Properties

Label 961.2.d.e.531.1
Level $961$
Weight $2$
Character 961.531
Analytic conductor $7.674$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(374,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.374"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.d (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,2,-1,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 531.1
Root \(-0.309017 - 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 961.531
Dual form 961.2.d.e.628.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 1.53884i) q^{2} +(0.309017 - 0.951057i) q^{3} +(-0.500000 + 0.363271i) q^{4} -0.381966 q^{5} +1.61803 q^{6} +(-2.42705 + 1.76336i) q^{7} +(1.80902 + 1.31433i) q^{8} +(1.61803 + 1.17557i) q^{9} +(-0.190983 - 0.587785i) q^{10} +(-4.23607 + 3.07768i) q^{11} +(0.190983 + 0.587785i) q^{12} +(0.572949 - 1.76336i) q^{13} +(-3.92705 - 2.85317i) q^{14} +(-0.118034 + 0.363271i) q^{15} +(-1.50000 + 4.61653i) q^{16} +(-3.42705 - 2.48990i) q^{17} +(-1.00000 + 3.07768i) q^{18} +(1.54508 + 4.75528i) q^{19} +(0.190983 - 0.138757i) q^{20} +(0.927051 + 2.85317i) q^{21} +(-6.85410 - 4.97980i) q^{22} +(2.80902 + 2.04087i) q^{23} +(1.80902 - 1.31433i) q^{24} -4.85410 q^{25} +3.00000 q^{26} +(4.04508 - 2.93893i) q^{27} +(0.572949 - 1.76336i) q^{28} +(1.97214 + 6.06961i) q^{29} -0.618034 q^{30} -3.38197 q^{32} +(1.61803 + 4.97980i) q^{33} +(2.11803 - 6.51864i) q^{34} +(0.927051 - 0.673542i) q^{35} -1.23607 q^{36} +4.23607 q^{37} +(-6.54508 + 4.75528i) q^{38} +(-1.50000 - 1.08981i) q^{39} +(-0.690983 - 0.502029i) q^{40} +(-0.763932 - 2.35114i) q^{41} +(-3.92705 + 2.85317i) q^{42} +(0.736068 + 2.26538i) q^{43} +(1.00000 - 3.07768i) q^{44} +(-0.618034 - 0.449028i) q^{45} +(-1.73607 + 5.34307i) q^{46} +(-1.73607 + 5.34307i) q^{47} +(3.92705 + 2.85317i) q^{48} +(0.618034 - 1.90211i) q^{49} +(-2.42705 - 7.46969i) q^{50} +(-3.42705 + 2.48990i) q^{51} +(0.354102 + 1.08981i) q^{52} +(0.572949 + 0.416272i) q^{53} +(6.54508 + 4.75528i) q^{54} +(1.61803 - 1.17557i) q^{55} -6.70820 q^{56} +5.00000 q^{57} +(-8.35410 + 6.06961i) q^{58} +(0.163119 - 0.502029i) q^{59} +(-0.0729490 - 0.224514i) q^{60} -10.9443 q^{61} -6.00000 q^{63} +(1.30902 + 4.02874i) q^{64} +(-0.218847 + 0.673542i) q^{65} +(-6.85410 + 4.97980i) q^{66} +0.236068 q^{67} +2.61803 q^{68} +(2.80902 - 2.04087i) q^{69} +(1.50000 + 1.08981i) q^{70} +(8.97214 + 6.51864i) q^{71} +(1.38197 + 4.25325i) q^{72} +(9.35410 - 6.79615i) q^{73} +(2.11803 + 6.51864i) q^{74} +(-1.50000 + 4.61653i) q^{75} +(-2.50000 - 1.81636i) q^{76} +(4.85410 - 14.9394i) q^{77} +(0.927051 - 2.85317i) q^{78} +(0.572949 - 1.76336i) q^{80} +(0.309017 + 0.951057i) q^{81} +(3.23607 - 2.35114i) q^{82} +(-2.19098 - 6.74315i) q^{83} +(-1.50000 - 1.08981i) q^{84} +(1.30902 + 0.951057i) q^{85} +(-3.11803 + 2.26538i) q^{86} +6.38197 q^{87} -11.7082 q^{88} +(-6.97214 + 5.06555i) q^{89} +(0.381966 - 1.17557i) q^{90} +(1.71885 + 5.29007i) q^{91} -2.14590 q^{92} -9.09017 q^{94} +(-0.590170 - 1.81636i) q^{95} +(-1.04508 + 3.21644i) q^{96} +(15.1353 - 10.9964i) q^{97} +3.23607 q^{98} -10.4721 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - q^{3} - 2 q^{4} - 6 q^{5} + 2 q^{6} - 3 q^{7} + 5 q^{8} + 2 q^{9} - 3 q^{10} - 8 q^{11} + 3 q^{12} + 9 q^{13} - 9 q^{14} + 4 q^{15} - 6 q^{16} - 7 q^{17} - 4 q^{18} - 5 q^{19} + 3 q^{20}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 1.53884i 0.353553 + 1.08813i 0.956844 + 0.290604i \(0.0938561\pi\)
−0.603290 + 0.797522i \(0.706144\pi\)
\(3\) 0.309017 0.951057i 0.178411 0.549093i −0.821362 0.570408i \(-0.806785\pi\)
0.999773 + 0.0213149i \(0.00678525\pi\)
\(4\) −0.500000 + 0.363271i −0.250000 + 0.181636i
\(5\) −0.381966 −0.170820 −0.0854102 0.996346i \(-0.527220\pi\)
−0.0854102 + 0.996346i \(0.527220\pi\)
\(6\) 1.61803 0.660560
\(7\) −2.42705 + 1.76336i −0.917339 + 0.666486i −0.942860 0.333188i \(-0.891875\pi\)
0.0255212 + 0.999674i \(0.491875\pi\)
\(8\) 1.80902 + 1.31433i 0.639584 + 0.464685i
\(9\) 1.61803 + 1.17557i 0.539345 + 0.391857i
\(10\) −0.190983 0.587785i −0.0603941 0.185874i
\(11\) −4.23607 + 3.07768i −1.27722 + 0.927957i −0.999465 0.0326948i \(-0.989591\pi\)
−0.277757 + 0.960651i \(0.589591\pi\)
\(12\) 0.190983 + 0.587785i 0.0551320 + 0.169679i
\(13\) 0.572949 1.76336i 0.158907 0.489067i −0.839628 0.543161i \(-0.817227\pi\)
0.998536 + 0.0540944i \(0.0172272\pi\)
\(14\) −3.92705 2.85317i −1.04955 0.762542i
\(15\) −0.118034 + 0.363271i −0.0304762 + 0.0937962i
\(16\) −1.50000 + 4.61653i −0.375000 + 1.15413i
\(17\) −3.42705 2.48990i −0.831182 0.603889i 0.0887115 0.996057i \(-0.471725\pi\)
−0.919893 + 0.392168i \(0.871725\pi\)
\(18\) −1.00000 + 3.07768i −0.235702 + 0.725417i
\(19\) 1.54508 + 4.75528i 0.354467 + 1.09094i 0.956318 + 0.292328i \(0.0944300\pi\)
−0.601851 + 0.798608i \(0.705570\pi\)
\(20\) 0.190983 0.138757i 0.0427051 0.0310271i
\(21\) 0.927051 + 2.85317i 0.202299 + 0.622613i
\(22\) −6.85410 4.97980i −1.46130 1.06170i
\(23\) 2.80902 + 2.04087i 0.585721 + 0.425551i 0.840782 0.541374i \(-0.182096\pi\)
−0.255061 + 0.966925i \(0.582096\pi\)
\(24\) 1.80902 1.31433i 0.369264 0.268286i
\(25\) −4.85410 −0.970820
\(26\) 3.00000 0.588348
\(27\) 4.04508 2.93893i 0.778477 0.565597i
\(28\) 0.572949 1.76336i 0.108277 0.333243i
\(29\) 1.97214 + 6.06961i 0.366216 + 1.12710i 0.949216 + 0.314626i \(0.101879\pi\)
−0.582999 + 0.812473i \(0.698121\pi\)
\(30\) −0.618034 −0.112837
\(31\) 0 0
\(32\) −3.38197 −0.597853
\(33\) 1.61803 + 4.97980i 0.281664 + 0.866871i
\(34\) 2.11803 6.51864i 0.363240 1.11794i
\(35\) 0.927051 0.673542i 0.156700 0.113849i
\(36\) −1.23607 −0.206011
\(37\) 4.23607 0.696405 0.348203 0.937419i \(-0.386792\pi\)
0.348203 + 0.937419i \(0.386792\pi\)
\(38\) −6.54508 + 4.75528i −1.06175 + 0.771409i
\(39\) −1.50000 1.08981i −0.240192 0.174510i
\(40\) −0.690983 0.502029i −0.109254 0.0793777i
\(41\) −0.763932 2.35114i −0.119306 0.367187i 0.873515 0.486798i \(-0.161835\pi\)
−0.992821 + 0.119611i \(0.961835\pi\)
\(42\) −3.92705 + 2.85317i −0.605957 + 0.440254i
\(43\) 0.736068 + 2.26538i 0.112249 + 0.345468i 0.991363 0.131144i \(-0.0418649\pi\)
−0.879114 + 0.476611i \(0.841865\pi\)
\(44\) 1.00000 3.07768i 0.150756 0.463978i
\(45\) −0.618034 0.449028i −0.0921311 0.0669371i
\(46\) −1.73607 + 5.34307i −0.255969 + 0.787792i
\(47\) −1.73607 + 5.34307i −0.253232 + 0.779367i 0.740941 + 0.671570i \(0.234380\pi\)
−0.994173 + 0.107797i \(0.965620\pi\)
\(48\) 3.92705 + 2.85317i 0.566821 + 0.411820i
\(49\) 0.618034 1.90211i 0.0882906 0.271730i
\(50\) −2.42705 7.46969i −0.343237 1.05637i
\(51\) −3.42705 + 2.48990i −0.479883 + 0.348655i
\(52\) 0.354102 + 1.08981i 0.0491051 + 0.151130i
\(53\) 0.572949 + 0.416272i 0.0787006 + 0.0571793i 0.626440 0.779470i \(-0.284511\pi\)
−0.547739 + 0.836649i \(0.684511\pi\)
\(54\) 6.54508 + 4.75528i 0.890673 + 0.647112i
\(55\) 1.61803 1.17557i 0.218176 0.158514i
\(56\) −6.70820 −0.896421
\(57\) 5.00000 0.662266
\(58\) −8.35410 + 6.06961i −1.09695 + 0.796979i
\(59\) 0.163119 0.502029i 0.0212363 0.0653585i −0.939877 0.341514i \(-0.889060\pi\)
0.961113 + 0.276155i \(0.0890604\pi\)
\(60\) −0.0729490 0.224514i −0.00941768 0.0289846i
\(61\) −10.9443 −1.40127 −0.700635 0.713520i \(-0.747100\pi\)
−0.700635 + 0.713520i \(0.747100\pi\)
\(62\) 0 0
\(63\) −6.00000 −0.755929
\(64\) 1.30902 + 4.02874i 0.163627 + 0.503593i
\(65\) −0.218847 + 0.673542i −0.0271446 + 0.0835426i
\(66\) −6.85410 + 4.97980i −0.843682 + 0.612971i
\(67\) 0.236068 0.0288403 0.0144201 0.999896i \(-0.495410\pi\)
0.0144201 + 0.999896i \(0.495410\pi\)
\(68\) 2.61803 0.317483
\(69\) 2.80902 2.04087i 0.338166 0.245692i
