Properties

Label 722.2.c.j.653.1
Level $722$
Weight $2$
Character 722.653
Analytic conductor $5.765$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [722,2,Mod(429,722)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("722.429"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(722, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 722 = 2 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 722.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,2,0,-2,-2,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.76519902594\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{7})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 7x^{2} + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 38)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 653.1
Root \(1.32288 + 2.29129i\) of defining polynomial
Character \(\chi\) \(=\) 722.653
Dual form 722.2.c.j.429.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(-1.32288 - 2.29129i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-1.82288 - 3.15731i) q^{5} +(1.32288 - 2.29129i) q^{6} -1.64575 q^{7} -1.00000 q^{8} +(-2.00000 + 3.46410i) q^{9} +(1.82288 - 3.15731i) q^{10} +0.645751 q^{11} +2.64575 q^{12} +(1.00000 - 1.73205i) q^{13} +(-0.822876 - 1.42526i) q^{14} +(-4.82288 + 8.35347i) q^{15} +(-0.500000 - 0.866025i) q^{16} -4.00000 q^{18} +3.64575 q^{20} +(2.17712 + 3.77089i) q^{21} +(0.322876 + 0.559237i) q^{22} +(-1.82288 + 3.15731i) q^{23} +(1.32288 + 2.29129i) q^{24} +(-4.14575 + 7.18065i) q^{25} +2.00000 q^{26} +2.64575 q^{27} +(0.822876 - 1.42526i) q^{28} +(-1.82288 + 3.15731i) q^{29} -9.64575 q^{30} +0.354249 q^{31} +(0.500000 - 0.866025i) q^{32} +(-0.854249 - 1.47960i) q^{33} +(3.00000 + 5.19615i) q^{35} +(-2.00000 - 3.46410i) q^{36} -5.64575 q^{37} -5.29150 q^{39} +(1.82288 + 3.15731i) q^{40} +(5.14575 + 8.91270i) q^{41} +(-2.17712 + 3.77089i) q^{42} +(-0.354249 - 0.613577i) q^{43} +(-0.322876 + 0.559237i) q^{44} +14.5830 q^{45} -3.64575 q^{46} +(-4.82288 + 8.35347i) q^{47} +(-1.32288 + 2.29129i) q^{48} -4.29150 q^{49} -8.29150 q^{50} +(1.00000 + 1.73205i) q^{52} +(4.29150 - 7.43310i) q^{53} +(1.32288 + 2.29129i) q^{54} +(-1.17712 - 2.03884i) q^{55} +1.64575 q^{56} -3.64575 q^{58} +(3.96863 + 6.87386i) q^{59} +(-4.82288 - 8.35347i) q^{60} +(7.46863 - 12.9360i) q^{61} +(0.177124 + 0.306788i) q^{62} +(3.29150 - 5.70105i) q^{63} +1.00000 q^{64} -7.29150 q^{65} +(0.854249 - 1.47960i) q^{66} +(-2.32288 + 4.02334i) q^{67} +9.64575 q^{69} +(-3.00000 + 5.19615i) q^{70} +(-6.64575 - 11.5108i) q^{71} +(2.00000 - 3.46410i) q^{72} +(-6.14575 - 10.6448i) q^{73} +(-2.82288 - 4.88936i) q^{74} +21.9373 q^{75} -1.06275 q^{77} +(-2.64575 - 4.58258i) q^{78} +(-2.00000 - 3.46410i) q^{79} +(-1.82288 + 3.15731i) q^{80} +(2.50000 + 4.33013i) q^{81} +(-5.14575 + 8.91270i) q^{82} -7.93725 q^{83} -4.35425 q^{84} +(0.354249 - 0.613577i) q^{86} +9.64575 q^{87} -0.645751 q^{88} +(7.29150 + 12.6293i) q^{90} +(-1.64575 + 2.85052i) q^{91} +(-1.82288 - 3.15731i) q^{92} +(-0.468627 - 0.811686i) q^{93} -9.64575 q^{94} -2.64575 q^{96} +(-7.14575 - 12.3768i) q^{97} +(-2.14575 - 3.71655i) q^{98} +(-1.29150 + 2.23695i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 2 q^{4} - 2 q^{5} + 4 q^{7} - 4 q^{8} - 8 q^{9} + 2 q^{10} - 8 q^{11} + 4 q^{13} + 2 q^{14} - 14 q^{15} - 2 q^{16} - 16 q^{18} + 4 q^{20} + 14 q^{21} - 4 q^{22} - 2 q^{23} - 6 q^{25} + 8 q^{26}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/722\mathbb{Z}\right)^\times\).

