Properties

Label 961.2.a.l.1.7
Level $961$
Weight $2$
Character 961.1
Self dual yes
Analytic conductor $7.674$
Analytic rank $1$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(1,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-8,0,8,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.67362363425\)
Analytic rank: \(1\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 24x^{14} + 220x^{12} - 992x^{10} + 2366x^{8} - 2944x^{6} + 1688x^{4} - 288x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-1.23447\) of defining polynomial
Character \(\chi\) \(=\) 961.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.31607 q^{2} -1.23447 q^{3} -0.267953 q^{4} +0.00727825 q^{5} +1.62465 q^{6} -0.794917 q^{7} +2.98479 q^{8} -1.47609 q^{9} -0.00957870 q^{10} +3.97765 q^{11} +0.330779 q^{12} -6.30973 q^{13} +1.04617 q^{14} -0.00898475 q^{15} -3.39229 q^{16} +6.28085 q^{17} +1.94265 q^{18} +3.73460 q^{19} -0.00195023 q^{20} +0.981298 q^{21} -5.23488 q^{22} +0.483672 q^{23} -3.68462 q^{24} -4.99995 q^{25} +8.30406 q^{26} +5.52559 q^{27} +0.213001 q^{28} -1.62052 q^{29} +0.0118246 q^{30} -1.50508 q^{32} -4.91028 q^{33} -8.26605 q^{34} -0.00578561 q^{35} +0.395524 q^{36} +7.49037 q^{37} -4.91500 q^{38} +7.78915 q^{39} +0.0217241 q^{40} -4.02886 q^{41} -1.29146 q^{42} +0.701504 q^{43} -1.06583 q^{44} -0.0107434 q^{45} -0.636548 q^{46} +4.30532 q^{47} +4.18767 q^{48} -6.36811 q^{49} +6.58029 q^{50} -7.75350 q^{51} +1.69071 q^{52} -4.07969 q^{53} -7.27207 q^{54} +0.0289504 q^{55} -2.37266 q^{56} -4.61023 q^{57} +2.13272 q^{58} -13.7036 q^{59} +0.00240749 q^{60} -5.02369 q^{61} +1.17337 q^{63} +8.76538 q^{64} -0.0459238 q^{65} +6.46228 q^{66} -14.5255 q^{67} -1.68297 q^{68} -0.597077 q^{69} +0.00761428 q^{70} -9.41325 q^{71} -4.40583 q^{72} +4.42318 q^{73} -9.85787 q^{74} +6.17226 q^{75} -1.00070 q^{76} -3.16191 q^{77} -10.2511 q^{78} -10.4589 q^{79} -0.0246900 q^{80} -2.39286 q^{81} +5.30227 q^{82} -2.00812 q^{83} -0.262942 q^{84} +0.0457136 q^{85} -0.923230 q^{86} +2.00047 q^{87} +11.8725 q^{88} -1.12238 q^{89} +0.0141391 q^{90} +5.01572 q^{91} -0.129602 q^{92} -5.66611 q^{94} +0.0271813 q^{95} +1.85797 q^{96} +7.27529 q^{97} +8.38089 q^{98} -5.87139 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{2} + 8 q^{4} - 16 q^{5} - 16 q^{7} + 8 q^{10} - 8 q^{14} - 8 q^{16} - 24 q^{18} - 32 q^{19} - 24 q^{20} - 8 q^{28} - 8 q^{32} - 32 q^{33} - 16 q^{35} - 40 q^{36} - 24 q^{38} - 32 q^{39} - 32 q^{41}+ \cdots + 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.31607 −0.930604 −0.465302 0.885152i \(-0.654054\pi\)
−0.465302 + 0.885152i \(0.654054\pi\)
\(3\) −1.23447 −0.712719 −0.356360 0.934349i \(-0.615982\pi\)
−0.356360 + 0.934349i \(0.615982\pi\)
\(4\) −0.267953 −0.133977
\(5\) 0.00727825 0.00325493 0.00162747 0.999999i \(-0.499482\pi\)
0.00162747 + 0.999999i \(0.499482\pi\)
\(6\) 1.62465 0.663259
\(7\) −0.794917 −0.300451 −0.150225 0.988652i \(-0.548000\pi\)
−0.150225 + 0.988652i \(0.548000\pi\)
\(8\) 2.98479 1.05528
\(9\) −1.47609 −0.492031
\(10\) −0.00957870 −0.00302905
\(11\) 3.97765 1.19931 0.599654 0.800260i \(-0.295305\pi\)
0.599654 + 0.800260i \(0.295305\pi\)
\(12\) 0.330779 0.0954877
\(13\) −6.30973 −1.75000 −0.875002 0.484119i \(-0.839140\pi\)
−0.875002 + 0.484119i \(0.839140\pi\)
\(14\) 1.04617 0.279600
\(15\) −0.00898475 −0.00231985
\(16\) −3.39229 −0.848074
\(17\) 6.28085 1.52333 0.761665 0.647971i \(-0.224382\pi\)
0.761665 + 0.647971i \(0.224382\pi\)
\(18\) 1.94265 0.457886
\(19\) 3.73460 0.856776 0.428388 0.903595i \(-0.359082\pi\)
0.428388 + 0.903595i \(0.359082\pi\)
\(20\) −0.00195023 −0.000436085 0
\(21\) 0.981298 0.214137
\(22\) −5.23488 −1.11608
\(23\) 0.483672 0.100853 0.0504263 0.998728i \(-0.483942\pi\)
0.0504263 + 0.998728i \(0.483942\pi\)
\(24\) −3.68462 −0.752120
\(25\) −4.99995 −0.999989
\(26\) 8.30406 1.62856
\(27\) 5.52559 1.06340
\(28\) 0.213001 0.0402534
\(29\) −1.62052 −0.300922 −0.150461 0.988616i \(-0.548076\pi\)
−0.150461 + 0.988616i \(0.548076\pi\)
\(30\) 0.0118246 0.00215886
\(31\) 0 0
\(32\) −1.50508 −0.266062
\(33\) −4.91028 −0.854769
\(34\) −8.26605 −1.41762
\(35\) −0.00578561 −0.000977946 0
\(36\) 0.395524 0.0659207
\(37\) 7.49037 1.23141 0.615705 0.787977i \(-0.288871\pi\)
0.615705 + 0.787977i \(0.288871\pi\)
\(38\) −4.91500 −0.797319
\(39\) 7.78915 1.24726
\(40\) 0.0217241 0.00343487
\(41\) −4.02886 −0.629202 −0.314601 0.949224i \(-0.601871\pi\)
−0.314601 + 0.949224i \(0.601871\pi\)
\(42\) −1.29146 −0.199277
\(43\) 0.701504 0.106978 0.0534892 0.998568i \(-0.482966\pi\)
0.0534892 + 0.998568i \(0.482966\pi\)
\(44\) −1.06583 −0.160679
\(45\) −0.0107434 −0.00160153
\(46\) −0.636548 −0.0938538
\(47\) 4.30532 0.627995 0.313997 0.949424i \(-0.398332\pi\)
0.313997 + 0.949424i \(0.398332\pi\)
\(48\) 4.18767 0.604438
\(49\) −6.36811 −0.909729
\(50\) 6.58029 0.930594
\(51\) −7.75350 −1.08571
\(52\) 1.69071 0.234460
\(53\) −4.07969 −0.560388 −0.280194 0.959943i \(-0.590399\pi\)
−0.280194 + 0.959943i \(0.590399\pi\)
\(54\) −7.27207 −0.989603
\(55\) 0.0289504 0.00390366
\(56\) −2.37266 −0.317060
\(57\) −4.61023 −0.610640
\(58\) 2.13272 0.280039
\(59\) −13.7036 −1.78406 −0.892028 0.451979i \(-0.850718\pi\)
−0.892028 + 0.451979i \(0.850718\pi\)
\(60\) 0.00240749 0.000310806 0
\(61\) −5.02369 −0.643218 −0.321609 0.946873i \(-0.604224\pi\)
−0.321609 + 0.946873i \(0.604224\pi\)
\(62\) 0 0
\(63\) 1.17337 0.147831
\(64\) 8.76538 1.09567
\(65\) −0.0459238 −0.00569615
\(66\) 6.46228 0.795452