\(70\) 1.50000 + 1.08981i 0.179284 + 0.130258i
\(71\) 8.97214 + 6.51864i 1.06480 + 0.773620i 0.974970 0.222337i \(-0.0713686\pi\)
0.0898268 + 0.995957i \(0.471369\pi\)
\(72\) 1.38197 + 4.25325i 0.162866 + 0.501251i
\(73\) 9.35410 6.79615i 1.09481 0.795430i 0.114609 0.993411i \(-0.463438\pi\)
0.980206 + 0.197981i \(0.0634385\pi\)
\(74\) 2.11803 + 6.51864i 0.246216 + 0.757776i
\(75\) −1.50000 + 4.61653i −0.173205 + 0.533070i
\(76\) −2.50000 1.81636i −0.286770 0.208350i
\(77\) 4.85410 14.9394i 0.553176 1.70250i
\(78\) 0.927051 2.85317i 0.104968 0.323058i
\(79\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(80\) 0.572949 1.76336i 0.0640576 0.197149i
\(81\) 0.309017 + 0.951057i 0.0343352 + 0.105673i
\(82\) 3.23607 2.35114i 0.357364 0.259640i
\(83\) −2.19098 6.74315i −0.240492 0.740157i −0.996345 0.0854166i \(-0.972778\pi\)
0.755854 0.654741i \(-0.227222\pi\)
\(84\) −1.50000 1.08981i −0.163663 0.118908i
\(85\) 1.30902 + 0.951057i 0.141983 + 0.103157i
\(86\) −3.11803 + 2.26538i −0.336226 + 0.244283i
\(87\) 6.38197 0.684219
\(88\) −11.7082 −1.24810
\(89\) −6.97214 + 5.06555i −0.739045 + 0.536948i −0.892412 0.451222i \(-0.850988\pi\)
0.153367 + 0.988169i \(0.450988\pi\)
\(90\) 0.381966 1.17557i 0.0402628 0.123916i
\(91\) 1.71885 + 5.29007i 0.180184 + 0.554550i
\(92\) −2.14590 −0.223725
\(93\) 0 0
\(94\) −9.09017 −0.937579
\(95\) −0.590170 1.81636i −0.0605502 0.186354i
\(96\) −1.04508 + 3.21644i −0.106664 + 0.328277i
\(97\) 15.1353 10.9964i 1.53675 1.11652i 0.584421 0.811451i \(-0.301322\pi\)
0.952331 0.305065i \(-0.0986782\pi\)
\(98\) 3.23607 0.326892
\(99\) −10.4721 −1.05249
\(100\) 2.42705 1.76336i 0.242705 0.176336i
\(101\) −7.47214 5.42882i −0.743505 0.540188i 0.150302 0.988640i \(-0.451976\pi\)
−0.893807 + 0.448452i \(0.851976\pi\)
\(102\) −5.54508 4.02874i −0.549045 0.398905i
\(103\) −2.11803 6.51864i −0.208696 0.642301i −0.999541 0.0302843i \(-0.990359\pi\)
0.790845 0.612016i \(-0.209641\pi\)
\(104\) 3.35410 2.43690i 0.328897 0.238957i
\(105\) −0.354102 1.08981i −0.0345568 0.106355i
\(106\) −0.354102 + 1.08981i −0.0343934 + 0.105852i
\(107\) 8.16312 + 5.93085i 0.789158 + 0.573357i 0.907714 0.419590i \(-0.137826\pi\)
−0.118555 + 0.992947i \(0.537826\pi\)
\(108\) −0.954915 + 2.93893i −0.0918867 + 0.282798i
\(109\) 5.69098 17.5150i 0.545097 1.67764i −0.175661 0.984451i \(-0.556206\pi\)
0.720758 0.693186i \(-0.243794\pi\)
\(110\) 2.61803 + 1.90211i 0.249620 + 0.181359i
\(111\) 1.30902 4.02874i 0.124246 0.382391i
\(112\) −4.50000 13.8496i −0.425210 1.30866i
\(113\) −3.92705 + 2.85317i −0.369426 + 0.268404i −0.756973 0.653446i \(-0.773323\pi\)
0.387547 + 0.921850i \(0.373323\pi\)
\(114\) 2.50000 + 7.69421i 0.234146 + 0.720629i
\(115\) −1.07295 0.779543i −0.100053 0.0726928i
\(116\) −3.19098 2.31838i −0.296275 0.215257i
\(117\) 3.00000 2.17963i 0.277350 0.201507i
\(118\) 0.854102 0.0786265
\(119\) 12.7082 1.16496
\(120\) −0.690983 + 0.502029i −0.0630778 + 0.0458287i
\(121\) 5.07295 15.6129i 0.461177 1.41936i
\(122\) −5.47214 16.8415i −0.495424 1.52476i
\(123\) −2.47214 −0.222905
\(124\) 0 0
\(125\) 3.76393 0.336656
\(126\) −3.00000 9.23305i −0.267261 0.822546i
\(127\) −1.78115 + 5.48183i −0.158052 + 0.486433i −0.998457 0.0555247i \(-0.982317\pi\)
0.840406 + 0.541958i \(0.182317\pi\)
\(128\) −11.0172 + 8.00448i −0.973794 + 0.707503i
\(129\) 2.38197 0.209720
\(130\) −1.14590 −0.100502
\(131\) 8.97214 6.51864i 0.783899 0.569536i −0.122248 0.992500i \(-0.539010\pi\)
0.906147 + 0.422964i \(0.139010\pi\)
\(132\) −2.61803 1.90211i −0.227871 0.165558i
\(133\) −12.1353 8.81678i −1.05226 0.764512i
\(134\) 0.118034 + 0.363271i 0.0101966 + 0.0313819i
\(135\) −1.54508 + 1.12257i −0.132980 + 0.0966154i
\(136\) −2.92705 9.00854i −0.250993 0.772476i
\(137\) −0.763932 + 2.35114i −0.0652671 + 0.200872i −0.978372 0.206853i \(-0.933678\pi\)
0.913105 + 0.407725i \(0.133678\pi\)
\(138\) 4.54508 + 3.30220i 0.386903 + 0.281102i
\(139\) 0.263932 0.812299i 0.0223864 0.0688983i −0.939239 0.343263i \(-0.888468\pi\)
0.961626 + 0.274365i \(0.0884677\pi\)
\(140\) −0.218847 + 0.673542i −0.0184960 + 0.0569247i
\(141\) 4.54508 + 3.30220i 0.382765 + 0.278095i
\(142\) −5.54508 + 17.0660i −0.465333 + 1.43215i
\(143\) 3.00000 + 9.23305i 0.250873 + 0.772106i
\(144\) −7.85410 + 5.70634i −0.654508 + 0.475528i
\(145\) −0.753289 2.31838i −0.0625572 0.192531i
\(146\) 15.1353 + 10.9964i 1.25260 + 0.910069i
\(147\) −1.61803 1.17557i −0.133453 0.0969594i
\(148\) −2.11803 + 1.53884i −0.174101 + 0.126492i
\(149\) 12.0344 0.985900 0.492950 0.870058i \(-0.335919\pi\)
0.492950 + 0.870058i \(0.335919\pi\)
\(150\) −7.85410 −0.641285
\(151\) 14.9721 10.8779i 1.21842 0.885230i 0.222448 0.974945i \(-0.428595\pi\)
0.995968 + 0.0897142i \(0.0285954\pi\)
\(152\) −3.45492 + 10.6331i −0.280231 + 0.862461i
\(153\) −2.61803 8.05748i −0.211656 0.651409i
\(154\) 25.4164 2.04811
\(155\) 0 0
\(156\) 1.14590 0.0917453
\(157\) −1.14590 3.52671i −0.0914526 0.281462i 0.894860 0.446346i \(-0.147275\pi\)
−0.986313 + 0.164884i \(0.947275\pi\)
\(158\) 0 0
\(159\) 0.572949 0.416272i 0.0454378 0.0330125i
\(160\) 1.29180 0.102125
\(161\) −10.4164 −0.820928
\(162\) −1.30902 + 0.951057i −0.102846 + 0.0747221i
\(163\) −0.572949 0.416272i −0.0448768 0.0326049i 0.565121 0.825008i \(-0.308830\pi\)
−0.609998 + 0.792403i \(0.708830\pi\)
\(164\) 1.23607 + 0.898056i 0.0965207 + 0.0701264i
\(165\) −0.618034 1.90211i −0.0481139 0.148079i
\(166\) 9.28115 6.74315i 0.720357 0.523370i
\(167\) 1.47214 + 4.53077i 0.113917 + 0.350601i 0.991720 0.128422i \(-0.0409911\pi\)
−0.877802 + 0.479023i \(0.840991\pi\)
\(168\) −2.07295 + 6.37988i −0.159931 + 0.492219i
\(169\) 7.73607 + 5.62058i 0.595082 + 0.432352i
\(170\) −0.809017 + 2.48990i −0.0620488 + 0.190966i
\(171\) −3.09017 + 9.51057i −0.236311 + 0.727291i
\(172\) −1.19098 0.865300i −0.0908116 0.0659785i
\(173\) 3.73607 11.4984i 0.284048 0.874210i −0.702634 0.711551i \(-0.747993\pi\)
0.986682 0.162659i \(-0.0520070\pi\)
\(174\) 3.19098 + 9.82084i 0.241908 + 0.744516i
\(175\) 11.7812 8.55951i 0.890571 0.647038i
\(176\) −7.85410 24.1724i −0.592025 1.82207i
\(177\) −0.427051 0.310271i −0.0320991 0.0233214i
\(178\) −11.2812 8.19624i −0.845558 0.614334i
\(179\) −3.88197 + 2.82041i −0.290152 + 0.210808i −0.723333 0.690499i \(-0.757391\pi\)
0.433181 + 0.901307i \(0.357391\pi\)
\(180\) 0.472136 0.0351909
\(181\) −17.0000 −1.26360 −0.631800 0.775131i \(-0.717684\pi\)
−0.631800 + 0.775131i \(0.717684\pi\)
\(182\) −7.28115 + 5.29007i −0.539715 + 0.392126i
\(183\) −3.38197 + 10.4086i −0.250002 + 0.769427i
\(184\) 2.39919 + 7.38394i 0.176870 + 0.544351i
\(185\) −1.61803 −0.118960
\(186\) 0 0
\(187\) 22.1803 1.62199
\(188\) −1.07295 3.30220i −0.0782528 0.240838i
\(189\) −4.63525 + 14.2658i −0.337165 + 1.03769i
\(190\) 2.50000 1.81636i 0.181369 0.131772i
\(191\) −4.90983 −0.355263 −0.177631 0.984097i \(-0.556843\pi\)
−0.177631 + 0.984097i \(0.556843\pi\)
\(192\) 4.23607 0.305712
\(193\) 3.73607 2.71441i 0.268928 0.195388i −0.445146 0.895458i \(-0.646848\pi\)
0.714074 + 0.700070i \(0.246848\pi\)
\(194\) 24.4894 + 17.7926i 1.75823 + 1.27743i
\(195\) 0.572949 + 0.416272i 0.0410297 + 0.0298098i
\(196\) 0.381966 + 1.17557i 0.0272833 + 0.0839693i
\(197\) −8.42705 + 6.12261i −0.600403 + 0.436218i −0.846022 0.533148i \(-0.821009\pi\)
0.245619 + 0.969366i \(0.421009\pi\)
\(198\) −5.23607 16.1150i −0.372111 1.14524i
\(199\) 4.10739 12.6412i 0.291165 0.896114i −0.693317 0.720632i \(-0.743852\pi\)
0.984483 0.175482i \(-0.0561484\pi\)
\(200\) −8.78115 6.37988i −0.620921 0.451126i
\(201\) 0.0729490 0.224514i 0.00514543 0.0158360i
\(202\) 4.61803 14.2128i 0.324924 1.00001i
