Properties

Label 961.2.c.l.521.8
Level $961$
Weight $2$
Character 961.521
Analytic conductor $7.674$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(439,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.439"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,-16,0,16,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 521.8
Character \(\chi\) \(=\) 961.521
Dual form 961.2.c.l.439.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.31607 q^{2} +(0.617233 + 1.06908i) q^{3} -0.267953 q^{4} +(-0.00363912 + 0.00630315i) q^{5} +(-0.812323 - 1.40699i) q^{6} +(0.397459 + 0.688419i) q^{7} +2.98479 q^{8} +(0.738047 - 1.27834i) q^{9} +(0.00478935 - 0.00829540i) q^{10} +(-1.98883 + 3.44475i) q^{11} +(-0.165390 - 0.286463i) q^{12} +(3.15487 - 5.46439i) q^{13} +(-0.523084 - 0.906009i) q^{14} -0.00898475 q^{15} -3.39229 q^{16} +(-3.14043 - 5.43938i) q^{17} +(-0.971323 + 1.68238i) q^{18} +(-1.86730 - 3.23426i) q^{19} +(0.000975115 - 0.00168895i) q^{20} +(-0.490649 + 0.849829i) q^{21} +(2.61744 - 4.53354i) q^{22} +0.483672 q^{23} +(1.84231 + 3.19098i) q^{24} +(2.49997 + 4.33008i) q^{25} +(-4.15203 + 7.19153i) q^{26} +5.52559 q^{27} +(-0.106500 - 0.184464i) q^{28} -1.62052 q^{29} +0.0118246 q^{30} -1.50508 q^{32} -4.91028 q^{33} +(4.13303 + 7.15861i) q^{34} -0.00578561 q^{35} +(-0.197762 + 0.342534i) q^{36} +(-3.74519 - 6.48685i) q^{37} +(2.45750 + 4.25652i) q^{38} +7.78915 q^{39} +(-0.0108620 + 0.0188136i) q^{40} +(2.01443 - 3.48910i) q^{41} +(0.645730 - 1.11844i) q^{42} +(-0.350752 - 0.607520i) q^{43} +(0.532913 - 0.923032i) q^{44} +(0.00537169 + 0.00930404i) q^{45} -0.636548 q^{46} +4.30532 q^{47} +(-2.09384 - 3.62663i) q^{48} +(3.18405 - 5.51494i) q^{49} +(-3.29015 - 5.69870i) q^{50} +(3.87675 - 6.71472i) q^{51} +(-0.845357 + 1.46420i) q^{52} +(2.03984 - 3.53311i) q^{53} -7.27207 q^{54} +(-0.0144752 - 0.0250717i) q^{55} +(1.18633 + 2.05479i) q^{56} +(2.30512 - 3.99258i) q^{57} +2.13272 q^{58} +(6.85180 + 11.8677i) q^{59} +0.00240749 q^{60} -5.02369 q^{61} +1.17337 q^{63} +8.76538 q^{64} +(0.0229619 + 0.0397712i) q^{65} +6.46228 q^{66} +(7.26276 - 12.5795i) q^{67} +(0.841487 + 1.45750i) q^{68} +(0.298538 + 0.517084i) q^{69} +0.00761428 q^{70} +(4.70662 - 8.15211i) q^{71} +(2.20292 - 3.81556i) q^{72} +(-2.21159 + 3.83059i) q^{73} +(4.92894 + 8.53717i) q^{74} +(-3.08613 + 5.34534i) q^{75} +(0.500349 + 0.866630i) q^{76} -3.16191 q^{77} -10.2511 q^{78} +(5.22943 + 9.05763i) q^{79} +(0.0123450 - 0.0213821i) q^{80} +(1.19643 + 2.07228i) q^{81} +(-2.65114 + 4.59190i) q^{82} +(1.00406 - 1.73908i) q^{83} +(0.131471 - 0.227715i) q^{84} +0.0457136 q^{85} +(0.461615 + 0.799541i) q^{86} +(-1.00024 - 1.73246i) q^{87} +(-5.93623 + 10.2819i) q^{88} -1.12238 q^{89} +(-0.00706953 - 0.0122448i) q^{90} +5.01572 q^{91} -0.129602 q^{92} -5.66611 q^{94} +0.0271813 q^{95} +(-0.928983 - 1.60905i) q^{96} +7.27529 q^{97} +(-4.19044 + 7.25806i) q^{98} +(2.93570 + 5.08477i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 16 q^{2} + 16 q^{4} + 16 q^{5} + 16 q^{7} - 8 q^{10} + 8 q^{14} - 16 q^{16} + 24 q^{18} + 32 q^{19} + 24 q^{20} + 8 q^{28} - 16 q^{32} - 64 q^{33} - 32 q^{35} + 40 q^{36} + 24 q^{38} - 64 q^{39}+ \cdots - 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.31607 −0.930604 −0.465302 0.885152i \(-0.654054\pi\)
−0.465302 + 0.885152i \(0.654054\pi\)
\(3\) 0.617233 + 1.06908i 0.356360 + 0.617233i 0.987350 0.158558i \(-0.0506845\pi\)
−0.630990 + 0.775791i \(0.717351\pi\)
\(4\) −0.267953 −0.133977
\(5\) −0.00363912 + 0.00630315i −0.00162747 + 0.00281885i −0.866838 0.498590i \(-0.833851\pi\)
0.865211 + 0.501409i \(0.167185\pi\)
\(6\) −0.812323 1.40699i −0.331630 0.574399i
\(7\) 0.397459 + 0.688419i 0.150225 + 0.260198i 0.931310 0.364227i \(-0.118667\pi\)
−0.781085 + 0.624425i \(0.785333\pi\)
\(8\) 2.98479 1.05528
\(9\) 0.738047 1.27834i 0.246016 0.426112i
\(10\) 0.00478935 0.00829540i 0.00151453 0.00262324i
\(11\) −1.98883 + 3.44475i −0.599654 + 1.03863i 0.393218 + 0.919445i \(0.371362\pi\)
−0.992872 + 0.119186i \(0.961972\pi\)
\(12\) −0.165390 0.286463i −0.0477439 0.0826948i
\(13\) 3.15487 5.46439i 0.875002 1.51555i 0.0182420 0.999834i \(-0.494193\pi\)
0.856760 0.515715i \(-0.172474\pi\)
\(14\) −0.523084 0.906009i −0.139800 0.242141i
\(15\) −0.00898475 −0.00231985
\(16\) −3.39229 −0.848074
\(17\) −3.14043 5.43938i −0.761665 1.31924i −0.941992 0.335636i \(-0.891049\pi\)
0.180327 0.983607i \(-0.442284\pi\)
\(18\) −0.971323 + 1.68238i −0.228943 + 0.396541i
\(19\) −1.86730 3.23426i −0.428388 0.741989i 0.568342 0.822792i \(-0.307585\pi\)
−0.996730 + 0.0808028i \(0.974252\pi\)
\(20\) 0.000975115 0.00168895i 0.000218042 0.000377661i
\(21\) −0.490649 + 0.849829i −0.107068 + 0.185448i
\(22\) 2.61744 4.53354i 0.558040 0.966554i
\(23\) 0.483672 0.100853 0.0504263 0.998728i \(-0.483942\pi\)
0.0504263 + 0.998728i \(0.483942\pi\)
\(24\) 1.84231 + 3.19098i 0.376060 + 0.651355i
\(25\) 2.49997 + 4.33008i 0.499995 + 0.866016i
\(26\) −4.15203 + 7.19153i −0.814280 + 1.41038i
\(27\) 5.52559 1.06340
\(28\) −0.106500 0.184464i −0.0201267 0.0348604i
\(29\) −1.62052 −0.300922 −0.150461 0.988616i \(-0.548076\pi\)
−0.150461 + 0.988616i \(0.548076\pi\)
\(30\) 0.0118246 0.00215886
\(31\) 0 0
\(32\) −1.50508 −0.266062
\(33\) −4.91028 −0.854769
\(34\) 4.13303 + 7.15861i 0.708808 + 1.22769i
\(35\) −0.00578561 −0.000977946
\(36\) −0.197762 + 0.342534i −0.0329604 + 0.0570890i
\(37\) −3.74519 6.48685i −0.615705 1.06643i −0.990260 0.139228i \(-0.955538\pi\)
0.374556 0.927204i \(-0.377795\pi\)
\(38\) 2.45750 + 4.25652i 0.398659 + 0.690498i
\(39\) 7.78915 1.24726
\(40\) −0.0108620 + 0.0188136i −0.00171744 + 0.00297469i
\(41\) 2.01443 3.48910i 0.314601 0.544905i −0.664751 0.747065i \(-0.731463\pi\)
0.979353 + 0.202159i \(0.0647959\pi\)
\(42\) 0.645730 1.11844i 0.0996383 0.172579i
\(43\) −0.350752 0.607520i −0.0534892 0.0926460i 0.838041 0.545607i \(-0.183701\pi\)
−0.891530 + 0.452961i \(0.850368\pi\)
\(44\) 0.532913 0.923032i 0.0803396 0.139152i
\(45\) 0.00537169 + 0.00930404i 0.000800764 + 0.00138696i
\(46\) −0.636548 −0.0938538
\(47\) 4.30532 0.627995 0.313997 0.949424i \(-0.398332\pi\)
0.313997 + 0.949424i \(0.398332\pi\)
\(48\) −2.09384 3.62663i −0.302219 0.523459i
\(49\) 3.18405 5.51494i 0.454865 0.787849i
\(50\) −3.29015 5.69870i −0.465297 0.805918i
\(51\) 3.87675 6.71472i 0.542853 0.940249i
\(52\) −0.845357 + 1.46420i −0.117230 + 0.203048i
\(53\) 2.03984 3.53311i 0.280194 0.485310i −0.691238 0.722627i \(-0.742935\pi\)
0.971432 + 0.237316i \(0.0762678\pi\)
\(54\) −7.27207 −0.989603
\(55\) −0.0144752 0.0250717i −0.00195183 0.00338067i
\(56\) 1.18633 + 2.05479i 0.158530 + 0.274582i
\(57\) 2.30512 3.99258i 0.305320 0.528830i
\(58\) 2.13272 0.280039
\(59\) 6.85180 + 11.8677i 0.892028 + 1.54504i 0.837440 + 0.546530i \(0.184051\pi\)
0.0545886 + 0.998509i \(0.482615\pi\)
\(60\) 0.00240749 0.000310806
\(61\) −5.02369 −0.643218 −0.321609 0.946873i \(-0.604224\pi\)
−0.321609 + 0.946873i \(0.604224\pi\)
\(62\) 0 0
\(63\) 1.17337 0.147831
\(64\) 8.76538 1.09567
\(65\) 0.0229619 + 0.0397712i 0.00284807 + 0.00493301i
\(66\) 6.46228 0.795452
\(67\) 7.26276 12.5795i 0.887287 1.53683i 0.0442180 0.999022i \(-0.485920\pi\)
0.843069 0.537805i \(-0.180746\pi\)
\(68\) 0.841487 + 1.45750i 0.102045 + 0.176748i
\(69\) 0.298538 + 0.517084i 0.0359398 + 0.0622496i
\(70\) 0.00761428 0.000910080