\(n\) \(363\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) −1.32288 2.29129i −0.763763 1.32288i −0.940898 0.338689i \(-0.890016\pi\)
0.177136 0.984186i \(-0.443317\pi\)
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −1.82288 3.15731i −0.815215 1.41199i −0.909174 0.416417i \(-0.863286\pi\)
0.0939588 0.995576i \(-0.470048\pi\)
\(6\) 1.32288 2.29129i 0.540062 0.935414i
\(7\) −1.64575 −0.622036 −0.311018 0.950404i \(-0.600670\pi\)
−0.311018 + 0.950404i \(0.600670\pi\)
\(8\) −1.00000 −0.353553
\(9\) −2.00000 + 3.46410i −0.666667 + 1.15470i
\(10\) 1.82288 3.15731i 0.576444 0.998430i
\(11\) 0.645751 0.194701 0.0973507 0.995250i \(-0.468963\pi\)
0.0973507 + 0.995250i \(0.468963\pi\)
\(12\) 2.64575 0.763763
\(13\) 1.00000 1.73205i 0.277350 0.480384i −0.693375 0.720577i \(-0.743877\pi\)
0.970725 + 0.240192i \(0.0772105\pi\)
\(14\) −0.822876 1.42526i −0.219923 0.380917i
\(15\) −4.82288 + 8.35347i −1.24526 + 2.15686i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(18\) −4.00000 −0.942809
\(19\) 0 0
\(20\) 3.64575 0.815215
\(21\) 2.17712 + 3.77089i 0.475087 + 0.822876i
\(22\) 0.322876 + 0.559237i 0.0688373 + 0.119230i
\(23\) −1.82288 + 3.15731i −0.380096 + 0.658345i −0.991076 0.133301i \(-0.957442\pi\)
0.610980 + 0.791646i \(0.290776\pi\)
\(24\) 1.32288 + 2.29129i 0.270031 + 0.467707i
\(25\) −4.14575 + 7.18065i −0.829150 + 1.43613i
\(26\) 2.00000 0.392232
\(27\) 2.64575 0.509175
\(28\) 0.822876 1.42526i 0.155509 0.269349i
\(29\) −1.82288 + 3.15731i −0.338500 + 0.586298i −0.984151 0.177334i \(-0.943253\pi\)
0.645651 + 0.763632i \(0.276586\pi\)
\(30\) −9.64575 −1.76107
\(31\) 0.354249 0.0636249 0.0318125 0.999494i \(-0.489872\pi\)
0.0318125 + 0.999494i \(0.489872\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) −0.854249 1.47960i −0.148706 0.257566i
\(34\) 0 0
\(35\) 3.00000 + 5.19615i 0.507093 + 0.878310i
\(36\) −2.00000 3.46410i −0.333333 0.577350i
\(37\) −5.64575 −0.928156 −0.464078 0.885794i \(-0.653614\pi\)
−0.464078 + 0.885794i \(0.653614\pi\)
\(38\) 0 0
\(39\) −5.29150 −0.847319
\(40\) 1.82288 + 3.15731i 0.288222 + 0.499215i
\(41\) 5.14575 + 8.91270i 0.803631 + 1.39193i 0.917211 + 0.398401i \(0.130435\pi\)
−0.113580 + 0.993529i \(0.536232\pi\)
\(42\) −2.17712 + 3.77089i −0.335938 + 0.581861i
\(43\) −0.354249 0.613577i −0.0540224 0.0935696i 0.837750 0.546055i \(-0.183871\pi\)
−0.891772 + 0.452485i \(0.850538\pi\)
\(44\) −0.322876 + 0.559237i −0.0486753 + 0.0843082i
\(45\) 14.5830 2.17391
\(46\) −3.64575 −0.537537
\(47\) −4.82288 + 8.35347i −0.703489 + 1.21848i 0.263745 + 0.964592i \(0.415042\pi\)
−0.967234 + 0.253886i \(0.918291\pi\)
\(48\) −1.32288 + 2.29129i −0.190941 + 0.330719i
\(49\) −4.29150 −0.613072