\(203\) −15.4894 11.2537i −1.08714 0.789853i
\(204\) 0.809017 2.48990i 0.0566425 0.174328i
\(205\) 0.291796 + 0.898056i 0.0203799 + 0.0627229i
\(206\) 8.97214 6.51864i 0.625118 0.454175i
\(207\) 2.14590 + 6.60440i 0.149150 + 0.459037i
\(208\) 7.28115 + 5.29007i 0.504857 + 0.366800i
\(209\) −21.1803 15.3884i −1.46507 1.06444i
\(210\) 1.50000 1.08981i 0.103510 0.0752043i
\(211\) −8.00000 −0.550743 −0.275371 0.961338i \(-0.588801\pi\)
−0.275371 + 0.961338i \(0.588801\pi\)
\(212\) −0.437694 −0.0300610
\(213\) 8.97214 6.51864i 0.614761 0.446650i
\(214\) −5.04508 + 15.5272i −0.344875 + 1.06142i
\(215\) −0.281153 0.865300i −0.0191745 0.0590130i
\(216\) 11.1803 0.760726
\(217\) 0 0
\(218\) 29.7984 2.01820
\(219\) −3.57295 10.9964i −0.241438 0.743068i
\(220\) −0.381966 + 1.17557i −0.0257521 + 0.0792569i
\(221\) −6.35410 + 4.61653i −0.427423 + 0.310541i
\(222\) 6.85410 0.460017
\(223\) 12.7082 0.851004 0.425502 0.904957i \(-0.360097\pi\)
0.425502 + 0.904957i \(0.360097\pi\)
\(224\) 8.20820 5.96361i 0.548434 0.398460i
\(225\) −7.85410 5.70634i −0.523607 0.380423i
\(226\) −6.35410 4.61653i −0.422669 0.307087i
\(227\) 6.71885 + 20.6785i 0.445946 + 1.37248i 0.881443 + 0.472290i \(0.156572\pi\)
−0.435498 + 0.900190i \(0.643428\pi\)
\(228\) −2.50000 + 1.81636i −0.165567 + 0.120291i
\(229\) 0.854102 + 2.62866i 0.0564406 + 0.173706i 0.975303 0.220872i \(-0.0708905\pi\)
−0.918862 + 0.394579i \(0.870890\pi\)
\(230\) 0.663119 2.04087i 0.0437248 0.134571i
\(231\) −12.7082 9.23305i −0.836138 0.607490i
\(232\) −4.40983 + 13.5721i −0.289520 + 0.891049i
\(233\) −1.79180 + 5.51458i −0.117384 + 0.361272i −0.992437 0.122756i \(-0.960827\pi\)
0.875052 + 0.484028i \(0.160827\pi\)
\(234\) 4.85410 + 3.52671i 0.317323 + 0.230548i
\(235\) 0.663119 2.04087i 0.0432571 0.133132i
\(236\) 0.100813 + 0.310271i 0.00656237 + 0.0201969i
\(237\) 0 0
\(238\) 6.35410 + 19.5559i 0.411875 + 1.26762i
\(239\) 10.8541 + 7.88597i 0.702093 + 0.510101i 0.880613 0.473836i \(-0.157131\pi\)
−0.178520 + 0.983936i \(0.557131\pi\)
\(240\) −1.50000 1.08981i −0.0968246 0.0703472i
\(241\) −14.1353 + 10.2699i −0.910532 + 0.661540i −0.941149 0.337991i \(-0.890253\pi\)
0.0306175 + 0.999531i \(0.490253\pi\)
\(242\) 26.5623 1.70749
\(243\) 16.0000 1.02640
\(244\) 5.47214 3.97574i 0.350318 0.254521i
\(245\) −0.236068 + 0.726543i −0.0150818 + 0.0464171i
\(246\) −1.23607 3.80423i −0.0788088 0.242549i
\(247\) 9.27051 0.589868
\(248\) 0 0
\(249\) −7.09017 −0.449321
\(250\) 1.88197 + 5.79210i 0.119026 + 0.366324i
\(251\) 5.23607 16.1150i 0.330498 1.01717i −0.638400 0.769705i \(-0.720403\pi\)
0.968898 0.247462i \(-0.0795967\pi\)
\(252\) 3.00000 2.17963i 0.188982 0.137304i
\(253\) −18.1803 −1.14299
\(254\) −9.32624 −0.585180
\(255\) 1.30902 0.951057i 0.0819738 0.0595575i
\(256\) −10.9721 7.97172i −0.685758 0.498233i
\(257\) 20.5623 + 14.9394i 1.28264 + 0.931894i 0.999629 0.0272228i \(-0.00866637\pi\)
0.283012 + 0.959116i \(0.408666\pi\)
\(258\) 1.19098 + 3.66547i 0.0741474 + 0.228202i
\(259\) −10.2812 + 7.46969i −0.638840 + 0.464144i
\(260\) −0.135255 0.416272i −0.00838815 0.0258161i
\(261\) −3.94427 + 12.1392i −0.244144 + 0.751399i
\(262\) 14.5172 + 10.5474i 0.896877 + 0.651619i
\(263\) −4.26393 + 13.1230i −0.262925 + 0.809201i 0.729239 + 0.684259i \(0.239874\pi\)
−0.992164 + 0.124942i \(0.960126\pi\)
\(264\) −3.61803 + 11.1352i −0.222675 + 0.685322i
\(265\) −0.218847 0.159002i −0.0134437 0.00976740i
\(266\) 7.50000 23.0826i 0.459855 1.41529i
\(267\) 2.66312 + 8.19624i 0.162980 + 0.501602i
\(268\) −0.118034 + 0.0857567i −0.00721007 + 0.00523842i
\(269\) 1.11803 + 3.44095i 0.0681677 + 0.209799i 0.979338 0.202232i \(-0.0648196\pi\)
−0.911170 + 0.412031i \(0.864820\pi\)
\(270\) −2.50000 1.81636i −0.152145 0.110540i
\(271\) −8.54508 6.20837i −0.519077 0.377131i 0.297179 0.954822i \(-0.403954\pi\)
−0.816256 + 0.577690i \(0.803954\pi\)
\(272\) 16.6353 12.0862i 1.00866 0.732835i
\(273\) 5.56231 0.336646
\(274\) −4.00000 −0.241649
\(275\) 20.5623 14.9394i 1.23995 0.900879i
\(276\) −0.663119 + 2.04087i −0.0399151 + 0.122846i
\(277\) 0.718847 + 2.21238i 0.0431913 + 0.132929i 0.970327 0.241797i \(-0.0777368\pi\)
−0.927136 + 0.374726i \(0.877737\pi\)
\(278\) 1.38197 0.0828848
\(279\) 0 0
\(280\) 2.56231 0.153127
\(281\) −3.10081 9.54332i −0.184979 0.569307i 0.814969 0.579505i \(-0.196754\pi\)
−0.999948 + 0.0101977i \(0.996754\pi\)
\(282\) −2.80902 + 8.64527i −0.167275 + 0.514818i
\(283\) 10.9721 7.97172i 0.652226 0.473870i −0.211803 0.977312i \(-0.567933\pi\)
0.864029 + 0.503443i \(0.167933\pi\)
\(284\) −6.85410 −0.406716
\(285\) −1.90983 −0.113129
\(286\) −12.7082 + 9.23305i −0.751452 + 0.545962i
\(287\) 6.00000 + 4.35926i 0.354169 + 0.257319i
\(288\) −5.47214 3.97574i −0.322449 0.234273i
\(289\) 0.291796 + 0.898056i 0.0171645 + 0.0528268i
\(290\) 3.19098 2.31838i 0.187381 0.136140i
\(291\) −5.78115 17.7926i −0.338897 1.04302i
\(292\) −2.20820 + 6.79615i −0.129225 + 0.397715i
\(293\) 3.04508 + 2.21238i 0.177896 + 0.129249i 0.673170 0.739488i \(-0.264932\pi\)
−0.495274 + 0.868737i \(0.664932\pi\)
\(294\) 1.00000 3.07768i 0.0583212 0.179494i
\(295\) −0.0623059 + 0.191758i −0.00362759 + 0.0111646i
\(296\) 7.66312 + 5.56758i 0.445410 + 0.323609i
\(297\) −8.09017 + 24.8990i −0.469439 + 1.44479i
\(298\) 6.01722 + 18.5191i 0.348568 + 1.07278i
\(299\) 5.20820 3.78398i 0.301198 0.218833i
\(300\) −0.927051 2.85317i −0.0535233 0.164728i
\(301\) −5.78115 4.20025i −0.333220 0.242099i
\(302\) 24.2254 + 17.6008i 1.39402 + 1.01281i
\(303\) −7.47214 + 5.42882i −0.429263 + 0.311878i
\(304\) −24.2705 −1.39201
\(305\) 4.18034 0.239366
\(306\) 11.0902 8.05748i 0.633983 0.460615i
\(307\) −1.57295 + 4.84104i −0.0897729 + 0.276293i −0.985856 0.167593i \(-0.946400\pi\)
0.896083 + 0.443886i \(0.146400\pi\)
\(308\) 3.00000 + 9.23305i 0.170941 + 0.526102i
\(309\) −6.85410 −0.389916
\(310\) 0 0
\(311\) 7.52786 0.426866 0.213433 0.976958i \(-0.431535\pi\)
0.213433 + 0.976958i \(0.431535\pi\)
\(312\) −1.28115 3.94298i −0.0725310 0.223227i
\(313\) 1.00000 3.07768i 0.0565233 0.173961i −0.918809 0.394702i \(-0.870848\pi\)
0.975332 + 0.220741i \(0.0708477\pi\)
\(314\) 4.85410 3.52671i 0.273933 0.199024i
\(315\) 2.29180 0.129128
\(316\) 0 0
\(317\) 8.00000 5.81234i 0.449325 0.326454i −0.340004 0.940424i \(-0.610429\pi\)
0.789329 + 0.613970i \(0.210429\pi\)
\(318\) 0.927051 + 0.673542i 0.0519864 + 0.0377704i
\(319\) −27.0344 19.6417i −1.51364 1.09972i
\(320\) −0.500000 1.53884i −0.0279508 0.0860239i
\(321\) 8.16312 5.93085i 0.455621 0.331028i
\(322\) −5.20820 16.0292i −0.290242 0.893273i
\(323\) 6.54508 20.1437i 0.364178 1.12083i
\(324\) −0.500000 0.363271i −0.0277778 0.0201817i
\(325\) −2.78115 + 8.55951i −0.154271 + 0.474796i
\(326\) 0.354102 1.08981i 0.0196119 0.0603592i
\(327\) −14.8992 10.8249i −0.823927 0.598618i
\(328\) 1.70820 5.25731i 0.0943198 0.290286i
\(329\) −5.20820 16.0292i −0.287138 0.883719i
\(330\) 2.61803 1.90211i 0.144118 0.104708i
\(331\) 6.88197 + 21.1805i 0.378267 + 1.16419i 0.941248 + 0.337716i \(0.109654\pi\)
−0.562981 + 0.826470i \(0.690346\pi\)
\(332\) 3.54508 + 2.57565i 0.194562 + 0.141357i
\(333\) 6.85410 + 4.97980i 0.375602 + 0.272891i
\(334\) −6.23607 + 4.53077i −0.341222 + 0.247913i
\(335\) −0.0901699 −0.00492651
\(336\) −14.5623 −0.794439
\(337\) −22.6353 + 16.4455i −1.23302 + 0.895842i −0.997113 0.0759333i \(-0.975806\pi\)
−0.235908 + 0.971775i \(0.575806\pi\)
\(338\) −4.78115 + 14.7149i −0.260060 + 0.800384i
\(339\) 1.50000 + 4.61653i 0.0814688 + 0.250735i
\(340\) −1.00000 −0.0542326
\(341\) 0 0
\(342\) −16.1803 −0.874933
\(343\) −4.63525 14.2658i −0.250280 0.770283i