\(71\) 4.70662 8.15211i 0.558574 0.967478i −0.439042 0.898466i \(-0.644682\pi\)
0.997616 0.0690113i \(-0.0219845\pi\)
\(72\) 2.20292 3.81556i 0.259616 0.449668i
\(73\) −2.21159 + 3.83059i −0.258847 + 0.448337i −0.965933 0.258791i \(-0.916676\pi\)
0.707086 + 0.707127i \(0.250009\pi\)
\(74\) 4.92894 + 8.53717i 0.572977 + 0.992426i
\(75\) −3.08613 + 5.34534i −0.356356 + 0.617226i
\(76\) 0.500349 + 0.866630i 0.0573940 + 0.0994093i
\(77\) −3.16191 −0.360333
\(78\) −10.2511 −1.16071
\(79\) 5.22943 + 9.05763i 0.588356 + 1.01906i 0.994448 + 0.105231i \(0.0335581\pi\)
−0.406092 + 0.913832i \(0.633109\pi\)
\(80\) 0.0123450 0.0213821i 0.00138021 0.00239060i
\(81\) 1.19643 + 2.07228i 0.132937 + 0.230253i
\(82\) −2.65114 + 4.59190i −0.292769 + 0.507091i
\(83\) 1.00406 1.73908i 0.110210 0.190889i −0.805645 0.592399i \(-0.798181\pi\)
0.915855 + 0.401510i \(0.131514\pi\)
\(84\) 0.131471 0.227715i 0.0143447 0.0248457i
\(85\) 0.0457136 0.00495834
\(86\) 0.461615 + 0.799541i 0.0497772 + 0.0862167i
\(87\) −1.00024 1.73246i −0.107237 0.185739i
\(88\) −5.93623 + 10.2819i −0.632804 + 1.09605i
\(89\) −1.12238 −0.118972 −0.0594859 0.998229i \(-0.518946\pi\)
−0.0594859 + 0.998229i \(0.518946\pi\)
\(90\) −0.00706953 0.0122448i −0.000745194 0.00129071i
\(91\) 5.01572 0.525790
\(92\) −0.129602 −0.0135119
\(93\) 0 0
\(94\) −5.66611 −0.584414
\(95\) 0.0271813 0.00278875
\(96\) −0.928983 1.60905i −0.0948139 0.164222i
\(97\) 7.27529 0.738694 0.369347 0.929292i \(-0.379581\pi\)
0.369347 + 0.929292i \(0.379581\pi\)
\(98\) −4.19044 + 7.25806i −0.423299 + 0.733175i
\(99\) 2.93570 + 5.08477i 0.295048 + 0.511039i
\(100\) −0.669876 1.16026i −0.0669876 0.116026i
\(101\) −6.43242 −0.640050 −0.320025 0.947409i \(-0.603691\pi\)
−0.320025 + 0.947409i \(0.603691\pi\)
\(102\) −5.10208 + 8.83706i −0.505181 + 0.875000i
\(103\) 4.26771 7.39190i 0.420510 0.728345i −0.575479 0.817817i \(-0.695184\pi\)
0.995989 + 0.0894712i \(0.0285177\pi\)
\(104\) 9.41661 16.3101i 0.923375 1.59933i
\(105\) −0.00357107 0.00618527i −0.000348500 0.000603621i
\(106\) −2.68458 + 4.64983i −0.260750 + 0.451632i
\(107\) 6.75737 + 11.7041i 0.653259 + 1.13148i 0.982327 + 0.187172i \(0.0599322\pi\)
−0.329068 + 0.944306i \(0.606734\pi\)
\(108\) −1.48060 −0.142471
\(109\) 10.2309 0.979944 0.489972 0.871738i \(-0.337007\pi\)
0.489972 + 0.871738i \(0.337007\pi\)
\(110\) 0.0190504 + 0.0329962i 0.00181638 + 0.00314607i
\(111\) 4.62330 8.00780i 0.438825 0.760067i
\(112\) −1.34830 2.33532i −0.127402 0.220667i
\(113\) 4.16219 7.20912i 0.391546 0.678177i −0.601108 0.799168i \(-0.705274\pi\)
0.992654 + 0.120991i \(0.0386072\pi\)
\(114\) −3.03370 + 5.25452i −0.284132 + 0.492131i
\(115\) −0.00176014 + 0.00304866i −0.000164134 + 0.000284289i
\(116\) 0.434223 0.0403166
\(117\) −4.65688 8.06595i −0.430529 0.745697i
\(118\) −9.01747 15.6187i −0.830125 1.43782i
\(119\) 2.49638 4.32385i 0.228843 0.396367i
\(120\) −0.0268176 −0.00244810
\(121\) −2.41086 4.17573i −0.219169 0.379612i
\(122\) 6.61154 0.598581
\(123\) 4.97349 0.448445
\(124\) 0 0
\(125\) −0.0727821 −0.00650983
\(126\) −1.54424 −0.137572
\(127\) −5.62318 9.73963i −0.498976 0.864252i 0.501023 0.865434i \(-0.332957\pi\)
−0.999999 + 0.00118170i \(0.999624\pi\)
\(128\) −8.52572 −0.753574
\(129\) 0.432991 0.749963i 0.0381228 0.0660306i
\(130\) −0.0302195 0.0523418i −0.00265043 0.00459068i
\(131\) −0.322789 0.559087i −0.0282022 0.0488476i 0.851580 0.524225i \(-0.175645\pi\)
−0.879782 + 0.475377i \(0.842312\pi\)
\(132\) 1.31572 0.114519
\(133\) 1.48435 2.57097i 0.128709 0.222931i
\(134\) −9.55832 + 16.5555i −0.825713 + 1.43018i
\(135\) −0.0201083 + 0.0348286i −0.00173065 + 0.00299757i
\(136\) −9.37351 16.2354i −0.803772 1.39217i
\(137\) −1.44198 + 2.49758i −0.123196 + 0.213382i −0.921027 0.389500i \(-0.872648\pi\)
0.797830 + 0.602882i \(0.205981\pi\)
\(138\) −0.392898 0.680520i −0.0334457 0.0579297i
\(139\) 3.37884 0.286589 0.143295 0.989680i \(-0.454230\pi\)
0.143295 + 0.989680i \(0.454230\pi\)
\(140\) 0.00155027 0.000131022
\(141\) 2.65738 + 4.60272i 0.223792 + 0.387619i
\(142\) −6.19426 + 10.7288i −0.519811 + 0.900338i
\(143\) 12.5490 + 21.7354i 1.04940 + 1.81761i
\(144\) −2.50367 + 4.33649i −0.208639 + 0.361374i
\(145\) 0.00589726 0.0102144i 0.000489741 0.000848256i
\(146\) 2.91062 5.04133i 0.240884 0.417224i
\(147\) 7.86121 0.648382
\(148\) 1.00353 + 1.73817i 0.0824901 + 0.142877i
\(149\) 5.88496 + 10.1931i 0.482115 + 0.835047i 0.999789 0.0205303i \(-0.00653545\pi\)
−0.517674 + 0.855578i \(0.673202\pi\)
\(150\) 4.06157 7.03485i 0.331626 0.574393i
\(151\) −17.8685 −1.45412 −0.727061 0.686573i \(-0.759114\pi\)
−0.727061 + 0.686573i \(0.759114\pi\)
\(152\) −5.57350 9.65358i −0.452070 0.783009i
\(153\) −9.27113 −0.749526
\(154\) 4.16130 0.335327
\(155\) 0 0
\(156\) −2.08713 −0.167104
\(157\) 2.66095 0.212367 0.106184 0.994347i \(-0.466137\pi\)
0.106184 + 0.994347i \(0.466137\pi\)
\(158\) −6.88230 11.9205i −0.547527 0.948344i
\(159\) 5.03623 0.399399
\(160\) 0.00547716 0.00948672i 0.000433008 0.000749991i
\(161\) 0.192240 + 0.332969i 0.0151506 + 0.0262416i
\(162\) −1.57459 2.72727i −0.123712 0.214275i
\(163\) −16.9049 −1.32410 −0.662048 0.749461i \(-0.730312\pi\)
−0.662048 + 0.749461i \(0.730312\pi\)
\(164\) −0.539773 + 0.934915i −0.0421492 + 0.0730046i
\(165\) 0.0178691 0.0309502i 0.00139111 0.00240947i
\(166\) −1.32142 + 2.28876i −0.102562 + 0.177642i
\(167\) 7.74128 + 13.4083i 0.599039 + 1.03757i 0.992963 + 0.118422i \(0.0377837\pi\)
−0.393925 + 0.919143i \(0.628883\pi\)
\(168\) −1.46449 + 2.53656i −0.112987 + 0.195700i
\(169\) −13.4064 23.2205i −1.03126 1.78619i
\(170\) −0.0601624 −0.00461425
\(171\) −5.51262 −0.421560
\(172\) 0.0939852 + 0.162787i 0.00716630 + 0.0124124i
\(173\) −3.45532 + 5.98479i −0.262703 + 0.455015i −0.966959 0.254931i \(-0.917947\pi\)
0.704256 + 0.709946i \(0.251281\pi\)
\(174\) 1.31638 + 2.28004i 0.0997948 + 0.172850i
\(175\) −1.98727 + 3.44206i −0.150224 + 0.260195i
\(176\) 6.74668 11.6856i 0.508551 0.880835i
\(177\) −8.45831 + 14.6502i −0.635766 + 1.10118i
\(178\) 1.47713 0.110716
\(179\) −7.24054 12.5410i −0.541184 0.937358i −0.998836 0.0482266i \(-0.984643\pi\)
0.457653 0.889131i \(-0.348690\pi\)
\(180\) −0.00143936 0.00249305i −0.000107284 0.000185821i
\(181\) 8.67667 15.0284i 0.644932 1.11706i −0.339385 0.940647i \(-0.610219\pi\)
0.984317 0.176408i \(-0.0564477\pi\)
\(182\) −6.60104 −0.489302
\(183\) −3.10079 5.37072i −0.229217 0.397015i
\(184\) 1.44366 0.106428
\(185\) 0.0545168 0.00400815
\(186\) 0 0
\(187\) 24.9830 1.82694
\(188\) −1.15362 −0.0841367
\(189\) 2.19619 + 3.80392i 0.159749 + 0.276694i
\(190\) −0.0357726 −0.00259522
\(191\) −7.45255 + 12.9082i −0.539248 + 0.934005i 0.459697 + 0.888076i \(0.347958\pi\)
−0.998945 + 0.0459289i \(0.985375\pi\)
\(192\) 5.41028 + 9.37088i 0.390453 + 0.676285i
\(193\) −5.13775 8.89885i −0.369824 0.640553i 0.619714 0.784828i \(-0.287249\pi\)
−0.989538 + 0.144274i \(0.953915\pi\)
\(194\) −9.57481 −0.687432
\(195\) −0.0283457 + 0.0490962i −0.00202988 + 0.00351585i
\(196\) −0.853178 + 1.47775i −0.0609413 + 0.105553i
\(197\) −7.30260 + 12.6485i −0.520289 + 0.901167i 0.479433 + 0.877579i \(0.340842\pi\)
−0.999722 + 0.0235882i \(0.992491\pi\)
\(198\) −3.86359 6.69193i −0.274573 0.475575i
\(199\) 5.29589 9.17274i 0.375415 0.650239i −0.614974 0.788548i \(-0.710833\pi\)
0.990389 + 0.138309i \(0.0441667\pi\)
\(200\) 7.46190 + 12.9244i 0.527636 + 0.913892i