\(50\) −8.29150 −1.17260
\(51\) 0 0
\(52\) 1.00000 + 1.73205i 0.138675 + 0.240192i
\(53\) 4.29150 7.43310i 0.589483 1.02101i −0.404817 0.914398i \(-0.632665\pi\)
0.994300 0.106617i \(-0.0340019\pi\)
\(54\) 1.32288 + 2.29129i 0.180021 + 0.311805i
\(55\) −1.17712 2.03884i −0.158723 0.274917i
\(56\) 1.64575 0.219923
\(57\) 0 0
\(58\) −3.64575 −0.478711
\(59\) 3.96863 + 6.87386i 0.516671 + 0.894901i 0.999813 + 0.0193585i \(0.00616237\pi\)
−0.483141 + 0.875542i \(0.660504\pi\)
\(60\) −4.82288 8.35347i −0.622631 1.07843i
\(61\) 7.46863 12.9360i 0.956260 1.65629i 0.224801 0.974405i \(-0.427827\pi\)
0.731459 0.681886i \(-0.238840\pi\)
\(62\) 0.177124 + 0.306788i 0.0224948 + 0.0389622i
\(63\) 3.29150 5.70105i 0.414690 0.718265i
\(64\) 1.00000 0.125000
\(65\) −7.29150 −0.904400
\(66\) 0.854249 1.47960i 0.105151 0.182126i
\(67\) −2.32288 + 4.02334i −0.283784 + 0.491529i −0.972314 0.233680i \(-0.924923\pi\)
0.688529 + 0.725209i \(0.258257\pi\)
\(68\) 0 0
\(69\) 9.64575 1.16121
\(70\) −3.00000 + 5.19615i −0.358569 + 0.621059i
\(71\) −6.64575 11.5108i −0.788706 1.36608i −0.926760 0.375654i \(-0.877418\pi\)
0.138055 0.990425i \(-0.455915\pi\)
\(72\) 2.00000 3.46410i 0.235702 0.408248i
\(73\) −6.14575 10.6448i −0.719306 1.24587i −0.961275 0.275590i \(-0.911127\pi\)
0.241969 0.970284i \(-0.422207\pi\)
\(74\) −2.82288 4.88936i −0.328153 0.568377i
\(75\) 21.9373 2.53310
\(76\) 0 0
\(77\) −1.06275 −0.121111
\(78\) −2.64575 4.58258i −0.299572 0.518875i
\(79\) −2.00000 3.46410i −0.225018 0.389742i 0.731307 0.682048i \(-0.238911\pi\)
−0.956325 + 0.292306i \(0.905577\pi\)
\(80\) −1.82288 + 3.15731i −0.203804 + 0.352998i
\(81\) 2.50000 + 4.33013i 0.277778 + 0.481125i
\(82\) −5.14575 + 8.91270i −0.568253 + 0.984243i
\(83\) −7.93725 −0.871227 −0.435613 0.900134i \(-0.643469\pi\)
−0.435613 + 0.900134i \(0.643469\pi\)
\(84\) −4.35425 −0.475087
\(85\) 0 0
\(86\) 0.354249 0.613577i 0.0381996 0.0661637i
\(87\) 9.64575 1.03413
\(88\) −0.645751 −0.0688373
\(89\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(90\) 7.29150 + 12.6293i 0.768592 + 1.33124i
\(91\) −1.64575 + 2.85052i −0.172522 + 0.298816i
\(92\) −1.82288 3.15731i −0.190048 0.329173i
\(93\) −0.468627 0.811686i −0.0485944 0.0841679i
\(94\) −9.64575 −0.994883
\(95\) 0 0
\(96\) −2.64575 −0.270031
\(97\) −7.14575 12.3768i −0.725541 1.25667i −0.958751 0.284248i \(-0.908256\pi\)
0.233210 0.972426i \(-0.425077\pi\)
\(98\) −2.14575 3.71655i −0.216754 0.375428i
\(99\) −1.29150 + 2.23695i −0.129801 + 0.224822i
\(100\) −4.14575 7.18065i −0.414575 0.718065i
\(101\) 4.17712 7.23499i 0.415639 0.719909i −0.579856 0.814719i \(-0.696891\pi\)
0.995495 + 0.0948105i \(0.0302245\pi\)