\(344\) −1.64590 + 5.06555i −0.0887409 + 0.273116i
\(345\) −1.07295 + 0.779543i −0.0577656 + 0.0419692i
\(346\) 19.5623 1.05168
\(347\) 32.1246 1.72454 0.862270 0.506449i \(-0.169042\pi\)
0.862270 + 0.506449i \(0.169042\pi\)
\(348\) −3.19098 + 2.31838i −0.171055 + 0.124278i
\(349\) 2.66312 + 1.93487i 0.142553 + 0.103571i 0.656776 0.754085i \(-0.271920\pi\)
−0.514223 + 0.857657i \(0.671920\pi\)
\(350\) 19.0623 + 13.8496i 1.01892 + 0.740291i
\(351\) −2.86475 8.81678i −0.152909 0.470605i
\(352\) 14.3262 10.4086i 0.763591 0.554781i
\(353\) 10.6976 + 32.9237i 0.569374 + 1.75235i 0.654584 + 0.755989i \(0.272844\pi\)
−0.0852105 + 0.996363i \(0.527156\pi\)
\(354\) 0.263932 0.812299i 0.0140278 0.0431732i
\(355\) −3.42705 2.48990i −0.181889 0.132150i
\(356\) 1.64590 5.06555i 0.0872324 0.268474i
\(357\) 3.92705 12.0862i 0.207842 0.639671i
\(358\) −6.28115 4.56352i −0.331969 0.241190i
\(359\) −2.98936 + 9.20029i −0.157772 + 0.485573i −0.998431 0.0559918i \(-0.982168\pi\)
0.840659 + 0.541565i \(0.182168\pi\)
\(360\) −0.527864 1.62460i −0.0278209 0.0856239i
\(361\) −4.85410 + 3.52671i −0.255479 + 0.185616i
\(362\) −8.50000 26.1603i −0.446750 1.37496i
\(363\) −13.2812 9.64932i −0.697080 0.506458i
\(364\) −2.78115 2.02063i −0.145772 0.105910i
\(365\) −3.57295 + 2.59590i −0.187017 + 0.135876i
\(366\) −17.7082 −0.925623
\(367\) 2.72949 0.142478 0.0712391 0.997459i \(-0.477305\pi\)
0.0712391 + 0.997459i \(0.477305\pi\)
\(368\) −13.6353 + 9.90659i −0.710787 + 0.516417i
\(369\) 1.52786 4.70228i 0.0795374 0.244791i
\(370\) −0.809017 2.48990i −0.0420588 0.129444i
\(371\) −2.12461 −0.110304
\(372\) 0 0
\(373\) −31.6525 −1.63890 −0.819452 0.573148i \(-0.805722\pi\)
−0.819452 + 0.573148i \(0.805722\pi\)
\(374\) 11.0902 + 34.1320i 0.573459 + 1.76493i
\(375\) 1.16312 3.57971i 0.0600632 0.184856i
\(376\) −10.1631 + 7.38394i −0.524123 + 0.380798i
\(377\) 11.8328 0.609421
\(378\) −24.2705 −1.24834
\(379\) −6.80902 + 4.94704i −0.349756 + 0.254112i −0.748767 0.662834i \(-0.769354\pi\)
0.399011 + 0.916946i \(0.369354\pi\)
\(380\) 0.954915 + 0.693786i 0.0489861 + 0.0355905i
\(381\) 4.66312 + 3.38795i 0.238899 + 0.173570i
\(382\) −2.45492 7.55545i −0.125604 0.386571i
\(383\) −8.20820 + 5.96361i −0.419420 + 0.304726i −0.777404 0.629001i \(-0.783464\pi\)
0.357985 + 0.933727i \(0.383464\pi\)
\(384\) 4.20820 + 12.9515i 0.214749 + 0.660929i
\(385\) −1.85410 + 5.70634i −0.0944938 + 0.290822i
\(386\) 6.04508 + 4.39201i 0.307687 + 0.223547i
\(387\) −1.47214 + 4.53077i −0.0748329 + 0.230312i
\(388\) −3.57295 + 10.9964i −0.181389 + 0.558258i
\(389\) 23.5172 + 17.0863i 1.19237 + 0.866308i 0.993513 0.113721i \(-0.0362769\pi\)
0.198858 + 0.980028i \(0.436277\pi\)
\(390\) −0.354102 + 1.08981i −0.0179307 + 0.0551849i
\(391\) −4.54508 13.9883i −0.229855 0.707420i
\(392\) 3.61803 2.62866i 0.182738 0.132767i
\(393\) −3.42705 10.5474i −0.172872 0.532045i
\(394\) −13.6353 9.90659i −0.686934 0.499087i
\(395\) 0 0
\(396\) 5.23607 3.80423i 0.263122 0.191170i
\(397\) 29.7082 1.49101 0.745506 0.666499i \(-0.232208\pi\)
0.745506 + 0.666499i \(0.232208\pi\)
\(398\) 21.5066 1.07803
\(399\) −12.1353 + 8.81678i −0.607523 + 0.441391i
\(400\) 7.28115 22.4091i 0.364058 1.12045i
\(401\) −7.36475 22.6664i −0.367778 1.13190i −0.948223 0.317605i \(-0.897122\pi\)
0.580445 0.814299i \(-0.302878\pi\)
\(402\) 0.381966 0.0190507
\(403\) 0 0
\(404\) 5.70820 0.283994
\(405\) −0.118034 0.363271i −0.00586516 0.0180511i
\(406\) 9.57295 29.4625i 0.475097 1.46220i
\(407\) −17.9443 + 13.0373i −0.889465 + 0.646234i
\(408\) −9.47214 −0.468941
\(409\) −16.1803 −0.800066 −0.400033 0.916501i \(-0.631001\pi\)
−0.400033 + 0.916501i \(0.631001\pi\)
\(410\) −1.23607 + 0.898056i −0.0610450 + 0.0443518i
\(411\) 2.00000 + 1.45309i 0.0986527 + 0.0716754i
\(412\) 3.42705 + 2.48990i 0.168839 + 0.122668i
\(413\) 0.489357 + 1.50609i 0.0240797 + 0.0741096i
\(414\) −9.09017 + 6.60440i −0.446757 + 0.324588i
\(415\) 0.836881 + 2.57565i 0.0410809 + 0.126434i
\(416\) −1.93769 + 5.96361i −0.0950033 + 0.292390i
\(417\) −0.690983 0.502029i −0.0338376 0.0245844i
\(418\) 13.0902 40.2874i 0.640261 1.97052i
\(419\) −1.38197 + 4.25325i −0.0675135 + 0.207785i −0.979122 0.203275i \(-0.934841\pi\)
0.911608 + 0.411060i \(0.134841\pi\)
\(420\) 0.572949 + 0.416272i 0.0279570 + 0.0203120i
\(421\) 5.94427 18.2946i 0.289706 0.891624i −0.695242 0.718775i \(-0.744703\pi\)
0.984948 0.172848i \(-0.0552970\pi\)
\(422\) −4.00000 12.3107i −0.194717 0.599277i
\(423\) −9.09017 + 6.60440i −0.441979 + 0.321117i
\(424\) 0.489357 + 1.50609i 0.0237653 + 0.0731420i
\(425\) 16.6353 + 12.0862i 0.806928 + 0.586268i
\(426\) 14.5172 + 10.5474i 0.703362 + 0.511022i
\(427\) 26.5623 19.2986i 1.28544 0.933927i
\(428\) −6.23607 −0.301432
\(429\) 9.70820 0.468717
\(430\) 1.19098 0.865300i 0.0574343 0.0417285i
\(431\) 7.65248 23.5519i 0.368607 1.13446i −0.579085 0.815267i \(-0.696590\pi\)
0.947692 0.319188i \(-0.103410\pi\)
\(432\) 7.50000 + 23.0826i 0.360844 + 1.11056i
\(433\) −27.4164 −1.31755 −0.658774 0.752341i \(-0.728925\pi\)
−0.658774 + 0.752341i \(0.728925\pi\)
\(434\) 0 0
\(435\) −2.43769 −0.116878
\(436\) 3.51722 + 10.8249i 0.168444 + 0.518418i
\(437\) −5.36475 + 16.5110i −0.256631 + 0.789828i
\(438\) 15.1353 10.9964i 0.723190 0.525429i
\(439\) −11.8328 −0.564749 −0.282375 0.959304i \(-0.591122\pi\)
−0.282375 + 0.959304i \(0.591122\pi\)
\(440\) 4.47214 0.213201
\(441\) 3.23607 2.35114i 0.154098 0.111959i
\(442\) −10.2812 7.46969i −0.489025 0.355297i
\(443\) 0.708204 + 0.514540i 0.0336478 + 0.0244465i 0.604482 0.796619i \(-0.293380\pi\)
−0.570834 + 0.821065i \(0.693380\pi\)
\(444\) 0.809017 + 2.48990i 0.0383942 + 0.118165i
\(445\) 2.66312 1.93487i 0.126244 0.0917216i
\(446\) 6.35410 + 19.5559i 0.300875 + 0.925999i
\(447\) 3.71885 11.4454i 0.175895 0.541350i
\(448\) −10.2812 7.46969i −0.485739 0.352910i
\(449\) 10.5279 32.4014i 0.496841 1.52912i −0.317228 0.948349i \(-0.602752\pi\)
0.814069 0.580769i \(-0.197248\pi\)
\(450\) 4.85410 14.9394i 0.228825 0.704250i
\(451\) 10.4721 + 7.60845i 0.493114 + 0.358268i
\(452\) 0.927051 2.85317i 0.0436048 0.134202i
\(453\) −5.71885 17.6008i −0.268695 0.826958i
\(454\) −28.4615 + 20.6785i −1.33576 + 0.970489i
\(455\) −0.656541 2.02063i −0.0307791 0.0947284i
\(456\) 9.04508 + 6.57164i 0.423575 + 0.307745i
\(457\) 21.6353 + 15.7189i 1.01205 + 0.735301i 0.964639 0.263575i \(-0.0849015\pi\)
0.0474155 + 0.998875i \(0.484902\pi\)
\(458\) −3.61803 + 2.62866i −0.169060 + 0.122829i
\(459\) −21.1803 −0.988614
\(460\) 0.819660 0.0382168
\(461\) −25.6803 + 18.6579i −1.19605 + 0.868983i −0.993891 0.110369i \(-0.964797\pi\)
−0.202162 + 0.979352i \(0.564797\pi\)
\(462\) 7.85410 24.1724i 0.365406 1.12460i
\(463\) −2.81966 8.67802i −0.131041 0.403302i 0.863912 0.503642i \(-0.168007\pi\)
−0.994953 + 0.100340i \(0.968007\pi\)
\(464\) −30.9787 −1.43815
\(465\) 0 0
\(466\) −9.38197 −0.434611
\(467\) 11.9828 + 36.8792i 0.554497 + 1.70657i 0.697268 + 0.716810i \(0.254399\pi\)
−0.142771 + 0.989756i \(0.545601\pi\)
\(468\) −0.708204 + 2.17963i −0.0327367 + 0.100753i
\(469\) −0.572949 + 0.416272i −0.0264563 + 0.0192216i
\(470\) 3.47214 0.160158
\(471\) −3.70820 −0.170865
\(472\) 0.954915 0.693786i 0.0439535 0.0319341i
\(473\) −10.0902 7.33094i −0.463947 0.337077i
\(474\) 0 0
\(475\) −7.50000 23.0826i −0.344124 1.05910i
\(476\) −6.35410 + 4.61653i −0.291240 + 0.211598i
\(477\) 0.437694 + 1.34708i 0.0200406 + 0.0616787i
\(478\) −6.70820 + 20.6457i −0.306826 + 0.944314i
\(479\) −7.23607 5.25731i −0.330624 0.240213i 0.410071 0.912054i \(-0.365504\pi\)
−0.740696 + 0.671841i \(0.765504\pi\)
\(480\) 0.399187 1.22857i 0.0182203 0.0560763i