\(201\) 17.9313 1.26477
\(202\) 8.46553 0.595633
\(203\) −0.644088 1.11559i −0.0452061 0.0782993i
\(204\) −1.03879 + 1.79923i −0.0727297 + 0.125971i
\(205\) 0.0146615 + 0.0253945i 0.00102401 + 0.00177363i
\(206\) −5.61662 + 9.72827i −0.391329 + 0.677801i
\(207\) 0.356973 0.618295i 0.0248113 0.0429745i
\(208\) −10.7022 + 18.5368i −0.742066 + 1.28530i
\(209\) 14.8549 1.02754
\(210\) 0.00469978 + 0.00814026i 0.000324316 + 0.000561732i
\(211\) −8.28017 14.3417i −0.570030 0.987322i −0.996562 0.0828491i \(-0.973598\pi\)
0.426532 0.904473i \(-0.359735\pi\)
\(212\) −0.546583 + 0.946709i −0.0375395 + 0.0650203i
\(213\) 11.6203 0.796212
\(214\) −8.89319 15.4035i −0.607926 1.05296i
\(215\) 0.00510572 0.000348207
\(216\) 16.4927 1.12219
\(217\) 0 0
\(218\) −13.4646 −0.911940
\(219\) −5.46027 −0.368971
\(220\) 0.00387867 + 0.00671805i 0.000261500 + 0.000452931i
\(221\) −39.6305 −2.66583
\(222\) −6.08460 + 10.5388i −0.408372 + 0.707321i
\(223\) 0.402597 + 0.697318i 0.0269599 + 0.0466959i 0.879191 0.476470i \(-0.158084\pi\)
−0.852231 + 0.523166i \(0.824751\pi\)
\(224\) −0.598206 1.03612i −0.0399693 0.0692289i
\(225\) 7.38039 0.492026
\(226\) −5.47774 + 9.48772i −0.364374 + 0.631114i
\(227\) −6.73730 + 11.6694i −0.447171 + 0.774522i −0.998201 0.0599633i \(-0.980902\pi\)
0.551030 + 0.834485i \(0.314235\pi\)
\(228\) −0.617664 + 1.06982i −0.0409058 + 0.0708509i
\(229\) −6.47476 11.2146i −0.427864 0.741082i 0.568819 0.822463i \(-0.307400\pi\)
−0.996683 + 0.0813805i \(0.974067\pi\)
\(230\) 0.00231648 0.00401225i 0.000152744 0.000264560i
\(231\) −1.95163 3.38033i −0.128408 0.222409i
\(232\) −4.83690 −0.317558
\(233\) 12.3559 0.809465 0.404732 0.914435i \(-0.367365\pi\)
0.404732 + 0.914435i \(0.367365\pi\)
\(234\) 6.12879 + 10.6154i 0.400652 + 0.693949i
\(235\) −0.0156676 + 0.0271371i −0.00102204 + 0.00177023i
\(236\) −1.83596 3.17998i −0.119511 0.206999i
\(237\) −6.45555 + 11.1813i −0.419333 + 0.726306i
\(238\) −3.28542 + 5.69051i −0.212962 + 0.368861i
\(239\) −7.96656 + 13.7985i −0.515314 + 0.892550i 0.484528 + 0.874776i \(0.338991\pi\)
−0.999842 + 0.0177745i \(0.994342\pi\)
\(240\) 0.0304789 0.00196741
\(241\) 10.2609 + 17.7723i 0.660961 + 1.14482i 0.980364 + 0.197199i \(0.0631844\pi\)
−0.319403 + 0.947619i \(0.603482\pi\)
\(242\) 3.17287 + 5.49557i 0.203960 + 0.353269i
\(243\) 6.81142 11.7977i 0.436953 0.756825i
\(244\) 1.34612 0.0861762
\(245\) 0.0231743 + 0.0401391i 0.00148055 + 0.00256439i
\(246\) −6.54548 −0.417324
\(247\) −23.5643 −1.49936
\(248\) 0 0
\(249\) 2.47896 0.157097
\(250\) 0.0957865 0.00605807
\(251\) 2.11472 + 3.66280i 0.133480 + 0.231194i 0.925016 0.379929i \(-0.124052\pi\)
−0.791536 + 0.611123i \(0.790718\pi\)
\(252\) −0.314409 −0.0198059
\(253\) −0.961940 + 1.66613i −0.0604767 + 0.104749i
\(254\) 7.40051 + 12.8181i 0.464349 + 0.804276i
\(255\) 0.0282159 + 0.0488714i 0.00176695 + 0.00306045i
\(256\) −6.31029 −0.394393
\(257\) −9.27384 + 16.0628i −0.578486 + 1.00197i 0.417167 + 0.908830i \(0.363023\pi\)
−0.995653 + 0.0931375i \(0.970310\pi\)
\(258\) −0.569848 + 0.987006i −0.0354772 + 0.0614483i
\(259\) 2.97711 5.15651i 0.184989 0.320410i
\(260\) −0.00615272 0.0106568i −0.000381575 0.000660908i
\(261\) −1.19602 + 2.07156i −0.0740316 + 0.128227i
\(262\) 0.424813 + 0.735798i 0.0262451 + 0.0454578i
\(263\) −14.4865 −0.893278 −0.446639 0.894714i \(-0.647379\pi\)
−0.446639 + 0.894714i \(0.647379\pi\)
\(264\) −14.6561 −0.902024
\(265\) 0.0148465 + 0.0257149i 0.000912013 + 0.00157965i
\(266\) −1.95351 + 3.38358i −0.119777 + 0.207461i
\(267\) −0.692768 1.19991i −0.0423967 0.0734333i
\(268\) −1.94608 + 3.37071i −0.118876 + 0.205899i
\(269\) 7.52060 13.0261i 0.458539 0.794212i −0.540345 0.841443i \(-0.681706\pi\)
0.998884 + 0.0472309i \(0.0150397\pi\)
\(270\) 0.0264640 0.0458369i 0.00161055 0.00278955i
\(271\) −22.9151 −1.39199 −0.695996 0.718046i \(-0.745037\pi\)
−0.695996 + 0.718046i \(0.745037\pi\)
\(272\) 10.6532 + 18.4520i 0.645948 + 1.11881i
\(273\) 3.09586 + 5.36219i 0.187370 + 0.324535i
\(274\) 1.89775 3.28699i 0.114647 0.198575i
\(275\) −19.8881 −1.19929
\(276\) −0.0799943 0.138554i −0.00481509 0.00833999i
\(277\) −14.4506 −0.868255 −0.434127 0.900851i \(-0.642943\pi\)
−0.434127 + 0.900851i \(0.642943\pi\)
\(278\) −4.44679 −0.266701
\(279\) 0 0
\(280\) −0.0172688 −0.00103201
\(281\) −5.81764 −0.347051 −0.173526 0.984829i \(-0.555516\pi\)
−0.173526 + 0.984829i \(0.555516\pi\)
\(282\) −3.49731 6.05752i −0.208262 0.360720i
\(283\) 2.58301 0.153544 0.0767721 0.997049i \(-0.475539\pi\)
0.0767721 + 0.997049i \(0.475539\pi\)
\(284\) −1.26116 + 2.18439i −0.0748358 + 0.129619i
\(285\) 0.0167772 + 0.0290590i 0.000993797 + 0.00172131i
\(286\) −16.5153 28.6054i −0.976573 1.69147i
\(287\) 3.20261 0.189044
\(288\) −1.11082 + 1.92399i −0.0654555 + 0.113372i
\(289\) −11.2245 + 19.4415i −0.660267 + 1.14362i
\(290\) −0.00776122 + 0.0134428i −0.000455755 + 0.000789390i
\(291\) 4.49055 + 7.77786i 0.263241 + 0.455946i
\(292\) 0.592603 1.02642i 0.0346795 0.0600666i
\(293\) −9.22516 15.9785i −0.538940 0.933471i −0.998961 0.0455634i \(-0.985492\pi\)
0.460022 0.887908i \(-0.347842\pi\)
\(294\) −10.3459 −0.603386
\(295\) −0.0997382 −0.00580698
\(296\) −11.1786 19.3619i −0.649743 1.12539i
\(297\) −10.9894 + 19.0343i −0.637671 + 1.10448i
\(298\) −7.74504 13.4148i −0.448658 0.777098i
\(299\) 1.52592 2.64297i 0.0882463 0.152847i
\(300\) 0.826939 1.43230i 0.0477434 0.0826939i
\(301\) 0.278819 0.482929i 0.0160709 0.0278355i
\(302\) 23.5163 1.35321
\(303\) −3.97030 6.87677i −0.228088 0.395060i
\(304\) 6.33443 + 10.9716i 0.363304 + 0.629262i
\(305\) 0.0182818 0.0316651i 0.00104682 0.00181314i
\(306\) 12.2015 0.697512
\(307\) −0.822872 1.42526i −0.0469638 0.0813437i 0.841588 0.540120i \(-0.181621\pi\)
−0.888552 + 0.458776i \(0.848288\pi\)
\(308\) 0.847243 0.0482762
\(309\) 10.5367 0.599412
\(310\) 0 0
\(311\) −19.2427 −1.09115 −0.545576 0.838061i \(-0.683689\pi\)
−0.545576 + 0.838061i \(0.683689\pi\)
\(312\) 23.2490 1.31621
\(313\) 7.70151 + 13.3394i 0.435315 + 0.753987i 0.997321 0.0731454i \(-0.0233037\pi\)
−0.562006 + 0.827133i \(0.689970\pi\)
\(314\) −3.50201 −0.197630
\(315\) −0.00427005 + 0.00739594i −0.000240590 + 0.000416714i
\(316\) −1.40124 2.42702i −0.0788260 0.136531i
\(317\) 14.4629 + 25.0505i 0.812319 + 1.40698i 0.911237 + 0.411882i \(0.135128\pi\)
−0.0989183 + 0.995096i \(0.531538\pi\)
\(318\) −6.62805 −0.371683
\(319\) 3.22293 5.58227i 0.180449 0.312547i
\(320\) −0.0318983 + 0.0552495i −0.00178317 + 0.00308854i
\(321\) −8.34174 + 14.4483i −0.465591 + 0.806426i
\(322\) −0.253001 0.438211i −0.0140992 0.0244206i
\(323\) −11.7282 + 20.3139i −0.652576 + 1.13029i
\(324\) −0.320588 0.555274i −0.0178104 0.0308486i
\(325\) 31.5483 1.74999
\(326\) 22.2481 1.23221
\(327\) 6.31486 + 10.9377i 0.349213 + 0.604854i
\(328\) 6.01265 10.4142i 0.331993 0.575029i
\(329\) 1.71119 + 2.96386i 0.0943407 + 0.163403i
\(330\) −0.0235170 + 0.0407327i −0.00129457 + 0.00224226i
\(331\) −0.923554 + 1.59964i −0.0507631 + 0.0879243i −0.890290 0.455393i \(-0.849499\pi\)
0.839527 + 0.543318i \(0.182832\pi\)
\(332\) −0.269041 + 0.465993i −0.0147656 + 0.0255747i
\(333\) −11.0565 −0.605892
\(334\) −10.1881 17.6463i −0.557468 0.965562i
\(335\) 0.0528602 + 0.0915565i 0.00288806 + 0.00500227i
\(336\) 1.66443 2.88287i 0.0908019 0.157274i
\(337\) 18.4735 1.00632 0.503158 0.864194i \(-0.332171\pi\)
0.503158 + 0.864194i \(0.332171\pi\)