\(102\) 0 0
\(103\) 2.70850 0.266876 0.133438 0.991057i \(-0.457398\pi\)
0.133438 + 0.991057i \(0.457398\pi\)
\(104\) −1.00000 + 1.73205i −0.0980581 + 0.169842i
\(105\) 7.93725 13.7477i 0.774597 1.34164i
\(106\) 8.58301 0.833655
\(107\) −4.70850 −0.455188 −0.227594 0.973756i \(-0.573086\pi\)
−0.227594 + 0.973756i \(0.573086\pi\)
\(108\) −1.32288 + 2.29129i −0.127294 + 0.220479i
\(109\) −3.29150 5.70105i −0.315269 0.546062i 0.664226 0.747532i \(-0.268761\pi\)
−0.979495 + 0.201470i \(0.935428\pi\)
\(110\) 1.17712 2.03884i 0.112234 0.194396i
\(111\) 7.46863 + 12.9360i 0.708891 + 1.22783i
\(112\) 0.822876 + 1.42526i 0.0777544 + 0.134675i
\(113\) −5.58301 −0.525205 −0.262602 0.964904i \(-0.584581\pi\)
−0.262602 + 0.964904i \(0.584581\pi\)
\(114\) 0 0
\(115\) 13.2915 1.23944
\(116\) −1.82288 3.15731i −0.169250 0.293149i
\(117\) 4.00000 + 6.92820i 0.369800 + 0.640513i
\(118\) −3.96863 + 6.87386i −0.365342 + 0.632790i
\(119\) 0 0
\(120\) 4.82288 8.35347i 0.440266 0.762564i
\(121\) −10.5830 −0.962091
\(122\) 14.9373 1.35236
\(123\) 13.6144 23.5808i 1.22757 2.12621i
\(124\) −0.177124 + 0.306788i −0.0159062 + 0.0275504i
\(125\) 12.0000 1.07331
\(126\) 6.58301 0.586461
\(127\) −1.35425 + 2.34563i −0.120170 + 0.208141i −0.919835 0.392306i \(-0.871677\pi\)
0.799665 + 0.600447i \(0.205011\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) −0.937254 + 1.62337i −0.0825206 + 0.142930i
\(130\) −3.64575 6.31463i −0.319754 0.553829i
\(131\) 6.96863 + 12.0700i 0.608852 + 1.05456i 0.991430 + 0.130639i \(0.0417029\pi\)
−0.382578 + 0.923923i \(0.624964\pi\)
\(132\) 1.70850 0.148706
\(133\) 0 0
\(134\) −4.64575 −0.401332
\(135\) −4.82288 8.35347i −0.415087 0.718952i
\(136\) 0 0
\(137\) 2.79150 4.83502i 0.238494 0.413084i −0.721788 0.692114i \(-0.756680\pi\)
0.960282 + 0.279030i \(0.0900129\pi\)
\(138\) 4.82288 + 8.35347i 0.410550 + 0.711094i
\(139\) −6.67712 + 11.5651i −0.566346 + 0.980941i 0.430577 + 0.902554i \(0.358310\pi\)
−0.996923 + 0.0783866i \(0.975023\pi\)
\(140\) −6.00000 −0.507093
\(141\) 25.5203 2.14919
\(142\) 6.64575 11.5108i 0.557699 0.965963i
\(143\) 0.645751 1.11847i 0.0540004 0.0935315i
\(144\) 4.00000 0.333333
\(145\) 13.2915 1.10380
\(146\) 6.14575 10.6448i 0.508626 0.880966i
\(147\) 5.67712 + 9.83307i 0.468241 + 0.811018i
\(148\) 2.82288 4.88936i 0.232039 0.401903i
\(149\) 2.46863 + 4.27579i 0.202238 + 0.350286i 0.949249 0.314525i \(-0.101845\pi\)
−0.747011 + 0.664811i \(0.768512\pi\)
\(150\) 10.9686 + 18.9982i 0.895585 + 1.55120i
\(151\) 2.93725 0.239030 0.119515 0.992832i \(-0.461866\pi\)
0.119515 + 0.992832i \(0.461866\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) −0.531373 0.920365i −0.0428193 0.0741651i
