.458565i
\(982\) 37.8004 + 27.4636i 1.20626 + 0.876399i
\(983\) −8.40838 + 25.8783i −0.268186 + 0.825391i 0.722757 + 0.691103i \(0.242875\pi\)
−0.990942 + 0.134288i \(0.957125\pi\)
\(984\) 4.58731 14.1183i 0.146238 0.450074i
\(985\) 0.0328486 + 0.101098i 0.00104664 + 0.00322124i
\(986\) 13.3953 0.426593
\(987\) 4.22480 0.134477
\(988\) 1.95118 + 6.00510i 0.0620751 + 0.191048i
\(989\) −0.274498 + 0.199434i −0.00872853 + 0.00634165i
\(990\) −0.0454994 0.0330572i −0.00144606 0.00105063i
\(991\) 17.2059 0.546563 0.273282 0.961934i \(-0.411891\pi\)
0.273282 + 0.961934i \(0.411891\pi\)
\(992\) 0 0
\(993\) −2.28019 −0.0723597
\(994\) 7.96708 + 5.78842i 0.252700 + 0.183598i
\(995\) 0.0623668 0.0453121i 0.00197716 0.00143649i
\(996\) −0.205263 0.631734i −0.00650400 0.0200173i
\(997\) 29.5057 0.934454 0.467227 0.884137i \(-0.345253\pi\)
0.467227 + 0.884137i \(0.345253\pi\)
\(998\) −14.7502 −0.466910
\(999\) 12.7898 + 39.3630i 0.404652 + 1.24539i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.d.s.374.10 64
31.2 even 5 inner 961.2.d.s.628.7 64
31.3 odd 30 961.2.g.w.235.10 128
31.4 even 5 961.2.a.l.1.7 16
31.5 even 3 961.2.g.w.732.9 128
31.6 odd 6 961.2.g.w.816.9 128
31.7 even 15 961.2.c.l.439.8 32
31.8 even 5 inner 961.2.d.s.531.7 64
31.9 even 15 961.2.g.w.844.8 128
31.10 even 15 961.2.g.w.448.7 128
31.11 odd 30 961.2.c.l.521.7 32
31.12 odd 30 961.2.g.w.846.7 128
31.13 odd 30 961.2.g.w.338.9 128
31.14 even 15 961.2.g.w.547.7 128
31.15 odd 10 inner 961.2.d.s.388.9 64
31.16 even 5 inner 961.2.d.s.388.10 64
31.17 odd 30 961.2.g.w.547.8 128
31.18 even 15 961.2.g.w.338.10 128
31.19 even 15 961.2.g.w.846.8 128
31.20 even 15 961.2.c.l.521.8 32
31.21 odd 30 961.2.g.w.448.8 128
31.22 odd 30 961.2.g.w.844.7 128
31.23 odd 10 inner 961.2.d.s.531.8 64
31.24 odd 30 961.2.c.l.439.7 32
31.25 even 3 961.2.g.w.816.10 128
31.26 odd 6 961.2.g.w.732.10 128
31.27 odd 10 961.2.a.l.1.8 yes 16
31.28 even 15 961.2.g.w.235.9 128
31.29 odd 10 inner 961.2.d.s.628.8 64
31.30 odd 2 inner 961.2.d.s.374.9 64
93.35 odd 10 8649.2.a.bs.1.9 16
93.89 even 10 8649.2.a.bs.1.10 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
961.2.a.l.1.7 16 31.4 even 5
961.2.a.l.1.8 yes 16 31.27 odd 10
961.2.c.l.439.7 32 31.24 odd 30
961.2.c.l.439.8 32 31.7 even 15
961.2.c.l.521.7 32 31.11 odd 30
961.2.c.l.521.8 32 31.20 even 15
961.2.d.s.374.9 64 31.30 odd 2 inner
961.2.d.s.374.10 64 1.1 even 1 trivial
961.2.d.s.388.9 64 31.15 odd 10 inner
961.2.d.s.388.10 64 31.16 even 5 inner
961.2.d.s.531.7 64 31.8 even 5 inner
961.2.d.s.531.8 64 31.23 odd 10 inner
961.2.d.s.628.7 64 31.2 even 5 inner
961.2.d.s.628.8 64 31.29 odd 10 inner
961.2.g.w.235.9 128 31.28 even 15
961.2.g.w.235.10 128 31.3 odd 30
961.2.g.w.338.9 128 31.13 odd 30
961.2.g.w.338.10 128 31.18 even 15
961.2.g.w.448.7 128 31.10 even 15
961.2.g.w.448.8 128 31.21 odd 30
961.2.g.w.547.7 128 31.14 even 15
961.2.g.w.547.8 128 31.17 odd 30
961.2.g.w.732.9 128 31.5 even 3
961.2.g.w.732.10 128 31.26 odd 6
961.2.g.w.816.9 128 31.6 odd 6
961.2.g.w.816.10 128 31.25 even 3
961.2.g.w.844.7 128 31.22 odd 30
961.2.g.w.844.8 128 31.9 even 15
961.2.g.w.846.7 128 31.12 odd 30
961.2.g.w.846.8 128 31.19 even 15
8649.2.a.bs.1.9 16 93.35 odd 10
8649.2.a.bs.1.10 16 93.89 even 10