Properties

Label 950.2.j.g.349.4
Level $950$
Weight $2$
Character 950.349
Analytic conductor $7.586$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [950,2,Mod(49,950)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("950.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(950, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 950 = 2 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 950.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,4,0,0,0,0,16,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.58578819202\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.49787136.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 3x^{6} + 5x^{4} + 12x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 38)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 349.4
Root \(-1.09445 - 0.895644i\) of defining polynomial
Character \(\chi\) \(=\) 950.349
Dual form 950.2.j.g.49.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(2.29129 - 1.32288i) q^{3} +(0.500000 - 0.866025i) q^{4} +(1.32288 - 2.29129i) q^{6} -1.64575i q^{7} -1.00000i q^{8} +(2.00000 - 3.46410i) q^{9} +0.645751 q^{11} -2.64575i q^{12} +(1.73205 + 1.00000i) q^{13} +(-0.822876 - 1.42526i) q^{14} +(-0.500000 - 0.866025i) q^{16} -4.00000i q^{18} +(-4.32288 + 0.559237i) q^{19} +(-2.17712 - 3.77089i) q^{21} +(0.559237 - 0.322876i) q^{22} +(3.15731 + 1.82288i) q^{23} +(-1.32288 - 2.29129i) q^{24} +2.00000 q^{26} -2.64575i q^{27} +(-1.42526 - 0.822876i) q^{28} +(-1.82288 + 3.15731i) q^{29} -0.354249 q^{31} +(-0.866025 - 0.500000i) q^{32} +(1.47960 - 0.854249i) q^{33} +(-2.00000 - 3.46410i) q^{36} +5.64575i q^{37} +(-3.46410 + 2.64575i) q^{38} +5.29150 q^{39} +(-5.14575 - 8.91270i) q^{41} +(-3.77089 - 2.17712i) q^{42} +(-0.613577 + 0.354249i) q^{43} +(0.322876 - 0.559237i) q^{44} +3.64575 q^{46} +(-8.35347 - 4.82288i) q^{47} +(-2.29129 - 1.32288i) q^{48} +4.29150 q^{49} +(1.73205 - 1.00000i) q^{52} +(7.43310 + 4.29150i) q^{53} +(-1.32288 - 2.29129i) q^{54} -1.64575 q^{56} +(-9.16515 + 7.00000i) q^{57} +3.64575i q^{58} +(3.96863 + 6.87386i) q^{59} +(7.46863 - 12.9360i) q^{61} +(-0.306788 + 0.177124i) q^{62} +(-5.70105 - 3.29150i) q^{63} -1.00000 q^{64} +(0.854249 - 1.47960i) q^{66} +(4.02334 + 2.32288i) q^{67} +9.64575 q^{69} +(6.64575 + 11.5108i) q^{71} +(-3.46410 - 2.00000i) q^{72} +(-10.6448 + 6.14575i) q^{73} +(2.82288 + 4.88936i) q^{74} +(-1.67712 + 4.02334i) q^{76} -1.06275i q^{77} +(4.58258 - 2.64575i) q^{78} +(-2.00000 - 3.46410i) q^{79} +(2.50000 + 4.33013i) q^{81} +(-8.91270 - 5.14575i) q^{82} +7.93725i q^{83} -4.35425 q^{84} +(-0.354249 + 0.613577i) q^{86} +9.64575i q^{87} -0.645751i q^{88} +(1.64575 - 2.85052i) q^{91} +(3.15731 - 1.82288i) q^{92} +(-0.811686 + 0.468627i) q^{93} -9.64575 q^{94} -2.64575 q^{96} +(-12.3768 + 7.14575i) q^{97} +(3.71655 - 2.14575i) q^{98} +(1.29150 - 2.23695i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{4} + 16 q^{9} - 16 q^{11} + 4 q^{14} - 4 q^{16} - 24 q^{19} - 28 q^{21} + 16 q^{26} - 4 q^{29} - 24 q^{31} - 16 q^{36} - 20 q^{41} - 8 q^{44} + 8 q^{46} - 8 q^{49} + 8 q^{56} + 28 q^{61} - 8 q^{64}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/950\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i
\(3\) 2.29129 1.32288i 1.32288 0.763763i 0.338689 0.940898i \(-0.390016\pi\)
0.984186 + 0.177136i \(0.0566831\pi\)
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 0 0
\(6\) 1.32288 2.29129i 0.540062 0.935414i
\(7\) 1.64575i 0.622036i −0.950404 0.311018i \(-0.899330\pi\)
0.950404 0.311018i \(-0.100670\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 2.00000 3.46410i 0.666667 1.15470i
\(10\) 0 0
\(11\) 0.645751 0.194701 0.0973507 0.995250i \(-0.468963\pi\)
0.0973507 + 0.995250i \(0.468963\pi\)
\(12\) 2.64575i 0.763763i
\(13\) 1.73205 + 1.00000i 0.480384 + 0.277350i 0.720577 0.693375i \(-0.243877\pi\)
−0.240192 + 0.970725i \(0.577210\pi\)
\(14\) −0.822876 1.42526i −0.219923 0.380917i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(18\) 4.00000i 0.942809i
\(19\) −4.32288 + 0.559237i −0.991736 + 0.128298i
\(20\) 0 0
\(21\) −2.17712 3.77089i −0.475087 0.822876i
\(22\) 0.559237 0.322876i 0.119230 0.0688373i
\(23\) 3.15731 + 1.82288i 0.658345 + 0.380096i 0.791646 0.610980i \(-0.209224\pi\)
−0.133301 + 0.991076i \(0.542558\pi\)
\(24\) −1.32288 2.29129i −0.270031 0.467707i
\(25\) 0 0
\(26\) 2.00000 0.392232
\(27\) 2.64575i 0.509175i
\(28\) −1.42526 0.822876i −0.269349 0.155509i
\(29\) −1.82288 + 3.15731i −0.338500 + 0.586298i −0.984151 0.177334i \(-0.943253\pi\)
0.645651 + 0.763632i \(0.276586\pi\)
\(30\) 0 0
\(31\) −0.354249 −0.0636249 −0.0318125 0.999494i \(-0.510128\pi\)
−0.0318125 + 0.999494i \(0.510128\pi\)
\(32\) −0.866025 0.500000i −0.153093 0.0883883i
\(33\) 1.47960 0.854249i 0.257566 0.148706i
\(34\) 0 0
\(35\) 0 0
\(36\) −2.00000 3.46410i −0.333333 0.577350i
\(37\) 5.64575i 0.928156i 0.885794 + 0.464078i \(0.153614\pi\)
−0.885794 + 0.464078i \(0.846386\pi\)
\(38\) −3.46410 + 2.64575i −0.561951 + 0.429198i
\(39\) 5.29150 0.847319
\(40\) 0 0
\(41\) −5.14575 8.91270i −0.803631 1.39193i −0.917211 0.398401i \(-0.869565\pi\)
0.113580 0.993529i \(-0.463768\pi\)
\(42\) −3.77089 2.17712i −0.581861 0.335938i
\(43\) −0.613577 + 0.354249i −0.0935696 + 0.0540224i −0.546055 0.837750i \(-0.683871\pi\)
0.452485 + 0.891772i \(0.350538\pi\)
\(44\) 0.322876 0.559237i 0.0486753 0.0843082i
\(45\) 0 0
\(46\) 3.64575 0.537537
\(47\) −8.35347 4.82288i −1.21848 0.703489i −0.253886 0.967234i \(-0.581709\pi\)
−0.964592 + 0.263745i \(0.915042\pi\)
\(48\) −2.29129 1.32288i −0.330719 0.190941i
\(49\) 4.29150 0.613072
\(50\) 0 0
\(51\) 0 0
\(52\) 1.73205 1.00000i 0.240192 0.138675i
\(53\) 7.43310 + 4.29150i 1.02101 + 0.589483i 0.914398 0.404817i \(-0.132665\pi\)
0.106617 + 0.994300i \(0.465998\pi\)
\(54\) −1.32288 2.29129i −0.180021 0.311805i
\(55\) 0 0
\(56\) −1.64575 −0.219923
\(57\) −9.16515 + 7.00000i −1.21395 + 0.927173i
\(58\) 3.64575i 0.478711i
\(59\) 3.96863 + 6.87386i 0.516671 + 0.894901i 0.999813 + 0.0193585i \(0.00616237\pi\)
−0.483141 + 0.875542i \(0.660504\pi\)
\(60\) 0 0
\(61\) 7.46863 12.9360i 0.956260 1.65629i 0.224801 0.974405i \(-0.427827\pi\)
0.731459 0.681886i \(-0.238840\pi\)
\(62\) −0.306788 + 0.177124i −0.0389622 + 0.0224948i
\(63\) −5.70105 3.29150i −0.718265 0.414690i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 0.854249 1.47960i 0.105151 0.182126i
\(67\) 4.02334 + 2.32288i 0.491529 + 0.283784i 0.725209 0.688529i \(-0.241743\pi\)