\(155\) −0.645751 1.11847i −0.0518680 0.0898380i
\(156\) 2.64575 4.58258i 0.211830 0.366900i
\(157\) −5.29150 9.16515i −0.422308 0.731459i 0.573857 0.818956i \(-0.305447\pi\)
−0.996165 + 0.0874969i \(0.972113\pi\)
\(158\) 2.00000 3.46410i 0.159111 0.275589i
\(159\) −22.7085 −1.80090
\(160\) −3.64575 −0.288222
\(161\) 3.00000 5.19615i 0.236433 0.409514i
\(162\) −2.50000 + 4.33013i −0.196419 + 0.340207i
\(163\) −11.9373 −0.934998 −0.467499 0.883994i \(-0.654845\pi\)
−0.467499 + 0.883994i \(0.654845\pi\)
\(164\) −10.2915 −0.803631
\(165\) −3.11438 + 5.39426i −0.242454 + 0.419943i
\(166\) −3.96863 6.87386i −0.308025 0.533515i
\(167\) −6.00000 + 10.3923i −0.464294 + 0.804181i −0.999169 0.0407502i \(-0.987025\pi\)
0.534875 + 0.844931i \(0.320359\pi\)
\(168\) −2.17712 3.77089i −0.167969 0.290930i
\(169\) 4.50000 + 7.79423i 0.346154 + 0.599556i
\(170\) 0 0
\(171\) 0 0
\(172\) 0.708497 0.0540224
\(173\) −3.00000 5.19615i −0.228086 0.395056i 0.729155 0.684349i \(-0.239913\pi\)
−0.957241 + 0.289292i \(0.906580\pi\)
\(174\) 4.82288 + 8.35347i 0.365621 + 0.633275i
\(175\) 6.82288 11.8176i 0.515761 0.893324i
\(176\) −0.322876 0.559237i −0.0243377 0.0421541i
\(177\) 10.5000 18.1865i 0.789228 1.36698i
\(178\) 0 0
\(179\) −19.9373 −1.49018 −0.745090 0.666964i \(-0.767594\pi\)
−0.745090 + 0.666964i \(0.767594\pi\)
\(180\) −7.29150 + 12.6293i −0.543477 + 0.941329i
\(181\) −2.11438 + 3.66221i −0.157160 + 0.272210i −0.933844 0.357682i \(-0.883567\pi\)
0.776683 + 0.629892i \(0.216901\pi\)
\(182\) −3.29150 −0.243982
\(183\) −39.5203 −2.92142
\(184\) 1.82288 3.15731i 0.134384 0.232760i
\(185\) 10.2915 + 17.8254i 0.756646 + 1.31055i
\(186\) 0.468627 0.811686i 0.0343614 0.0595157i
\(187\) 0 0
\(188\) −4.82288 8.35347i −0.351744 0.609239i
\(189\) −4.35425 −0.316725
\(190\) 0 0
\(191\) −14.5830 −1.05519 −0.527595 0.849496i \(-0.676906\pi\)
−0.527595 + 0.849496i \(0.676906\pi\)
\(192\) −1.32288 2.29129i −0.0954703 0.165359i
\(193\) −3.29150 5.70105i −0.236928 0.410371i 0.722904 0.690949i \(-0.242807\pi\)
−0.959831 + 0.280578i \(0.909474\pi\)
\(194\) 7.14575 12.3768i 0.513035 0.888603i
\(195\) 9.64575 + 16.7069i 0.690747 + 1.19641i
\(196\) 2.14575 3.71655i 0.153268 0.265468i
\(197\) −2.35425 −0.167733 −0.0838666 0.996477i \(-0.526727\pi\)
−0.0838666 + 0.996477i \(0.526727\pi\)
\(198\) −2.58301 −0.183566
\(199\) −5.93725 + 10.2836i −0.420881 + 0.728987i −0.996026 0.0890645i \(-0.971612\pi\)
0.575145 + 0.818051i \(0.304946\pi\)
\(200\) 4.14575 7.18065i 0.293149 0.507749i
\(201\) 12.2915 0.866976
\(202\) 8.35425 0.587803
\(203\) 3.00000 5.19615i 0.210559 0.364698i
\(204\) 0 0
\(205\) 18.7601 32.4935i 1.31026 2.26944i
\(206\) 1.35425 + 2.34563i 0.0943550 + 0.163428i