\(67\) −14.5255 −1.77457 −0.887287 0.461217i \(-0.847413\pi\)
−0.887287 + 0.461217i \(0.847413\pi\)
\(68\) −1.68297 −0.204091
\(69\) −0.597077 −0.0718796
\(70\) 0.00761428 0.000910080 0
\(71\) −9.41325 −1.11715 −0.558574 0.829455i \(-0.688651\pi\)
−0.558574 + 0.829455i \(0.688651\pi\)
\(72\) −4.40583 −0.519232
\(73\) 4.42318 0.517695 0.258847 0.965918i \(-0.416657\pi\)
0.258847 + 0.965918i \(0.416657\pi\)
\(74\) −9.85787 −1.14595
\(75\) 6.17226 0.712712
\(76\) −1.00070 −0.114788
\(77\) −3.16191 −0.360333
\(78\) −10.2511 −1.16071
\(79\) −10.4589 −1.17671 −0.588356 0.808602i \(-0.700225\pi\)
−0.588356 + 0.808602i \(0.700225\pi\)
\(80\) −0.0246900 −0.00276042
\(81\) −2.39286 −0.265874
\(82\) 5.30227 0.585538
\(83\) −2.00812 −0.220420 −0.110210 0.993908i \(-0.535152\pi\)
−0.110210 + 0.993908i \(0.535152\pi\)
\(84\) −0.262942 −0.0286893
\(85\) 0.0457136 0.00495834
\(86\) −0.923230 −0.0995545
\(87\) 2.00047 0.214473
\(88\) 11.8725 1.26561
\(89\) −1.12238 −0.118972 −0.0594859 0.998229i \(-0.518946\pi\)
−0.0594859 + 0.998229i \(0.518946\pi\)
\(90\) 0.0141391 0.00149039
\(91\) 5.01572 0.525790
\(92\) −0.129602 −0.0135119
\(93\) 0 0
\(94\) −5.66611 −0.584414
\(95\) 0.0271813 0.00278875
\(96\) 1.85797 0.189628
\(97\) 7.27529 0.738694 0.369347 0.929292i \(-0.379581\pi\)
0.369347 + 0.929292i \(0.379581\pi\)
\(98\) 8.38089 0.846598
\(99\) −5.87139 −0.590097
\(100\) 1.33975 0.133975
\(101\) −6.43242 −0.640050 −0.320025 0.947409i \(-0.603691\pi\)
−0.320025 + 0.947409i \(0.603691\pi\)
\(102\) 10.2042 1.01036
\(103\) −8.53543 −0.841021 −0.420510 0.907288i \(-0.638149\pi\)
−0.420510 + 0.907288i \(0.638149\pi\)
\(104\) −18.8332 −1.84675
\(105\) 0.00714213 0.000697001 0
\(106\) 5.36916 0.521499
\(107\) −13.5147 −1.30652 −0.653259 0.757134i \(-0.726599\pi\)
−0.653259 + 0.757134i \(0.726599\pi\)
\(108\) −1.48060 −0.142471
\(109\) 10.2309 0.979944 0.489972 0.871738i \(-0.337007\pi\)
0.489972 + 0.871738i \(0.337007\pi\)
\(110\) −0.0381008 −0.00363276
\(111\) −9.24661 −0.877649
\(112\) 2.69659 0.254804
\(113\) −8.32437 −0.783091 −0.391546 0.920159i \(-0.628059\pi\)
−0.391546 + 0.920159i \(0.628059\pi\)
\(114\) 6.06740 0.568264
\(115\) 0.00352029 0.000328268 0
\(116\) 0.434223 0.0403166
\(117\) 9.31376 0.861057
\(118\) 18.0349 1.66025
\(119\) −4.99276 −0.457685
\(120\) −0.0268176 −0.00244810
\(121\) 4.82172 0.438338
\(122\) 6.61154 0.598581
\(123\) 4.97349 0.448445
\(124\) 0 0
\(125\) −0.0727821 −0.00650983
\(126\) −1.54424 −0.137572
\(127\) 11.2464 0.997953 0.498976 0.866616i \(-0.333709\pi\)
0.498976 + 0.866616i \(0.333709\pi\)
\(128\) −8.52572 −0.753574
\(129\) −0.865983 −0.0762455
\(130\) 0.0604390 0.00530086
\(131\) 0.645577 0.0564044 0.0282022 0.999602i \(-0.491022\pi\)
0.0282022 + 0.999602i \(0.491022\pi\)
\(132\) 1.31572 0.114519
\(133\) −2.96870 −0.257419
\(134\) 19.1166 1.65143
\(135\) 0.0402166 0.00346129
\(136\) 18.7470 1.60754
\(137\) 2.88395 0.246393 0.123196 0.992382i \(-0.460685\pi\)
0.123196 + 0.992382i \(0.460685\pi\)
\(138\) 0.785796 0.0668914
\(139\) 3.37884 0.286589 0.143295 0.989680i \(-0.454230\pi\)
0.143295 + 0.989680i \(0.454230\pi\)
\(140\) 0.00155027 0.000131022 0
\(141\) −5.31477 −0.447584
\(142\) 12.3885 1.03962
\(143\) −25.0979 −2.09879
\(144\) 5.00735 0.417279
\(145\) −0.0117945 −0.000979482 0
\(146\) −5.82123 −0.481768
\(147\) 7.86121 0.648382
\(148\) −2.00707 −0.164980
\(149\) −11.7699 −0.964230 −0.482115 0.876108i \(-0.660131\pi\)
−0.482115 + 0.876108i \(0.660131\pi\)
\(150\) −8.12315 −0.663252
\(151\) −17.8685 −1.45412 −0.727061 0.686573i \(-0.759114\pi\)
−0.727061 + 0.686573i \(0.759114\pi\)
\(152\) 11.1470 0.904141
\(153\) −9.27113 −0.749526
\(154\) 4.16130 0.335327
\(155\) 0 0
\(156\) −2.08713 −0.167104
\(157\) 2.66095 0.212367 0.106184 0.994347i \(-0.466137\pi\)
0.106184 + 0.994347i \(0.466137\pi\)
\(158\) 13.7646 1.09505
\(159\) 5.03623 0.399399
\(160\) −0.0109543 −0.000866015 0
\(161\) −0.384479 −0.0303012
\(162\) 3.14918 0.247423
\(163\) −16.9049 −1.32410 −0.662048 0.749461i \(-0.730312\pi\)
−0.662048 + 0.749461i \(0.730312\pi\)
\(164\) 1.07955 0.0842984
\(165\) −0.0357382 −0.00278222
\(166\) 2.64283 0.205123
\(167\) −15.4826 −1.19808 −0.599039 0.800720i \(-0.704450\pi\)
−0.599039 + 0.800720i \(0.704450\pi\)
\(168\) 2.92897 0.225975
\(169\) 26.8127 2.06252
\(170\) −0.0601624 −0.00461425
\(171\) −5.51262 −0.421560
\(172\) −0.187970 −0.0143326
\(173\) 6.91064 0.525406 0.262703 0.964877i \(-0.415386\pi\)
0.262703 + 0.964877i \(0.415386\pi\)
\(174\) −2.63277 −0.199590
\(175\) 3.97455 0.300447
\(176\) −13.4934 −1.01710
\(177\) 16.9166 1.27153
\(178\) 1.47713 0.110716
\(179\) 14.4811 1.08237 0.541184 0.840904i \(-0.317976\pi\)
0.541184 + 0.840904i \(0.317976\pi\)
\(180\) 0.00287872 0.000214567 0
\(181\) −17.3533 −1.28986 −0.644932 0.764240i \(-0.723114\pi\)
−0.644932 + 0.764240i \(0.723114\pi\)
\(182\) −6.60104 −0.489302
\(183\) 6.20158 0.458434
\(184\) 1.44366 0.106428
\(185\) 0.0545168 0.00400815
\(186\) 0 0
\(187\) 24.9830 1.82694
\(188\) −1.15362 −0.0841367
\(189\) −4.39238 −0.319499
\(190\) −0.0357726 −0.00259522
\(191\) 14.9051 1.07850 0.539248 0.842147i \(-0.318709\pi\)
0.539248 + 0.842147i \(0.318709\pi\)
\(192\) −10.8206 −0.780907
\(193\) 10.2755 0.739647 0.369824 0.929102i \(-0.379418\pi\)
0.369824 + 0.929102i \(0.379418\pi\)
\(194\) −9.57481 −0.687432
\(195\) 0.0566914 0.00405975
\(196\) 1.70636 0.121883
\(197\) 14.6052 1.04058 0.520289 0.853990i \(-0.325824\pi\)
0.520289 + 0.853990i \(0.325824\pi\)