−0.233680 + 0.972314i \(0.575077\pi\)
\(68\) 0 0
\(69\) 9.64575 1.16121
\(70\) 0 0
\(71\) 6.64575 + 11.5108i 0.788706 + 1.36608i 0.926760 + 0.375654i \(0.122582\pi\)
−0.138055 + 0.990425i \(0.544085\pi\)
\(72\) −3.46410 2.00000i −0.408248 0.235702i
\(73\) −10.6448 + 6.14575i −1.24587 + 0.719306i −0.970284 0.241969i \(-0.922207\pi\)
−0.275590 + 0.961275i \(0.588873\pi\)
\(74\) 2.82288 + 4.88936i 0.328153 + 0.568377i
\(75\) 0 0
\(76\) −1.67712 + 4.02334i −0.192379 + 0.461509i
\(77\) 1.06275i 0.121111i
\(78\) 4.58258 2.64575i 0.518875 0.299572i
\(79\) −2.00000 3.46410i −0.225018 0.389742i 0.731307 0.682048i \(-0.238911\pi\)
−0.956325 + 0.292306i \(0.905577\pi\)
\(80\) 0 0
\(81\) 2.50000 + 4.33013i 0.277778 + 0.481125i
\(82\) −8.91270 5.14575i −0.984243 0.568253i
\(83\) 7.93725i 0.871227i 0.900134 + 0.435613i \(0.143469\pi\)
−0.900134 + 0.435613i \(0.856531\pi\)
\(84\) −4.35425 −0.475087
\(85\) 0 0
\(86\) −0.354249 + 0.613577i −0.0381996 + 0.0661637i
\(87\) 9.64575i 1.03413i
\(88\) 0.645751i 0.0688373i
\(89\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(90\) 0 0
\(91\) 1.64575 2.85052i 0.172522 0.298816i
\(92\) 3.15731 1.82288i 0.329173 0.190048i
\(93\) −0.811686 + 0.468627i −0.0841679 + 0.0485944i
\(94\) −9.64575 −0.994883
\(95\) 0 0
\(96\) −2.64575 −0.270031
\(97\) −12.3768 + 7.14575i −1.25667 + 0.725541i −0.972426 0.233210i \(-0.925077\pi\)
−0.284248 + 0.958751i \(0.591744\pi\)
\(98\) 3.71655 2.14575i 0.375428 0.216754i
\(99\) 1.29150 2.23695i 0.129801 0.224822i
\(100\) 0 0
\(101\) 4.17712 7.23499i 0.415639 0.719909i −0.579856 0.814719i \(-0.696891\pi\)
0.995495 + 0.0948105i \(0.0302245\pi\)
\(102\) 0 0
\(103\) 2.70850i 0.266876i 0.991057 + 0.133438i \(0.0426017\pi\)
−0.991057 + 0.133438i \(0.957398\pi\)
\(104\) 1.00000 1.73205i 0.0980581 0.169842i
\(105\) 0 0
\(106\) 8.58301 0.833655
\(107\) 4.70850i 0.455188i 0.973756 + 0.227594i \(0.0730858\pi\)
−0.973756 + 0.227594i \(0.926914\pi\)
\(108\) −2.29129 1.32288i −0.220479 0.127294i
\(109\) −3.29150 5.70105i −0.315269 0.546062i 0.664226 0.747532i \(-0.268761\pi\)
−0.979495 + 0.201470i \(0.935428\pi\)
\(110\) 0 0
\(111\) 7.46863 + 12.9360i 0.708891 + 1.22783i
\(112\) −1.42526 + 0.822876i −0.134675 + 0.0777544i
\(113\) 5.58301i 0.525205i −0.964904 0.262602i \(-0.915419\pi\)
0.964904 0.262602i \(-0.0845808\pi\)
\(114\) −4.43725 + 10.6448i −0.415587 + 0.996973i
\(115\) 0 0
\(116\) 1.82288 + 3.15731i 0.169250 + 0.293149i
\(117\) 6.92820 4.00000i 0.640513 0.369800i
\(118\) 6.87386 + 3.96863i 0.632790 + 0.365342i
\(119\) 0 0
\(120\) 0 0
\(121\) −10.5830 −0.962091
\(122\) 14.9373i 1.35236i
\(123\) −23.5808 13.6144i −2.12621 1.22757i
\(124\) −0.177124 + 0.306788i −0.0159062 + 0.0275504i
\(125\) 0 0
\(126\) −6.58301 −0.586461
\(127\) 2.34563 + 1.35425i 0.208141 + 0.120170i 0.600447 0.799665i \(-0.294989\pi\)
−0.392306 + 0.919835i \(0.628323\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) −0.937254 + 1.62337i −0.0825206 + 0.142930i
\(130\) 0 0
\(131\) 6.96863 + 12.0700i 0.608852 + 1.05456i 0.991430 + 0.130639i \(0.0417029\pi\)
−0.382578 + 0.923923i \(0.624964\pi\)
\(132\) 1.70850i 0.148706i
\(133\) 0.920365 + 7.11438i 0.0798058 + 0.616895i
\(134\) 4.64575 0.401332
\(135\) 0 0
\(136\) 0 0
\(137\) 4.83502 + 2.79150i 0.413084 + 0.238494i 0.692114 0.721788i \(-0.256680\pi\)
−0.279030 + 0.960282i \(0.590013\pi\)
\(138\) 8.35347 4.82288i 0.711094 0.410550i
\(139\) 6.67712 11.5651i 0.566346 0.980941i −0.430577 0.902554i \(-0.641690\pi\)
0.996923 0.0783866i \(-0.0249768\pi\)
\(140\) 0 0
\(141\) −25.5203 −2.14919
\(142\) 11.5108 + 6.64575i 0.965963 + 0.557699i
\(143\) 1.11847 + 0.645751i 0.0935315 + 0.0540004i
\(144\) −4.00000 −0.333333
\(145\) 0 0
\(146\) −6.14575 + 10.6448i −0.508626 + 0.880966i
\(147\) 9.83307 5.67712i 0.811018 0.468241i
\(148\) 4.88936 + 2.82288i 0.401903 + 0.232039i
\(149\) −2.46863 4.27579i −0.202238 0.350286i 0.747011 0.664811i \(-0.231488\pi\)
−0.949249 + 0.314525i \(0.898155\pi\)
\(150\) 0 0
\(151\) −2.93725 −0.239030 −0.119515 0.992832i \(-0.538134\pi\)
−0.119515 + 0.992832i \(0.538134\pi\)
\(152\) 0.559237 + 4.32288i 0.0453601 + 0.350632i
\(153\) 0 0
\(154\) −0.531373 0.920365i −0.0428193 0.0741651i
\(155\) 0 0
\(156\) 2.64575 4.58258i 0.211830 0.366900i
\(157\) 9.16515 5.29150i 0.731459 0.422308i −0.0874969 0.996165i \(-0.527887\pi\)
0.818956 + 0.573857i \(0.194553\pi\)
\(158\) −3.46410 2.00000i −0.275589 0.159111i
\(159\) 22.7085 1.80090
\(160\) 0 0
\(161\) 3.00000 5.19615i 0.236433 0.409514i
\(162\) 4.33013 + 2.50000i 0.340207 + 0.196419i
\(163\) 11.9373i 0.934998i 0.883994 + 0.467499i \(0.154845\pi\)
−0.883994 + 0.467499i \(0.845155\pi\)
\(164\) −10.2915 −0.803631
\(165\) 0 0
\(166\) 3.96863 + 6.87386i 0.308025 + 0.533515i
\(167\) 10.3923 + 6.00000i 0.804181 + 0.464294i 0.844931 0.534875i \(-0.179641\pi\)
−0.0407502 + 0.999169i \(0.512975\pi\)
\(168\) −3.77089 + 2.17712i −0.290930 + 0.167969i
\(169\) −4.50000 7.79423i −0.346154 0.599556i
\(170\) 0 0
\(171\) −6.70850 + 16.0934i −0.513012 + 1.23069i
\(172\) 0.708497i 0.0540224i
\(173\) 5.19615 3.00000i 0.395056 0.228086i −0.289292 0.957241i \(-0.593420\pi\)
0.684349 + 0.729155i \(0.260087\pi\)
\(174\) 4.82288 + 8.35347i 0.365621 + 0.633275i
\(175\) 0 0
\(176\) −0.322876 0.559237i −0.0243377 0.0421541i
\(177\) 18.1865 + 10.5000i 1.36698 + 0.789228i
\(178\) 0 0
\(179\) −19.9373 −1.49018 −0.745090 0.666964i \(-0.767594\pi\)
−0.745090 + 0.666964i \(0.767594\pi\)
\(180\) 0 0
\(181\) 2.11438 3.66221i 0.157160 0.272210i −0.776683 0.629892i \(-0.783099\pi\)
0.933844 + 0.357682i \(0.116433\pi\)
\(182\) 3.29150i 0.243982i
\(183\) 39.5203i 2.92142i
\(184\) 1.82288 3.15731i 0.134384 0.232760i
\(185\) 0 0
\(186\) −0.468627 + 0.811686i −0.0343614 + 0.0595157i
\(187\) 0 0
\(188\) −8.35347 + 4.82288i −0.609239 + 0.351744i
\(189\) −4.35425 −0.316725
\(190\) 0 0
\(191\) −14.5830 −1.05519 −0.527595 0.849496i \(-0.676906\pi\)
−0.527595 + 0.849496i \(0.676906\pi\)
\(192\) −2.29129 + 1.32288i −0.165359 + 0.0954703i
\(193\) 5.70105 3.29150i 0.410371 0.236928i −0.280578 0.959831i \(-0.590526\pi\)
0.690949 + 0.722904i \(0.257193\pi\)
\(194\) −7.14575 + 12.3768i −0.513035 + 0.888603i
\(195\) 0 0
\(196\) 2.14575 3.71655i 0.153268 0.265468i
\(197\) 2.35425i 0.167733i −0.996477 0.0838666i \(-0.973273\pi\)
0.996477 0.0838666i \(-0.0267270\pi\)
\(198\) 2.58301i 0.183566i
\(199\) 5.93725 10.2836i 0.420881 0.728987i −0.575145 0.818051i \(-0.695054\pi\)