\(481\) 2.42705 7.46969i 0.110664 0.340589i
\(482\) −22.8713 16.6170i −1.04176 0.756883i
\(483\) −3.21885 + 9.90659i −0.146463 + 0.450766i
\(484\) 3.13525 + 9.64932i 0.142512 + 0.438606i
\(485\) −5.78115 + 4.20025i −0.262509 + 0.190724i
\(486\) 8.00000 + 24.6215i 0.362887 + 1.11685i
\(487\) −33.9164 24.6417i −1.53690 1.11662i −0.952243 0.305341i \(-0.901229\pi\)
−0.584656 0.811281i \(-0.698771\pi\)
\(488\) −19.7984 14.3844i −0.896230 0.651149i
\(489\) −0.572949 + 0.416272i −0.0259097 + 0.0188245i
\(490\) −1.23607 −0.0558399
\(491\) −21.5967 −0.974648 −0.487324 0.873221i \(-0.662027\pi\)
−0.487324 + 0.873221i \(0.662027\pi\)
\(492\) 1.23607 0.898056i 0.0557262 0.0404875i
\(493\) 8.35410 25.7113i 0.376250 1.15798i
\(494\) 4.63525 + 14.2658i 0.208550 + 0.641851i
\(495\) 4.00000 0.179787
\(496\) 0 0
\(497\) −33.2705 −1.49239
\(498\) −3.54508 10.9106i −0.158859 0.488918i
\(499\) −3.35410 + 10.3229i −0.150150 + 0.462115i −0.997637 0.0687012i \(-0.978114\pi\)
0.847487 + 0.530816i \(0.178114\pi\)
\(500\) −1.88197 + 1.36733i −0.0841641 + 0.0611488i
\(501\) 4.76393 0.212837
\(502\) 27.4164 1.22365
\(503\) −16.0623 + 11.6699i −0.716183 + 0.520337i −0.885162 0.465282i \(-0.845953\pi\)
0.168980 + 0.985620i \(0.445953\pi\)
\(504\) −10.8541 7.88597i −0.483480 0.351269i
\(505\) 2.85410 + 2.07363i 0.127006 + 0.0922752i
\(506\) −9.09017 27.9767i −0.404107 1.24371i
\(507\) 7.73607 5.62058i 0.343571 0.249619i
\(508\) −1.10081 3.38795i −0.0488407 0.150316i
\(509\) 4.04508 12.4495i 0.179295 0.551814i −0.820508 0.571635i \(-0.806310\pi\)
0.999804 + 0.0198206i \(0.00630950\pi\)
\(510\) 2.11803 + 1.53884i 0.0937881 + 0.0681411i
\(511\) −10.7188 + 32.9892i −0.474174 + 1.45936i
\(512\) −1.63525 + 5.03280i −0.0722687 + 0.222420i
\(513\) 20.2254 + 14.6946i 0.892974 + 0.648784i
\(514\) −12.7082 + 39.1118i −0.560535 + 1.72515i
\(515\) 0.809017 + 2.48990i 0.0356495 + 0.109718i
\(516\) −1.19098 + 0.865300i −0.0524301 + 0.0380927i
\(517\) −9.09017 27.9767i −0.399785 1.23041i
\(518\) −16.6353 12.0862i −0.730911 0.531038i
\(519\) −9.78115 7.10642i −0.429345 0.311937i
\(520\) −1.28115 + 0.930812i −0.0561823 + 0.0408188i
\(521\) −27.0689 −1.18591 −0.592955 0.805236i \(-0.702039\pi\)
−0.592955 + 0.805236i \(0.702039\pi\)
\(522\) −20.6525 −0.903934
\(523\) −4.95492 + 3.59996i −0.216663 + 0.157415i −0.690823 0.723024i \(-0.742752\pi\)
0.474160 + 0.880439i \(0.342752\pi\)
\(524\) −2.11803 + 6.51864i −0.0925267 + 0.284768i
\(525\) −4.50000 13.8496i −0.196396 0.604445i
\(526\) −22.3262 −0.973470
\(527\) 0 0
\(528\) −25.4164 −1.10611
\(529\) −3.38197 10.4086i −0.147042 0.452549i
\(530\) 0.135255 0.416272i 0.00587510 0.0180817i
\(531\) 0.854102 0.620541i 0.0370649 0.0269292i
\(532\) 9.27051 0.401928
\(533\) −4.58359 −0.198537
\(534\) −11.2812 + 8.19624i −0.488183 + 0.354686i
\(535\) −3.11803 2.26538i −0.134804 0.0979411i
\(536\) 0.427051 + 0.310271i 0.0184458 + 0.0134017i
\(537\) 1.48278 + 4.56352i 0.0639866 + 0.196931i
\(538\) −4.73607 + 3.44095i −0.204186 + 0.148350i
\(539\) 3.23607 + 9.95959i 0.139387 + 0.428990i
\(540\) 0.364745 1.12257i 0.0156961 0.0483077i
\(541\) −17.7984 12.9313i −0.765212 0.555959i 0.135293 0.990806i \(-0.456803\pi\)
−0.900504 + 0.434847i \(0.856803\pi\)
\(542\) 5.28115 16.2537i 0.226845 0.698157i
\(543\) −5.25329 + 16.1680i −0.225440 + 0.693834i
\(544\) 11.5902 + 8.42075i 0.496924 + 0.361037i
\(545\) −2.17376 + 6.69015i −0.0931137 + 0.286575i
\(546\) 2.78115 + 8.55951i 0.119022 + 0.366313i
\(547\) 8.32624 6.04937i 0.356004 0.258652i −0.395379 0.918518i \(-0.629387\pi\)
0.751384 + 0.659866i \(0.229387\pi\)
\(548\) −0.472136 1.45309i −0.0201686 0.0620727i
\(549\) −17.7082 12.8658i −0.755768 0.549097i
\(550\) 33.2705 + 24.1724i 1.41866 + 1.03072i
\(551\) −25.8156 + 18.7561i −1.09978 + 0.799038i
\(552\) 7.76393 0.330455
\(553\) 0 0
\(554\) −3.04508 + 2.21238i −0.129373 + 0.0939952i
\(555\) −0.500000 + 1.53884i −0.0212238 + 0.0653202i
\(556\) 0.163119 + 0.502029i 0.00691778 + 0.0212908i
\(557\) −0.111456 −0.00472255 −0.00236127 0.999997i \(-0.500752\pi\)
−0.00236127 + 0.999997i \(0.500752\pi\)
\(558\) 0 0
\(559\) 4.41641 0.186794
\(560\) 1.71885 + 5.29007i 0.0726345 + 0.223546i
\(561\) 6.85410 21.0948i 0.289380 0.890621i
\(562\) 13.1353 9.54332i 0.554077 0.402561i
\(563\) 11.5623 0.487293 0.243647 0.969864i \(-0.421656\pi\)
0.243647 + 0.969864i \(0.421656\pi\)
\(564\) −3.47214 −0.146203
\(565\) 1.50000 1.08981i 0.0631055 0.0458488i
\(566\) 17.7533 + 12.8985i 0.746226 + 0.542165i
\(567\) −2.42705 1.76336i −0.101927 0.0740540i
\(568\) 7.66312 + 23.5847i 0.321537 + 0.989590i
\(569\) 19.7984 14.3844i 0.829991 0.603024i −0.0895658 0.995981i \(-0.528548\pi\)
0.919557 + 0.392957i \(0.128548\pi\)
\(570\) −0.954915 2.93893i −0.0399970 0.123098i
\(571\) −2.16312 + 6.65740i −0.0905237 + 0.278603i −0.986061 0.166383i \(-0.946791\pi\)
0.895538 + 0.444986i \(0.146791\pi\)
\(572\) −4.85410 3.52671i −0.202960 0.147459i
\(573\) −1.51722 + 4.66953i −0.0633828 + 0.195072i
\(574\) −3.70820 + 11.4127i −0.154777 + 0.476356i
\(575\) −13.6353 9.90659i −0.568629 0.413133i
\(576\) −2.61803 + 8.05748i −0.109085 + 0.335728i
\(577\) −2.46556 7.58821i −0.102643 0.315901i 0.886527 0.462676i \(-0.153111\pi\)
−0.989170 + 0.146775i \(0.953111\pi\)
\(578\) −1.23607 + 0.898056i −0.0514136 + 0.0373542i
\(579\) −1.42705 4.39201i −0.0593062 0.182526i
\(580\) 1.21885 + 0.885544i 0.0506099 + 0.0367702i
\(581\) 17.2082 + 12.5025i 0.713917 + 0.518691i
\(582\) 24.4894 17.7926i 1.01512 0.737525i
\(583\) −3.70820 −0.153578
\(584\) 25.8541 1.06985
\(585\) −1.14590 + 0.832544i −0.0473771 + 0.0344214i
\(586\) −1.88197 + 5.79210i −0.0777433 + 0.239269i
\(587\) 12.3647 + 38.0548i 0.510348 + 1.57069i 0.791591 + 0.611052i \(0.209253\pi\)
−0.281243 + 0.959637i \(0.590747\pi\)
\(588\) 1.23607 0.0509746
\(589\) 0 0
\(590\) −0.326238 −0.0134310
\(591\) 3.21885 + 9.90659i 0.132406 + 0.407503i
\(592\) −6.35410 + 19.5559i −0.261152 + 0.803743i
\(593\) −33.8885 + 24.6215i −1.39164 + 1.01108i −0.395952 + 0.918271i \(0.629585\pi\)
−0.995684 + 0.0928113i \(0.970415\pi\)
\(594\) −42.3607 −1.73808
\(595\) −4.85410 −0.198999
\(596\) −6.01722 + 4.37177i −0.246475 + 0.179075i
\(597\) −10.7533 7.81272i −0.440103 0.319753i
\(598\) 8.42705 + 6.12261i 0.344608 + 0.250372i
\(599\) 1.60739 + 4.94704i 0.0656762 + 0.202131i 0.978509 0.206202i \(-0.0661104\pi\)
−0.912833 + 0.408333i \(0.866110\pi\)
\(600\) −8.78115 + 6.37988i −0.358489 + 0.260458i
\(601\) −6.79837 20.9232i −0.277311 0.853477i −0.988599 0.150575i \(-0.951887\pi\)
0.711287 0.702902i \(-0.248113\pi\)
\(602\) 3.57295 10.9964i 0.145623 0.448180i
\(603\) 0.381966 + 0.277515i 0.0155549 + 0.0113013i
\(604\) −3.53444 + 10.8779i −0.143814 + 0.442615i
\(605\) −1.93769 + 5.96361i −0.0787785 + 0.242455i
\(606\) −12.0902 8.78402i −0.491130 0.356827i
\(607\) 0.437694 1.34708i 0.0177655 0.0546765i −0.941781 0.336228i \(-0.890849\pi\)
0.959546 + 0.281551i \(0.0908489\pi\)
\(608\) −5.22542 16.0822i −0.211919 0.652219i
\(609\) −15.4894 + 11.2537i −0.627660 + 0.456022i
\(610\) 2.09017 + 6.43288i 0.0846285 + 0.260460i
\(611\) 8.42705 + 6.12261i 0.340922 + 0.247694i
\(612\) 4.23607 + 3.07768i 0.171233 + 0.124408i
\(613\) 34.7426 25.2420i 1.40324 1.01952i 0.408980 0.912543i \(-0.365885\pi\)
0.994262 0.106972i \(-0.0341155\pi\)
\(614\) −8.23607 −0.332381
\(615\) 0.944272 0.0380767
\(616\) 28.4164 20.6457i 1.14493 0.831840i
\(617\) −3.01722 + 9.28605i −0.121469 + 0.373842i −0.993241 0.116069i \(-0.962971\pi\)
0.871772 + 0.489911i \(0.162971\pi\)
\(618\) −3.42705 10.5474i −0.137856 0.424278i
\(619\) 40.0000 1.60774 0.803868 0.594808i \(-0.202772\pi\)