\(198\) 7.72717 0.549146
\(199\) −10.5918 −0.750831 −0.375415 0.926857i \(-0.622500\pi\)
−0.375415 + 0.926857i \(0.622500\pi\)
\(200\) −14.9238 −1.05527
\(201\) 17.9313 1.26477
\(202\) 8.46553 0.595633
\(203\) 1.28818 0.0904123
\(204\) 2.07757 0.145459
\(205\) −0.0293231 −0.00204801
\(206\) 11.2332 0.782657
\(207\) −0.713946 −0.0496227
\(208\) 21.4045 1.48413
\(209\) 14.8549 1.02754
\(210\) −0.00939957 −0.000648632 0
\(211\) 16.5603 1.14006 0.570030 0.821624i \(-0.306931\pi\)
0.570030 + 0.821624i \(0.306931\pi\)
\(212\) 1.09317 0.0750789
\(213\) 11.6203 0.796212
\(214\) 17.7864 1.21585
\(215\) 0.00510572 0.000348207 0
\(216\) 16.4927 1.12219
\(217\) 0 0
\(218\) −13.4646 −0.911940
\(219\) −5.46027 −0.368971
\(220\) −0.00775734 −0.000523000 0
\(221\) −39.6305 −2.66583
\(222\) 12.1692 0.816744
\(223\) −0.805193 −0.0539197 −0.0269599 0.999637i \(-0.508583\pi\)
−0.0269599 + 0.999637i \(0.508583\pi\)
\(224\) 1.19641 0.0799386
\(225\) 7.38039 0.492026
\(226\) 10.9555 0.728748
\(227\) 13.4746 0.894341 0.447171 0.894449i \(-0.352432\pi\)
0.447171 + 0.894449i \(0.352432\pi\)
\(228\) 1.23533 0.0818116
\(229\) 12.9495 0.855728 0.427864 0.903843i \(-0.359266\pi\)
0.427864 + 0.903843i \(0.359266\pi\)
\(230\) −0.00463295 −0.000305488 0
\(231\) 3.90326 0.256816
\(232\) −4.83690 −0.317558
\(233\) 12.3559 0.809465 0.404732 0.914435i \(-0.367365\pi\)
0.404732 + 0.914435i \(0.367365\pi\)
\(234\) −12.2576 −0.801303
\(235\) 0.0313352 0.00204408
\(236\) 3.67192 0.239022
\(237\) 12.9111 0.838666
\(238\) 6.57083 0.425924
\(239\) 15.9331 1.03063 0.515314 0.857001i \(-0.327675\pi\)
0.515314 + 0.857001i \(0.327675\pi\)
\(240\) 0.0304789 0.00196741
\(241\) −20.5217 −1.32192 −0.660961 0.750421i \(-0.729851\pi\)
−0.660961 + 0.750421i \(0.729851\pi\)
\(242\) −6.34574 −0.407919
\(243\) −13.6228 −0.873906
\(244\) 1.34612 0.0861762
\(245\) −0.0463487 −0.00296111
\(246\) −6.54548 −0.417324
\(247\) −23.5643 −1.49936
\(248\) 0 0
\(249\) 2.47896 0.157097
\(250\) 0.0957865 0.00605807
\(251\) −4.22944 −0.266960 −0.133480 0.991052i \(-0.542615\pi\)
−0.133480 + 0.991052i \(0.542615\pi\)
\(252\) −0.314409 −0.0198059
\(253\) 1.92388 0.120953
\(254\) −14.8010 −0.928698
\(255\) −0.0564319 −0.00353390
\(256\) −6.31029 −0.394393
\(257\) 18.5477 1.15697 0.578486 0.815692i \(-0.303644\pi\)
0.578486 + 0.815692i \(0.303644\pi\)
\(258\) 1.13970 0.0709544
\(259\) −5.95423 −0.369978
\(260\) 0.0123054 0.000763151 0
\(261\) 2.39204 0.148063
\(262\) −0.849627 −0.0524901
\(263\) −14.4865 −0.893278 −0.446639 0.894714i \(-0.647379\pi\)
−0.446639 + 0.894714i \(0.647379\pi\)
\(264\) −14.6561 −0.902024
\(265\) −0.0296930 −0.00182403
\(266\) 3.90702 0.239555
\(267\) 1.38554 0.0847935
\(268\) 3.89216 0.237752
\(269\) −15.0412 −0.917078 −0.458539 0.888674i \(-0.651627\pi\)
−0.458539 + 0.888674i \(0.651627\pi\)
\(270\) −0.0529279 −0.00322109
\(271\) −22.9151 −1.39199 −0.695996 0.718046i \(-0.745037\pi\)
−0.695996 + 0.718046i \(0.745037\pi\)
\(272\) −21.3065 −1.29190
\(273\) −6.19173 −0.374741
\(274\) −3.79549 −0.229294
\(275\) −19.8881 −1.19929
\(276\) 0.159989 0.00963019
\(277\) −14.4506 −0.868255 −0.434127 0.900851i \(-0.642943\pi\)
−0.434127 + 0.900851i \(0.642943\pi\)
\(278\) −4.44679 −0.266701
\(279\) 0 0
\(280\) −0.0172688 −0.00103201
\(281\) −5.81764 −0.347051 −0.173526 0.984829i \(-0.555516\pi\)
−0.173526 + 0.984829i \(0.555516\pi\)
\(282\) 6.99462 0.416523
\(283\) 2.58301 0.153544 0.0767721 0.997049i \(-0.475539\pi\)
0.0767721 + 0.997049i \(0.475539\pi\)
\(284\) 2.52231 0.149672
\(285\) −0.0335544 −0.00198759
\(286\) 33.0307 1.95315
\(287\) 3.20261 0.189044
\(288\) 2.22163 0.130911
\(289\) 22.4491 1.32053
\(290\) 0.0155224 0.000911510 0
\(291\) −8.98110 −0.526481
\(292\) −1.18521 −0.0693590
\(293\) 18.4503 1.07788 0.538940 0.842344i \(-0.318825\pi\)
0.538940 + 0.842344i \(0.318825\pi\)
\(294\) −10.3459 −0.603386
\(295\) −0.0997382 −0.00580698
\(296\) 22.3572 1.29949
\(297\) 21.9789 1.27534
\(298\) 15.4901 0.897316
\(299\) −3.05184 −0.176493
\(300\) −1.65388 −0.0954867
\(301\) −0.557638 −0.0321417
\(302\) 23.5163 1.35321
\(303\) 7.94061 0.456176
\(304\) −12.6689 −0.726609
\(305\) −0.0365637 −0.00209363
\(306\) 12.2015 0.697512
\(307\) 1.64574 0.0939276 0.0469638 0.998897i \(-0.485045\pi\)
0.0469638 + 0.998897i \(0.485045\pi\)
\(308\) 0.847243 0.0482762
\(309\) 10.5367 0.599412
\(310\) 0 0
\(311\) −19.2427 −1.09115 −0.545576 0.838061i \(-0.683689\pi\)
−0.545576 + 0.838061i \(0.683689\pi\)
\(312\) 23.2490 1.31621
\(313\) −15.4030 −0.870630 −0.435315 0.900278i \(-0.643363\pi\)
−0.435315 + 0.900278i \(0.643363\pi\)
\(314\) −3.50201 −0.197630
\(315\) 0.00854010 0.000481180 0
\(316\) 2.80248 0.157652
\(317\) −28.9259 −1.62464 −0.812319 0.583214i \(-0.801795\pi\)
−0.812319 + 0.583214i \(0.801795\pi\)
\(318\) −6.62805 −0.371683
\(319\) −6.44585 −0.360898
\(320\) 0.0637966 0.00356634
\(321\) 16.6835 0.931181
\(322\) 0.506003 0.0281984
\(323\) 23.4565 1.30515
\(324\) 0.641176 0.0356209
\(325\) 31.5483 1.74999
\(326\) 22.2481 1.23221
\(327\) −12.6297 −0.698425
\(328\) −12.0253 −0.663987
\(329\) −3.42237 −0.188681
\(330\) 0.0470341 0.00258914
\(331\) 1.84711 0.101526 0.0507631 0.998711i \(-0.483835\pi\)
0.0507631 + 0.998711i \(0.483835\pi\)
\(332\) 0.538082 0.0295311
\(333\) −11.0565 −0.605892
\(334\) 20.3762 1.11494
\(335\) −0.105720 −0.00577612
\(336\) −3.32885 −0.181604
\(337\) 18.4735 1.00632 0.503158 0.864194i \(-0.332171\pi\)
0.503158 + 0.864194i \(0.332171\pi\)