\(338\) 17.6437 + 30.5598i 0.959693 + 1.66224i
\(339\) 10.2762 0.558124
\(340\) −0.0122491 −0.000664301
\(341\) 0 0
\(342\) 7.25501 0.392306
\(343\) 10.6265 0.573779
\(344\) −1.04692 1.81332i −0.0564462 0.0977677i
\(345\) −0.00434567 −0.000233963
\(346\) 4.54745 7.87642i 0.244473 0.423439i
\(347\) −6.06471 10.5044i −0.325571 0.563905i 0.656057 0.754712i \(-0.272223\pi\)
−0.981628 + 0.190806i \(0.938890\pi\)
\(348\) 0.268017 + 0.464218i 0.0143672 + 0.0248847i
\(349\) 1.08075 0.0578512 0.0289256 0.999582i \(-0.490791\pi\)
0.0289256 + 0.999582i \(0.490791\pi\)
\(350\) 2.61539 4.53000i 0.139799 0.242138i
\(351\) 17.4325 30.1939i 0.930477 1.61163i
\(352\) 2.99334 5.18461i 0.159545 0.276341i
\(353\) 9.18678 + 15.9120i 0.488963 + 0.846909i 0.999919 0.0126980i \(-0.00404202\pi\)
−0.510957 + 0.859607i \(0.670709\pi\)
\(354\) 11.1318 19.2808i 0.591646 1.02476i
\(355\) 0.0342560 + 0.0593331i 0.00181812 + 0.00314907i
\(356\) 0.300745 0.0159394
\(357\) 6.16339 0.326201
\(358\) 9.52908 + 16.5049i 0.503628 + 0.872308i
\(359\) 13.8469 23.9835i 0.730810 1.26580i −0.225728 0.974190i \(-0.572476\pi\)
0.956538 0.291609i \(-0.0941906\pi\)
\(360\) 0.0160334 + 0.0277706i 0.000845033 + 0.00146364i
\(361\) 2.52639 4.37583i 0.132968 0.230307i
\(362\) −11.4191 + 19.7785i −0.600176 + 1.03954i
\(363\) 2.97613 5.15480i 0.156206 0.270557i
\(364\) −1.34398 −0.0704436
\(365\) −0.0160965 0.0278800i −0.000842530 0.00145931i
\(366\) 4.08086 + 7.06826i 0.213310 + 0.369464i
\(367\) −2.76280 + 4.78532i −0.144217 + 0.249791i −0.929081 0.369877i \(-0.879400\pi\)
0.784863 + 0.619669i \(0.212733\pi\)
\(368\) −1.64076 −0.0855304
\(369\) −2.97349 5.15023i −0.154794 0.268111i
\(370\) −0.0717481 −0.00373000
\(371\) 3.24301 0.168369
\(372\) 0 0
\(373\) 5.64476 0.292274 0.146137 0.989264i \(-0.453316\pi\)
0.146137 + 0.989264i \(0.453316\pi\)
\(374\) −32.8795 −1.70016
\(375\) −0.0449235 0.0778098i −0.00231984 0.00401808i
\(376\) 12.8505 0.662712
\(377\) −5.11251 + 8.85513i −0.263308 + 0.456062i
\(378\) −2.89035 5.00623i −0.148663 0.257493i
\(379\) 5.58627 + 9.67570i 0.286947 + 0.497007i 0.973080 0.230469i \(-0.0740262\pi\)
−0.686132 + 0.727477i \(0.740693\pi\)
\(380\) −0.00728333 −0.000373627
\(381\) 6.94162 12.0232i 0.355630 0.615969i
\(382\) 9.80810 16.9881i 0.501826 0.869188i
\(383\) 9.26025 16.0392i 0.473177 0.819566i −0.526352 0.850267i \(-0.676440\pi\)
0.999529 + 0.0307005i \(0.00977382\pi\)
\(384\) −5.26236 9.11467i −0.268543 0.465131i
\(385\) 0.0115066 0.0199300i 0.000586429 0.00101572i
\(386\) 6.76166 + 11.7115i 0.344159 + 0.596101i
\(387\) −1.03549 −0.0526367
\(388\) −1.94944 −0.0989678
\(389\) −11.7929 20.4260i −0.597926 1.03564i −0.993127 0.117043i \(-0.962658\pi\)
0.395201 0.918595i \(-0.370675\pi\)
\(390\) 0.0373050 0.0646141i 0.00188901 0.00327186i
\(391\) −1.51894 2.63088i −0.0768159 0.133049i
\(392\) 9.50373 16.4609i 0.480011 0.831403i
\(393\) 0.398472 0.690173i 0.0201002 0.0348146i
\(394\) 9.61075 16.6463i 0.484183 0.838629i
\(395\) −0.0761221 −0.00383012
\(396\) −0.786629 1.36248i −0.0395296 0.0684673i
\(397\) −5.45457 9.44759i −0.273757 0.474161i 0.696064 0.717980i \(-0.254933\pi\)
−0.969821 + 0.243819i \(0.921600\pi\)
\(398\) −6.96977 + 12.0720i −0.349363 + 0.605114i
\(399\) 3.66476 0.183467
\(400\) −8.48065 14.6889i −0.424032 0.734446i
\(401\) 10.6709 0.532879 0.266440 0.963852i \(-0.414153\pi\)
0.266440 + 0.963852i \(0.414153\pi\)
\(402\) −23.5988 −1.17700
\(403\) 0 0
\(404\) 1.72359 0.0857517
\(405\) −0.0174159 −0.000865401
\(406\) 0.847667 + 1.46820i 0.0420690 + 0.0728657i
\(407\) 29.7941 1.47684
\(408\) 11.5713 20.0420i 0.572864 0.992229i
\(409\) −4.71296 8.16309i −0.233041 0.403639i 0.725661 0.688053i \(-0.241534\pi\)
−0.958702 + 0.284414i \(0.908201\pi\)
\(410\) −0.0192956 0.0334210i −0.000952944 0.00165055i
\(411\) −3.56014 −0.175609
\(412\) −1.14355 + 1.98068i −0.0563386 + 0.0975813i
\(413\) −5.44662 + 9.43381i −0.268010 + 0.464208i
\(414\) −0.469802 + 0.813721i −0.0230895 + 0.0399922i
\(415\) 0.00730780 + 0.0126575i 0.000358726 + 0.000621331i
\(416\) −4.74831 + 8.22432i −0.232805 + 0.403231i
\(417\) 2.08553 + 3.61224i 0.102129 + 0.176892i
\(418\) −19.5502 −0.956230
\(419\) −29.2065 −1.42683 −0.713416 0.700740i \(-0.752853\pi\)
−0.713416 + 0.700740i \(0.752853\pi\)
\(420\) 0.000956879 0.00165736i 4.66909e−5 8.08711e-5i
\(421\) −0.298328 + 0.516719i −0.0145396 + 0.0251833i −0.873204 0.487355i \(-0.837962\pi\)
0.858664 + 0.512539i \(0.171295\pi\)
\(422\) 10.8973 + 18.8747i 0.530472 + 0.918805i
\(423\) 3.17753 5.50364i 0.154497 0.267596i
\(424\) 6.08851 10.5456i 0.295684 0.512140i
\(425\) 15.7020 27.1966i 0.761657 1.31923i
\(426\) −15.2932 −0.740958
\(427\) −1.99671 3.45840i −0.0966276 0.167364i
\(428\) −1.81066 3.13615i −0.0875215 0.151592i
\(429\) −15.4913 + 26.8317i −0.747925 + 1.29544i
\(430\) −0.00671950 −0.000324043
\(431\) 12.0022 + 20.7885i 0.578127 + 1.00134i 0.995694 + 0.0926988i \(0.0295494\pi\)
−0.417568 + 0.908646i \(0.637117\pi\)
\(432\) −18.7444 −0.901841
\(433\) 12.5443 0.602840 0.301420 0.953492i \(-0.402539\pi\)
0.301420 + 0.953492i \(0.402539\pi\)
\(434\) 0 0
\(435\) 0.0145599 0.000698096
\(436\) −2.74141 −0.131290
\(437\) −0.903161 1.56432i −0.0432040 0.0748316i
\(438\) 7.18611 0.343366
\(439\) 19.5586 33.8765i 0.933482 1.61684i 0.156163 0.987731i \(-0.450088\pi\)
0.777319 0.629106i \(-0.216579\pi\)
\(440\) −0.0432054 0.0748339i −0.00205974 0.00356757i
\(441\) −4.69996 8.14057i −0.223808 0.387646i
\(442\) 52.1566 2.48084
\(443\) 3.74603 6.48832i 0.177979 0.308270i −0.763209 0.646152i \(-0.776377\pi\)
0.941188 + 0.337882i \(0.109711\pi\)
\(444\) −1.23883 + 2.14572i −0.0587923 + 0.101831i
\(445\) 0.00408447 0.00707451i 0.000193622 0.000335364i
\(446\) −0.529846 0.917721i −0.0250890 0.0434553i
\(447\) −7.26478 + 12.5830i −0.343613 + 0.595154i
\(448\) 3.48388 + 6.03425i 0.164598 + 0.285092i
\(449\) −17.5141 −0.826541 −0.413271 0.910608i \(-0.635614\pi\)
−0.413271 + 0.910608i \(0.635614\pi\)
\(450\) −9.71313 −0.457881
\(451\) 8.01271 + 13.8784i 0.377304 + 0.653509i
\(452\) −1.11527 + 1.93171i −0.0524580 + 0.0908598i
\(453\) −11.0291 19.1029i −0.518190 0.897531i
\(454\) 8.86678 15.3577i 0.416139 0.720773i
\(455\) −0.0182528 + 0.0316148i −0.000855705 + 0.00148212i
\(456\) 6.88029 11.9170i 0.322199 0.558065i
\(457\) 4.89406 0.228934 0.114467 0.993427i \(-0.463484\pi\)
0.114467 + 0.993427i \(0.463484\pi\)
\(458\) 8.52125 + 14.7592i 0.398172 + 0.689654i
\(459\) −17.3527 30.0557i −0.809954 1.40288i
\(460\) 0.000471636 0 0.000816898i 2.19902e−5 0 3.80881e-5i
\(461\) −20.2773 −0.944406 −0.472203 0.881490i \(-0.656541\pi\)
−0.472203 + 0.881490i \(0.656541\pi\)
\(462\) 2.56849 + 4.44875i 0.119497 + 0.206975i
\(463\) 22.9558 1.06685 0.533423 0.845848i \(-0.320905\pi\)
0.533423 + 0.845848i \(0.320905\pi\)
\(464\) 5.49727 0.255204
\(465\) 0 0
\(466\) −16.2613 −0.753291
\(467\) 27.2874 1.26271 0.631355 0.775494i \(-0.282499\pi\)
0.631355 + 0.775494i \(0.282499\pi\)
\(468\) 1.24783 + 2.16130i 0.0576808 + 0.0999060i
\(469\) 11.5466 0.533172
\(470\) 0.0206197 0.0357143i 0.000951115 0.00164738i
\(471\) 1.64243 + 2.84477i 0.0756791 + 0.131080i
\(472\) 20.4512 + 35.4225i 0.941342 + 1.63045i
\(473\) 2.79034 0.128300
\(474\) 8.49597 14.7154i 0.390233 0.675903i
\(475\) 9.33640 16.1711i 0.428383 0.741982i
\(476\) −0.668913 + 1.15859i −0.0306596 + 0.0531039i