0.803868 + 0.594808i \(0.202772\pi\)
\(620\) 0 0
\(621\) 17.3607 0.696660
\(622\) 3.76393 + 11.5842i 0.150920 + 0.464484i
\(623\) 7.98936 24.5887i 0.320087 0.985126i
\(624\) 7.28115 5.29007i 0.291479 0.211772i
\(625\) 22.8328 0.913313
\(626\) 5.23607 0.209275
\(627\) −21.1803 + 15.3884i −0.845861 + 0.614554i
\(628\) 1.85410 + 1.34708i 0.0739867 + 0.0537545i
\(629\) −14.5172 10.5474i −0.578840 0.420552i
\(630\) 1.14590 + 3.52671i 0.0456537 + 0.140508i
\(631\) −34.1976 + 24.8460i −1.36138 + 0.989103i −0.363028 + 0.931778i \(0.618257\pi\)
−0.998356 + 0.0573246i \(0.981743\pi\)
\(632\) 0 0
\(633\) −2.47214 + 7.60845i −0.0982586 + 0.302409i
\(634\) 12.9443 + 9.40456i 0.514083 + 0.373503i
\(635\) 0.680340 2.09387i 0.0269985 0.0830927i
\(636\) −0.135255 + 0.416272i −0.00536321 + 0.0165063i
\(637\) −3.00000 2.17963i −0.118864 0.0863600i
\(638\) 16.7082 51.4226i 0.661484 2.03584i
\(639\) 6.85410 + 21.0948i 0.271144 + 0.834496i
\(640\) 4.20820 3.05744i 0.166344 0.120856i
\(641\) 9.24265 + 28.4459i 0.365063 + 1.12355i 0.949942 + 0.312427i \(0.101142\pi\)
−0.584879 + 0.811120i \(0.698858\pi\)
\(642\) 13.2082 + 9.59632i 0.521286 + 0.378737i
\(643\) 12.0172 + 8.73102i 0.473913 + 0.344318i 0.798964 0.601378i \(-0.205382\pi\)
−0.325051 + 0.945696i \(0.605382\pi\)
\(644\) 5.20820 3.78398i 0.205232 0.149110i
\(645\) −0.909830 −0.0358245
\(646\) 34.2705 1.34836
\(647\) 4.76393 3.46120i 0.187289 0.136074i −0.490190 0.871616i \(-0.663072\pi\)
0.677479 + 0.735542i \(0.263072\pi\)
\(648\) −0.690983 + 2.12663i −0.0271444 + 0.0835418i
\(649\) 0.854102 + 2.62866i 0.0335264 + 0.103184i
\(650\) −14.5623 −0.571181
\(651\) 0 0
\(652\) 0.437694 0.0171414
\(653\) 2.57953 + 7.93897i 0.100945 + 0.310676i 0.988757 0.149529i \(-0.0477759\pi\)
−0.887813 + 0.460205i \(0.847776\pi\)
\(654\) 9.20820 28.3399i 0.360069 1.10818i
\(655\) −3.42705 + 2.48990i −0.133906 + 0.0972884i
\(656\) 12.0000 0.468521
\(657\) 23.1246 0.902177
\(658\) 22.0623 16.0292i 0.860078 0.624883i
\(659\) 30.4894 + 22.1518i 1.18770 + 0.862912i 0.993019 0.117955i \(-0.0376339\pi\)
0.194678 + 0.980867i \(0.437634\pi\)
\(660\) 1.00000 + 0.726543i 0.0389249 + 0.0282806i
\(661\) −4.44427 13.6781i −0.172862 0.532015i 0.826667 0.562691i \(-0.190234\pi\)
−0.999529 + 0.0306761i \(0.990234\pi\)
\(662\) −29.1525 + 21.1805i −1.13304 + 0.823204i
\(663\) 2.42705 + 7.46969i 0.0942588 + 0.290099i
\(664\) 4.89919 15.0781i 0.190125 0.585146i
\(665\) 4.63525 + 3.36771i 0.179747 + 0.130594i
\(666\) −4.23607 + 13.0373i −0.164144 + 0.505184i
\(667\) −6.84752 + 21.0745i −0.265137 + 0.816008i
\(668\) −2.38197 1.73060i −0.0921610 0.0669589i
\(669\) 3.92705 12.0862i 0.151829 0.467280i
\(670\) −0.0450850 0.138757i −0.00174178 0.00536066i
\(671\) 46.3607 33.6830i 1.78973 1.30032i
\(672\) −3.13525 9.64932i −0.120945 0.372231i
\(673\) 18.1353 + 13.1760i 0.699063 + 0.507899i 0.879627 0.475664i \(-0.157792\pi\)
−0.180564 + 0.983563i \(0.557792\pi\)
\(674\) −36.6246 26.6093i −1.41073 1.02495i
\(675\) −19.6353 + 14.2658i −0.755761 + 0.549093i
\(676\) −5.90983 −0.227301
\(677\) 2.65248 0.101943 0.0509715 0.998700i \(-0.483768\pi\)
0.0509715 + 0.998700i \(0.483768\pi\)
\(678\) −6.35410 + 4.61653i −0.244028 + 0.177297i
\(679\) −17.3435 + 53.3777i −0.665581 + 2.04845i
\(680\) 1.11803 + 3.44095i 0.0428746 + 0.131955i
\(681\) 21.7426 0.833180
\(682\) 0 0
\(683\) 27.9443 1.06926 0.534629 0.845087i \(-0.320451\pi\)
0.534629 + 0.845087i \(0.320451\pi\)
\(684\) −1.90983 5.87785i −0.0730242 0.224745i
\(685\) 0.291796 0.898056i 0.0111490 0.0343130i
\(686\) 19.6353 14.2658i 0.749678 0.544673i
\(687\) 2.76393 0.105451
\(688\) −11.5623 −0.440809
\(689\) 1.06231 0.771810i 0.0404706 0.0294036i
\(690\) −1.73607 1.26133i −0.0660910 0.0480179i
\(691\) 40.3156 + 29.2910i 1.53368 + 1.11428i 0.954150 + 0.299329i \(0.0967629\pi\)
0.579528 + 0.814953i \(0.303237\pi\)
\(692\) 2.30902 + 7.10642i 0.0877757 + 0.270146i
\(693\) 25.4164 18.4661i 0.965489 0.701469i
\(694\) 16.0623 + 49.4347i 0.609717 + 1.87652i
\(695\) −0.100813 + 0.310271i −0.00382406 + 0.0117692i
\(696\) 11.5451 + 8.38800i 0.437615 + 0.317946i
\(697\) −3.23607 + 9.95959i −0.122575 + 0.377246i
\(698\) −1.64590 + 5.06555i −0.0622982 + 0.191734i
\(699\) 4.69098 + 3.40820i 0.177429 + 0.128910i
\(700\) −2.78115 + 8.55951i −0.105118 + 0.323519i
\(701\) −0.298374 0.918300i −0.0112694 0.0346837i 0.945264 0.326307i \(-0.105804\pi\)
−0.956533 + 0.291624i \(0.905804\pi\)
\(702\) 12.1353 8.81678i 0.458016 0.332768i
\(703\) 6.54508 + 20.1437i 0.246853 + 0.759734i
\(704\) −17.9443 13.0373i −0.676300 0.491361i
\(705\) −1.73607 1.26133i −0.0653841 0.0475043i
\(706\) −45.3156 + 32.9237i −1.70547 + 1.23910i
\(707\) 27.7082 1.04207
\(708\) 0.326238 0.0122608
\(709\) 8.78115 6.37988i 0.329783 0.239601i −0.410555 0.911836i \(-0.634665\pi\)
0.740339 + 0.672234i \(0.234665\pi\)
\(710\) 2.11803 6.51864i 0.0794884 0.244640i
\(711\) 0 0
\(712\) −19.2705 −0.722193
\(713\) 0 0
\(714\) 20.5623 0.769525
\(715\) −1.14590 3.52671i −0.0428542 0.131892i
\(716\) 0.916408 2.82041i 0.0342478 0.105404i
\(717\) 10.8541 7.88597i 0.405354 0.294507i
\(718\) −15.6525 −0.584145
\(719\) 43.6180 1.62668 0.813339 0.581790i \(-0.197647\pi\)
0.813339 + 0.581790i \(0.197647\pi\)
\(720\) 3.00000 2.17963i 0.111803 0.0812299i
\(721\) 16.6353 + 12.0862i 0.619529 + 0.450114i
\(722\) −7.85410 5.70634i −0.292299 0.212368i
\(723\) 5.39919 + 16.6170i 0.200798 + 0.617992i
\(724\) 8.50000 6.17561i 0.315900 0.229515i
\(725\) −9.57295 29.4625i −0.355530 1.09421i
\(726\) 8.20820 25.2623i 0.304635 0.937570i
\(727\) −24.1353 17.5353i −0.895127 0.650348i 0.0420827 0.999114i \(-0.486601\pi\)
−0.937210 + 0.348766i \(0.886601\pi\)
\(728\) −3.84346 + 11.8290i −0.142448 + 0.438410i
\(729\) 4.01722 12.3637i 0.148786 0.457916i
\(730\) −5.78115 4.20025i −0.213970 0.155458i
\(731\) 3.11803 9.59632i 0.115325 0.354933i
\(732\) −2.09017 6.43288i −0.0772549 0.237766i
\(733\) −8.13525 + 5.91061i −0.300482 + 0.218313i −0.727802 0.685787i \(-0.759458\pi\)
0.427319 + 0.904101i \(0.359458\pi\)
\(734\) 1.36475 + 4.20025i 0.0503737 + 0.155034i
\(735\) 0.618034 + 0.449028i 0.0227965 + 0.0165626i
\(736\) −9.50000 6.90215i −0.350175 0.254417i
\(737\) −1.00000 + 0.726543i −0.0368355 + 0.0267625i
\(738\) 8.00000 0.294484
\(739\) −8.29180 −0.305019 −0.152509 0.988302i \(-0.548735\pi\)
−0.152509 + 0.988302i \(0.548735\pi\)
\(740\) 0.809017 0.587785i 0.0297401 0.0216074i
\(741\) 2.86475 8.81678i 0.105239 0.323892i
\(742\) −1.06231 3.26944i −0.0389985 0.120025i
\(743\) 23.5623 0.864417 0.432209 0.901774i \(-0.357734\pi\)
0.432209 + 0.901774i \(0.357734\pi\)
\(744\) 0 0
\(745\) −4.59675 −0.168412
\(746\) −15.8262 48.7082i −0.579440 1.78333i
\(747\) 4.38197 13.4863i 0.160328 0.493438i
\(748\) −11.0902 + 8.05748i −0.405497 + 0.294611i
\(749\) −30.2705 −1.10606
\(750\) 6.09017 0.222382
\(751\) −11.1910 + 8.13073i −0.408365 + 0.296694i −0.772939 0.634480i \(-0.781214\pi\)
0.364575 + 0.931174i \(0.381214\pi\)
\(752\) −22.0623 16.0292i −0.804530 0.584525i
\(753\) −13.7082 9.95959i −0.499555 0.362948i
\(754\) 5.91641 + 18.2088i 0.215463 + 0.663127i
\(755\) −5.71885 + 4.15499i −0.208130 + 0.151215i
\(756\) −2.86475 8.81678i −0.104190 0.320663i
\(757\) −0.888544 + 2.73466i −0.0322947 + 0.0993928i −0.965905 0.258898i \(-0.916641\pi\)
0.933610 + 0.358291i \(0.116641\pi\)
\(758\) −11.0172 8.00448i −0.400163 0.290736i
\(759\) −5.61803 + 17.2905i −0.203922 + 0.627607i
\(760\) 1.31966 4.06150i 0.0478691 0.147326i
\(761\) −27.9164 20.2825i −1.01197 0.735239i −0.0473478 0.998878i \(-0.515077\pi\)
−0.964621 + 0.263640i \(0.915077\pi\)