0.996026 + 0.0890645i \(0.0283877\pi\)
\(200\) 0 0
\(201\) 12.2915 0.866976
\(202\) 8.35425i 0.587803i
\(203\) 5.19615 + 3.00000i 0.364698 + 0.210559i
\(204\) 0 0
\(205\) 0 0
\(206\) 1.35425 + 2.34563i 0.0943550 + 0.163428i
\(207\) 12.6293 7.29150i 0.877794 0.506794i
\(208\) 2.00000i 0.138675i
\(209\) −2.79150 + 0.361128i −0.193092 + 0.0249797i
\(210\) 0 0
\(211\) 1.35425 + 2.34563i 0.0932303 + 0.161480i 0.908869 0.417082i \(-0.136947\pi\)
−0.815638 + 0.578562i \(0.803614\pi\)
\(212\) 7.43310 4.29150i 0.510507 0.294742i
\(213\) 30.4547 + 17.5830i 2.08672 + 1.20477i
\(214\) 2.35425 + 4.07768i 0.160933 + 0.278744i
\(215\) 0 0
\(216\) −2.64575 −0.180021
\(217\) 0.583005i 0.0395770i
\(218\) −5.70105 3.29150i −0.386124 0.222929i
\(219\) −16.2601 + 28.1634i −1.09876 + 1.90310i
\(220\) 0 0
\(221\) 0 0
\(222\) 12.9360 + 7.46863i 0.868210 + 0.501261i
\(223\) −24.9517 + 14.4059i −1.67089 + 0.964689i −0.703750 + 0.710448i \(0.748492\pi\)
−0.967141 + 0.254241i \(0.918174\pi\)
\(224\) −0.822876 + 1.42526i −0.0549807 + 0.0952294i
\(225\) 0 0
\(226\) −2.79150 4.83502i −0.185688 0.321621i
\(227\) 12.6458i 0.839328i −0.907680 0.419664i \(-0.862148\pi\)
0.907680 0.419664i \(-0.137852\pi\)
\(228\) 1.47960 + 11.4373i 0.0979890 + 0.757451i
\(229\) −20.0000 −1.32164 −0.660819 0.750546i \(-0.729791\pi\)
−0.660819 + 0.750546i \(0.729791\pi\)
\(230\) 0 0
\(231\) −1.40588 2.43506i −0.0925002 0.160215i
\(232\) 3.15731 + 1.82288i 0.207288 + 0.119678i
\(233\) 11.1497 6.43725i 0.730438 0.421719i −0.0881444 0.996108i \(-0.528094\pi\)
0.818582 + 0.574389i \(0.194760\pi\)
\(234\) 4.00000 6.92820i 0.261488 0.452911i
\(235\) 0 0
\(236\) 7.93725 0.516671
\(237\) −9.16515 5.29150i −0.595341 0.343720i
\(238\) 0 0
\(239\) 12.0000 0.776215 0.388108 0.921614i \(-0.373129\pi\)
0.388108 + 0.921614i \(0.373129\pi\)
\(240\) 0 0
\(241\) −6.79150 + 11.7632i −0.437479 + 0.757736i −0.997494 0.0707462i \(-0.977462\pi\)
0.560015 + 0.828482i \(0.310795\pi\)
\(242\) −9.16515 + 5.29150i −0.589158 + 0.340151i
\(243\) 18.3303 + 10.5830i 1.17589 + 0.678900i
\(244\) −7.46863 12.9360i −0.478130 0.828145i
\(245\) 0 0
\(246\) −27.2288 −1.73604
\(247\) −8.04668 3.35425i −0.511998 0.213426i
\(248\) 0.354249i 0.0224948i
\(249\) 10.5000 + 18.1865i 0.665410 + 1.15252i
\(250\) 0 0
\(251\) −1.38562 + 2.39997i −0.0874597 + 0.151485i −0.906437 0.422342i \(-0.861208\pi\)
0.818977 + 0.573826i \(0.194542\pi\)
\(252\) −5.70105 + 3.29150i −0.359132 + 0.207345i
\(253\) 2.03884 + 1.17712i 0.128181 + 0.0740052i
\(254\) 2.70850 0.169946
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −1.47960 0.854249i −0.0922950 0.0532866i 0.453142 0.891438i \(-0.350303\pi\)
−0.545437 + 0.838152i \(0.683636\pi\)
\(258\) 1.87451i 0.116702i
\(259\) 9.29150 0.577346
\(260\) 0 0
\(261\) 7.29150 + 12.6293i 0.451333 + 0.781731i
\(262\) 12.0700 + 6.96863i 0.745688 + 0.430523i
\(263\) −4.27579 + 2.46863i −0.263656 + 0.152222i −0.626001 0.779822i \(-0.715310\pi\)
0.362345 + 0.932044i \(0.381976\pi\)
\(264\) −0.854249 1.47960i −0.0525754 0.0910632i
\(265\) 0 0
\(266\) 4.35425 + 5.70105i 0.266976 + 0.349554i
\(267\) 0 0
\(268\) 4.02334 2.32288i 0.245765 0.141892i
\(269\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(270\) 0 0
\(271\) −8.82288 15.2817i −0.535952 0.928295i −0.999117 0.0420233i \(-0.986620\pi\)
0.463165 0.886272i \(-0.346714\pi\)
\(272\) 0 0
\(273\) 8.70850i 0.527062i
\(274\) 5.58301 0.337282
\(275\) 0 0
\(276\) 4.82288 8.35347i 0.290303 0.502820i
\(277\) 9.52026i 0.572017i 0.958227 + 0.286008i \(0.0923285\pi\)
−0.958227 + 0.286008i \(0.907671\pi\)
\(278\) 13.3542i 0.800935i
\(279\) −0.708497 + 1.22715i −0.0424166 + 0.0734678i
\(280\) 0 0
\(281\) 13.7288 23.7789i 0.818989 1.41853i −0.0874389 0.996170i \(-0.527868\pi\)
0.906428 0.422361i \(-0.138798\pi\)
\(282\) −22.1012 + 12.7601i −1.31611 + 0.759855i
\(283\) −21.9574 + 12.6771i −1.30523 + 0.753577i −0.981297 0.192502i \(-0.938340\pi\)
−0.323937 + 0.946079i \(0.605007\pi\)
\(284\) 13.2915 0.788706
\(285\) 0 0
\(286\) 1.29150 0.0763682
\(287\) −14.6681 + 8.46863i −0.865830 + 0.499887i
\(288\) −3.46410 + 2.00000i −0.204124 + 0.117851i
\(289\) −8.50000 + 14.7224i −0.500000 + 0.866025i
\(290\) 0 0
\(291\) −18.9059 + 32.7459i −1.10828 + 1.91960i
\(292\) 12.2915i 0.719306i
\(293\) 13.0627i 0.763134i −0.924341 0.381567i \(-0.875385\pi\)
0.924341 0.381567i \(-0.124615\pi\)
\(294\) 5.67712 9.83307i 0.331097 0.573476i
\(295\) 0 0
\(296\) 5.64575 0.328153
\(297\) 1.70850i 0.0991371i
\(298\) −4.27579 2.46863i −0.247690 0.143004i
\(299\) 3.64575 + 6.31463i 0.210839 + 0.365184i
\(300\) 0 0
\(301\) 0.583005 + 1.00979i 0.0336039 + 0.0582036i
\(302\) −2.54374 + 1.46863i −0.146376 + 0.0845100i
\(303\) 22.1033i 1.26980i
\(304\) 2.64575 + 3.46410i 0.151744 + 0.198680i
\(305\) 0 0
\(306\) 0 0
\(307\) −4.02334 + 2.32288i −0.229624 + 0.132574i −0.610399 0.792094i \(-0.708991\pi\)
0.380775 + 0.924668i \(0.375657\pi\)
\(308\) −0.920365 0.531373i −0.0524427 0.0302778i
\(309\) 3.58301 + 6.20595i 0.203830 + 0.353044i
\(310\) 0 0
\(311\) 8.35425 0.473726 0.236863 0.971543i \(-0.423881\pi\)
0.236863 + 0.971543i \(0.423881\pi\)
\(312\) 5.29150i 0.299572i
\(313\) −19.8099 11.4373i −1.11972 0.646472i −0.178392 0.983959i \(-0.557090\pi\)
−0.941330 + 0.337488i \(0.890423\pi\)
\(314\) 5.29150 9.16515i 0.298617 0.517219i
\(315\) 0 0
\(316\) −4.00000 −0.225018
\(317\) 5.19615 + 3.00000i 0.291845 + 0.168497i 0.638774 0.769395i \(-0.279442\pi\)
−0.346929 + 0.937892i \(0.612775\pi\)
\(318\) 19.6661 11.3542i 1.10282 0.636715i
\(319\) −1.17712 + 2.03884i −0.0659063 + 0.114153i
\(320\) 0 0
\(321\) 6.22876 + 10.7885i 0.347655 + 0.602157i
\(322\) 6.00000i 0.334367i
\(323\) 0 0
\(324\) 5.00000 0.277778
\(325\) 0 0
\(326\) 5.96863 + 10.3380i 0.330572 + 0.572567i
\(327\) −15.0836 8.70850i −0.834123 0.481581i
\(328\) −8.91270 + 5.14575i −0.492122 + 0.284127i
\(329\) −7.93725 + 13.7477i −0.437595 + 0.757937i
\(330\) 0 0
\(331\) −27.8118 −1.52867 −0.764336 0.644818i \(-0.776933\pi\)
−0.764336 + 0.644818i \(0.776933\pi\)
\(332\) 6.87386 + 3.96863i 0.377252 + 0.217807i
\(333\) 19.5575 + 11.2915i 1.07174 + 0.618771i
\(334\) 12.0000 0.656611
\(335\) 0 0
\(336\) −2.17712 + 3.77089i −0.118772 + 0.205719i
\(337\) −17.5730 + 10.1458i −0.957260 + 0.552674i −0.895329 0.445406i \(-0.853059\pi\)
−0.0619313 + 0.998080i \(0.519726\pi\)
\(338\) −7.79423 4.50000i −0.423950 0.244768i
\(339\) −7.38562 12.7923i −0.401132 0.694781i
\(340\) 0 0
\(341\) −0.228757 −0.0123879