\(338\) −35.2875 −1.91939
\(339\) 10.2762 0.558124
\(340\) −0.0122491 −0.000664301 0
\(341\) 0 0
\(342\) 7.25501 0.392306
\(343\) 10.6265 0.573779
\(344\) 2.09384 0.112892
\(345\) −0.00434567 −0.000233963 0
\(346\) −9.09490 −0.488945
\(347\) 12.1294 0.651142 0.325571 0.945518i \(-0.394444\pi\)
0.325571 + 0.945518i \(0.394444\pi\)
\(348\) −0.536033 −0.0287344
\(349\) 1.08075 0.0578512 0.0289256 0.999582i \(-0.490791\pi\)
0.0289256 + 0.999582i \(0.490791\pi\)
\(350\) −5.23079 −0.279597
\(351\) −34.8650 −1.86095
\(352\) −5.98667 −0.319091
\(353\) −18.3736 −0.977926 −0.488963 0.872305i \(-0.662625\pi\)
−0.488963 + 0.872305i \(0.662625\pi\)
\(354\) −22.2635 −1.18329
\(355\) −0.0685120 −0.00363624
\(356\) 0.300745 0.0159394
\(357\) 6.16339 0.326201
\(358\) −19.0582 −1.00726
\(359\) −27.6937 −1.46162 −0.730810 0.682581i \(-0.760857\pi\)
−0.730810 + 0.682581i \(0.760857\pi\)
\(360\) −0.0320667 −0.00169007
\(361\) −5.05278 −0.265936
\(362\) 22.8383 1.20035
\(363\) −5.95225 −0.312412
\(364\) −1.34398 −0.0704436
\(365\) 0.0321930 0.00168506
\(366\) −8.16173 −0.426620
\(367\) 5.52561 0.288434 0.144217 0.989546i \(-0.453934\pi\)
0.144217 + 0.989546i \(0.453934\pi\)
\(368\) −1.64076 −0.0855304
\(369\) 5.94698 0.309587
\(370\) −0.0717481 −0.00373000
\(371\) 3.24301 0.168369
\(372\) 0 0
\(373\) 5.64476 0.292274 0.146137 0.989264i \(-0.453316\pi\)
0.146137 + 0.989264i \(0.453316\pi\)
\(374\) −32.8795 −1.70016
\(375\) 0.0898470 0.00463968
\(376\) 12.8505 0.662712
\(377\) 10.2250 0.526616
\(378\) 5.78070 0.297327
\(379\) −11.1725 −0.573895 −0.286947 0.957946i \(-0.592640\pi\)
−0.286947 + 0.957946i \(0.592640\pi\)
\(380\) −0.00728333 −0.000373627 0
\(381\) −13.8832 −0.711260
\(382\) −19.6162 −1.00365
\(383\) −18.5205 −0.946354 −0.473177 0.880967i \(-0.656893\pi\)
−0.473177 + 0.880967i \(0.656893\pi\)
\(384\) 10.5247 0.537087
\(385\) −0.0230131 −0.00117286
\(386\) −13.5233 −0.688319
\(387\) −1.03549 −0.0526367
\(388\) −1.94944 −0.0989678
\(389\) 23.5859 1.19585 0.597926 0.801551i \(-0.295992\pi\)
0.597926 + 0.801551i \(0.295992\pi\)
\(390\) −0.0746099 −0.00377802
\(391\) 3.03787 0.153632
\(392\) −19.0075 −0.960022
\(393\) −0.796943 −0.0402005
\(394\) −19.2215 −0.968366
\(395\) −0.0761221 −0.00383012
\(396\) 1.57326 0.0790592
\(397\) 10.9091 0.547514 0.273757 0.961799i \(-0.411734\pi\)
0.273757 + 0.961799i \(0.411734\pi\)
\(398\) 13.9395 0.698726
\(399\) 3.66476 0.183467
\(400\) 16.9613 0.848065
\(401\) 10.6709 0.532879 0.266440 0.963852i \(-0.414153\pi\)
0.266440 + 0.963852i \(0.414153\pi\)
\(402\) −23.5988 −1.17700
\(403\) 0 0
\(404\) 1.72359 0.0857517
\(405\) −0.0174159 −0.000865401 0
\(406\) −1.69533 −0.0841380
\(407\) 29.7941 1.47684
\(408\) −23.1426 −1.14573
\(409\) 9.42592 0.466082 0.233041 0.972467i \(-0.425132\pi\)
0.233041 + 0.972467i \(0.425132\pi\)
\(410\) 0.0385913 0.00190589
\(411\) −3.56014 −0.175609
\(412\) 2.28710 0.112677
\(413\) 10.8932 0.536021
\(414\) 0.939604 0.0461790
\(415\) −0.0146156 −0.000717451 0
\(416\) 9.49663 0.465610
\(417\) −4.17106 −0.204258
\(418\) −19.5502 −0.956230
\(419\) −29.2065 −1.42683 −0.713416 0.700740i \(-0.752853\pi\)
−0.713416 + 0.700740i \(0.752853\pi\)
\(420\) −0.00191376 −9.33819e−5 0
\(421\) 0.596656 0.0290792 0.0145396 0.999894i \(-0.495372\pi\)
0.0145396 + 0.999894i \(0.495372\pi\)
\(422\) −21.7946 −1.06094
\(423\) −6.35505 −0.308993
\(424\) −12.1770 −0.591368
\(425\) −31.4039 −1.52331
\(426\) −15.2932 −0.740958
\(427\) 3.99342 0.193255
\(428\) 3.62132 0.175043
\(429\) 30.9825 1.49585
\(430\) −0.00671950 −0.000324043 0
\(431\) −24.0044 −1.15625 −0.578127 0.815947i \(-0.696216\pi\)
−0.578127 + 0.815947i \(0.696216\pi\)
\(432\) −18.7444 −0.901841
\(433\) 12.5443 0.602840 0.301420 0.953492i \(-0.402539\pi\)
0.301420 + 0.953492i \(0.402539\pi\)
\(434\) 0 0
\(435\) 0.0145599 0.000698096 0
\(436\) −2.74141 −0.131290
\(437\) 1.80632 0.0864081
\(438\) 7.18611 0.343366
\(439\) −39.1172 −1.86696 −0.933482 0.358625i \(-0.883246\pi\)
−0.933482 + 0.358625i \(0.883246\pi\)
\(440\) 0.0864107 0.00411947
\(441\) 9.39992 0.447615
\(442\) 52.1566 2.48084
\(443\) −7.49207 −0.355959 −0.177979 0.984034i \(-0.556956\pi\)
−0.177979 + 0.984034i \(0.556956\pi\)
\(444\) 2.47766 0.117585
\(445\) −0.00816894 −0.000387245 0
\(446\) 1.05969 0.0501779
\(447\) 14.5296 0.687225
\(448\) −6.96775 −0.329195
\(449\) −17.5141 −0.826541 −0.413271 0.910608i \(-0.635614\pi\)
−0.413271 + 0.910608i \(0.635614\pi\)
\(450\) −9.71313 −0.457881
\(451\) −16.0254 −0.754607
\(452\) 2.23054 0.104916
\(453\) 22.0581 1.03638
\(454\) −17.7336 −0.832277
\(455\) 0.0365056 0.00171141
\(456\) −13.7606 −0.644398
\(457\) 4.89406 0.228934 0.114467 0.993427i \(-0.463484\pi\)
0.114467 + 0.993427i \(0.463484\pi\)
\(458\) −17.0425 −0.796344
\(459\) 34.7054 1.61991
\(460\) −0.000943272 0 −4.39803e−5 0
\(461\) −20.2773 −0.944406 −0.472203 0.881490i \(-0.656541\pi\)
−0.472203 + 0.881490i \(0.656541\pi\)
\(462\) −5.13698 −0.238994
\(463\) 22.9558 1.06685 0.533423 0.845848i \(-0.320905\pi\)
0.533423 + 0.845848i \(0.320905\pi\)
\(464\) 5.49727 0.255204
\(465\) 0 0
\(466\) −16.2613 −0.753291
\(467\) 27.2874 1.26271 0.631355 0.775494i \(-0.282499\pi\)
0.631355 + 0.775494i \(0.282499\pi\)
\(468\) −2.49565 −0.115362
\(469\) 11.5466 0.533172
\(470\) −0.0412394 −0.00190223
\(471\) −3.28486 −0.151358
\(472\) −40.9024 −1.88268
\(473\) 2.79034 0.128300
\(474\) −16.9919 −0.780465
\(475\) −18.6728 −0.856767
\(476\) 1.33783 0.0613191
\(477\) 6.02200 0.275729