\(207\) −7.29150 12.6293i −0.506794 0.877794i
\(208\) −2.00000 −0.138675
\(209\) 0 0
\(210\) 15.8745 1.09545
\(211\) −1.35425 2.34563i −0.0932303 0.161480i 0.815638 0.578562i \(-0.196386\pi\)
−0.908869 + 0.417082i \(0.863053\pi\)
\(212\) 4.29150 + 7.43310i 0.294742 + 0.510507i
\(213\) −17.5830 + 30.4547i −1.20477 + 2.08672i
\(214\) −2.35425 4.07768i −0.160933 0.278744i
\(215\) −1.29150 + 2.23695i −0.0880797 + 0.152559i
\(216\) −2.64575 −0.180021
\(217\) −0.583005 −0.0395770
\(218\) 3.29150 5.70105i 0.222929 0.386124i
\(219\) −16.2601 + 28.1634i −1.09876 + 1.90310i
\(220\) 2.35425 0.158723
\(221\) 0 0
\(222\) −7.46863 + 12.9360i −0.501261 + 0.868210i
\(223\) 14.4059 + 24.9517i 0.964689 + 1.67089i 0.710448 + 0.703750i \(0.248492\pi\)
0.254241 + 0.967141i \(0.418174\pi\)
\(224\) −0.822876 + 1.42526i −0.0549807 + 0.0952294i
\(225\) −16.5830 28.7226i −1.10553 1.91484i
\(226\) −2.79150 4.83502i −0.185688 0.321621i
\(227\) 12.6458 0.839328 0.419664 0.907680i \(-0.362148\pi\)
0.419664 + 0.907680i \(0.362148\pi\)
\(228\) 0 0
\(229\) 20.0000 1.32164 0.660819 0.750546i \(-0.270209\pi\)
0.660819 + 0.750546i \(0.270209\pi\)
\(230\) 6.64575 + 11.5108i 0.438208 + 0.758998i
\(231\) 1.40588 + 2.43506i 0.0925002 + 0.160215i
\(232\) 1.82288 3.15731i 0.119678 0.207288i
\(233\) 6.43725 + 11.1497i 0.421719 + 0.730438i 0.996108 0.0881444i \(-0.0280937\pi\)
−0.574389 + 0.818582i \(0.694760\pi\)
\(234\) −4.00000 + 6.92820i −0.261488 + 0.452911i
\(235\) 35.1660 2.29398
\(236\) −7.93725 −0.516671
\(237\) −5.29150 + 9.16515i −0.343720 + 0.595341i
\(238\) 0 0
\(239\) −12.0000 −0.776215 −0.388108 0.921614i \(-0.626871\pi\)
−0.388108 + 0.921614i \(0.626871\pi\)
\(240\) 9.64575 0.622631
\(241\) 6.79150 11.7632i 0.437479 0.757736i −0.560015 0.828482i \(-0.689205\pi\)
0.997494 + 0.0707462i \(0.0225381\pi\)
\(242\) −5.29150 9.16515i −0.340151 0.589158i
\(243\) 10.5830 18.3303i 0.678900 1.17589i
\(244\) 7.46863 + 12.9360i 0.478130 + 0.828145i
\(245\) 7.82288 + 13.5496i 0.499785 + 0.865653i
\(246\) 27.2288 1.73604
\(247\) 0 0
\(248\) −0.354249 −0.0224948
\(249\) 10.5000 + 18.1865i 0.665410 + 1.15252i
\(250\) 6.00000 + 10.3923i 0.379473 + 0.657267i
\(251\) −1.38562 + 2.39997i −0.0874597 + 0.151485i −0.906437 0.422342i \(-0.861208\pi\)
0.818977 + 0.573826i \(0.194542\pi\)
\(252\) 3.29150 + 5.70105i 0.207345 + 0.359132i
\(253\) −1.17712 + 2.03884i −0.0740052 + 0.128181i
\(254\) −2.70850 −0.169946
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 0.854249 1.47960i 0.0532866 0.0922950i −0.838152 0.545437i \(-0.816364\pi\)
0.891438 + 0.453142i \(0.149697\pi\)
\(258\) −1.87451 −0.116702
\(259\) 9.29150 0.577346