\(342\) 2.23695 + 17.2915i 0.120960 + 0.935017i
\(343\) 18.5830i 1.00339i
\(344\) 0.354249 + 0.613577i 0.0190998 + 0.0330818i
\(345\) 0 0
\(346\) 3.00000 5.19615i 0.161281 0.279347i
\(347\) 2.79619 1.61438i 0.150107 0.0866644i −0.423065 0.906099i \(-0.639046\pi\)
0.573172 + 0.819435i \(0.305713\pi\)
\(348\) 8.35347 + 4.82288i 0.447793 + 0.258533i
\(349\) 21.1660 1.13299 0.566495 0.824065i \(-0.308299\pi\)
0.566495 + 0.824065i \(0.308299\pi\)
\(350\) 0 0
\(351\) 2.64575 4.58258i 0.141220 0.244600i
\(352\) −0.559237 0.322876i −0.0298074 0.0172093i
\(353\) 18.8745i 1.00459i 0.864697 + 0.502294i \(0.167511\pi\)
−0.864697 + 0.502294i \(0.832489\pi\)
\(354\) 21.0000 1.11614
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) −17.2662 + 9.96863i −0.912545 + 0.526858i
\(359\) 5.46863 + 9.47194i 0.288623 + 0.499910i 0.973481 0.228766i \(-0.0734692\pi\)
−0.684858 + 0.728676i \(0.740136\pi\)
\(360\) 0 0
\(361\) 18.3745 4.83502i 0.967079 0.254475i
\(362\) 4.22876i 0.222259i
\(363\) −24.2487 + 14.0000i −1.27273 + 0.734809i
\(364\) −1.64575 2.85052i −0.0862608 0.149408i
\(365\) 0 0
\(366\) −19.7601 34.2255i −1.03288 1.78900i
\(367\) 8.85836 + 5.11438i 0.462403 + 0.266968i 0.713054 0.701109i \(-0.247311\pi\)
−0.250651 + 0.968077i \(0.580645\pi\)
\(368\) 3.64575i 0.190048i
\(369\) −41.1660 −2.14302
\(370\) 0 0
\(371\) 7.06275 12.2330i 0.366680 0.635108i
\(372\) 0.937254i 0.0485944i
\(373\) 4.00000i 0.207112i 0.994624 + 0.103556i \(0.0330221\pi\)
−0.994624 + 0.103556i \(0.966978\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −4.82288 + 8.35347i −0.248721 + 0.430797i
\(377\) −6.31463 + 3.64575i −0.325220 + 0.187766i
\(378\) −3.77089 + 2.17712i −0.193954 + 0.111979i
\(379\) −21.2915 −1.09367 −0.546836 0.837240i \(-0.684168\pi\)
−0.546836 + 0.837240i \(0.684168\pi\)
\(380\) 0 0
\(381\) 7.16601 0.367126
\(382\) −12.6293 + 7.29150i −0.646169 + 0.373066i
\(383\) 27.2973 15.7601i 1.39483 0.805305i 0.400984 0.916085i \(-0.368668\pi\)
0.993845 + 0.110780i \(0.0353349\pi\)
\(384\) −1.32288 + 2.29129i −0.0675077 + 0.116927i
\(385\) 0 0
\(386\) 3.29150 5.70105i 0.167533 0.290176i
\(387\) 2.83399i 0.144060i
\(388\) 14.2915i 0.725541i
\(389\) 6.00000 10.3923i 0.304212 0.526911i −0.672874 0.739758i \(-0.734940\pi\)
0.977086 + 0.212847i \(0.0682735\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 4.29150i 0.216754i
\(393\) 31.9343 + 18.4373i 1.61087 + 0.930036i
\(394\) −1.17712 2.03884i −0.0593027 0.102715i
\(395\) 0 0
\(396\) −1.29150 2.23695i −0.0649004 0.112411i
\(397\) 31.9886 18.4686i 1.60546 0.926914i 0.615094 0.788454i \(-0.289118\pi\)
0.990368 0.138460i \(-0.0442152\pi\)
\(398\) 11.8745i 0.595215i
\(399\) 11.5203 + 15.0836i 0.576734 + 0.755122i
\(400\) 0 0
\(401\) −3.20850 5.55728i −0.160225 0.277517i 0.774724 0.632299i \(-0.217889\pi\)
−0.934949 + 0.354782i \(0.884555\pi\)
\(402\) 10.6448 6.14575i 0.530912 0.306522i
\(403\) −0.613577 0.354249i −0.0305644 0.0176464i
\(404\) −4.17712 7.23499i −0.207820 0.359954i
\(405\) 0 0
\(406\) 6.00000 0.297775
\(407\) 3.64575i 0.180713i
\(408\) 0 0
\(409\) 6.79150 11.7632i 0.335818 0.581654i −0.647823 0.761790i \(-0.724321\pi\)
0.983642 + 0.180136i \(0.0576539\pi\)
\(410\) 0 0
\(411\) 14.7712 0.728612
\(412\) 2.34563 + 1.35425i 0.115561 + 0.0667190i
\(413\) 11.3127 6.53137i 0.556660 0.321388i
\(414\) 7.29150 12.6293i 0.358358 0.620694i
\(415\) 0 0
\(416\) −1.00000 1.73205i −0.0490290 0.0849208i
\(417\) 35.3320i 1.73022i
\(418\) −2.23695 + 1.70850i −0.109413 + 0.0835653i
\(419\) −31.7490 −1.55104 −0.775520 0.631322i \(-0.782512\pi\)
−0.775520 + 0.631322i \(0.782512\pi\)
\(420\) 0 0
\(421\) −11.4059 19.7556i −0.555889 0.962827i −0.997834 0.0657853i \(-0.979045\pi\)
0.441945 0.897042i \(-0.354289\pi\)
\(422\) 2.34563 + 1.35425i 0.114183 + 0.0659238i
\(423\) −33.4139 + 19.2915i −1.62464 + 0.937985i
\(424\) 4.29150 7.43310i 0.208414 0.360983i
\(425\) 0 0
\(426\) 35.1660 1.70380
\(427\) −21.2895 12.2915i −1.03027 0.594828i
\(428\) 4.07768 + 2.35425i 0.197102 + 0.113797i
\(429\) 3.41699 0.164974
\(430\) 0 0
\(431\) 1.93725 3.35542i 0.0933142 0.161625i −0.815590 0.578631i \(-0.803587\pi\)
0.908904 + 0.417006i \(0.136921\pi\)
\(432\) −2.29129 + 1.32288i −0.110240 + 0.0636469i
\(433\) −12.0157 6.93725i −0.577437 0.333383i 0.182677 0.983173i \(-0.441524\pi\)
−0.760114 + 0.649790i \(0.774857\pi\)
\(434\) 0.291503 + 0.504897i 0.0139926 + 0.0242358i
\(435\) 0 0
\(436\) −6.58301 −0.315269
\(437\) −14.6681 6.11438i −0.701670 0.292490i
\(438\) 32.5203i 1.55388i
\(439\) −18.4059 31.8799i −0.878465 1.52155i −0.853025 0.521869i \(-0.825235\pi\)
−0.0254393 0.999676i \(-0.508098\pi\)
\(440\) 0 0
\(441\) 8.58301 14.8662i 0.408715 0.707914i
\(442\) 0 0
\(443\) 4.63692 + 2.67712i 0.220306 + 0.127194i 0.606092 0.795394i \(-0.292736\pi\)
−0.385786 + 0.922588i \(0.626070\pi\)
\(444\) 14.9373 0.708891
\(445\) 0 0
\(446\) −14.4059 + 24.9517i −0.682138 + 1.18150i
\(447\) −11.3127 6.53137i −0.535071 0.308923i
\(448\) 1.64575i 0.0777544i
\(449\) 13.7085 0.646944 0.323472 0.946238i \(-0.395150\pi\)
0.323472 + 0.946238i \(0.395150\pi\)
\(450\) 0 0
\(451\) −3.32288 5.75539i −0.156468 0.271011i
\(452\) −4.83502 2.79150i −0.227420 0.131301i
\(453\) −6.73009 + 3.88562i −0.316207 + 0.182562i
\(454\) −6.32288 10.9515i −0.296747 0.513981i
\(455\) 0 0
\(456\) 7.00000 + 9.16515i 0.327805 + 0.429198i
\(457\) 1.12549i 0.0526483i 0.999653 + 0.0263242i \(0.00838021\pi\)
−0.999653 + 0.0263242i \(0.991620\pi\)
\(458\) −17.3205 + 10.0000i −0.809334 + 0.467269i
\(459\) 0 0
\(460\) 0 0
\(461\) 11.5830 + 20.0624i 0.539474 + 0.934397i 0.998932 + 0.0461975i \(0.0147103\pi\)
−0.459458 + 0.888200i \(0.651956\pi\)
\(462\) −2.43506 1.40588i −0.113289 0.0654075i
\(463\) 14.4575i 0.671898i −0.941880 0.335949i \(-0.890943\pi\)
0.941880 0.335949i \(-0.109057\pi\)
\(464\) 3.64575 0.169250
\(465\) 0 0
\(466\) 6.43725 11.1497i 0.298200 0.516498i
\(467\) 24.6458i 1.14047i −0.821482 0.570235i \(-0.806852\pi\)
0.821482 0.570235i \(-0.193148\pi\)
\(468\) 8.00000i 0.369800i
\(469\) 3.82288 6.62141i 0.176524 0.305749i
\(470\) 0 0
\(471\) 14.0000 24.2487i 0.645086 1.11732i
\(472\) 6.87386 3.96863i 0.316395 0.182671i
\(473\) −0.396218 + 0.228757i −0.0182181 + 0.0105182i
\(474\) −10.5830 −0.486094
\(475\) 0 0
\(476\) 0 0
\(477\) 29.7324 17.1660i 1.36135 0.785978i
\(478\) 10.3923 6.00000i 0.475333 0.274434i
\(479\) −7.29150 + 12.6293i −0.333157 + 0.577045i −0.983129 0.182913i \(-0.941447\pi\)
0.649972 + 0.759958i \(0.274781\pi\)
