Newspace parameters
Level: | \( N \) | \(=\) | \( 961 = 31^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 961.d (of order \(5\), degree \(4\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(7.67362363425\) |
Analytic rank: | \(0\) |
Dimension: | \(64\) |
Relative dimension: | \(16\) over \(\Q(\zeta_{5})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{5}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
374.1 | −1.75058 | − | 1.27187i | −0.0997723 | + | 0.0724888i | 0.828835 | + | 2.55089i | −2.65612 | 0.266855 | −0.943380 | − | 2.90342i | 0.456138 | − | 1.40385i | −0.922351 | + | 2.83870i | 4.64975 | + | 3.37824i | ||||
374.2 | −1.75058 | − | 1.27187i | 0.0997723 | − | 0.0724888i | 0.828835 | + | 2.55089i | −2.65612 | −0.266855 | −0.943380 | − | 2.90342i | 0.456138 | − | 1.40385i | −0.922351 | + | 2.83870i | 4.64975 | + | 3.37824i | ||||
374.3 | −0.984188 | − | 0.715055i | −0.405559 | + | 0.294656i | −0.160710 | − | 0.494616i | 1.24784 | 0.609842 | −0.605971 | − | 1.86499i | −0.947361 | + | 2.91568i | −0.849395 | + | 2.61417i | −1.22811 | − | 0.892276i | ||||
374.4 | −0.984188 | − | 0.715055i | 0.405559 | − | 0.294656i | −0.160710 | − | 0.494616i | 1.24784 | −0.609842 | −0.605971 | − | 1.86499i | −0.947361 | + | 2.91568i | −0.849395 | + | 2.61417i | −1.22811 | − | 0.892276i | ||||
374.5 | −0.100459 | − | 0.0729880i | −1.19674 | + | 0.869483i | −0.613269 | − | 1.88745i | −1.22944 | 0.183686 | 0.824157 | + | 2.53649i | −0.152897 | + | 0.470567i | −0.250863 | + | 0.772076i | 0.123509 | + | 0.0897347i | ||||
374.6 | −0.100459 | − | 0.0729880i | 1.19674 | − | 0.869483i | −0.613269 | − | 1.88745i | −1.22944 | −0.183686 | 0.824157 | + | 2.53649i | −0.152897 | + | 0.470567i | −0.250863 | + | 0.772076i | 0.123509 | + | 0.0897347i | ||||
374.7 | 0.273247 | + | 0.198525i | −2.39630 | + | 1.74101i | −0.582783 | − | 1.79362i | −1.25850 | −1.00042 | −0.755059 | − | 2.32383i | 0.405578 | − | 1.24824i | 1.78407 | − | 5.49079i | −0.343882 | − | 0.249845i | ||||
374.8 | 0.273247 | + | 0.198525i | 2.39630 | − | 1.74101i | −0.582783 | − | 1.79362i | −1.25850 | 1.00042 | −0.755059 | − | 2.32383i | 0.405578 | − | 1.24824i | 1.78407 | − | 5.49079i | −0.343882 | − | 0.249845i | ||||
374.9 | 1.06472 | + | 0.773568i | −0.998704 | + | 0.725601i | −0.0828021 | − | 0.254839i | 0.00727825 | −1.62465 | −0.245643 | − | 0.756011i | 0.922351 | − | 2.83870i | −0.456138 | + | 1.40385i | 0.00774933 | + | 0.00563022i | ||||
374.10 | 1.06472 | + | 0.773568i | 0.998704 | − | 0.725601i | −0.0828021 | − | 0.254839i | 0.00727825 | 1.62465 | −0.245643 | − | 0.756011i | 0.922351 | − | 2.83870i | −0.456138 | + | 1.40385i | 0.00774933 | + | 0.00563022i | ||||
374.11 | 1.17401 | + | 0.852969i | −1.99250 | + | 1.44764i | 0.0327114 | + | 0.100675i | −3.68139 | −3.57401 | −0.248574 | − | 0.765033i | 0.849395 | − | 2.61417i | 0.947361 | − | 2.91568i | −4.32199 | − | 3.14011i | ||||
374.12 | 1.17401 | + | 0.852969i | 1.99250 | − | 1.44764i | 0.0327114 | + | 0.100675i | −3.68139 | 3.57401 | −0.248574 | − | 0.765033i | 0.849395 | − | 2.61417i | 0.947361 | − | 2.91568i | −4.32199 | − | 3.14011i | ||||
374.13 | 1.52867 | + | 1.11064i | −1.51240 | + | 1.09883i | 0.485270 | + | 1.49351i | 2.49142 | −3.53237 | −1.20568 | − | 3.71070i | 0.250863 | − | 0.772076i | 0.152897 | − | 0.470567i | 3.80856 | + | 2.76708i | ||||