\(478\) −20.9691 −0.959107
\(479\) −34.3921 −1.57142 −0.785708 0.618597i \(-0.787701\pi\)
−0.785708 + 0.618597i \(0.787701\pi\)
\(480\) 0.0135227 0.000617226 0
\(481\) −47.2622 −2.15497
\(482\) 27.0081 1.23019
\(483\) 0.474627 0.0215963
\(484\) −1.29200 −0.0587271
\(485\) 0.0529514 0.00240440
\(486\) 17.9287 0.813260
\(487\) −27.3078 −1.23743 −0.618717 0.785614i \(-0.712347\pi\)
−0.618717 + 0.785614i \(0.712347\pi\)
\(488\) −14.9947 −0.678777
\(489\) 20.8686 0.943709
\(490\) 0.0609982 0.00275562
\(491\) 35.5025 1.60221 0.801103 0.598526i \(-0.204247\pi\)
0.801103 + 0.598526i \(0.204247\pi\)
\(492\) −1.33266 −0.0600811
\(493\) −10.1782 −0.458404
\(494\) 31.0123 1.39531
\(495\) −0.0427334 −0.00192073
\(496\) 0 0
\(497\) 7.48275 0.335647
\(498\) −3.26248 −0.146195
\(499\) 11.2078 0.501728 0.250864 0.968022i \(-0.419285\pi\)
0.250864 + 0.968022i \(0.419285\pi\)
\(500\) 0.0195022 0.000872165 0
\(501\) 19.1127 0.853892
\(502\) 5.56625 0.248434
\(503\) −1.69935 −0.0757701 −0.0378851 0.999282i \(-0.512062\pi\)
−0.0378851 + 0.999282i \(0.512062\pi\)
\(504\) 3.50227 0.156004
\(505\) −0.0468168 −0.00208332
\(506\) −2.53197 −0.112560
\(507\) −33.0994 −1.46999
\(508\) −3.01350 −0.133702
\(509\) −41.5080 −1.83981 −0.919905 0.392141i \(-0.871734\pi\)
−0.919905 + 0.392141i \(0.871734\pi\)
\(510\) 0.0742684 0.00328866
\(511\) −3.51607 −0.155542
\(512\) 25.3562 1.12060
\(513\) 20.6358 0.911095
\(514\) −24.4101 −1.07668
\(515\) −0.0621230 −0.00273747
\(516\) 0.232043 0.0102151
\(517\) 17.1251 0.753159
\(518\) 7.83619 0.344303
\(519\) −8.53095 −0.374467
\(520\) −0.137073 −0.00601105
\(521\) −32.5673 −1.42680 −0.713399 0.700758i \(-0.752845\pi\)
−0.713399 + 0.700758i \(0.752845\pi\)
\(522\) −3.14809 −0.137788
\(523\) 14.5341 0.635533 0.317766 0.948169i \(-0.397067\pi\)
0.317766 + 0.948169i \(0.397067\pi\)
\(524\) −0.172985 −0.00755687
\(525\) −4.90644 −0.214135
\(526\) 19.0653 0.831288
\(527\) 0 0
\(528\) 16.6571 0.724907
\(529\) −22.7661 −0.989829
\(530\) 0.0390781 0.00169745
\(531\) 20.2278 0.877812
\(532\) 0.795472 0.0344881
\(533\) 25.4210 1.10111
\(534\) −1.82347 −0.0789091
\(535\) −0.0983636 −0.00425263
\(536\) −43.3556 −1.87268
\(537\) −17.8764 −0.771424
\(538\) 19.7953 0.853436
\(539\) −25.3301 −1.09105
\(540\) −0.0107762 −0.000463732 0
\(541\) −8.39816 −0.361065 −0.180532 0.983569i \(-0.557782\pi\)
−0.180532 + 0.983569i \(0.557782\pi\)
\(542\) 30.1579 1.29539
\(543\) 21.4221 0.919311
\(544\) −9.45316 −0.405301
\(545\) 0.0744632 0.00318965
\(546\) 8.14876 0.348735
\(547\) 12.4927 0.534150 0.267075 0.963676i \(-0.413943\pi\)
0.267075 + 0.963676i \(0.413943\pi\)
\(548\) −0.772765 −0.0330109
\(549\) 7.41544 0.316483
\(550\) 26.1741 1.11607
\(551\) −6.05198 −0.257823
\(552\) −1.78215 −0.0758533
\(553\) 8.31392 0.353544
\(554\) 19.0181 0.808001
\(555\) −0.0672991 −0.00285669
\(556\) −0.905370 −0.0383962
\(557\) −16.8308 −0.713144 −0.356572 0.934268i \(-0.616054\pi\)
−0.356572 + 0.934268i \(0.616054\pi\)
\(558\) 0 0
\(559\) −4.42630 −0.187213
\(560\) 0.0196265 0.000829370 0
\(561\) −30.8407 −1.30210
\(562\) 7.65644 0.322967
\(563\) −16.7349 −0.705291 −0.352645 0.935757i \(-0.614718\pi\)
−0.352645 + 0.935757i \(0.614718\pi\)
\(564\) 1.42411 0.0599658
\(565\) −0.0605869 −0.00254891
\(566\) −3.39943 −0.142889
\(567\) 1.90213 0.0798819
\(568\) −28.0966 −1.17891
\(569\) 5.33828 0.223792 0.111896 0.993720i \(-0.464308\pi\)
0.111896 + 0.993720i \(0.464308\pi\)
\(570\) 0.0441601 0.00184966
\(571\) 36.0006 1.50658 0.753290 0.657689i \(-0.228466\pi\)
0.753290 + 0.657689i \(0.228466\pi\)
\(572\) 6.72507 0.281189
\(573\) −18.3998 −0.768665
\(574\) −4.21487 −0.175925
\(575\) −2.41834 −0.100852
\(576\) −12.9385 −0.539105
\(577\) 2.28925 0.0953029 0.0476514 0.998864i \(-0.484826\pi\)
0.0476514 + 0.998864i \(0.484826\pi\)
\(578\) −29.5446 −1.22889
\(579\) −12.6848 −0.527161
\(580\) 0.00316038 0.000131228 0
\(581\) 1.59629 0.0662252
\(582\) 11.8198 0.489946
\(583\) −16.2276 −0.672078
\(584\) 13.2023 0.546314
\(585\) 0.0677879 0.00280268
\(586\) −24.2820 −1.00308
\(587\) 2.09767 0.0865799 0.0432900 0.999063i \(-0.486216\pi\)
0.0432900 + 0.999063i \(0.486216\pi\)
\(588\) −2.10644 −0.0868680
\(589\) 0 0
\(590\) 0.131263 0.00540400
\(591\) −18.0296 −0.741640
\(592\) −25.4095 −1.04433
\(593\) −6.64085 −0.272707 −0.136354 0.990660i \(-0.543538\pi\)
−0.136354 + 0.990660i \(0.543538\pi\)
\(594\) −28.9258 −1.18684
\(595\) −0.0363385 −0.00148973
\(596\) 3.15379 0.129184
\(597\) 13.0752 0.535132
\(598\) 4.01644 0.164245
\(599\) 30.7228 1.25530 0.627650 0.778495i \(-0.284017\pi\)
0.627650 + 0.778495i \(0.284017\pi\)
\(600\) 18.4229 0.752112
\(601\) 16.9603 0.691825 0.345913 0.938267i \(-0.387569\pi\)
0.345913 + 0.938267i \(0.387569\pi\)
\(602\) 0.733892 0.0299112
\(603\) 21.4410 0.873146
\(604\) 4.78793 0.194818
\(605\) 0.0350937 0.00142676
\(606\) −10.4504 −0.424519
\(607\) 17.9166 0.727213 0.363606 0.931553i \(-0.381545\pi\)
0.363606 + 0.931553i \(0.381545\pi\)
\(608\) −5.62086 −0.227956
\(609\) −1.59021 −0.0644386
\(610\) 0.0481205 0.00194834
\(611\) −27.1654 −1.09899
\(612\) 2.48423 0.100419
\(613\) −17.6545 −0.713057 −0.356529 0.934284i \(-0.616040\pi\)
−0.356529 + 0.934284i \(0.616040\pi\)
\(614\) −2.16592 −0.0874093
\(615\) 0.0361983 0.00145966
\(616\) −9.43763 −0.380253
\(617\) 20.3423 0.818949 0.409474 0.912322i \(-0.365712\pi\)
0.409474 + 0.912322i \(0.365712\pi\)
\(618\) −13.8671 −0.557815
\(619\) 16.4294 0.660354 0.330177 0.943919i \(-0.392892\pi\)