\(762\) −2.88197 + 8.86978i −0.104403 + 0.321318i
\(763\) 17.0729 + 52.5451i 0.618082 + 1.90226i
\(764\) 2.45492 1.78360i 0.0888157 0.0645284i
\(765\) 1.00000 + 3.07768i 0.0361551 + 0.111274i
\(766\) −13.2812 9.64932i −0.479868 0.348644i
\(767\) −0.791796 0.575274i −0.0285901 0.0207719i
\(768\) −10.9721 + 7.97172i −0.395923 + 0.287655i
\(769\) −11.2574 −0.405951 −0.202975 0.979184i \(-0.565061\pi\)
−0.202975 + 0.979184i \(0.565061\pi\)
\(770\) −9.70820 −0.349859
\(771\) 20.5623 14.9394i 0.740533 0.538029i
\(772\) −0.881966 + 2.71441i −0.0317427 + 0.0976938i
\(773\) 2.44427 + 7.52270i 0.0879144 + 0.270573i 0.985342 0.170588i \(-0.0545668\pi\)
−0.897428 + 0.441161i \(0.854567\pi\)
\(774\) −7.70820 −0.277066
\(775\) 0 0
\(776\) 41.8328 1.50171
\(777\) 3.92705 + 12.0862i 0.140882 + 0.433591i
\(778\) −14.5344 + 44.7324i −0.521085 + 1.60373i
\(779\) 10.0000 7.26543i 0.358287 0.260311i
\(780\) −0.437694 −0.0156720
\(781\) −58.0689 −2.07787
\(782\) 19.2533 13.9883i 0.688496 0.500222i
\(783\) 25.8156 + 18.7561i 0.922574 + 0.670289i
\(784\) 7.85410 + 5.70634i 0.280504 + 0.203798i
\(785\) 0.437694 + 1.34708i 0.0156220 + 0.0480795i
\(786\) 14.5172 10.5474i 0.517812 0.376213i
\(787\) −13.8156 42.5200i −0.492473 1.51568i −0.820858 0.571132i \(-0.806505\pi\)
0.328386 0.944544i \(-0.393495\pi\)
\(788\) 1.98936 6.12261i 0.0708679 0.218109i
\(789\) 11.1631 + 8.11048i 0.397418 + 0.288741i
\(790\) 0 0
\(791\) 4.50000 13.8496i 0.160002 0.492434i
\(792\) −18.9443 13.7638i −0.673155 0.489076i
\(793\) −6.27051 + 19.2986i −0.222672 + 0.685315i
\(794\) 14.8541 + 45.7162i 0.527152 + 1.62241i
\(795\) −0.218847 + 0.159002i −0.00776171 + 0.00563921i
\(796\) 2.53851 + 7.81272i 0.0899750 + 0.276915i
\(797\) 21.7984 + 15.8374i 0.772138 + 0.560991i 0.902609 0.430461i \(-0.141649\pi\)
−0.130471 + 0.991452i \(0.541649\pi\)
\(798\) −19.6353 14.2658i −0.695080 0.505006i
\(799\) 19.2533 13.9883i 0.681132 0.494872i
\(800\) 16.4164 0.580408
\(801\) −17.2361 −0.609007
\(802\) 31.1976 22.6664i 1.10162 0.800377i
\(803\) −18.7082 + 57.5779i −0.660198 + 2.03188i
\(804\) 0.0450850 + 0.138757i 0.00159002 + 0.00489359i
\(805\) 3.97871 0.140231
\(806\) 0 0
\(807\) 3.61803 0.127361
\(808\) −6.38197 19.6417i −0.224517 0.690992i
\(809\) −9.33282 + 28.7235i −0.328124 + 1.00986i 0.641886 + 0.766800i \(0.278152\pi\)
−0.970011 + 0.243063i \(0.921848\pi\)
\(810\) 0.500000 0.363271i 0.0175682 0.0127641i
\(811\) −28.7771 −1.01050 −0.505250 0.862973i \(-0.668600\pi\)
−0.505250 + 0.862973i \(0.668600\pi\)
\(812\) 11.8328 0.415250
\(813\) −8.54508 + 6.20837i −0.299689 + 0.217737i
\(814\) −29.0344 21.0948i −1.01766 0.739371i
\(815\) 0.218847 + 0.159002i 0.00766588 + 0.00556959i
\(816\) −6.35410 19.5559i −0.222438 0.684594i
\(817\) −9.63525 + 7.00042i −0.337095 + 0.244914i
\(818\) −8.09017 24.8990i −0.282866 0.870573i
\(819\) −3.43769 + 10.5801i −0.120123 + 0.369700i
\(820\) −0.472136 0.343027i −0.0164877 0.0119790i
\(821\) 7.27051 22.3763i 0.253743 0.780939i −0.740332 0.672241i \(-0.765332\pi\)
0.994075 0.108698i \(-0.0346682\pi\)
\(822\) −1.23607 + 3.80423i −0.0431128 + 0.132688i
\(823\) 27.6074 + 20.0579i 0.962333 + 0.699176i 0.953691 0.300787i \(-0.0972492\pi\)
0.00864171 + 0.999963i \(0.497249\pi\)
\(824\) 4.73607 14.5761i 0.164989 0.507783i
\(825\) −7.85410 24.1724i −0.273445 0.841576i
\(826\) −2.07295 + 1.50609i −0.0721271 + 0.0524034i
\(827\) −5.66312 17.4293i −0.196926 0.606076i −0.999949 0.0101274i \(-0.996776\pi\)
0.803023 0.595948i \(-0.203224\pi\)
\(828\) −3.47214 2.52265i −0.120665 0.0876683i
\(829\) −6.70820 4.87380i −0.232986 0.169274i 0.465167 0.885223i \(-0.345994\pi\)
−0.698153 + 0.715949i \(0.745994\pi\)
\(830\) −3.54508 + 2.57565i −0.123052 + 0.0894023i
\(831\) 2.32624 0.0806963
\(832\) 7.85410 0.272292
\(833\) −6.85410 + 4.97980i −0.237481 + 0.172540i
\(834\) 0.427051 1.31433i 0.0147876 0.0455114i
\(835\) −0.562306 1.73060i −0.0194594 0.0598899i
\(836\) 16.1803 0.559609
\(837\) 0 0
\(838\) −7.23607 −0.249966
\(839\) −3.45492 10.6331i −0.119277 0.367097i 0.873538 0.486756i \(-0.161820\pi\)
−0.992815 + 0.119659i \(0.961820\pi\)
\(840\) 0.791796 2.43690i 0.0273196 0.0840810i
\(841\) −9.48936 + 6.89442i −0.327219 + 0.237739i
\(842\) 31.1246 1.07262
\(843\) −10.0344 −0.345605
\(844\) 4.00000 2.90617i 0.137686 0.100035i
\(845\) −2.95492 2.14687i −0.101652 0.0738546i
\(846\) −14.7082 10.6861i −0.505678 0.367397i
\(847\) 15.2188 + 46.8388i 0.522926 + 1.60940i
\(848\) −2.78115 + 2.02063i −0.0955052 + 0.0693886i
\(849\) −4.19098 12.8985i −0.143834 0.442676i
\(850\) −10.2812 + 31.6421i −0.352641 + 1.08532i
\(851\) 11.8992 + 8.64527i 0.407899 + 0.296356i
\(852\) −2.11803 + 6.51864i −0.0725626 + 0.223325i
\(853\) 1.23607 3.80423i 0.0423222 0.130254i −0.927663 0.373419i \(-0.878185\pi\)
0.969985 + 0.243164i \(0.0781855\pi\)
\(854\) 42.9787 + 31.2259i 1.47070 + 1.06853i
\(855\) 1.18034 3.63271i 0.0403668 0.124236i
\(856\) 6.97214 + 21.4580i 0.238303 + 0.733420i
\(857\) −11.4721 + 8.33499i −0.391881 + 0.284718i −0.766226 0.642571i \(-0.777868\pi\)
0.374345 + 0.927289i \(0.377868\pi\)
\(858\) 4.85410 + 14.9394i 0.165716 + 0.510022i
\(859\) 45.8779 + 33.3322i 1.56533 + 1.13728i 0.931459 + 0.363846i \(0.118536\pi\)
0.633875 + 0.773436i \(0.281464\pi\)
\(860\) 0.454915 + 0.330515i 0.0155125 + 0.0112705i
\(861\) 6.00000 4.35926i 0.204479 0.148563i
\(862\) 40.0689 1.36475
\(863\) −40.5066 −1.37886 −0.689430 0.724352i \(-0.742139\pi\)
−0.689430 + 0.724352i \(0.742139\pi\)
\(864\) −13.6803 + 9.93935i −0.465415 + 0.338144i
\(865\) −1.42705 + 4.39201i −0.0485212 + 0.149333i
\(866\) −13.7082 42.1895i −0.465824 1.43366i
\(867\) 0.944272 0.0320692
\(868\) 0 0
\(869\) 0 0
\(870\) −1.21885 3.75123i −0.0413228 0.127178i
\(871\) 0.135255 0.416272i 0.00458294 0.0141048i
\(872\) 33.3156 24.2052i 1.12821 0.819691i
\(873\) 37.4164 1.26635
\(874\) −28.0902 −0.950164
\(875\) −9.13525 + 6.63715i −0.308828 + 0.224377i
\(876\) 5.78115 + 4.20025i 0.195327 + 0.141913i
\(877\) −24.0344 17.4620i −0.811585 0.589651i 0.102704 0.994712i \(-0.467250\pi\)
−0.914290 + 0.405061i \(0.867250\pi\)
\(878\) −5.91641 18.2088i −0.199669 0.614518i
\(879\) 3.04508 2.21238i 0.102708 0.0746219i
\(880\) 3.00000 + 9.23305i 0.101130 + 0.311246i
\(881\) −9.07295 + 27.9237i −0.305675 + 0.940772i 0.673749 + 0.738960i \(0.264683\pi\)
−0.979424 + 0.201812i \(0.935317\pi\)
\(882\) 5.23607 + 3.80423i 0.176308 + 0.128095i
\(883\) 0.309017 0.951057i 0.0103992 0.0320056i −0.945722 0.324976i \(-0.894644\pi\)
0.956121 + 0.292970i \(0.0946438\pi\)
\(884\) 1.50000 4.61653i 0.0504505 0.155271i
\(885\) 0.163119 + 0.118513i 0.00548318 + 0.00398377i
\(886\) −0.437694 + 1.34708i −0.0147046 + 0.0452562i
\(887\) −14.8647 45.7490i −0.499109 1.53610i −0.810453 0.585803i \(-0.800779\pi\)
0.311344 0.950297i \(-0.399221\pi\)
\(888\) 7.66312 5.56758i 0.257157 0.186836i
\(889\) −5.34346 16.4455i −0.179214 0.551564i
\(890\) 4.30902 + 3.13068i 0.144439 + 0.104941i
\(891\) −4.23607 3.07768i −0.141914 0.103106i
\(892\) −6.35410 + 4.61653i −0.212751 + 0.154573i
\(893\) −28.0902 −0.940002
\(894\) 19.4721 0.651246
\(895\) 1.48278 1.07730i 0.0495638 0.0360102i
\(896\) 12.6246 38.8546i 0.421759 1.29804i
\(897\) −1.98936 6.12261i −0.0664227 0.204428i
\(898\) 55.1246 1.83953
\(899\) 0 0
\(900\) 6.00000 0.200000
\(901\) −0.927051 2.85317i −0.0308845 0.0950529i
\(902\) −6.47214 + 19.9192i −0.215499 + 0.663236i
\(903\) −5.78115 + 4.20025i −0.192385 + 0.139776i
\(904\) −10.8541 −0.361002
\(905\) 6.49342 0.215849
\(906\) 24.2254 17.6008i 0.804836 0.584747i
\(907\) 9.64590 + 7.00816i 0.320287 + 0.232702i 0.736298 0.676658i \(-0.236572\pi\)