\(477\) −3.01100 5.21521i −0.137864 0.238788i
\(478\) 10.4846 18.1598i 0.479553 0.830611i
\(479\) 17.1961 + 29.7845i 0.785708 + 1.36089i 0.928575 + 0.371145i \(0.121035\pi\)
−0.142867 + 0.989742i \(0.545632\pi\)
\(480\) 0.0135227 0.000617226
\(481\) −47.2622 −2.15497
\(482\) −13.5040 23.3897i −0.615093 1.06537i
\(483\) −0.237313 + 0.411039i −0.0107981 + 0.0187029i
\(484\) 0.645998 + 1.11890i 0.0293636 + 0.0508592i
\(485\) −0.0264757 + 0.0458573i −0.00120220 + 0.00208227i
\(486\) −8.96433 + 15.5267i −0.406630 + 0.704304i
\(487\) 13.6539 23.6492i 0.618717 1.07165i −0.371003 0.928632i \(-0.620986\pi\)
0.989720 0.143018i \(-0.0456807\pi\)
\(488\) −14.9947 −0.678777
\(489\) −10.4343 18.0727i −0.471854 0.817276i
\(490\) −0.0304991 0.0528260i −0.00137781 0.00238644i
\(491\) −17.7513 + 30.7461i −0.801103 + 1.38755i 0.117787 + 0.993039i \(0.462420\pi\)
−0.918891 + 0.394512i \(0.870913\pi\)
\(492\) −1.33266 −0.0600811
\(493\) 5.08911 + 8.81460i 0.229202 + 0.396990i
\(494\) 31.0123 1.39531
\(495\) −0.0427334 −0.00192073
\(496\) 0 0
\(497\) 7.48275 0.335647
\(498\) −3.26248 −0.146195
\(499\) −5.60388 9.70620i −0.250864 0.434509i 0.712900 0.701266i \(-0.247381\pi\)
−0.963764 + 0.266756i \(0.914048\pi\)
\(500\) 0.0195022 0.000872165
\(501\) −9.55635 + 16.5521i −0.426946 + 0.739493i
\(502\) −2.78312 4.82051i −0.124217 0.215150i
\(503\) 0.849673 + 1.47168i 0.0378851 + 0.0656188i 0.884346 0.466832i \(-0.154605\pi\)
−0.846461 + 0.532450i \(0.821271\pi\)
\(504\) 3.50227 0.156004
\(505\) 0.0234084 0.0405445i 0.00104166 0.00180421i
\(506\) 1.26598 2.19275i 0.0562798 0.0974795i
\(507\) 16.5497 28.6649i 0.734997 1.27305i
\(508\) 1.50675 + 2.60977i 0.0668512 + 0.115790i
\(509\) 20.7540 35.9470i 0.919905 1.59332i 0.120348 0.992732i \(-0.461599\pi\)
0.799557 0.600590i \(-0.205068\pi\)
\(510\) −0.0371342 0.0643184i −0.00164433 0.00284806i
\(511\) −3.51607 −0.155542
\(512\) 25.3562 1.12060
\(513\) −10.3179 17.8712i −0.455547 0.789031i
\(514\) 12.2050 21.1398i 0.538341 0.932434i
\(515\) 0.0310615 + 0.0538001i 0.00136873 + 0.00237071i
\(516\) −0.116021 + 0.200955i −0.00510756 + 0.00884656i
\(517\) −8.56253 + 14.8307i −0.376580 + 0.652255i
\(518\) −3.91810 + 6.78634i −0.172151 + 0.298175i
\(519\) −8.53095 −0.374467
\(520\) 0.0685365 + 0.118709i 0.00300552 + 0.00520572i
\(521\) 16.2836 + 28.2041i 0.713399 + 1.23564i 0.963574 + 0.267443i \(0.0861787\pi\)
−0.250175 + 0.968201i \(0.580488\pi\)
\(522\) 1.57405 2.72633i 0.0688941 0.119328i
\(523\) 14.5341 0.635533 0.317766 0.948169i \(-0.397067\pi\)
0.317766 + 0.948169i \(0.397067\pi\)
\(524\) 0.0864923 + 0.149809i 0.00377843 + 0.00654444i
\(525\) −4.90644 −0.214135
\(526\) 19.0653 0.831288
\(527\) 0 0
\(528\) 16.6571 0.724907
\(529\) −22.7661 −0.989829
\(530\) −0.0195391 0.0338426i −0.000848723 0.00147003i
\(531\) 20.2278 0.877812
\(532\) −0.397736 + 0.688899i −0.0172440 + 0.0298676i
\(533\) −12.7105 22.0153i −0.550554 0.953587i
\(534\) 0.911733 + 1.57917i 0.0394546 + 0.0683373i
\(535\) −0.0983636 −0.00425263
\(536\) 21.6778 37.5471i 0.936339 1.62179i
\(537\) 8.93820 15.4814i 0.385712 0.668073i
\(538\) −9.89765 + 17.1432i −0.426718 + 0.739097i
\(539\) 12.6651 + 21.9365i 0.545523 + 0.944873i
\(540\) 0.00538808 0.00933243i 0.000231866 0.000401604i
\(541\) 4.19908 + 7.27302i 0.180532 + 0.312691i 0.942062 0.335439i \(-0.108885\pi\)
−0.761530 + 0.648130i \(0.775551\pi\)
\(542\) 30.1579 1.29539
\(543\) 21.4221 0.919311
\(544\) 4.72658 + 8.18668i 0.202650 + 0.351001i
\(545\) −0.0372316 + 0.0644870i −0.00159483 + 0.00276232i
\(546\) −4.07438 7.05704i −0.174367 0.302013i
\(547\) −6.24636 + 10.8190i −0.267075 + 0.462588i −0.968105 0.250544i \(-0.919391\pi\)
0.701030 + 0.713132i \(0.252724\pi\)
\(548\) 0.386383 0.669234i 0.0165054 0.0285883i
\(549\) −3.70772 + 6.42196i −0.158242 + 0.274083i
\(550\) 26.1741 1.11607
\(551\) 3.02599 + 5.24117i 0.128911 + 0.223281i
\(552\) 0.891075 + 1.54339i 0.0379267 + 0.0656909i
\(553\) −4.15696 + 7.20007i −0.176772 + 0.306178i
\(554\) 19.0181 0.808001
\(555\) 0.0336496 + 0.0582828i 0.00142834 + 0.00247397i
\(556\) −0.905370 −0.0383962
\(557\) −16.8308 −0.713144 −0.356572 0.934268i \(-0.616054\pi\)
−0.356572 + 0.934268i \(0.616054\pi\)
\(558\) 0 0
\(559\) −4.42630 −0.187213
\(560\) 0.0196265 0.000829370
\(561\) 15.4204 + 26.7088i 0.651048 + 1.12765i
\(562\) 7.65644 0.322967
\(563\) 8.36744 14.4928i 0.352645 0.610800i −0.634067 0.773278i \(-0.718616\pi\)
0.986712 + 0.162479i \(0.0519488\pi\)
\(564\) −0.712055 1.23331i −0.0299829 0.0519319i
\(565\) 0.0302934 + 0.0524698i 0.00127445 + 0.00220742i
\(566\) −3.39943 −0.142889
\(567\) −0.951065 + 1.64729i −0.0399410 + 0.0691798i
\(568\) 14.0483 24.3323i 0.589453 1.02096i
\(569\) −2.66914 + 4.62308i −0.111896 + 0.193810i −0.916535 0.399955i \(-0.869026\pi\)
0.804639 + 0.593765i \(0.202359\pi\)
\(570\) −0.0220800 0.0382437i −0.000924831 0.00160185i
\(571\) −18.0003 + 31.1775i −0.753290 + 1.30474i 0.192930 + 0.981212i \(0.438201\pi\)
−0.946220 + 0.323524i \(0.895132\pi\)
\(572\) −3.36254 5.82408i −0.140595 0.243517i
\(573\) −18.3998 −0.768665
\(574\) −4.21487 −0.175925
\(575\) 1.20917 + 2.09434i 0.0504258 + 0.0873400i
\(576\) 6.46926 11.2051i 0.269553 0.466879i
\(577\) −1.14463 1.98255i −0.0476514 0.0825347i 0.841216 0.540699i \(-0.181840\pi\)
−0.888867 + 0.458165i \(0.848507\pi\)
\(578\) 14.7723 25.5864i 0.614447 1.06425i
\(579\) 6.34238 10.9853i 0.263580 0.456535i
\(580\) −0.00158019 + 0.00273697i −6.56139e−5 + 0.000113647i
\(581\) 1.59629 0.0662252
\(582\) −5.90989 10.2362i −0.244973 0.424305i
\(583\) 8.11379 + 14.0535i 0.336039 + 0.582036i
\(584\) −6.60114 + 11.4335i −0.273157 + 0.473122i
\(585\) 0.0677879 0.00280268
\(586\) 12.1410 + 21.0288i 0.501539 + 0.868692i
\(587\) 2.09767 0.0865799 0.0432900 0.999063i \(-0.486216\pi\)
0.0432900 + 0.999063i \(0.486216\pi\)
\(588\) −2.10644 −0.0868680
\(589\) 0 0
\(590\) 0.131263 0.00540400
\(591\) −18.0296 −0.741640
\(592\) 12.7048 + 22.0053i 0.522163 + 0.904413i
\(593\) −6.64085 −0.272707 −0.136354 0.990660i \(-0.543538\pi\)
−0.136354 + 0.990660i \(0.543538\pi\)
\(594\) 14.4629 25.0505i 0.593419 1.02783i
\(595\) 0.0181693 + 0.0314701i 0.000744867 + 0.00129015i
\(596\) −1.57689 2.73126i −0.0645921 0.111877i
\(597\) 13.0752 0.535132
\(598\) −2.00822 + 3.47834i −0.0821223 + 0.142240i
\(599\) −15.3614 + 26.6067i −0.627650 + 1.08712i 0.360372 + 0.932809i \(0.382650\pi\)
−0.988022 + 0.154313i \(0.950683\pi\)
\(600\) −9.21146 + 15.9547i −0.376056 + 0.651348i
\(601\) −8.48015 14.6881i −0.345913 0.599138i 0.639607 0.768702i \(-0.279097\pi\)
−0.985519 + 0.169564i \(0.945764\pi\)
\(602\) −0.366946 + 0.635569i −0.0149556 + 0.0259039i
\(603\) −10.7205 18.5685i −0.436573 0.756167i
\(604\) 4.78793 0.194818
\(605\) 0.0350937 0.00142676
\(606\) 5.22521 + 9.05032i 0.212259 + 0.367644i
\(607\) −8.95830 + 15.5162i −0.363606 + 0.629785i −0.988551 0.150884i \(-0.951788\pi\)
0.624945 + 0.780669i \(0.285121\pi\)
\(608\) 2.81043 + 4.86780i 0.113978 + 0.197416i
\(609\) 0.795105 1.37716i 0.0322193 0.0558054i
\(610\) −0.0240602 + 0.0416735i −0.000974170 + 0.00168731i
\(611\) 13.5827 23.5259i 0.549497 0.951757i
\(612\) 2.48423 0.100419
\(613\) 8.82723 + 15.2892i 0.356529 + 0.617525i 0.987378 0.158379i \(-0.0506269\pi\)
−0.630850 + 0.775905i \(0.717294\pi\)
\(614\) 1.08296 + 1.87574i 0.0437047 + 0.0756987i
\(615\) −0.0180992 + 0.0313487i −0.000729828 + 0.00126410i
\(616\) −9.43763 −0.380253