0.330177 + 0.943919i \(0.392892\pi\)
\(620\) 0 0
\(621\) 2.67257 0.107247
\(622\) 25.3247 1.01543
\(623\) 0.892197 0.0357451
\(624\) −26.4231 −1.05777
\(625\) 24.9992 0.999968
\(626\) 20.2715 0.810211
\(627\) −18.3379 −0.732346
\(628\) −0.713012 −0.0284523
\(629\) 47.0459 1.87584
\(630\) −0.0112394 −0.000447788 0
\(631\) 10.4159 0.414651 0.207326 0.978272i \(-0.433524\pi\)
0.207326 + 0.978272i \(0.433524\pi\)
\(632\) −31.2175 −1.24176
\(633\) −20.4432 −0.812543
\(634\) 38.0685 1.51189
\(635\) 0.0818538 0.00324827
\(636\) −1.34948 −0.0535102
\(637\) 40.1810 1.59203
\(638\) 8.48321 0.335853
\(639\) 13.8948 0.549671
\(640\) −0.0620523 −0.00245283
\(641\) −22.8137 −0.901087 −0.450543 0.892755i \(-0.648770\pi\)
−0.450543 + 0.892755i \(0.648770\pi\)
\(642\) −21.9567 −0.866561
\(643\) −23.9877 −0.945982 −0.472991 0.881067i \(-0.656826\pi\)
−0.472991 + 0.881067i \(0.656826\pi\)
\(644\) 0.103023 0.00405966
\(645\) −0.00630284 −0.000248174 0
\(646\) −30.8704 −1.21458
\(647\) 19.6935 0.774232 0.387116 0.922031i \(-0.373471\pi\)
0.387116 + 0.922031i \(0.373471\pi\)
\(648\) −7.14220 −0.280572
\(649\) −54.5082 −2.13963
\(650\) −41.5199 −1.62854
\(651\) 0 0
\(652\) 4.52973 0.177398
\(653\) −4.96806 −0.194415 −0.0972076 0.995264i \(-0.530991\pi\)
−0.0972076 + 0.995264i \(0.530991\pi\)
\(654\) 16.6216 0.649957
\(655\) 0.00469867 0.000183592 0
\(656\) 13.6671 0.533610
\(657\) −6.52904 −0.254722
\(658\) 4.50409 0.175588
\(659\) 1.54371 0.0601343 0.0300671 0.999548i \(-0.490428\pi\)
0.0300671 + 0.999548i \(0.490428\pi\)
\(660\) 0.00957617 0.000372752 0
\(661\) 16.0367 0.623754 0.311877 0.950122i \(-0.399042\pi\)
0.311877 + 0.950122i \(0.399042\pi\)
\(662\) −2.43093 −0.0944807
\(663\) 48.9225 1.89999
\(664\) −5.99382 −0.232605
\(665\) −0.0216069 −0.000837880 0
\(666\) 14.5511 0.563846
\(667\) −0.783799 −0.0303488
\(668\) 4.14860 0.160514
\(669\) 0.993984 0.0384296
\(670\) 0.139136 0.00537528
\(671\) −19.9825 −0.771416
\(672\) −1.47693 −0.0569738
\(673\) 40.0730 1.54470 0.772351 0.635196i \(-0.219081\pi\)
0.772351 + 0.635196i \(0.219081\pi\)
\(674\) −24.3125 −0.936482
\(675\) −27.6276 −1.06339
\(676\) −7.18455 −0.276329
\(677\) −36.5467 −1.40461 −0.702303 0.711879i \(-0.747845\pi\)
−0.702303 + 0.711879i \(0.747845\pi\)
\(678\) −13.5242 −0.519392
\(679\) −5.78326 −0.221941
\(680\) 0.136446 0.00523245
\(681\) −16.6339 −0.637414
\(682\) 0 0
\(683\) −37.5447 −1.43661 −0.718303 0.695730i \(-0.755081\pi\)
−0.718303 + 0.695730i \(0.755081\pi\)
\(684\) 1.47712 0.0564793
\(685\) 0.0209901 0.000801992 0
\(686\) −13.9853 −0.533961
\(687\) −15.9857 −0.609894
\(688\) −2.37971 −0.0907255
\(689\) 25.7417 0.980682
\(690\) 0.00571922 0.000217727 0
\(691\) 1.85926 0.0707296 0.0353648 0.999374i \(-0.488741\pi\)
0.0353648 + 0.999374i \(0.488741\pi\)
\(692\) −1.85173 −0.0703922
\(693\) 4.66727 0.177295
\(694\) −15.9632 −0.605955
\(695\) 0.0245920 0.000932828 0
\(696\) 5.97099 0.226330
\(697\) −25.3047 −0.958483
\(698\) −1.42234 −0.0538365
\(699\) −15.2530 −0.576921
\(700\) −1.06499 −0.0402529
\(701\) 43.1920 1.63134 0.815670 0.578517i \(-0.196368\pi\)
0.815670 + 0.578517i \(0.196368\pi\)
\(702\) 45.8848 1.73181
\(703\) 27.9735 1.05504
\(704\) 34.8656 1.31405
\(705\) −0.0386822 −0.00145686
\(706\) 24.1809 0.910061
\(707\) 5.11324 0.192303
\(708\) −4.53287 −0.170356
\(709\) 48.5108 1.82186 0.910930 0.412561i \(-0.135366\pi\)
0.910930 + 0.412561i \(0.135366\pi\)
\(710\) 0.0901667 0.00338390
\(711\) 15.4382 0.578980
\(712\) −3.35006 −0.125549
\(713\) 0 0
\(714\) −8.11147 −0.303564
\(715\) −0.182669 −0.00683143
\(716\) −3.88026 −0.145012
\(717\) −19.6689 −0.734549
\(718\) 36.4470 1.36019
\(719\) −26.6658 −0.994466 −0.497233 0.867617i \(-0.665651\pi\)
−0.497233 + 0.867617i \(0.665651\pi\)
\(720\) 0.0364447 0.00135821
\(721\) 6.78496 0.252685
\(722\) 6.64982 0.247481
\(723\) 25.3334 0.942159
\(724\) 4.64989 0.172812
\(725\) 8.10250 0.300919
\(726\) 7.83359 0.290732
\(727\) −36.7670 −1.36361 −0.681807 0.731532i \(-0.738806\pi\)
−0.681807 + 0.731532i \(0.738806\pi\)
\(728\) 14.9709 0.554857
\(729\) 23.9955 0.888723
\(730\) −0.0423684 −0.00156812
\(731\) 4.40604 0.162963
\(732\) −1.66173 −0.0614194
\(733\) 49.5889 1.83161 0.915803 0.401628i \(-0.131555\pi\)
0.915803 + 0.401628i \(0.131555\pi\)
\(734\) −7.27210 −0.268418
\(735\) 0.0572158 0.00211044
\(736\) −0.727964 −0.0268331
\(737\) −57.7775 −2.12826
\(738\) −7.82666 −0.288103
\(739\) 30.9679 1.13917 0.569587 0.821931i \(-0.307103\pi\)
0.569587 + 0.821931i \(0.307103\pi\)
\(740\) −0.0146080 −0.000536999 0
\(741\) 29.0893 1.06862
\(742\) −4.26804 −0.156685
\(743\) 45.6267 1.67388 0.836940 0.547294i \(-0.184342\pi\)
0.836940 + 0.547294i \(0.184342\pi\)
\(744\) 0 0
\(745\) −0.0856644 −0.00313850
\(746\) −7.42891 −0.271992
\(747\) 2.96417 0.108453
\(748\) −6.69429 −0.244767
\(749\) 10.7431 0.392544
\(750\) −0.118245 −0.00431770
\(751\) 28.5894 1.04324 0.521621 0.853177i \(-0.325327\pi\)
0.521621 + 0.853177i \(0.325327\pi\)
\(752\) −14.6049 −0.532586
\(753\) 5.22110 0.190267
\(754\) −13.4569 −0.490070
\(755\) −0.130052 −0.00473307
\(756\) 1.17695 0.0428054
\(757\) −7.91417 −0.287645 −0.143823 0.989603i \(-0.545939\pi\)
−0.143823 + 0.989603i \(0.545939\pi\)
\(758\) 14.7039 0.534069
\(759\) −2.37496 −0.0862057
\(760\) 0.0811306 0.00294292
\(761\) −22.8705 −0.829056 −0.414528 0.910036i \(-0.636053\pi\)
−0.414528 + 0.910036i \(0.636053\pi\)
\(762\) 18.2713 0.661901
\(763\) −8.13274 −0.294425
\(764\) −3.99387 −0.144493