\(480\) 0 0
\(481\) −5.64575 + 9.77873i −0.257424 + 0.445872i
\(482\) 13.5830i 0.618689i
\(483\) 15.8745i 0.722315i
\(484\) −5.29150 + 9.16515i −0.240523 + 0.416598i
\(485\) 0 0
\(486\) 21.1660 0.960110
\(487\) 22.2288i 1.00728i −0.863913 0.503641i \(-0.831994\pi\)
0.863913 0.503641i \(-0.168006\pi\)
\(488\) −12.9360 7.46863i −0.585587 0.338089i
\(489\) 15.7915 + 27.3517i 0.714116 + 1.23689i
\(490\) 0 0
\(491\) −14.3542 24.8623i −0.647798 1.12202i −0.983648 0.180104i \(-0.942357\pi\)
0.335849 0.941916i \(-0.390977\pi\)
\(492\) −23.5808 + 13.6144i −1.06310 + 0.613784i
\(493\) 0 0
\(494\) −8.64575 + 1.11847i −0.388991 + 0.0503225i
\(495\) 0 0
\(496\) 0.177124 + 0.306788i 0.00795312 + 0.0137752i
\(497\) 18.9439 10.9373i 0.849749 0.490603i
\(498\) 18.1865 + 10.5000i 0.814958 + 0.470516i
\(499\) −15.6144 27.0449i −0.698996 1.21070i −0.968815 0.247785i \(-0.920297\pi\)
0.269819 0.962911i \(-0.413036\pi\)
\(500\) 0 0
\(501\) 31.7490 1.41844
\(502\) 2.77124i 0.123687i
\(503\) −21.7050 12.5314i −0.967777 0.558746i −0.0692192 0.997601i \(-0.522051\pi\)
−0.898558 + 0.438855i \(0.855384\pi\)
\(504\) −3.29150 + 5.70105i −0.146615 + 0.253945i
\(505\) 0 0
\(506\) 2.35425 0.104659
\(507\) −20.6216 11.9059i −0.915837 0.528759i
\(508\) 2.34563 1.35425i 0.104070 0.0600851i
\(509\) 15.8745 27.4955i 0.703625 1.21871i −0.263560 0.964643i \(-0.584897\pi\)
0.967185 0.254072i \(-0.0817699\pi\)
\(510\) 0 0
\(511\) 10.1144 + 17.5186i 0.447434 + 0.774978i
\(512\) 1.00000i 0.0441942i
\(513\) 1.47960 + 11.4373i 0.0653260 + 0.504967i
\(514\) −1.70850 −0.0753586
\(515\) 0 0
\(516\) 0.937254 + 1.62337i 0.0412603 + 0.0714649i
\(517\) −5.39426 3.11438i −0.237239 0.136970i
\(518\) 8.04668 4.64575i 0.353551 0.204123i
\(519\) 7.93725 13.7477i 0.348407 0.603458i
\(520\) 0 0
\(521\) −22.2915 −0.976608 −0.488304 0.872673i \(-0.662384\pi\)
−0.488304 + 0.872673i \(0.662384\pi\)
\(522\) 12.6293 + 7.29150i 0.552767 + 0.319140i
\(523\) 25.8721 + 14.9373i 1.13131 + 0.653161i 0.944263 0.329191i \(-0.106776\pi\)
0.187044 + 0.982352i \(0.440109\pi\)
\(524\) 13.9373 0.608852
\(525\) 0 0
\(526\) −2.46863 + 4.27579i −0.107637 + 0.186433i
\(527\) 0 0
\(528\) −1.47960 0.854249i −0.0643914 0.0371764i
\(529\) −4.85425 8.40781i −0.211054 0.365557i
\(530\) 0 0
\(531\) 31.7490 1.37779
\(532\) 6.62141 + 2.76013i 0.287075 + 0.119667i
\(533\) 20.5830i 0.891549i
\(534\) 0 0
\(535\) 0 0
\(536\) 2.32288 4.02334i 0.100333 0.173782i
\(537\) −45.6820 + 26.3745i −1.97132 + 1.13814i
\(538\) 0 0
\(539\) 2.77124 0.119366
\(540\) 0 0
\(541\) −4.00000 + 6.92820i −0.171973 + 0.297867i −0.939110 0.343617i \(-0.888348\pi\)
0.767136 + 0.641484i \(0.221681\pi\)
\(542\) −15.2817 8.82288i −0.656404 0.378975i
\(543\) 11.1882i 0.480133i
\(544\) 0 0
\(545\) 0 0
\(546\) −4.35425 7.54178i −0.186345 0.322758i
\(547\) −0.613577 0.354249i −0.0262346 0.0151466i 0.486825 0.873499i \(-0.338155\pi\)
−0.513060 + 0.858353i \(0.671488\pi\)
\(548\) 4.83502 2.79150i 0.206542 0.119247i
\(549\) −29.8745 51.7442i −1.27501 2.20839i
\(550\) 0 0
\(551\) 6.11438 14.6681i 0.260481 0.624882i
\(552\) 9.64575i 0.410550i
\(553\) −5.70105 + 3.29150i −0.242433 + 0.139969i
\(554\) 4.76013 + 8.24479i 0.202239 + 0.350287i
\(555\) 0 0
\(556\) −6.67712 11.5651i −0.283173 0.490470i
\(557\) 23.0216 + 13.2915i 0.975455 + 0.563179i 0.900895 0.434037i \(-0.142911\pi\)
0.0745599 + 0.997217i \(0.476245\pi\)
\(558\) 1.41699i 0.0599862i
\(559\) −1.41699 −0.0599325
\(560\) 0 0
\(561\) 0 0
\(562\) 27.4575i 1.15823i
\(563\) 25.9373i 1.09312i −0.837418 0.546562i \(-0.815936\pi\)
0.837418 0.546562i \(-0.184064\pi\)
\(564\) −12.7601 + 22.1012i −0.537298 + 0.930628i
\(565\) 0 0
\(566\) −12.6771 + 21.9574i −0.532859 + 0.922939i
\(567\) 7.12631 4.11438i 0.299277 0.172788i
\(568\) 11.5108 6.64575i 0.482982 0.278850i
\(569\) 14.5830 0.611351 0.305676 0.952136i \(-0.401118\pi\)
0.305676 + 0.952136i \(0.401118\pi\)
\(570\) 0 0
\(571\) −39.8118 −1.66607 −0.833035 0.553220i \(-0.813399\pi\)
−0.833035 + 0.553220i \(0.813399\pi\)
\(572\) 1.11847 0.645751i 0.0467658 0.0270002i
\(573\) −33.4139 + 19.2915i −1.39588 + 0.805914i
\(574\) −8.46863 + 14.6681i −0.353474 + 0.612234i
\(575\) 0 0
\(576\) −2.00000 + 3.46410i −0.0833333 + 0.144338i
\(577\) 11.0000i 0.457936i 0.973434 + 0.228968i \(0.0735351\pi\)
−0.973434 + 0.228968i \(0.926465\pi\)
\(578\) 17.0000i 0.707107i
\(579\) 8.70850 15.0836i 0.361913 0.626851i
\(580\) 0 0
\(581\) 13.0627 0.541934
\(582\) 37.8118i 1.56735i
\(583\) 4.79993 + 2.77124i 0.198793 + 0.114773i
\(584\) 6.14575 + 10.6448i 0.254313 + 0.440483i
\(585\) 0 0
\(586\) −6.53137 11.3127i −0.269809 0.467322i
\(587\) −39.7285 + 22.9373i −1.63977 + 0.946722i −0.658859 + 0.752267i \(0.728961\pi\)
−0.980911 + 0.194455i \(0.937706\pi\)
\(588\) 11.3542i 0.468241i
\(589\) 1.53137 0.198109i 0.0630991 0.00816294i
\(590\) 0 0
\(591\) −3.11438 5.39426i −0.128108 0.221890i
\(592\) 4.88936 2.82288i 0.200952 0.116019i
\(593\) 34.8935 + 20.1458i 1.43290 + 0.827287i 0.997341 0.0728721i \(-0.0232165\pi\)
0.435562 + 0.900159i \(0.356550\pi\)
\(594\) −0.854249 1.47960i −0.0350502 0.0607088i
\(595\) 0 0
\(596\) −4.93725 −0.202238
\(597\) 31.4170i 1.28581i
\(598\) 6.31463 + 3.64575i 0.258224 + 0.149086i
\(599\) −0.531373 + 0.920365i −0.0217113 + 0.0376051i −0.876677 0.481080i \(-0.840245\pi\)
0.854966 + 0.518685i \(0.173578\pi\)
\(600\) 0 0
\(601\) 31.5830 1.28830 0.644149 0.764900i \(-0.277212\pi\)
0.644149 + 0.764900i \(0.277212\pi\)
\(602\) 1.00979 + 0.583005i 0.0411562 + 0.0237615i
\(603\) 16.0934 9.29150i 0.655372 0.378379i
\(604\) −1.46863 + 2.54374i −0.0597576 + 0.103503i
\(605\) 0 0
\(606\) −11.0516 19.1420i −0.448942 0.777590i
\(607\) 8.93725i 0.362752i −0.983414 0.181376i \(-0.941945\pi\)
0.983414 0.181376i \(-0.0580551\pi\)
\(608\) 4.02334 + 1.67712i 0.163168 + 0.0680164i
\(609\) 15.8745 0.643268
\(610\) 0 0
\(611\) −9.64575 16.7069i −0.390225 0.675890i
\(612\) 0 0
\(613\) −24.7536 + 14.2915i −0.999789 + 0.577228i −0.908186 0.418567i \(-0.862532\pi\)
−0.0916030 + 0.995796i \(0.529199\pi\)
\(614\) −2.32288 + 4.02334i −0.0937436 + 0.162369i
\(615\) 0 0
\(616\) −1.06275 −0.0428193
\(617\) −0.757346 0.437254i −0.0304896 0.0176032i 0.484678 0.874693i \(-0.338937\pi\)
−0.515167 + 0.857090i \(0.672270\pi\)
\(618\) 6.20595 + 3.58301i 0.249640 + 0.144130i
\(619\) −44.4575 −1.78690 −0.893449 0.449164i \(-0.851722\pi\)
−0.893449 + 0.449164i \(0.851722\pi\)
\(620\) 0 0
\(621\) 4.82288 8.35347i 0.193535 0.335213i