\(617\) −10.1711 17.6169i −0.409474 0.709230i 0.585356 0.810776i \(-0.300955\pi\)
−0.994831 + 0.101546i \(0.967621\pi\)
\(618\) −13.8671 −0.557815
\(619\) 16.4294 0.660354 0.330177 0.943919i \(-0.392892\pi\)
0.330177 + 0.943919i \(0.392892\pi\)
\(620\) 0 0
\(621\) 2.67257 0.107247
\(622\) 25.3247 1.01543
\(623\) −0.446099 0.772665i −0.0178726 0.0309562i
\(624\) −26.4231 −1.05777
\(625\) −12.4996 + 21.6499i −0.499984 + 0.865998i
\(626\) −10.1357 17.5556i −0.405106 0.701664i
\(627\) 9.16896 + 15.8811i 0.366173 + 0.634230i
\(628\) −0.713012 −0.0284523
\(629\) −23.5230 + 40.7430i −0.937922 + 1.62453i
\(630\) 0.00561970 0.00973360i 0.000223894 0.000387796i
\(631\) −5.20796 + 9.02045i −0.207326 + 0.359098i −0.950871 0.309587i \(-0.899809\pi\)
0.743546 + 0.668685i \(0.233143\pi\)
\(632\) 15.6087 + 27.0351i 0.620882 + 1.07540i
\(633\) 10.2216 17.7043i 0.406272 0.703683i
\(634\) −19.0343 32.9683i −0.755947 1.30934i
\(635\) 0.0818538 0.00324827
\(636\) −1.34948 −0.0535102
\(637\) −20.0905 34.7978i −0.796015 1.37874i
\(638\) −4.24160 + 7.34667i −0.167927 + 0.290858i
\(639\) −6.94742 12.0333i −0.274836 0.476029i
\(640\) 0.0310262 0.0537389i 0.00122642 0.00212422i
\(641\) 11.4068 19.7572i 0.450543 0.780364i −0.547877 0.836559i \(-0.684564\pi\)
0.998420 + 0.0561954i \(0.0178970\pi\)
\(642\) 10.9783 19.0150i 0.433280 0.750464i
\(643\) −23.9877 −0.945982 −0.472991 0.881067i \(-0.656826\pi\)
−0.472991 + 0.881067i \(0.656826\pi\)
\(644\) −0.0515113 0.0892201i −0.00202983 0.00351577i
\(645\) 0.00315142 + 0.00545842i 0.000124087 + 0.000214925i
\(646\) 15.4352 26.7345i 0.607290 1.05186i
\(647\) 19.6935 0.774232 0.387116 0.922031i \(-0.373471\pi\)
0.387116 + 0.922031i \(0.373471\pi\)
\(648\) 3.57110 + 6.18532i 0.140286 + 0.242982i
\(649\) −54.5082 −2.13963
\(650\) −41.5199 −1.62854
\(651\) 0 0
\(652\) 4.52973 0.177398
\(653\) −4.96806 −0.194415 −0.0972076 0.995264i \(-0.530991\pi\)
−0.0972076 + 0.995264i \(0.530991\pi\)
\(654\) −8.31081 14.3947i −0.324978 0.562879i
\(655\) 0.00469867 0.000183592
\(656\) −6.83354 + 11.8360i −0.266805 + 0.462120i
\(657\) 3.26452 + 5.65431i 0.127361 + 0.220596i
\(658\) −2.25204 3.90065i −0.0877938 0.152063i
\(659\) 1.54371 0.0601343 0.0300671 0.999548i \(-0.490428\pi\)
0.0300671 + 0.999548i \(0.490428\pi\)
\(660\) −0.00478809 + 0.00829321i −0.000186376 + 0.000322813i
\(661\) −8.01834 + 13.8882i −0.311877 + 0.540187i −0.978769 0.204968i \(-0.934291\pi\)
0.666892 + 0.745155i \(0.267624\pi\)
\(662\) 1.21546 2.10525i 0.0472403 0.0818227i
\(663\) −24.4612 42.3681i −0.949996 1.64544i
\(664\) 2.99691 5.19080i 0.116303 0.201442i
\(665\) 0.0108035 + 0.0187121i 0.000418940 + 0.000725626i
\(666\) 14.5511 0.563846
\(667\) −0.783799 −0.0303488
\(668\) −2.07430 3.59280i −0.0802572 0.139009i
\(669\) −0.496992 + 0.860815i −0.0192148 + 0.0332810i
\(670\) −0.0695678 0.120495i −0.00268764 0.00465513i
\(671\) 9.99125 17.3054i 0.385708 0.668066i
\(672\) 0.738465 1.27906i 0.0284869 0.0493407i
\(673\) −20.0365 + 34.7043i −0.772351 + 1.33775i 0.163920 + 0.986474i \(0.447586\pi\)
−0.936271 + 0.351278i \(0.885747\pi\)
\(674\) −24.3125 −0.936482
\(675\) 13.8138 + 23.9262i 0.531694 + 0.920921i
\(676\) 3.59228 + 6.22201i 0.138164 + 0.239308i
\(677\) 18.2734 31.6504i 0.702303 1.21642i −0.265354 0.964151i \(-0.585489\pi\)
0.967656 0.252273i \(-0.0811779\pi\)
\(678\) −13.5242 −0.519392
\(679\) 2.89163 + 5.00845i 0.110971 + 0.192207i
\(680\) 0.136446 0.00523245
\(681\) −16.6339 −0.637414
\(682\) 0 0
\(683\) −37.5447 −1.43661 −0.718303 0.695730i \(-0.755081\pi\)
−0.718303 + 0.695730i \(0.755081\pi\)
\(684\) 1.47712 0.0564793
\(685\) −0.0104951 0.0181780i −0.000400996 0.000694545i
\(686\) −13.9853 −0.533961
\(687\) 7.99287 13.8441i 0.304947 0.528183i
\(688\) 1.18985 + 2.06089i 0.0453628 + 0.0785706i
\(689\) −12.8709 22.2930i −0.490341 0.849295i
\(690\) 0.00571922 0.000217727
\(691\) −0.929630 + 1.61017i −0.0353648 + 0.0612536i −0.883166 0.469060i \(-0.844593\pi\)
0.847801 + 0.530314i \(0.177926\pi\)
\(692\) 0.925864 1.60364i 0.0351961 0.0609614i
\(693\) −2.33364 + 4.04197i −0.0886475 + 0.153542i
\(694\) 7.98160 + 13.8245i 0.302978 + 0.524772i
\(695\) −0.0122960 + 0.0212973i −0.000466414 + 0.000807853i
\(696\) −2.98550 5.17103i −0.113165 0.196007i
\(697\) −25.3047 −0.958483
\(698\) −1.42234 −0.0538365
\(699\) 7.62649 + 13.2095i 0.288461 + 0.499628i
\(700\) 0.532496 0.922310i 0.0201265 0.0348601i
\(701\) −21.5960 37.4054i −0.815670 1.41278i −0.908846 0.417133i \(-0.863035\pi\)
0.0931754 0.995650i \(-0.470298\pi\)
\(702\) −22.9424 + 39.7374i −0.865905 + 1.49979i
\(703\) −13.9868 + 24.2258i −0.527521 + 0.913693i
\(704\) −17.4328 + 30.1945i −0.657024 + 1.13800i
\(705\) −0.0386822 −0.00145686
\(706\) −12.0905 20.9413i −0.455031 0.788136i
\(707\) −2.55662 4.42820i −0.0961517 0.166540i
\(708\) 2.26643 3.92558i 0.0851778 0.147532i
\(709\) 48.5108 1.82186 0.910930 0.412561i \(-0.135366\pi\)
0.910930 + 0.412561i \(0.135366\pi\)
\(710\) −0.0450834 0.0780867i −0.00169195 0.00293054i
\(711\) 15.4382 0.578980
\(712\) −3.35006 −0.125549
\(713\) 0 0
\(714\) −8.11147 −0.303564
\(715\) −0.182669 −0.00683143
\(716\) 1.94013 + 3.36040i 0.0725060 + 0.125584i
\(717\) −19.6689 −0.734549
\(718\) −18.2235 + 31.5640i −0.680094 + 1.17796i
\(719\) 13.3329 + 23.0932i 0.497233 + 0.861233i 0.999995 0.00319224i \(-0.00101612\pi\)
−0.502762 + 0.864425i \(0.667683\pi\)
\(720\) −0.0182224 0.0315620i −0.000679107 0.00117625i
\(721\) 6.78496 0.252685
\(722\) −3.32491 + 5.75891i −0.123740 + 0.214324i
\(723\) −12.6667 + 21.9394i −0.471079 + 0.815933i
\(724\) −2.32494 + 4.02692i −0.0864058 + 0.149659i
\(725\) −4.05125 7.01697i −0.150460 0.260604i
\(726\) −3.91680 + 6.78409i −0.145366 + 0.251781i
\(727\) 18.3835 + 31.8412i 0.681807 + 1.18092i 0.974429 + 0.224696i \(0.0721390\pi\)
−0.292622 + 0.956228i \(0.594528\pi\)
\(728\) 14.9709 0.554857
\(729\) 23.9955 0.888723
\(730\) 0.0211842 + 0.0366921i 0.000784062 + 0.00135803i
\(731\) −2.20302 + 3.81575i −0.0814817 + 0.141130i
\(732\) 0.830867 + 1.43910i 0.0307097 + 0.0531908i
\(733\) −24.7944 + 42.9452i −0.915803 + 1.58622i −0.110082 + 0.993923i \(0.535111\pi\)
−0.805721 + 0.592295i \(0.798222\pi\)
\(734\) 3.63605 6.29782i 0.134209 0.232457i
\(735\) −0.0286079 + 0.0495504i −0.00105522 + 0.00182769i
\(736\) −0.727964 −0.0268331
\(737\) 28.8887 + 50.0368i 1.06413 + 1.84313i
\(738\) 3.91333 + 6.77808i 0.144052 + 0.249505i
\(739\) −15.4840 + 26.8190i −0.569587 + 0.986554i 0.427020 + 0.904242i \(0.359564\pi\)
−0.996607 + 0.0823114i \(0.973770\pi\)
\(740\) −0.0146080 −0.000536999
\(741\) −14.5447 25.1921i −0.534312 0.925455i
\(742\) −4.26804 −0.156685
\(743\) 45.6267 1.67388 0.836940 0.547294i \(-0.184342\pi\)
0.836940 + 0.547294i \(0.184342\pi\)
\(744\) 0 0
\(745\) −0.0856644 −0.00313850
\(746\) −7.42891 −0.271992
\(747\) −1.48209 2.56705i −0.0542267 0.0939234i
\(748\) −6.69429 −0.244767
\(749\) −5.37155 + 9.30380i −0.196272 + 0.339953i
\(750\) 0.0591226 + 0.102403i 0.00215885 + 0.00373924i
\(751\) −14.2947 24.7592i −0.521621 0.903475i −0.999684 0.0251487i \(-0.991994\pi\)
0.478062 0.878326i \(-0.341339\pi\)
\(752\) −14.6049 −0.532586
\(753\) −2.61055 + 4.52160i −0.0951337 + 0.164776i
\(754\) 6.72844 11.6540i 0.245035 0.424413i
\(755\) 0.0650258 0.112628i 0.00236653 0.00409896i
\(756\) −0.588477 1.01927i −0.0214027 0.0370706i
\(757\) 3.95708 6.85387i 0.143823 0.249108i −0.785110 0.619356i \(-0.787394\pi\)