−0.416011 + 0.909360i \(0.636572\pi\)
\(908\) −10.8713 7.89848i −0.360778 0.262120i
\(909\) −5.70820 17.5680i −0.189329 0.582695i
\(910\) 2.78115 2.02063i 0.0921943 0.0669831i
\(911\) 4.38197 + 13.4863i 0.145181 + 0.446821i 0.997034 0.0769594i \(-0.0245212\pi\)
−0.851853 + 0.523781i \(0.824521\pi\)
\(912\) −7.50000 + 23.0826i −0.248350 + 0.764342i
\(913\) 30.0344 + 21.8213i 0.993995 + 0.722180i
\(914\) −13.3713 + 41.1527i −0.442284 + 1.36121i
\(915\) 1.29180 3.97574i 0.0427055 0.131434i
\(916\) −1.38197 1.00406i −0.0456614 0.0331750i
\(917\) −10.2812 + 31.6421i −0.339514 + 1.04492i
\(918\) −10.5902 32.5932i −0.349528 1.07574i
\(919\) −40.5517 + 29.4625i −1.33768 + 0.971878i −0.338150 + 0.941092i \(0.609801\pi\)
−0.999526 + 0.0307862i \(0.990199\pi\)
\(920\) −0.916408 2.82041i −0.0302131 0.0929863i
\(921\) 4.11803 + 2.99193i 0.135694 + 0.0985873i
\(922\) −41.5517 30.1891i −1.36843 0.994223i
\(923\) 16.6353 12.0862i 0.547556 0.397823i
\(924\) 9.70820 0.319376
\(925\) −20.5623 −0.676084
\(926\) 11.9443 8.67802i 0.392513 0.285177i
\(927\) 4.23607 13.0373i 0.139131 0.428200i
\(928\) −6.66970 20.5272i −0.218944 0.673839i
\(929\) 33.5410 1.10045 0.550223 0.835018i \(-0.314543\pi\)
0.550223 + 0.835018i \(0.314543\pi\)
\(930\) 0 0
\(931\) 10.0000 0.327737
\(932\) −1.10739 3.40820i −0.0362738 0.111639i
\(933\) 2.32624 7.15942i 0.0761576 0.234389i
\(934\) −50.7599 + 36.8792i −1.66091 + 1.20672i
\(935\) −8.47214 −0.277068
\(936\) 8.29180 0.271026
\(937\) 35.9894 26.1478i 1.17572 0.854211i 0.184038 0.982919i \(-0.441083\pi\)
0.991683 + 0.128708i \(0.0410829\pi\)
\(938\) −0.927051 0.673542i −0.0302693 0.0219919i
\(939\) −2.61803 1.90211i −0.0854363 0.0620731i
\(940\) 0.409830 + 1.26133i 0.0133672 + 0.0411400i
\(941\) 44.8328 32.5729i 1.46151 1.06185i 0.478541 0.878065i \(-0.341166\pi\)
0.982967 0.183783i \(-0.0588342\pi\)
\(942\) −1.85410 5.70634i −0.0604099 0.185923i
\(943\) 2.65248 8.16348i 0.0863765 0.265840i
\(944\) 2.07295 + 1.50609i 0.0674687 + 0.0490189i
\(945\) 1.77051 5.44907i 0.0575947 0.177258i
\(946\) 6.23607 19.1926i 0.202752 0.624007i
\(947\) −29.1803 21.2008i −0.948234 0.688932i 0.00215480 0.999998i \(-0.499314\pi\)
−0.950388 + 0.311066i \(0.899314\pi\)
\(948\) 0 0
\(949\) −6.62461 20.3885i −0.215044 0.661837i
\(950\) 31.7705 23.0826i 1.03077 0.748899i
\(951\) −3.05573 9.40456i −0.0990888 0.304964i
\(952\) 22.9894 + 16.7027i 0.745089 + 0.541339i
\(953\) −7.45492 5.41631i −0.241488 0.175452i 0.460458 0.887682i \(-0.347685\pi\)
−0.701946 + 0.712230i \(0.747685\pi\)
\(954\) −1.85410 + 1.34708i −0.0600288 + 0.0436135i
\(955\) 1.87539 0.0606861
\(956\) −8.29180 −0.268176
\(957\) −27.0344 + 19.6417i −0.873899 + 0.634925i
\(958\) 4.47214 13.7638i 0.144488 0.444689i
\(959\) −2.29180 7.05342i −0.0740060 0.227767i
\(960\) −1.61803 −0.0522218
\(961\) 0 0
\(962\) 12.7082 0.409729
\(963\) 6.23607 + 19.1926i 0.200954 + 0.618474i
\(964\) 3.33688 10.2699i 0.107474 0.330770i
\(965\) −1.42705 + 1.03681i −0.0459384 + 0.0333762i
\(966\) −16.8541 −0.542272
\(967\) −12.3475 −0.397070 −0.198535 0.980094i \(-0.563618\pi\)
−0.198535 + 0.980094i \(0.563618\pi\)
\(968\) 29.6976 21.5765i 0.954516 0.693496i
\(969\) −17.1353 12.4495i −0.550464 0.399935i
\(970\) −9.35410 6.79615i −0.300342 0.218211i
\(971\) −0.135255 0.416272i −0.00434054 0.0133588i 0.948863 0.315689i \(-0.102236\pi\)
−0.953203 + 0.302330i \(0.902236\pi\)
\(972\) −8.00000 + 5.81234i −0.256600 + 0.186431i
\(973\) 0.791796 + 2.43690i 0.0253838 + 0.0781234i
\(974\) 20.9615 64.5128i 0.671650 2.06712i
\(975\) 7.28115 + 5.29007i 0.233184 + 0.169418i
\(976\) 16.4164 50.5245i 0.525476 1.61725i
\(977\) 16.0902 49.5205i 0.514770 1.58430i −0.268930 0.963160i \(-0.586670\pi\)
0.783700 0.621140i \(-0.213330\pi\)
\(978\) −0.927051 0.673542i −0.0296438 0.0215375i
\(979\) 13.9443 42.9161i 0.445661 1.37160i
\(980\) −0.145898 0.449028i −0.00466054 0.0143437i
\(981\) 29.7984 21.6498i 0.951389 0.691224i
\(982\) −10.7984 33.2340i −0.344590 1.06054i
\(983\) −6.50000 4.72253i −0.207318 0.150625i 0.479282 0.877661i \(-0.340897\pi\)
−0.686599 + 0.727036i \(0.740897\pi\)
\(984\) −4.47214 3.24920i −0.142566 0.103581i
\(985\) 3.21885 2.33863i 0.102561 0.0745149i
\(986\) 43.7426 1.39305
\(987\) −16.8541 −0.536472
\(988\) −4.63525 + 3.36771i −0.147467 + 0.107141i
\(989\) −2.55573 + 7.86572i −0.0812674 + 0.250115i
\(990\) 2.00000 + 6.15537i 0.0635642 + 0.195630i
\(991\) −16.2705 −0.516850 −0.258425 0.966031i \(-0.583203\pi\)
−0.258425 + 0.966031i \(0.583203\pi\)
\(992\) 0 0
\(993\) 22.2705 0.706733
\(994\) −16.6353 51.1981i −0.527638 1.62390i
\(995\) −1.56888 + 4.82853i −0.0497370 + 0.153075i
\(996\) 3.54508 2.57565i 0.112330 0.0816128i
\(997\) 53.2492 1.68642 0.843210 0.537584i \(-0.180663\pi\)
0.843210 + 0.537584i \(0.180663\pi\)
\(998\) −17.5623 −0.555925
\(999\) 17.1353 12.4495i 0.542135 0.393884i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.d.e.531.1 4
31.2 even 5 961.2.d.b.388.1 4
31.3 odd 30 961.2.c.f.439.2 4
31.4 even 5 961.2.d.b.374.1 4
31.5 even 3 961.2.g.g.844.1 8
31.6 odd 6 961.2.g.f.547.1 8
31.7 even 15 961.2.g.c.816.1 8
31.8 even 5 inner 961.2.d.e.628.1 4
31.9 even 15 961.2.g.g.448.1 8
31.10 even 15 961.2.g.c.338.1 8
31.11 odd 30 961.2.g.b.732.1 8
31.12 odd 30 961.2.g.b.235.1 8
31.13 odd 30 961.2.c.f.521.2 4
31.14 even 15 961.2.g.g.846.1 8
31.15 odd 10 961.2.a.d.1.2 2
31.16 even 5 961.2.a.e.1.2 2
31.17 odd 30 961.2.g.f.846.1 8
31.18 even 15 961.2.c.d.521.2 4
31.19 even 15 961.2.g.c.235.1 8
31.20 even 15 961.2.g.c.732.1 8
31.21 odd 30 961.2.g.b.338.1 8
31.22 odd 30 961.2.g.f.448.1 8
31.23 odd 10 961.2.d.f.628.1 4
31.24 odd 30 961.2.g.b.816.1 8
31.25 even 3 961.2.g.g.547.1 8
31.26 odd 6 961.2.g.f.844.1 8
31.27 odd 10 31.2.d.a.2.1 4
31.28 even 15 961.2.c.d.439.2 4
31.29 odd 10 31.2.d.a.16.1 yes 4
31.30 odd 2 961.2.d.f.531.1 4
93.29 even 10 279.2.i.a.109.1 4
93.47 odd 10 8649.2.a.f.1.1 2
93.77 even 10 8649.2.a.g.1.1 2
93.89 even 10 279.2.i.a.64.1 4
124.27 even 10 496.2.n.b.33.1 4
124.91 even 10 496.2.n.b.481.1 4
155.27 even 20 775.2.bf.a.374.2 8
155.29 odd 10 775.2.k.c.326.1 4
155.58 even 20 775.2.bf.a.374.1 8
155.89 odd 10 775.2.k.c.126.1 4
155.122 even 20 775.2.bf.a.574.1 8
155.153 even 20 775.2.bf.a.574.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.d.a.2.1 4 31.27 odd 10
31.2.d.a.16.1 yes 4 31.29 odd 10
279.2.i.a.64.1 4 93.89 even 10
279.2.i.a.109.1 4 93.29 even 10
496.2.n.b.33.1 4 124.27 even 10
496.2.n.b.481.1 4 124.91 even 10
775.2.k.c.126.1 4 155.89 odd 10
775.2.k.c.326.1 4 155.29 odd 10
775.2.bf.a.374.1 8 155.58 even 20
775.2.bf.a.374.2 8 155.27 even 20
775.2.bf.a.574.1 8 155.122 even 20
775.2.bf.a.574.2 8 155.153 even 20
961.2.a.d.1.2 2 31.15 odd 10
961.2.a.e.1.2 2 31.16 even 5
961.2.c.d.439.2 4 31.28 even 15
961.2.c.d.521.2 4 31.18 even 15
961.2.c.f.439.2 4 31.3 odd 30
961.2.c.f.521.2 4 31.13 odd 30
961.2.d.b.374.1 4 31.4 even 5
961.2.d.b.388.1 4 31.2 even 5
961.2.d.e.531.1 4 1.1 even 1 trivial
961.2.d.e.628.1 4 31.8 even 5 inner
961.2.d.f.531.1 4 31.30 odd 2
961.2.d.f.628.1 4 31.23 odd 10
961.2.g.b.235.1 8 31.12 odd 30
961.2.g.b.338.1 8 31.21 odd 30
961.2.g.b.732.1 8 31.11 odd 30
961.2.g.b.816.1 8 31.24 odd 30
961.2.g.c.235.1 8 31.19 even 15
961.2.g.c.338.1 8 31.10 even 15
961.2.g.c.732.1 8 31.20 even 15
961.2.g.c.816.1 8 31.7 even 15
961.2.g.f.448.1 8 31.22 odd 30
961.2.g.f.547.1 8 31.6 odd 6
961.2.g.f.844.1 8 31.26 odd 6
961.2.g.f.846.1 8 31.17 odd 30
961.2.g.g.448.1 8 31.9 even 15
961.2.g.g.547.1 8 31.25 even 3
961.2.g.g.844.1 8 31.5 even 3
961.2.g.g.846.1 8 31.14 even 15
8649.2.a.f.1.1 2 93.47 odd 10
8649.2.a.g.1.1 2 93.77 even 10