\(622\) 7.23499 4.17712i 0.290097 0.167487i
\(623\) 0 0
\(624\) −2.64575 4.58258i −0.105915 0.183450i
\(625\) 0 0
\(626\) −22.8745 −0.914249
\(627\) −5.91841 + 4.52026i −0.236358 + 0.180522i
\(628\) 10.5830i 0.422308i
\(629\) 0 0
\(630\) 0 0
\(631\) −11.4059 + 19.7556i −0.454061 + 0.786457i −0.998634 0.0522570i \(-0.983359\pi\)
0.544573 + 0.838714i \(0.316692\pi\)
\(632\) −3.46410 + 2.00000i −0.137795 + 0.0795557i
\(633\) 6.20595 + 3.58301i 0.246664 + 0.142412i
\(634\) 6.00000 0.238290
\(635\) 0 0
\(636\) 11.3542 19.6661i 0.450225 0.779813i
\(637\) 7.43310 + 4.29150i 0.294510 + 0.170036i
\(638\) 2.35425i 0.0932056i
\(639\) 53.1660 2.10321
\(640\) 0 0
\(641\) 9.43725 + 16.3458i 0.372749 + 0.645620i 0.989987 0.141156i \(-0.0450819\pi\)
−0.617238 + 0.786776i \(0.711749\pi\)
\(642\) 10.7885 + 6.22876i 0.425789 + 0.245829i
\(643\) −26.4313 + 15.2601i −1.04235 + 0.601801i −0.920498 0.390748i \(-0.872217\pi\)
−0.121852 + 0.992548i \(0.538883\pi\)
\(644\) −3.00000 5.19615i −0.118217 0.204757i
\(645\) 0 0
\(646\) 0 0
\(647\) 30.4575i 1.19741i 0.800970 + 0.598704i \(0.204317\pi\)
−0.800970 + 0.598704i \(0.795683\pi\)
\(648\) 4.33013 2.50000i 0.170103 0.0982093i
\(649\) 2.56275 + 4.43881i 0.100597 + 0.174238i
\(650\) 0 0
\(651\) 0.771243 + 1.33583i 0.0302274 + 0.0523554i
\(652\) 10.3380 + 5.96863i 0.404866 + 0.233749i
\(653\) 24.0000i 0.939193i −0.882881 0.469596i \(-0.844399\pi\)
0.882881 0.469596i \(-0.155601\pi\)
\(654\) −17.4170 −0.681058
\(655\) 0 0
\(656\) −5.14575 + 8.91270i −0.200908 + 0.347983i
\(657\) 49.1660i 1.91815i
\(658\) 15.8745i 0.618853i
\(659\) 1.29150 2.23695i 0.0503098 0.0871391i −0.839774 0.542936i \(-0.817312\pi\)
0.890084 + 0.455797i \(0.150646\pi\)
\(660\) 0 0
\(661\) 5.11438 8.85836i 0.198926 0.344550i −0.749254 0.662282i \(-0.769588\pi\)
0.948181 + 0.317732i \(0.102921\pi\)
\(662\) −24.0857 + 13.9059i −0.936117 + 0.540467i
\(663\) 0 0
\(664\) 7.93725 0.308025
\(665\) 0 0
\(666\) 22.5830 0.875074
\(667\) −11.5108 + 6.64575i −0.445699 + 0.257325i
\(668\) 10.3923 6.00000i 0.402090 0.232147i
\(669\) −38.1144 + 66.0160i −1.47359 + 2.55233i
\(670\) 0 0
\(671\) 4.82288 8.35347i 0.186185 0.322482i
\(672\) 4.35425i 0.167969i
\(673\) 17.8745i 0.689012i −0.938784 0.344506i \(-0.888046\pi\)
0.938784 0.344506i \(-0.111954\pi\)
\(674\) −10.1458 + 17.5730i −0.390800 + 0.676885i
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) 32.5830i 1.25227i −0.779716 0.626133i \(-0.784637\pi\)
0.779716 0.626133i \(-0.215363\pi\)
\(678\) −12.7923 7.38562i −0.491284 0.283643i
\(679\) 11.7601 + 20.3691i 0.451312 + 0.781696i
\(680\) 0 0
\(681\) −16.7288 28.9751i −0.641047 1.11033i
\(682\) −0.198109 + 0.114378i −0.00758599 + 0.00437977i
\(683\) 26.5830i 1.01717i 0.861012 + 0.508585i \(0.169831\pi\)
−0.861012 + 0.508585i \(0.830169\pi\)
\(684\) 10.5830 + 13.8564i 0.404651 + 0.529813i
\(685\) 0 0
\(686\) −9.29150 16.0934i −0.354751 0.614447i
\(687\) −45.8258 + 26.4575i −1.74836 + 1.00942i
\(688\) 0.613577 + 0.354249i 0.0233924 + 0.0135056i
\(689\) 8.58301 + 14.8662i 0.326986 + 0.566357i
\(690\) 0 0
\(691\) −18.5830 −0.706931 −0.353465 0.935448i \(-0.614997\pi\)
−0.353465 + 0.935448i \(0.614997\pi\)
\(692\) 6.00000i 0.228086i
\(693\) −3.68146 2.12549i −0.139847 0.0807408i
\(694\) 1.61438 2.79619i 0.0612810 0.106142i
\(695\) 0 0
\(696\) 9.64575 0.365621
\(697\) 0 0
\(698\) 18.3303 10.5830i 0.693812 0.400573i
\(699\) 17.0314 29.4992i 0.644186 1.11576i
\(700\) 0 0
\(701\) −7.82288 13.5496i −0.295466 0.511762i 0.679627 0.733558i \(-0.262142\pi\)
−0.975093 + 0.221796i \(0.928808\pi\)
\(702\) 5.29150i 0.199715i
\(703\) −3.15731 24.4059i −0.119080 0.920485i
\(704\) −0.645751 −0.0243377
\(705\) 0 0
\(706\) 9.43725 + 16.3458i 0.355176 + 0.615182i
\(707\) −11.9070 6.87451i −0.447809 0.258542i
\(708\) 18.1865 10.5000i 0.683492 0.394614i
\(709\) −0.822876 + 1.42526i −0.0309037 + 0.0535269i −0.881064 0.472998i \(-0.843172\pi\)
0.850160 + 0.526525i \(0.176505\pi\)
\(710\) 0 0
\(711\) −16.0000 −0.600047
\(712\) 0 0
\(713\) −1.11847 0.645751i −0.0418872 0.0241836i
\(714\) 0 0
\(715\) 0 0
\(716\) −9.96863 + 17.2662i −0.372545 + 0.645267i
\(717\) 27.4955 15.8745i 1.02684 0.592844i
\(718\) 9.47194 + 5.46863i 0.353490 + 0.204087i
\(719\) 6.64575 + 11.5108i 0.247845 + 0.429280i 0.962928 0.269760i \(-0.0869444\pi\)
−0.715083 + 0.699040i \(0.753611\pi\)
\(720\) 0 0
\(721\) 4.45751 0.166006
\(722\) 13.4953 13.3745i 0.502242 0.497748i
\(723\) 35.9373i 1.33652i
\(724\) −2.11438 3.66221i −0.0785802 0.136105i
\(725\) 0 0
\(726\) −14.0000 + 24.2487i −0.519589 + 0.899954i
\(727\) 19.5575 11.2915i 0.725346 0.418779i −0.0913712 0.995817i \(-0.529125\pi\)
0.816717 + 0.577038i \(0.195792\pi\)
\(728\) −2.85052 1.64575i −0.105647 0.0609956i
\(729\) 41.0000 1.51852
\(730\) 0 0
\(731\) 0 0
\(732\) −34.2255 19.7601i −1.26501 0.730355i
\(733\) 42.1033i 1.55512i −0.628809 0.777560i \(-0.716457\pi\)
0.628809 0.777560i \(-0.283543\pi\)
\(734\) 10.2288 0.377550
\(735\) 0 0
\(736\) −1.82288 3.15731i −0.0671921 0.116380i
\(737\) 2.59808 + 1.50000i 0.0957014 + 0.0552532i
\(738\) −35.6508 + 20.5830i −1.31232 + 0.757671i
\(739\) 6.90588 + 11.9613i 0.254037 + 0.440005i 0.964633 0.263595i \(-0.0849082\pi\)
−0.710597 + 0.703600i \(0.751575\pi\)
\(740\) 0 0
\(741\) −22.8745 + 2.95920i −0.840316 + 0.108709i
\(742\) 14.1255i 0.518563i
\(743\) 9.07572 5.23987i 0.332956 0.192232i −0.324197 0.945990i \(-0.605094\pi\)
0.657153 + 0.753757i \(0.271761\pi\)
\(744\) 0.468627 + 0.811686i 0.0171807 + 0.0297578i
\(745\) 0 0
\(746\) 2.00000 + 3.46410i 0.0732252 + 0.126830i
\(747\) 27.4955 + 15.8745i 1.00601 + 0.580818i
\(748\) 0 0
\(749\) 7.74902 0.283143
\(750\) 0 0
\(751\) −11.9373 + 20.6759i −0.435597 + 0.754475i −0.997344 0.0728333i \(-0.976796\pi\)
0.561748 + 0.827309i \(0.310129\pi\)
\(752\) 9.64575i 0.351744i
\(753\) 7.33202i 0.267194i
\(754\) −3.64575 + 6.31463i −0.132770 + 0.229965i
\(755\) 0 0
\(756\) −2.17712 + 3.77089i −0.0791812 + 0.137146i
\(757\) 14.3613 8.29150i 0.521970 0.301360i −0.215770 0.976444i \(-0.569226\pi\)
0.737740 + 0.675084i \(0.235893\pi\)
\(758\) −18.4390 + 10.6458i −0.669734 + 0.386671i
\(759\) 6.22876 0.226090
\(760\) 0 0
\(761\) 11.1255 0.403299 0.201649 0.979458i \(-0.435370\pi\)
0.201649 + 0.979458i \(0.435370\pi\)
\(762\) 6.20595 3.58301i 0.224818 0.129799i
\(763\) −9.38251 + 5.41699i −0.339670 + 0.196108i
\(764\) −7.29150 + 12.6293i −0.263797 + 0.456910i
\(765\) 0 0
\(766\) 15.7601 27.2973i 0.569437 0.986293i