0.928933 + 0.370248i \(0.120727\pi\)
\(758\) −7.35193 12.7339i −0.267034 0.462517i
\(759\) −2.37496 −0.0862057
\(760\) 0.0811306 0.00294292
\(761\) 11.4353 + 19.8065i 0.414528 + 0.717984i 0.995379 0.0960263i \(-0.0306133\pi\)
−0.580851 + 0.814010i \(0.697280\pi\)
\(762\) −9.13567 + 15.8235i −0.330951 + 0.573223i
\(763\) 4.06637 + 7.04316i 0.147212 + 0.254979i
\(764\) 1.99694 3.45880i 0.0722466 0.125135i
\(765\) 0.0337388 0.0584373i 0.00121983 0.00211280i
\(766\) −12.1872 + 21.1088i −0.440340 + 0.762692i
\(767\) 86.4660 3.12211
\(768\) −3.89492 6.74620i −0.140546 0.243432i
\(769\) 11.6069 + 20.1037i 0.418555 + 0.724959i 0.995794 0.0916164i \(-0.0292034\pi\)
−0.577239 + 0.816575i \(0.695870\pi\)
\(770\) −0.0151435 + 0.0262293i −0.000545733 + 0.000945237i
\(771\) −22.8965 −0.824596
\(772\) 1.37668 + 2.38448i 0.0495477 + 0.0858192i
\(773\) 22.3694 0.804572 0.402286 0.915514i \(-0.368216\pi\)
0.402286 + 0.915514i \(0.368216\pi\)
\(774\) 1.36277 0.0489839
\(775\) 0 0
\(776\) 21.7152 0.779531
\(777\) 7.35029 0.263690
\(778\) 15.5204 + 26.8821i 0.556432 + 0.963769i
\(779\) −15.0462 −0.539085
\(780\) 0.00759532 0.0131555i 0.000271956 0.000471042i
\(781\) 18.7213 + 32.4263i 0.669901 + 1.16030i
\(782\) 1.99903 + 3.46242i 0.0714852 + 0.123816i
\(783\) −8.95430 −0.320001
\(784\) −10.8012 + 18.7083i −0.385759 + 0.668154i
\(785\) −0.00968355 + 0.0167724i −0.000345621 + 0.000598632i
\(786\) −0.524418 + 0.908318i −0.0187054 + 0.0323986i
\(787\) 5.73159 + 9.92740i 0.204309 + 0.353874i 0.949912 0.312516i \(-0.101172\pi\)
−0.745603 + 0.666390i \(0.767839\pi\)
\(788\) 1.95676 3.38920i 0.0697066 0.120735i
\(789\) −8.94157 15.4873i −0.318328 0.551361i
\(790\) 0.100182 0.00356432
\(791\) 6.61719 0.235280
\(792\) 8.76244 + 15.1770i 0.311360 + 0.539291i
\(793\) −15.8491 + 27.4514i −0.562817 + 0.974828i
\(794\) 7.17861 + 12.4337i 0.254759 + 0.441256i
\(795\) −0.0183275 + 0.0317441i −0.000650009 + 0.00112585i
\(796\) −1.41905 + 2.45787i −0.0502969 + 0.0871168i
\(797\) −17.6951 + 30.6489i −0.626794 + 1.08564i 0.361397 + 0.932412i \(0.382300\pi\)
−0.988191 + 0.153227i \(0.951033\pi\)
\(798\) −4.82308 −0.170735
\(799\) −13.5205 23.4182i −0.478322 0.828478i
\(800\) −3.76265 6.51710i −0.133030 0.230414i
\(801\) −0.828367 + 1.43477i −0.0292689 + 0.0506953i
\(802\) −14.0437 −0.495900
\(803\) −8.79695 15.2368i −0.310437 0.537693i
\(804\) −4.80474 −0.169450
\(805\) −0.00279834 −9.86284e−5
\(806\) 0 0
\(807\) 18.5678 0.653619
\(808\) −19.1994 −0.675434
\(809\) 5.43003 + 9.40509i 0.190910 + 0.330665i 0.945552 0.325471i \(-0.105523\pi\)
−0.754642 + 0.656137i \(0.772190\pi\)
\(810\) 0.0229205 0.000805345
\(811\) −20.6303 + 35.7328i −0.724429 + 1.25475i 0.234779 + 0.972049i \(0.424563\pi\)
−0.959209 + 0.282699i \(0.908770\pi\)
\(812\) 0.172586 + 0.298927i 0.00605657 + 0.0104903i
\(813\) −14.1439 24.4980i −0.496050 0.859183i
\(814\) −39.2112 −1.37435
\(815\) 0.0615191 0.106554i 0.00215492 0.00373243i
\(816\) −13.1511 + 22.7783i −0.460380 + 0.797401i
\(817\) −1.30992 + 2.26884i −0.0458282 + 0.0793768i
\(818\) 6.20260 + 10.7432i 0.216869 + 0.375628i
\(819\) 3.70183 6.41176i 0.129353 0.224045i
\(820\) −0.00392861 0.00680454i −0.000137193 0.000237625i
\(821\) 5.91019 0.206267 0.103134 0.994668i \(-0.467113\pi\)
0.103134 + 0.994668i \(0.467113\pi\)
\(822\) 4.68541 0.163422
\(823\) −5.55396 9.61975i −0.193599 0.335323i 0.752841 0.658202i \(-0.228683\pi\)
−0.946440 + 0.322879i \(0.895349\pi\)
\(824\) 12.7382 22.0633i 0.443757 0.768610i
\(825\) −12.2756 21.2619i −0.427380 0.740244i
\(826\) 7.16814 12.4156i 0.249412 0.431993i
\(827\) 2.74241 4.74999i 0.0953629 0.165173i −0.814397 0.580308i \(-0.802932\pi\)
0.909760 + 0.415135i \(0.136266\pi\)
\(828\) −0.0956520 + 0.165674i −0.00332414 + 0.00575758i
\(829\) −37.1412 −1.28997 −0.644983 0.764197i \(-0.723136\pi\)
−0.644983 + 0.764197i \(0.723136\pi\)
\(830\) −0.00961759 0.0166582i −0.000333832 0.000578213i
\(831\) −8.91941 15.4489i −0.309411 0.535915i
\(832\) 27.6536 47.8974i 0.958716 1.66054i
\(833\) −39.9971 −1.38582
\(834\) −2.74471 4.75397i −0.0950414 0.164617i
\(835\) −0.112686 −0.00389966
\(836\) −3.98043 −0.137666
\(837\) 0 0
\(838\) 38.4379 1.32782
\(839\) 36.2002 1.24977 0.624886 0.780716i \(-0.285146\pi\)
0.624886 + 0.780716i \(0.285146\pi\)
\(840\) −0.0106589 0.0184617i −0.000367767 0.000636990i
\(841\) −26.3739 −0.909446
\(842\) 0.392621 0.680040i 0.0135306 0.0234357i
\(843\) −3.59084 6.21952i −0.123675 0.214212i
\(844\) 2.21870 + 3.84290i 0.0763708 + 0.132278i
\(845\) 0.195150 0.00671335
\(846\) −4.18185 + 7.24318i −0.143775 + 0.249026i
\(847\) 1.91644 3.31936i 0.0658495 0.114055i
\(848\) −6.91975 + 11.9854i −0.237625 + 0.411579i
\(849\) 1.59432 + 2.76145i 0.0547170 + 0.0947726i
\(850\) −20.6649 + 35.7927i −0.708801 + 1.22768i
\(851\) −1.81144 3.13751i −0.0620954 0.107552i
\(852\) −3.11371 −0.106674
\(853\) −11.1741 −0.382593 −0.191296 0.981532i \(-0.561269\pi\)
−0.191296 + 0.981532i \(0.561269\pi\)
\(854\) 2.62782 + 4.55151i 0.0899220 + 0.155749i
\(855\) 0.0200611 0.0347469i 0.000686075 0.00118832i
\(856\) 20.1693 + 34.9343i 0.689374 + 1.19403i
\(857\) −27.4330 + 47.5154i −0.937095 + 1.62310i −0.166240 + 0.986085i \(0.553163\pi\)
−0.770855 + 0.637011i \(0.780171\pi\)
\(858\) 20.3876 35.3124i 0.696022 1.20555i
\(859\) −9.95544 + 17.2433i −0.339675 + 0.588335i −0.984372 0.176104i \(-0.943650\pi\)
0.644696 + 0.764439i \(0.276984\pi\)
\(860\) −0.00136810 −4.66517e−5
\(861\) 1.97676 + 3.42384i 0.0673677 + 0.116684i
\(862\) −15.7958 27.3591i −0.538007 0.931855i
\(863\) 5.58861 9.67975i 0.190238 0.329503i −0.755091 0.655620i \(-0.772407\pi\)
0.945329 + 0.326118i \(0.105741\pi\)
\(864\) −8.31643 −0.282931
\(865\) −0.0251487 0.0435588i −0.000855081 0.00148104i
\(866\) −16.5092 −0.561005
\(867\) −27.7126 −0.941170
\(868\) 0 0
\(869\) −41.6017 −1.41124
\(870\) −0.0191619 −0.000649650
\(871\) −45.8261 79.3731i −1.55276 2.68945i
\(872\) 30.5372 1.03412
\(873\) 5.36951 9.30026i 0.181730 0.314766i
\(874\) 1.18862 + 2.05876i 0.0402058 + 0.0696386i
\(875\) −0.0289279 0.0501046i −0.000977941 0.00169384i
\(876\) 1.46310 0.0494335
\(877\) 13.7743 23.8577i 0.465124 0.805618i −0.534083 0.845432i \(-0.679343\pi\)
0.999207 + 0.0398136i \(0.0126764\pi\)
\(878\) −25.7406 + 44.5839i −0.868702 + 1.50464i
\(879\) 11.3881 19.7249i 0.384113 0.665303i
\(880\) 0.0491041 + 0.0850507i 0.00165530 + 0.00286706i
\(881\) 7.13122 12.3516i 0.240257 0.416137i −0.720530 0.693423i \(-0.756102\pi\)
0.960787 + 0.277286i \(0.0894350\pi\)
\(882\) 6.18549 + 10.7136i 0.208276 + 0.360745i
\(883\) 18.6749 0.628459 0.314229 0.949347i \(-0.398254\pi\)
0.314229 + 0.949347i \(0.398254\pi\)
\(884\) 10.6191 0.357160
\(885\) −0.0615617 0.106628i −0.00206937 0.00358426i
\(886\) −4.93005 + 8.53910i −0.165628 + 0.286877i
\(887\) 17.3692 + 30.0844i 0.583202 + 1.01014i 0.995097 + 0.0989042i \(0.0315337\pi\)
−0.411895 + 0.911231i \(0.635133\pi\)
\(888\) 13.7996 23.9016i 0.463084 0.802085i
\(889\) 4.46996 7.74220i 0.149918 0.259665i
\(890\) −0.00537546 + 0.00931057i −0.000180186 + 0.000312091i
\(891\) −9.51798 −0.318864
\(892\) −0.107877 0.186849i −0.00361199 0.00625615i
\(893\) −8.03931 13.9245i −0.269025 0.465966i
\(894\) 9.56098 16.5601i 0.319767 0.553853i
\(895\) 0.105397 0.00352303
\(896\) −3.38862 5.86927i −0.113206 0.196078i
\(897\) 3.76739 0.125790
\(898\) 23.0498 0.769183