\(260\) 3.64575 6.31463i 0.226100 0.391617i
\(261\) −7.29150 12.6293i −0.451333 0.781731i
\(262\) −6.96863 + 12.0700i −0.430523 + 0.745688i
\(263\) −2.46863 4.27579i −0.152222 0.263656i 0.779822 0.626001i \(-0.215310\pi\)
−0.932044 + 0.362345i \(0.881976\pi\)
\(264\) 0.854249 + 1.47960i 0.0525754 + 0.0910632i
\(265\) −31.2915 −1.92222
\(266\) 0 0
\(267\) 0 0
\(268\) −2.32288 4.02334i −0.141892 0.245765i
\(269\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(270\) 4.82288 8.35347i 0.293511 0.508376i
\(271\) −8.82288 15.2817i −0.535952 0.928295i −0.999117 0.0420233i \(-0.986620\pi\)
0.463165 0.886272i \(-0.346714\pi\)
\(272\) 0 0
\(273\) 8.70850 0.527062
\(274\) 5.58301 0.337282
\(275\) −2.67712 + 4.63692i −0.161437 + 0.279617i
\(276\) −4.82288 + 8.35347i −0.290303 + 0.502820i
\(277\) 9.52026 0.572017 0.286008 0.958227i \(-0.407671\pi\)
0.286008 + 0.958227i \(0.407671\pi\)
\(278\) −13.3542 −0.800935
\(279\) −0.708497 + 1.22715i −0.0424166 + 0.0734678i
\(280\) −3.00000 5.19615i −0.179284 0.310530i
\(281\) −13.7288 + 23.7789i −0.818989 + 1.41853i 0.0874389 + 0.996170i \(0.472132\pi\)
−0.906428 + 0.422361i \(0.861202\pi\)
\(282\) 12.7601 + 22.1012i 0.759855 + 1.31611i
\(283\) −12.6771 21.9574i −0.753577 1.30523i −0.946079 0.323937i \(-0.894993\pi\)
0.192502 0.981297i \(-0.438340\pi\)
\(284\) 13.2915 0.788706
\(285\) 0 0
\(286\) 1.29150 0.0763682
\(287\) −8.46863 14.6681i −0.499887 0.865830i
\(288\) 2.00000 + 3.46410i 0.117851 + 0.204124i
\(289\) 8.50000 14.7224i 0.500000 0.866025i
\(290\) 6.64575 + 11.5108i 0.390252 + 0.675936i
\(291\) −18.9059 + 32.7459i −1.10828 + 1.91960i
\(292\) 12.2915 0.719306
\(293\) −13.0627 −0.763134 −0.381567 0.924341i \(-0.624615\pi\)
−0.381567 + 0.924341i \(0.624615\pi\)
\(294\) −5.67712 + 9.83307i −0.331097 + 0.573476i
\(295\) 14.4686 25.0604i 0.842396 1.45907i
\(296\) 5.64575 0.328153
\(297\) 1.70850 0.0991371
\(298\) −2.46863 + 4.27579i −0.143004 + 0.247690i
\(299\) 3.64575 + 6.31463i 0.210839 + 0.365184i
\(300\) −10.9686 + 18.9982i −0.633274 + 1.09686i
\(301\) 0.583005 + 1.00979i 0.0336039 + 0.0582036i
\(302\) 1.46863 + 2.54374i 0.0845100 + 0.146376i
\(303\) −22.1033 −1.26980
\(304\) 0 0
\(305\) −54.4575 −3.11823
\(306\) 0 0
\(307\) −2.32288 4.02334i −0.132574 0.229624i 0.792094 0.610399i \(-0.208991\pi\)
−0.924668 + 0.380775i \(0.875657\pi\)
\(308\) 0.531373 0.920365i 0.0302778 0.0524427i
\(309\) −3.58301 6.20595i −0.203830 0.353044i
\(310\) 0.645751 1.11847i 0.0366762 0.0635251i
\(311\) 8.35425 0.473726 0.236863 0.971543i \(-0.423881\pi\)
0.236863 + 0.971543i \(0.423881\pi\)
\(312\) 5.29150 0.299572
\(313\) 11.4373 19.8099i 0.646472 1.11972i −0.337488 0.941330i \(-0.609577\pi\)
0.983959 0.178392i \(-0.0570895\pi\)