\(765\) −0.0674776 −0.00243966
\(766\) 24.3743 0.880680
\(767\) 86.4660 3.12211
\(768\) 7.78984 0.281092
\(769\) −23.2138 −0.837110 −0.418555 0.908191i \(-0.637463\pi\)
−0.418555 + 0.908191i \(0.637463\pi\)
\(770\) 0.0302870 0.00109147
\(771\) −22.8965 −0.824596
\(772\) −2.75336 −0.0990955
\(773\) 22.3694 0.804572 0.402286 0.915514i \(-0.368216\pi\)
0.402286 + 0.915514i \(0.368216\pi\)
\(774\) 1.36277 0.0489839
\(775\) 0 0
\(776\) 21.7152 0.779531
\(777\) 7.35029 0.263690
\(778\) −31.0407 −1.11286
\(779\) −15.0462 −0.539085
\(780\) −0.0151906 −0.000543912 0
\(781\) −37.4426 −1.33980
\(782\) −3.99806 −0.142970
\(783\) −8.95430 −0.320001
\(784\) 21.6025 0.771518
\(785\) 0.0193671 0.000691241 0
\(786\) 1.04884 0.0374107
\(787\) −11.4632 −0.408618 −0.204309 0.978906i \(-0.565495\pi\)
−0.204309 + 0.978906i \(0.565495\pi\)
\(788\) −3.91351 −0.139413
\(789\) 17.8831 0.636657
\(790\) 0.100182 0.00356432
\(791\) 6.61719 0.235280
\(792\) −17.5249 −0.622719
\(793\) 31.6982 1.12563
\(794\) −14.3572 −0.509518
\(795\) 0.0366550 0.00130002
\(796\) 2.83810 0.100594
\(797\) 35.3903 1.25359 0.626794 0.779185i \(-0.284367\pi\)
0.626794 + 0.779185i \(0.284367\pi\)
\(798\) −4.82308 −0.170735
\(799\) 27.0410 0.956644
\(800\) 7.52530 0.266060
\(801\) 1.65673 0.0585378
\(802\) −14.0437 −0.495900
\(803\) 17.5939 0.620875
\(804\) −4.80474 −0.169450
\(805\) −0.00279834 −9.86284e−5 0
\(806\) 0 0
\(807\) 18.5678 0.653619
\(808\) −19.1994 −0.675434
\(809\) −10.8601 −0.381820 −0.190910 0.981608i \(-0.561144\pi\)
−0.190910 + 0.981608i \(0.561144\pi\)
\(810\) 0.0229205 0.000805345 0
\(811\) 41.2607 1.44886 0.724429 0.689349i \(-0.242103\pi\)
0.724429 + 0.689349i \(0.242103\pi\)
\(812\) −0.345171 −0.0121131
\(813\) 28.2879 0.992099
\(814\) −39.2112 −1.37435
\(815\) −0.123038 −0.00430984
\(816\) 26.3021 0.920759
\(817\) 2.61984 0.0916565
\(818\) −12.4052 −0.433737
\(819\) −7.40367 −0.258705
\(820\) 0.00785721 0.000274386 0
\(821\) 5.91019 0.206267 0.103134 0.994668i \(-0.467113\pi\)
0.103134 + 0.994668i \(0.467113\pi\)
\(822\) 4.68541 0.163422
\(823\) 11.1079 0.387198 0.193599 0.981081i \(-0.437984\pi\)
0.193599 + 0.981081i \(0.437984\pi\)
\(824\) −25.4765 −0.887515
\(825\) 24.5511 0.854760
\(826\) −14.3363 −0.498823
\(827\) −5.48482 −0.190726 −0.0953629 0.995443i \(-0.530401\pi\)
−0.0953629 + 0.995443i \(0.530401\pi\)
\(828\) 0.191304 0.00664828
\(829\) −37.1412 −1.28997 −0.644983 0.764197i \(-0.723136\pi\)
−0.644983 + 0.764197i \(0.723136\pi\)
\(830\) 0.0192352 0.000667663 0
\(831\) 17.8388 0.618822
\(832\) −55.3072 −1.91743
\(833\) −39.9971 −1.38582
\(834\) 5.48941 0.190083
\(835\) −0.112686 −0.00389966
\(836\) −3.98043 −0.137666
\(837\) 0 0
\(838\) 38.4379 1.32782
\(839\) 36.2002 1.24977 0.624886 0.780716i \(-0.285146\pi\)
0.624886 + 0.780716i \(0.285146\pi\)
\(840\) 0.0213178 0.000735533 0
\(841\) −26.3739 −0.909446
\(842\) −0.785242 −0.0270612
\(843\) 7.18168 0.247350
\(844\) −4.43740 −0.152742
\(845\) 0.195150 0.00671335
\(846\) 8.36371 0.287550
\(847\) −3.83287 −0.131699
\(848\) 13.8395 0.475250
\(849\) −3.18864 −0.109434
\(850\) 41.3298 1.41760
\(851\) 3.62288 0.124191
\(852\) −3.11371 −0.106674
\(853\) −11.1741 −0.382593 −0.191296 0.981532i \(-0.561269\pi\)
−0.191296 + 0.981532i \(0.561269\pi\)
\(854\) −5.25563 −0.179844
\(855\) −0.0401222 −0.00137215
\(856\) −40.3387 −1.37875
\(857\) 54.8661 1.87419 0.937095 0.349075i \(-0.113504\pi\)
0.937095 + 0.349075i \(0.113504\pi\)
\(858\) −40.7752 −1.39204
\(859\) 19.9109 0.679350 0.339675 0.940543i \(-0.389683\pi\)
0.339675 + 0.940543i \(0.389683\pi\)
\(860\) −0.00136810 −4.66517e−5 0
\(861\) −3.95352 −0.134735
\(862\) 31.5916 1.07601
\(863\) −11.1772 −0.380477 −0.190238 0.981738i \(-0.560926\pi\)
−0.190238 + 0.981738i \(0.560926\pi\)
\(864\) −8.31643 −0.282931
\(865\) 0.0502974 0.00171016
\(866\) −16.5092 −0.561005
\(867\) −27.7126 −0.941170
\(868\) 0 0
\(869\) −41.6017 −1.41124
\(870\) −0.0191619 −0.000649650 0
\(871\) 91.6521 3.10551
\(872\) 30.5372 1.03412
\(873\) −10.7390 −0.363461
\(874\) −2.37725 −0.0804117
\(875\) 0.0578558 0.00195588
\(876\) 1.46310 0.0494335
\(877\) −27.5485 −0.930248 −0.465124 0.885246i \(-0.653990\pi\)
−0.465124 + 0.885246i \(0.653990\pi\)
\(878\) 51.4811 1.73740
\(879\) −22.7763 −0.768225
\(880\) −0.0982081 −0.00331059
\(881\) −14.2624 −0.480514 −0.240257 0.970709i \(-0.577232\pi\)
−0.240257 + 0.970709i \(0.577232\pi\)
\(882\) −12.3710 −0.416553
\(883\) 18.6749 0.628459 0.314229 0.949347i \(-0.398254\pi\)
0.314229 + 0.949347i \(0.398254\pi\)
\(884\) 10.6191 0.357160
\(885\) 0.123123 0.00413875
\(886\) 9.86011 0.331257
\(887\) −34.7385 −1.16640 −0.583202 0.812327i \(-0.698200\pi\)
−0.583202 + 0.812327i \(0.698200\pi\)
\(888\) −27.5992 −0.926168
\(889\) −8.93992 −0.299835
\(890\) 0.0107509 0.000360372 0
\(891\) −9.51798 −0.318864
\(892\) 0.215754 0.00722398
\(893\) 16.0786 0.538051
\(894\) −19.1220 −0.639534
\(895\) 0.105397 0.00352303
\(896\) 6.77724 0.226412
\(897\) 3.76739 0.125790
\(898\) 23.0498 0.769183
\(899\) 0 0
\(900\) −1.97760 −0.0659200
\(901\) −25.6239 −0.853656
\(902\) 21.0906 0.702240
\(903\) 0.688385 0.0229080
\(904\) −24.8465 −0.826383
\(905\) −0.126302 −0.00419842
\(906\) −29.0301 −0.964459
\(907\) −6.36985 −0.211507 −0.105754 0.994392i \(-0.533725\pi\)
−0.105754 + 0.994392i \(0.533725\pi\)
\(908\) −3.61057 −0.119821
\(909\) 9.49486 0.314925
\(910\) −0.0480441 −0.00159264
\(911\) 54.3419 1.80043 0.900214 0.435447i \(-0.143410\pi\)