\(899\) 0 0
\(900\) −1.97760 −0.0659200
\(901\) −25.6239 −0.853656
\(902\) −10.5453 18.2650i −0.351120 0.608158i
\(903\) 0.688385 0.0229080
\(904\) 12.4233 21.5177i 0.413191 0.715668i
\(905\) 0.0631510 + 0.109381i 0.00209921 + 0.00363594i
\(906\) 14.5150 + 25.1408i 0.482230 + 0.835246i
\(907\) −6.36985 −0.211507 −0.105754 0.994392i \(-0.533725\pi\)
−0.105754 + 0.994392i \(0.533725\pi\)
\(908\) 1.80528 3.12684i 0.0599104 0.103768i
\(909\) −4.74743 + 8.22279i −0.157462 + 0.272733i
\(910\) 0.0240220 0.0416074i 0.000796322 0.00137927i
\(911\) −27.1710 47.0615i −0.900214 1.55922i −0.827216 0.561885i \(-0.810076\pi\)
−0.0729986 0.997332i \(-0.523257\pi\)
\(912\) −7.81964 + 13.5440i −0.258934 + 0.448487i
\(913\) 3.99380 + 6.91747i 0.132176 + 0.228935i
\(914\) −6.44093 −0.213047
\(915\) 0.0451366 0.00149217
\(916\) 1.73493 + 3.00499i 0.0573238 + 0.0992877i
\(917\) 0.256590 0.444428i 0.00847336 0.0146763i
\(918\) 22.8374 + 39.5555i 0.753746 + 1.30553i
\(919\) 22.3484 38.7085i 0.737204 1.27688i −0.216545 0.976273i \(-0.569479\pi\)
0.953749 0.300603i \(-0.0971878\pi\)
\(920\) −0.00525366 + 0.00909961i −0.000173208 + 0.000300005i
\(921\) 1.01581 1.75943i 0.0334720 0.0579752i
\(922\) 26.6863 0.878868
\(923\) −29.6975 51.4376i −0.977506 1.69309i
\(924\) 0.522946 + 0.905770i 0.0172037 + 0.0297976i
\(925\) 18.7257 32.4339i 0.615698 1.06642i
\(926\) −30.2115 −0.992812
\(927\) −6.29955 10.9111i −0.206904 0.358369i
\(928\) 2.43900 0.0800641
\(929\) 15.4573 0.507139 0.253569 0.967317i \(-0.418395\pi\)
0.253569 + 0.967317i \(0.418395\pi\)
\(930\) 0 0
\(931\) −23.7823 −0.779434
\(932\) −3.31082 −0.108449
\(933\) −11.8772 20.5719i −0.388842 0.673495i
\(934\) −35.9122 −1.17508
\(935\) −0.0909164 + 0.157472i −0.00297328 + 0.00514988i
\(936\) −13.8998 24.0752i −0.454329 0.786922i
\(937\) 2.65896 + 4.60546i 0.0868645 + 0.150454i 0.906184 0.422883i \(-0.138982\pi\)
−0.819320 + 0.573337i \(0.805649\pi\)
\(938\) −15.1961 −0.496172
\(939\) −9.50725 + 16.4670i −0.310257 + 0.537381i
\(940\) 0.00419818 0.00727146i 0.000136930 0.000237169i
\(941\) −6.68942 + 11.5864i −0.218069 + 0.377706i −0.954217 0.299114i \(-0.903309\pi\)
0.736149 + 0.676820i \(0.236642\pi\)
\(942\) −2.16156 3.74392i −0.0704273 0.121984i
\(943\) 0.974324 1.68758i 0.0317284 0.0549551i
\(944\) −23.2433 40.2586i −0.756506 1.31031i
\(945\) −0.0319689 −0.00103995
\(946\) −3.67229 −0.119396
\(947\) 3.35884 + 5.81769i 0.109148 + 0.189049i 0.915425 0.402488i \(-0.131855\pi\)
−0.806278 + 0.591537i \(0.798521\pi\)
\(948\) 1.72978 2.99608i 0.0561808 0.0973080i
\(949\) 13.9546 + 24.1700i 0.452984 + 0.784591i
\(950\) −12.2874 + 21.2824i −0.398655 + 0.690491i
\(951\) −17.8540 + 30.9240i −0.578955 + 1.00278i
\(952\) 7.45117 12.9058i 0.241494 0.418279i
\(953\) 20.6118 0.667682 0.333841 0.942629i \(-0.391655\pi\)
0.333841 + 0.942629i \(0.391655\pi\)
\(954\) 3.96270 + 6.86359i 0.128297 + 0.222217i
\(955\) −0.0542416 0.0939491i −0.00175522 0.00304012i
\(956\) 2.13467 3.69735i 0.0690401 0.119581i
\(957\) 7.95718 0.257219
\(958\) −22.6313 39.1985i −0.731183 1.26645i
\(959\) −2.29251 −0.0740289
\(960\) −0.0787547 −0.00254180
\(961\) 0 0
\(962\) 62.2005 2.00543
\(963\) 19.9490 0.642848
\(964\) −2.74943 4.76216i −0.0885533 0.153379i
\(965\) 0.0747877 0.00240750
\(966\) 0.312322 0.540957i 0.0100488 0.0174050i
\(967\) 29.5645 + 51.2072i 0.950731 + 1.64671i 0.743849 + 0.668348i \(0.232998\pi\)
0.206881 + 0.978366i \(0.433669\pi\)
\(968\) −7.19592 12.4637i −0.231286 0.400598i
\(969\) −28.9562 −0.930207
\(970\) 0.0348439 0.0603515i 0.00111877 0.00193777i
\(971\) 22.8908 39.6481i 0.734602 1.27237i −0.220295 0.975433i \(-0.570702\pi\)
0.954898 0.296935i \(-0.0959645\pi\)
\(972\) −1.82514 + 3.16124i −0.0585415 + 0.101397i
\(973\) 1.34295 + 2.32605i 0.0430529 + 0.0745699i
\(974\) −17.9695 + 31.1241i −0.575781 + 0.997281i
\(975\) 19.4727 + 33.7276i 0.623624 + 1.08015i
\(976\) 17.0418 0.545496
\(977\) 7.43684 0.237926 0.118963 0.992899i \(-0.462043\pi\)
0.118963 + 0.992899i \(0.462043\pi\)
\(978\) 13.7323 + 23.7850i 0.439109 + 0.760560i
\(979\) 2.23221 3.86631i 0.0713419 0.123568i
\(980\) −0.00620964 0.0107554i −0.000198360 0.000343569i
\(981\) 7.55090 13.0785i 0.241082 0.417566i
\(982\) 23.3619 40.4641i 0.745510 1.29126i
\(983\) 13.6051 23.5646i 0.433934 0.751595i −0.563274 0.826270i \(-0.690459\pi\)
0.997208 + 0.0746748i \(0.0237919\pi\)
\(984\) 14.8448 0.473236
\(985\) −0.0531502 0.0920588i −0.00169350 0.00293324i
\(986\) −6.69764 11.6007i −0.213296 0.369440i
\(987\) −2.11240 + 3.65878i −0.0672384 + 0.116460i
\(988\) 6.31414 0.200879
\(989\) −0.169649 0.293841i −0.00539453 0.00934359i
\(990\) 0.0562403 0.00178743
\(991\) 17.2059 0.546563 0.273282 0.961934i \(-0.411891\pi\)
0.273282 + 0.961934i \(0.411891\pi\)
\(992\) 0 0
\(993\) −2.28019 −0.0723597
\(994\) −9.84785 −0.312355
\(995\) 0.0385448 + 0.0667615i 0.00122195 + 0.00211648i
\(996\) −0.664244 −0.0210474
\(997\) −14.7528 + 25.5527i −0.467227 + 0.809261i −0.999299 0.0374383i \(-0.988080\pi\)
0.532072 + 0.846699i \(0.321414\pi\)
\(998\) 7.37511 + 12.7741i 0.233455 + 0.404356i
\(999\) −20.6943 35.8437i −0.654740 1.13404i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.c.l.521.8 32
31.2 even 5 961.2.g.w.844.8 128
31.3 odd 30 961.2.d.s.628.8 64
31.4 even 5 961.2.g.w.338.10 128
31.5 even 3 inner 961.2.c.l.439.8 32
31.6 odd 6 961.2.a.l.1.8 yes 16
31.7 even 15 961.2.d.s.388.10 64
31.8 even 5 961.2.g.w.732.9 128
31.9 even 15 961.2.g.w.816.10 128
31.10 even 15 961.2.g.w.547.7 128
31.11 odd 30 961.2.g.w.235.10 128
31.12 odd 30 961.2.d.s.531.8 64
31.13 odd 30 961.2.g.w.846.7 128
31.14 even 15 961.2.d.s.374.10 64
31.15 odd 10 961.2.g.w.448.8 128
31.16 even 5 961.2.g.w.448.7 128
31.17 odd 30 961.2.d.s.374.9 64
31.18 even 15 961.2.g.w.846.8 128
31.19 even 15 961.2.d.s.531.7 64
31.20 even 15 961.2.g.w.235.9 128
31.21 odd 30 961.2.g.w.547.8 128
31.22 odd 30 961.2.g.w.816.9 128
31.23 odd 10 961.2.g.w.732.10 128
31.24 odd 30 961.2.d.s.388.9 64
31.25 even 3 961.2.a.l.1.7 16
31.26 odd 6 inner 961.2.c.l.439.7 32
31.27 odd 10 961.2.g.w.338.9 128
31.28 even 15 961.2.d.s.628.7 64
31.29 odd 10 961.2.g.w.844.7 128
31.30 odd 2 inner 961.2.c.l.521.7 32
93.56 odd 6 8649.2.a.bs.1.9 16
93.68 even 6 8649.2.a.bs.1.10 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
961.2.a.l.1.7 16 31.25 even 3
961.2.a.l.1.8 yes 16 31.6 odd 6
961.2.c.l.439.7 32 31.26 odd 6 inner
961.2.c.l.439.8 32 31.5 even 3 inner
961.2.c.l.521.7 32 31.30 odd 2 inner
961.2.c.l.521.8 32 1.1 even 1 trivial
961.2.d.s.374.9 64 31.17 odd 30
961.2.d.s.374.10 64 31.14 even 15
961.2.d.s.388.9 64 31.24 odd 30
961.2.d.s.388.10 64 31.7 even 15
961.2.d.s.531.7 64 31.19 even 15
961.2.d.s.531.8 64 31.12 odd 30
961.2.d.s.628.7 64 31.28 even 15
961.2.d.s.628.8 64 31.3 odd 30
961.2.g.w.235.9 128 31.20 even 15
961.2.g.w.235.10 128 31.11 odd 30
961.2.g.w.338.9 128 31.27 odd 10
961.2.g.w.338.10 128 31.4 even 5
961.2.g.w.448.7 128 31.16 even 5
961.2.g.w.448.8 128 31.15 odd 10
961.2.g.w.547.7 128 31.10 even 15
961.2.g.w.547.8 128 31.21 odd 30
961.2.g.w.732.9 128 31.8 even 5
961.2.g.w.732.10 128 31.23 odd 10
961.2.g.w.816.9 128 31.22 odd 30
961.2.g.w.816.10 128 31.9 even 15
961.2.g.w.844.7 128 31.29 odd 10
961.2.g.w.844.8 128 31.2 even 5
961.2.g.w.846.7 128 31.13 odd 30
961.2.g.w.846.8 128 31.18 even 15
8649.2.a.bs.1.9 16 93.56 odd 6
8649.2.a.bs.1.10 16 93.68 even 6