374.14 | 1.52867 | + | 1.11064i | 1.51240 | − | 1.09883i | 0.485270 | + | 1.49351i | 2.49142 | 3.53237 | −1.20568 | − | 3.71070i | 0.250863 | − | 0.772076i | 0.152897 | − | 0.470567i | 3.80856 | + | 2.76708i | ||||
374.15 | 2.03064 | + | 1.47535i | −1.05095 | + | 0.763561i | 1.32882 | + | 4.08967i | −2.92108 | −3.26062 | 0.708014 | + | 2.17904i | −1.78407 | + | 5.49079i | −0.405578 | + | 1.24824i | −5.93165 | − | 4.30960i | ||||
374.16 | 2.03064 | + | 1.47535i | 1.05095 | − | 0.763561i | 1.32882 | + | 4.08967i | −2.92108 | 3.26062 | 0.708014 | + | 2.17904i | −1.78407 | + | 5.49079i | −0.405578 | + | 1.24824i | −5.93165 | − | 4.30960i | ||||
388.1 | −1.75058 | + | 1.27187i | −0.0997723 | − | 0.0724888i | 0.828835 | − | 2.55089i | −2.65612 | 0.266855 | −0.943380 | + | 2.90342i | 0.456138 | + | 1.40385i | −0.922351 | − | 2.83870i | 4.64975 | − | 3.37824i | ||||
388.2 | −1.75058 | + | 1.27187i | 0.0997723 | + | 0.0724888i | 0.828835 | − | 2.55089i | −2.65612 | −0.266855 | −0.943380 | + | 2.90342i | 0.456138 | + | 1.40385i | −0.922351 | − | 2.83870i | 4.64975 | − | 3.37824i | ||||
388.3 | −0.984188 | + | 0.715055i | −0.405559 | − | 0.294656i | −0.160710 | + | 0.494616i | 1.24784 | 0.609842 | −0.605971 | + | 1.86499i | −0.947361 | − | 2.91568i | −0.849395 | − | 2.61417i | −1.22811 | + | 0.892276i | ||||
388.4 | −0.984188 | + | 0.715055i | 0.405559 | + | 0.294656i | −0.160710 | + | 0.494616i | 1.24784 | −0.609842 | −0.605971 | + | 1.86499i | −0.947361 | − | 2.91568i | −0.849395 | − | 2.61417i | −1.22811 | + | 0.892276i | ||||
See all 64 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
31.b | odd | 2 | 1 | inner |
31.d | even | 5 | 3 | inner |
31.f | odd | 10 | 3 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 961.2.d.s | 64 | |
31.b | odd | 2 | 1 | inner | 961.2.d.s | 64 | |
31.c | even | 3 | 2 | 961.2.g.w | 128 | ||
31.d | even | 5 | 1 | 961.2.a.l | ✓ | 16 | |
31.d | even | 5 | 3 | inner | 961.2.d.s | 64 | |
31.e | odd | 6 | 2 | 961.2.g.w | 128 | ||
31.f | odd | 10 | 1 | 961.2.a.l | ✓ | 16 | |
31.f | odd | 10 | 3 | inner | 961.2.d.s | 64 | |
31.g | even | 15 | 2 | 961.2.c.l | 32 | ||
31.g | even | 15 | 6 | 961.2.g.w | 128 | ||
31.h | odd | 30 | 2 | 961.2.c.l | 32 | ||
31.h | odd | 30 | 6 | 961.2.g.w | 128 | ||
93.k | even | 10 | 1 | 8649.2.a.bs | 16 | ||
93.l | odd | 10 | 1 | 8649.2.a.bs | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
961.2.a.l | ✓ | 16 | 31.d | even | 5 | 1 | |
961.2.a.l | ✓ | 16 | 31.f | odd | 10 | 1 | |
961.2.c.l | 32 | 31.g | even | 15 | 2 | ||
961.2.c.l | 32 | 31.h | odd | 30 | 2 | ||
961.2.d.s | 64 | 1.a | even | 1 | 1 | trivial | |
961.2.d.s | 64 | 31.b | odd | 2 | 1 | inner | |
961.2.d.s | 64 | 31.d | even | 5 | 3 | inner | |
961.2.d.s | 64 | 31.f | odd | 10 | 3 | inner | |
961.2.g.w | 128 | 31.c | even | 3 | 2 | ||
961.2.g.w | 128 | 31.e | odd | 6 | 2 | ||
961.2.g.w | 128 | 31.g | even | 15 | 6 | ||
961.2.g.w | 128 | 31.h | odd | 30 | 6 | ||
8649.2.a.bs | 16 | 93.k | even | 10 | 1 | ||
8649.2.a.bs | 16 | 93.l | odd | 10 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(961, [\chi])\):
\( T_{2}^{32} - 4 T_{2}^{31} + 18 T_{2}^{30} - 56 T_{2}^{29} + 183 T_{2}^{28} - 428 T_{2}^{27} + 1142 T_{2}^{26} + \cdots + 1 \)
|
\( T_{3}^{64} + 24 T_{3}^{62} + 356 T_{3}^{60} + 4256 T_{3}^{58} + 45266 T_{3}^{56} + 388592 T_{3}^{54} + \cdots + 256 \)
|