\(767\) 15.8745i 0.573195i
\(768\) 2.64575i 0.0954703i
\(769\) 12.3542 21.3982i 0.445506 0.771638i −0.552582 0.833459i \(-0.686357\pi\)
0.998087 + 0.0618204i \(0.0196906\pi\)
\(770\) 0 0
\(771\) −4.52026 −0.162793
\(772\) 6.58301i 0.236928i
\(773\) 9.47194 + 5.46863i 0.340682 + 0.196693i 0.660574 0.750761i \(-0.270313\pi\)
−0.319892 + 0.947454i \(0.603646\pi\)
\(774\) 1.41699 + 2.45431i 0.0509328 + 0.0882182i
\(775\) 0 0
\(776\) 7.14575 + 12.3768i 0.256518 + 0.444301i
\(777\) 21.2895 12.2915i 0.763757 0.440955i
\(778\) 12.0000i 0.430221i
\(779\) 27.2288 + 35.6508i 0.975571 + 1.27732i
\(780\) 0 0
\(781\) 4.29150 + 7.43310i 0.153562 + 0.265977i
\(782\) 0 0
\(783\) 8.35347 + 4.82288i 0.298529 + 0.172356i
\(784\) −2.14575 3.71655i −0.0766340 0.132734i
\(785\) 0 0
\(786\) 36.8745 1.31527
\(787\) 5.47974i 0.195332i −0.995219 0.0976658i \(-0.968862\pi\)
0.995219 0.0976658i \(-0.0311376\pi\)
\(788\) −2.03884 1.17712i −0.0726306 0.0419333i
\(789\) −6.53137 + 11.3127i −0.232523 + 0.402742i
\(790\) 0 0
\(791\) −9.18824 −0.326696
\(792\) −2.23695 1.29150i −0.0794865 0.0458915i
\(793\) 25.8721 14.9373i 0.918745 0.530437i
\(794\) 18.4686 31.9886i 0.655427 1.13523i
\(795\) 0 0
\(796\) −5.93725 10.2836i −0.210440 0.364493i
\(797\) 2.81176i 0.0995977i 0.998759 + 0.0497989i \(0.0158580\pi\)
−0.998759 + 0.0497989i \(0.984142\pi\)
\(798\) 17.5186 + 7.30262i 0.620152 + 0.258510i
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) −5.55728 3.20850i −0.196234 0.113296i
\(803\) −6.87386 + 3.96863i −0.242573 + 0.140050i
\(804\) 6.14575 10.6448i 0.216744 0.375412i
\(805\) 0 0
\(806\) −0.708497 −0.0249558
\(807\) 0 0
\(808\) −7.23499 4.17712i −0.254526 0.146951i
\(809\) 9.00000 0.316423 0.158212 0.987405i \(-0.449427\pi\)
0.158212 + 0.987405i \(0.449427\pi\)
\(810\) 0 0
\(811\) 10.3542 17.9341i 0.363587 0.629751i −0.624961 0.780656i \(-0.714885\pi\)
0.988548 + 0.150905i \(0.0482187\pi\)
\(812\) 5.19615 3.00000i 0.182349 0.105279i
\(813\) −40.4315 23.3431i −1.41799 0.818679i
\(814\) 1.82288 + 3.15731i 0.0638918 + 0.110664i
\(815\) 0 0
\(816\) 0 0
\(817\) 2.45431 1.87451i 0.0858653 0.0655807i
\(818\) 13.5830i 0.474919i
\(819\) −6.58301 11.4021i −0.230029 0.398422i
\(820\) 0 0
\(821\) 3.00000 5.19615i 0.104701 0.181347i −0.808915 0.587925i \(-0.799945\pi\)
0.913616 + 0.406578i \(0.133278\pi\)
\(822\) 12.7923 7.38562i 0.446182 0.257603i
\(823\) −0.108679 0.0627461i −0.00378832 0.00218719i 0.498105 0.867117i \(-0.334030\pi\)
−0.501893 + 0.864930i \(0.667363\pi\)
\(824\) 2.70850 0.0943550
\(825\) 0 0
\(826\) 6.53137 11.3127i 0.227256 0.393618i
\(827\) 41.0100 + 23.6771i 1.42606 + 0.823334i 0.996807 0.0798514i \(-0.0254446\pi\)
0.429250 + 0.903186i \(0.358778\pi\)
\(828\) 14.5830i 0.506794i
\(829\) −25.1660 −0.874052 −0.437026 0.899449i \(-0.643968\pi\)
−0.437026 + 0.899449i \(0.643968\pi\)
\(830\) 0 0
\(831\) 12.5941 + 21.8137i 0.436885 + 0.756707i
\(832\) −1.73205 1.00000i −0.0600481 0.0346688i
\(833\) 0 0
\(834\) −17.6660 30.5984i −0.611724 1.05954i
\(835\) 0 0
\(836\) −1.08301 + 2.59808i −0.0374565 + 0.0898563i
\(837\) 0.937254i 0.0323962i
\(838\) −27.4955 + 15.8745i −0.949815 + 0.548376i
\(839\) −2.23987 3.87957i −0.0773289 0.133938i 0.824768 0.565472i \(-0.191306\pi\)
−0.902097 + 0.431534i \(0.857972\pi\)
\(840\) 0 0
\(841\) 7.85425 + 13.6040i 0.270836 + 0.469102i
\(842\) −19.7556 11.4059i −0.680822 0.393073i
\(843\) 72.6458i 2.50205i
\(844\) 2.70850 0.0932303
\(845\) 0 0
\(846\) −19.2915 + 33.4139i −0.663256 + 1.14879i
\(847\) 17.4170i 0.598455i
\(848\) 8.58301i 0.294742i
\(849\) −33.5405 + 58.0939i −1.15111 + 1.99378i
\(850\) 0 0
\(851\) −10.2915 + 17.8254i −0.352788 + 0.611047i
\(852\) 30.4547 17.5830i 1.04336 0.602384i
\(853\) 10.8972 6.29150i 0.373113 0.215417i −0.301705 0.953401i \(-0.597556\pi\)
0.674818 + 0.737985i \(0.264222\pi\)
\(854\) −24.5830 −0.841213
\(855\) 0 0
\(856\) 4.70850 0.160933
\(857\) 18.1865 10.5000i 0.621240 0.358673i −0.156112 0.987739i \(-0.549896\pi\)
0.777352 + 0.629066i \(0.216563\pi\)
\(858\) 2.95920 1.70850i 0.101026 0.0583271i
\(859\) −6.61438 + 11.4564i −0.225680 + 0.390889i −0.956523 0.291656i \(-0.905794\pi\)
0.730843 + 0.682545i \(0.239127\pi\)
\(860\) 0 0
\(861\) −22.4059 + 38.8081i −0.763590 + 1.32258i
\(862\) 3.87451i 0.131966i
\(863\) 46.9373i 1.59776i 0.601489 + 0.798881i \(0.294575\pi\)
−0.601489 + 0.798881i \(0.705425\pi\)
\(864\) −1.32288 + 2.29129i −0.0450051 + 0.0779512i
\(865\) 0 0
\(866\) −13.8745 −0.471475
\(867\) 44.9778i 1.52753i
\(868\) 0.504897 + 0.291503i 0.0171373 + 0.00989424i
\(869\) −1.29150 2.23695i −0.0438112 0.0758833i
\(870\) 0 0
\(871\) 4.64575 + 8.04668i 0.157415 + 0.272651i
\(872\) −5.70105 + 3.29150i −0.193062 + 0.111464i
\(873\) 57.1660i 1.93478i
\(874\) −15.7601 + 2.03884i −0.533094 + 0.0689648i
\(875\) 0 0
\(876\) 16.2601 + 28.1634i 0.549379 + 0.951552i
\(877\) −31.4837 + 18.1771i −1.06313 + 0.613798i −0.926296 0.376796i \(-0.877026\pi\)
−0.136833 + 0.990594i \(0.543692\pi\)
\(878\) −31.8799 18.4059i −1.07590 0.621168i
\(879\) −17.2804 29.9305i −0.582853 1.00953i
\(880\) 0 0
\(881\) −5.12549 −0.172682 −0.0863411 0.996266i \(-0.527517\pi\)
−0.0863411 + 0.996266i \(0.527517\pi\)
\(882\) 17.1660i 0.578010i
\(883\) 34.9829 + 20.1974i 1.17727 + 0.679696i 0.955381 0.295376i \(-0.0954450\pi\)
0.221887 + 0.975072i \(0.428778\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 5.35425 0.179880
\(887\) 33.4139 + 19.2915i 1.12193 + 0.647745i 0.941892 0.335915i \(-0.109045\pi\)
0.180035 + 0.983660i \(0.442379\pi\)
\(888\) 12.9360 7.46863i 0.434105 0.250631i
\(889\) 2.22876 3.86032i 0.0747501 0.129471i
\(890\) 0 0
\(891\) 1.61438 + 2.79619i 0.0540837 + 0.0936757i
\(892\) 28.8118i 0.964689i
\(893\) 38.8081 + 16.1771i 1.29866 + 0.541347i
\(894\) −13.0627 −0.436884
\(895\) 0 0
\(896\) 0.822876 + 1.42526i 0.0274903 + 0.0476147i
\(897\) 16.7069 + 9.64575i 0.557828 + 0.322062i
\(898\) 11.8719 6.85425i 0.396171 0.228729i
\(899\) 0.645751 1.11847i 0.0215370 0.0373032i
\(900\) 0 0
\(901\) 0 0
\(902\) −5.75539 3.32288i −0.191634 0.110640i
\(903\) 2.67167 + 1.54249i 0.0889075 + 0.0513307i
\(904\) −5.58301 −0.185688
\(905\) 0 0
\(906\) −3.88562 + 6.73009i −0.129091 + 0.223592i
\(907\) 20.8389 12.0314i 0.691946 0.399495i −0.112395 0.993664i \(-0.535852\pi\)
0.804341 + 0.594168i \(0.202519\pi\)
\(908\) −10.9515 6.32288i −0.363440 0.209832i
\(909\) −16.7085 28.9400i −0.554186 0.959878i
\(910\) 0 0
\(911\) 1.06275 0.0352103 0.0176052 0.999845i \(-0.494396\pi\)