0.900214 + 0.435447i \(0.143410\pi\)
\(912\) 15.6393 0.517868
\(913\) −7.98760 −0.264351
\(914\) −6.44093 −0.213047
\(915\) 0.0451366 0.00149217
\(916\) −3.46986 −0.114648
\(917\) −0.513181 −0.0169467
\(918\) −45.6748 −1.50749
\(919\) −44.6967 −1.47441 −0.737204 0.675670i \(-0.763854\pi\)
−0.737204 + 0.675670i \(0.763854\pi\)
\(920\) 0.0105073 0.000346416 0
\(921\) −2.03161 −0.0669440
\(922\) 26.6863 0.878868
\(923\) 59.3951 1.95501
\(924\) −1.04589 −0.0344073
\(925\) −37.4515 −1.23140
\(926\) −30.2115 −0.992812
\(927\) 12.5991 0.413809
\(928\) 2.43900 0.0800641
\(929\) 15.4573 0.507139 0.253569 0.967317i \(-0.418395\pi\)
0.253569 + 0.967317i \(0.418395\pi\)
\(930\) 0 0
\(931\) −23.7823 −0.779434
\(932\) −3.31082 −0.108449
\(933\) 23.7544 0.777685
\(934\) −35.9122 −1.17508
\(935\) 0.181833 0.00594657
\(936\) 27.7996 0.908659
\(937\) −5.31792 −0.173729 −0.0868645 0.996220i \(-0.527685\pi\)
−0.0868645 + 0.996220i \(0.527685\pi\)
\(938\) −15.1961 −0.496172
\(939\) 19.0145 0.620514
\(940\) −0.00839636 −0.000273859 0
\(941\) 13.3788 0.436137 0.218069 0.975933i \(-0.430024\pi\)
0.218069 + 0.975933i \(0.430024\pi\)
\(942\) 4.32311 0.140855
\(943\) −1.94865 −0.0634567
\(944\) 46.4866 1.51301
\(945\) −0.0319689 −0.00103995
\(946\) −3.67229 −0.119396
\(947\) −6.71768 −0.218295 −0.109148 0.994026i \(-0.534812\pi\)
−0.109148 + 0.994026i \(0.534812\pi\)
\(948\) −3.45957 −0.112362
\(949\) −27.9091 −0.905968
\(950\) 24.5747 0.797310
\(951\) 35.7080 1.15791
\(952\) −14.9023 −0.482988
\(953\) 20.6118 0.667682 0.333841 0.942629i \(-0.391655\pi\)
0.333841 + 0.942629i \(0.391655\pi\)
\(954\) −7.92539 −0.256594
\(955\) 0.108483 0.00351043
\(956\) −4.26933 −0.138080
\(957\) 7.95718 0.257219
\(958\) 45.2625 1.46237
\(959\) −2.29251 −0.0740289
\(960\) −0.0787547 −0.00254180
\(961\) 0 0
\(962\) 62.2005 2.00543
\(963\) 19.9490 0.642848
\(964\) 5.49887 0.177107
\(965\) 0.0747877 0.00240750
\(966\) −0.624643 −0.0200976
\(967\) −59.1290 −1.90146 −0.950731 0.310018i \(-0.899665\pi\)
−0.950731 + 0.310018i \(0.899665\pi\)
\(968\) 14.3918 0.462571
\(969\) −28.9562 −0.930207
\(970\) −0.0696879 −0.00223754
\(971\) −45.7817 −1.46920 −0.734602 0.678498i \(-0.762631\pi\)
−0.734602 + 0.678498i \(0.762631\pi\)
\(972\) 3.65029 0.117083
\(973\) −2.68590 −0.0861059
\(974\) 35.9390 1.15156
\(975\) −38.9453 −1.24725
\(976\) 17.0418 0.545496
\(977\) 7.43684 0.237926 0.118963 0.992899i \(-0.462043\pi\)
0.118963 + 0.992899i \(0.462043\pi\)
\(978\) −27.4645 −0.878219
\(979\) −4.46443 −0.142684
\(980\) 0.0124193 0.000396719 0
\(981\) −15.1018 −0.482163
\(982\) −46.7239 −1.49102
\(983\) −27.2101 −0.867867 −0.433934 0.900945i \(-0.642875\pi\)
−0.433934 + 0.900945i \(0.642875\pi\)
\(984\) 14.8448 0.473236
\(985\) 0.106300 0.00338701
\(986\) 13.3953 0.426593
\(987\) 4.22480 0.134477
\(988\) 6.31414 0.200879
\(989\) 0.339298 0.0107891
\(990\) 0.0562403 0.00178743
\(991\) 17.2059 0.546563 0.273282 0.961934i \(-0.411891\pi\)
0.273282 + 0.961934i \(0.411891\pi\)
\(992\) 0 0
\(993\) −2.28019 −0.0723597
\(994\) −9.84785 −0.312355
\(995\) −0.0770896 −0.00244390
\(996\) −0.664244 −0.0210474
\(997\) 29.5057 0.934454 0.467227 0.884137i \(-0.345253\pi\)
0.467227 + 0.884137i \(0.345253\pi\)
\(998\) −14.7502 −0.466910
\(999\) 41.3887 1.30948
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.a.l.1.7 16
3.2 odd 2 8649.2.a.bs.1.9 16
31.2 even 5 961.2.d.s.531.7 64
31.3 odd 30 961.2.g.w.846.7 128
31.4 even 5 961.2.d.s.388.10 64
31.5 even 3 961.2.c.l.521.8 32
31.6 odd 6 961.2.c.l.439.7 32
31.7 even 15 961.2.g.w.235.9 128
31.8 even 5 961.2.d.s.374.10 64
31.9 even 15 961.2.g.w.732.9 128
31.10 even 15 961.2.g.w.844.8 128
31.11 odd 30 961.2.g.w.338.9 128
31.12 odd 30 961.2.g.w.547.8 128
31.13 odd 30 961.2.g.w.448.8 128
31.14 even 15 961.2.g.w.816.10 128
31.15 odd 10 961.2.d.s.628.8 64
31.16 even 5 961.2.d.s.628.7 64
31.17 odd 30 961.2.g.w.816.9 128
31.18 even 15 961.2.g.w.448.7 128
31.19 even 15 961.2.g.w.547.7 128
31.20 even 15 961.2.g.w.338.10 128
31.21 odd 30 961.2.g.w.844.7 128
31.22 odd 30 961.2.g.w.732.10 128
31.23 odd 10 961.2.d.s.374.9 64
31.24 odd 30 961.2.g.w.235.10 128
31.25 even 3 961.2.c.l.439.8 32
31.26 odd 6 961.2.c.l.521.7 32
31.27 odd 10 961.2.d.s.388.9 64
31.28 even 15 961.2.g.w.846.8 128
31.29 odd 10 961.2.d.s.531.8 64
31.30 odd 2 inner 961.2.a.l.1.8 yes 16
93.92 even 2 8649.2.a.bs.1.10 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
961.2.a.l.1.7 16 1.1 even 1 trivial
961.2.a.l.1.8 yes 16 31.30 odd 2 inner
961.2.c.l.439.7 32 31.6 odd 6
961.2.c.l.439.8 32 31.25 even 3
961.2.c.l.521.7 32 31.26 odd 6
961.2.c.l.521.8 32 31.5 even 3
961.2.d.s.374.9 64 31.23 odd 10
961.2.d.s.374.10 64 31.8 even 5
961.2.d.s.388.9 64 31.27 odd 10
961.2.d.s.388.10 64 31.4 even 5
961.2.d.s.531.7 64 31.2 even 5
961.2.d.s.531.8 64 31.29 odd 10
961.2.d.s.628.7 64 31.16 even 5
961.2.d.s.628.8 64 31.15 odd 10
961.2.g.w.235.9 128 31.7 even 15
961.2.g.w.235.10 128 31.24 odd 30
961.2.g.w.338.9 128 31.11 odd 30
961.2.g.w.338.10 128 31.20 even 15
961.2.g.w.448.7 128 31.18 even 15
961.2.g.w.448.8 128 31.13 odd 30
961.2.g.w.547.7 128 31.19 even 15
961.2.g.w.547.8 128 31.12 odd 30
961.2.g.w.732.9 128 31.9 even 15
961.2.g.w.732.10 128 31.22 odd 30
961.2.g.w.816.9 128 31.17 odd 30
961.2.g.w.816.10 128 31.14 even 15
961.2.g.w.844.7 128 31.21 odd 30
961.2.g.w.844.8 128 31.10 even 15
961.2.g.w.846.7 128 31.3 odd 30
961.2.g.w.846.8 128 31.28 even 15
8649.2.a.bs.1.9 16 3.2 odd 2
8649.2.a.bs.1.10 16 93.92 even 2