0.0176052 + 0.999845i \(0.494396\pi\)
\(912\) 10.6448 + 4.43725i 0.352483 + 0.146932i
\(913\) 5.12549i 0.169629i
\(914\) 0.562746 + 0.974705i 0.0186140 + 0.0322404i
\(915\) 0 0
\(916\) −10.0000 + 17.3205i −0.330409 + 0.572286i
\(917\) 19.8642 11.4686i 0.655975 0.378727i
\(918\) 0 0
\(919\) −11.8745 −0.391704 −0.195852 0.980633i \(-0.562747\pi\)
−0.195852 + 0.980633i \(0.562747\pi\)
\(920\) 0 0
\(921\) −6.14575 + 10.6448i −0.202509 + 0.350757i
\(922\) 20.0624 + 11.5830i 0.660718 + 0.381466i
\(923\) 26.5830i 0.874990i
\(924\) −2.81176 −0.0925002
\(925\) 0 0
\(926\) −7.22876 12.5206i −0.237552 0.411452i
\(927\) 9.38251 + 5.41699i 0.308162 + 0.177917i
\(928\) 3.15731 1.82288i 0.103644 0.0598388i
\(929\) 5.79150 + 10.0312i 0.190013 + 0.329112i 0.945254 0.326335i \(-0.105814\pi\)
−0.755241 + 0.655447i \(0.772480\pi\)
\(930\) 0 0
\(931\) −18.5516 + 2.39997i −0.608005 + 0.0786557i
\(932\) 12.8745i 0.421719i
\(933\) 19.1420 11.0516i 0.626681 0.361814i
\(934\) −12.3229 21.3438i −0.403217 0.698392i
\(935\) 0 0
\(936\) −4.00000 6.92820i −0.130744 0.226455i
\(937\) −33.6663 19.4373i −1.09983 0.634987i −0.163654 0.986518i \(-0.552328\pi\)
−0.936176 + 0.351530i \(0.885661\pi\)
\(938\) 7.64575i 0.249643i
\(939\) −60.5203 −1.97500
\(940\) 0 0
\(941\) −29.5830 + 51.2393i −0.964378 + 1.67035i −0.253103 + 0.967439i \(0.581451\pi\)
−0.711276 + 0.702913i \(0.751882\pi\)
\(942\) 28.0000i 0.912289i
\(943\) 37.5203i 1.22183i
\(944\) 3.96863 6.87386i 0.129168 0.223725i
\(945\) 0 0
\(946\) −0.228757 + 0.396218i −0.00743752 + 0.0128822i
\(947\) 48.2801 27.8745i 1.56889 0.905800i 0.572593 0.819840i \(-0.305938\pi\)
0.996299 0.0859598i \(-0.0273957\pi\)
\(948\) −9.16515 + 5.29150i −0.297670 + 0.171860i
\(949\) −24.5830 −0.797998
\(950\) 0 0
\(951\) 15.8745 0.514766
\(952\) 0 0
\(953\) −34.1712 + 19.7288i −1.10691 + 0.639077i −0.938028 0.346559i \(-0.887350\pi\)
−0.168886 + 0.985636i \(0.554017\pi\)
\(954\) 17.1660 29.7324i 0.555770 0.962622i
\(955\) 0 0
\(956\) 6.00000 10.3923i 0.194054 0.336111i
\(957\) 6.22876i 0.201347i
\(958\) 14.5830i 0.471156i
\(959\) 4.59412 7.95725i 0.148352 0.256953i
\(960\) 0 0
\(961\) −30.8745 −0.995952
\(962\) 11.2915i 0.364053i
\(963\) 16.3107 + 9.41699i 0.525605 + 0.303458i
\(964\) 6.79150 + 11.7632i 0.218740 + 0.378868i
\(965\) 0 0
\(966\) −7.93725 13.7477i −0.255377 0.442326i
\(967\) −2.34563 + 1.35425i −0.0754303 + 0.0435497i −0.537241 0.843429i \(-0.680533\pi\)
0.461810 + 0.886979i \(0.347200\pi\)
\(968\) 10.5830i 0.340151i
\(969\) 0 0
\(970\) 0 0
\(971\) −7.19738 12.4662i −0.230975 0.400060i 0.727120 0.686510i \(-0.240858\pi\)
−0.958095 + 0.286450i \(0.907525\pi\)
\(972\) 18.3303 10.5830i 0.587945 0.339450i
\(973\) −19.0333 10.9889i −0.610180 0.352288i
\(974\) −11.1144 19.2507i −0.356128 0.616831i
\(975\) 0 0
\(976\) −14.9373 −0.478130
\(977\) 45.4575i 1.45431i 0.686471 + 0.727157i \(0.259159\pi\)
−0.686471 + 0.727157i \(0.740841\pi\)
\(978\) 27.3517 + 15.7915i 0.874610 + 0.504957i
\(979\) 0 0
\(980\) 0 0
\(981\) −26.3320 −0.840717
\(982\) −24.8623 14.3542i −0.793387 0.458062i
\(983\) 27.4955 15.8745i 0.876969 0.506318i 0.00731102 0.999973i \(-0.497673\pi\)
0.869658 + 0.493655i \(0.164339\pi\)
\(984\) −13.6144 + 23.5808i −0.434011 + 0.751728i
\(985\) 0 0
\(986\) 0 0
\(987\) 42.0000i 1.33687i
\(988\) −6.92820 + 5.29150i −0.220416 + 0.168345i
\(989\) −2.58301 −0.0821348
\(990\) 0 0
\(991\) 22.5830 + 39.1149i 0.717373 + 1.24253i 0.962037 + 0.272918i \(0.0879889\pi\)
−0.244664 + 0.969608i \(0.578678\pi\)
\(992\) 0.306788 + 0.177124i 0.00974054 + 0.00562370i
\(993\) −63.7248 + 36.7915i −2.02224 + 1.16754i
\(994\) 10.9373 18.9439i 0.346909 0.600863i
\(995\) 0 0
\(996\) 21.0000 0.665410
\(997\) 8.85836 + 5.11438i 0.280547 + 0.161974i 0.633671 0.773603i \(-0.281547\pi\)
−0.353124 + 0.935577i \(0.614881\pi\)
\(998\) −27.0449 15.6144i −0.856091 0.494265i
\(999\) 14.9373 0.472594
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 950.2.j.g.349.4 8
5.2 odd 4 950.2.e.k.501.1 4
5.3 odd 4 38.2.c.b.7.2 4
5.4 even 2 inner 950.2.j.g.349.1 8
15.8 even 4 342.2.g.f.235.2 4
19.11 even 3 inner 950.2.j.g.49.1 8
20.3 even 4 304.2.i.e.273.1 4
40.3 even 4 1216.2.i.k.577.2 4
40.13 odd 4 1216.2.i.l.577.1 4
60.23 odd 4 2736.2.s.v.577.2 4
95.3 even 36 722.2.e.o.595.1 12
95.8 even 12 722.2.c.j.429.1 4
95.13 even 36 722.2.e.o.423.2 12
95.18 even 4 722.2.c.j.653.1 4
95.23 odd 36 722.2.e.n.245.1 12
95.28 odd 36 722.2.e.n.415.2 12
95.33 even 36 722.2.e.o.99.2 12
95.43 odd 36 722.2.e.n.99.1 12
95.48 even 36 722.2.e.o.415.1 12
95.49 even 6 inner 950.2.j.g.49.4 8
95.53 even 36 722.2.e.o.245.2 12
95.63 odd 36 722.2.e.n.423.1 12
95.68 odd 12 38.2.c.b.11.2 yes 4
95.73 odd 36 722.2.e.n.595.2 12
95.78 even 36 722.2.e.o.389.2 12
95.83 odd 12 722.2.a.j.1.1 2
95.87 odd 12 950.2.e.k.201.1 4
95.88 even 12 722.2.a.g.1.2 2
95.93 odd 36 722.2.e.n.389.1 12
285.68 even 12 342.2.g.f.163.2 4
285.83 even 12 6498.2.a.ba.1.1 2
285.278 odd 12 6498.2.a.bg.1.1 2
380.83 even 12 5776.2.a.ba.1.2 2
380.163 even 12 304.2.i.e.49.1 4
380.183 odd 12 5776.2.a.z.1.1 2
760.163 even 12 1216.2.i.k.961.2 4
760.733 odd 12 1216.2.i.l.961.1 4
1140.923 odd 12 2736.2.s.v.1873.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
38.2.c.b.7.2 4 5.3 odd 4
38.2.c.b.11.2 yes 4 95.68 odd 12
304.2.i.e.49.1 4 380.163 even 12
304.2.i.e.273.1 4 20.3 even 4
342.2.g.f.163.2 4 285.68 even 12
342.2.g.f.235.2 4 15.8 even 4
722.2.a.g.1.2 2 95.88 even 12
722.2.a.j.1.1 2 95.83 odd 12
722.2.c.j.429.1 4 95.8 even 12
722.2.c.j.653.1 4 95.18 even 4
722.2.e.n.99.1 12 95.43 odd 36
722.2.e.n.245.1 12 95.23 odd 36
722.2.e.n.389.1 12 95.93 odd 36
722.2.e.n.415.2 12 95.28 odd 36
722.2.e.n.423.1 12 95.63 odd 36
722.2.e.n.595.2 12 95.73 odd 36
722.2.e.o.99.2 12 95.33 even 36
722.2.e.o.245.2 12 95.53 even 36
722.2.e.o.389.2 12 95.78 even 36
722.2.e.o.415.1 12 95.48 even 36
722.2.e.o.423.2 12 95.13 even 36
722.2.e.o.595.1 12 95.3 even 36
950.2.e.k.201.1 4 95.87 odd 12
950.2.e.k.501.1 4 5.2 odd 4
950.2.j.g.49.1 8 19.11 even 3 inner
950.2.j.g.49.4 8 95.49 even 6 inner
950.2.j.g.349.1 8 5.4 even 2 inner
950.2.j.g.349.4 8 1.1 even 1 trivial
1216.2.i.k.577.2 4 40.3 even 4
1216.2.i.k.961.2 4 760.163 even 12
1216.2.i.l.577.1 4 40.13 odd 4
1216.2.i.l.961.1 4 760.733 odd 12
2736.2.s.v.577.2 4 60.23 odd 4
2736.2.s.v.1873.2 4 1140.923 odd 12
5776.2.a.z.1.1 2 380.183 odd 12
5776.2.a.ba.1.2 2 380.83 even 12
6498.2.a.ba.1.1 2 285.83 even 12
6498.2.a.bg.1.1 2 285.278 odd 12