\(314\) 5.29150 9.16515i 0.298617 0.517219i
\(315\) −24.0000 −1.35225
\(316\) 4.00000 0.225018
\(317\) −3.00000 + 5.19615i −0.168497 + 0.291845i −0.937892 0.346929i \(-0.887225\pi\)
0.769395 + 0.638774i \(0.220558\pi\)
\(318\) −11.3542 19.6661i −0.636715 1.10282i
\(319\) −1.17712 + 2.03884i −0.0659063 + 0.114153i
\(320\) −1.82288 3.15731i −0.101902 0.176499i
\(321\) 6.22876 + 10.7885i 0.347655 + 0.602157i
\(322\) 6.00000 0.334367
\(323\) 0 0
\(324\) −5.00000 −0.277778
\(325\) 8.29150 + 14.3613i 0.459930 + 0.796622i
\(326\) −5.96863 10.3380i −0.330572 0.572567i
\(327\) −8.70850 + 15.0836i −0.481581 + 0.834123i
\(328\) −5.14575 8.91270i −0.284127 0.492122i
\(329\) 7.93725 13.7477i 0.437595 0.757937i
\(330\) −6.22876 −0.342882
\(331\) 27.8118 1.52867 0.764336 0.644818i \(-0.223067\pi\)
0.764336 + 0.644818i \(0.223067\pi\)
\(332\) 3.96863 6.87386i 0.217807 0.377252i
\(333\) 11.2915 19.5575i 0.618771 1.07174i
\(334\) −12.0000 −0.656611
\(335\) 16.9373 0.925381
\(336\) 2.17712 3.77089i 0.118772 0.205719i
\(337\) −10.1458 17.5730i −0.552674 0.957260i −0.998080 0.0619313i \(-0.980274\pi\)
0.445406 0.895329i \(-0.353059\pi\)
\(338\) −4.50000 + 7.79423i −0.244768 + 0.423950i
\(339\) 7.38562 + 12.7923i 0.401132 + 0.694781i
\(340\) 0 0
\(341\) 0.228757 0.0123879
\(342\) 0 0
\(343\) 18.5830 1.00339
\(344\) 0.354249 + 0.613577i 0.0190998 + 0.0330818i
\(345\) −17.5830 30.4547i −0.946637 1.63962i
\(346\) 3.00000 5.19615i 0.161281 0.279347i
\(347\) −1.61438 2.79619i −0.0866644 0.150107i 0.819435 0.573172i \(-0.194287\pi\)
−0.906099 + 0.423065i \(0.860954\pi\)
\(348\) −4.82288 + 8.35347i −0.258533 + 0.447793i
\(349\) −21.1660 −1.13299 −0.566495 0.824065i \(-0.691701\pi\)
−0.566495 + 0.824065i \(0.691701\pi\)
\(350\) 13.6458 0.729396
\(351\) 2.64575 4.58258i 0.141220 0.244600i
\(352\) 0.322876 0.559237i 0.0172093 0.0298074i
\(353\) −18.8745 −1.00459 −0.502294 0.864697i \(-0.667511\pi\)
−0.502294 + 0.864697i \(0.667511\pi\)
\(354\) 21.0000 1.11614
\(355\) −24.2288 + 41.9654i −1.28593 + 2.22729i
\(356\) 0 0
\(357\) 0 0
\(358\) −9.96863 17.2662i −0.526858 0.912545i
\(359\) −5.46863 9.47194i −0.288623 0.499910i 0.684858 0.728676i \(-0.259864\pi\)
−0.973481 + 0.228766i \(0.926531\pi\)
\(360\) −14.5830 −0.768592
\(361\) 0 0
\(362\) −4.22876 −0.222259
\(363\) 14.0000 + 24.2487i 0.734809 + 1.27273i
\(364\) −1.64575 2.85052i −0.0862608 0.149408i
\(365\) −22.4059 + 38.8081i −1.17278 + 2.03131i
\(366\) −19.7601 34.2255i −1.03288 1.78900i
\(367\) 5.11438 8.85836i 0.266968 0.462403i −0.701109 0.713054i \(-0.747311\pi\)
0.968077 + 0.250651i \(0.0806447\pi\)
\(368\) 3.64575 0.190048
\(369\) −41.1660 −2.14302
\(370\) −10.2915 + 17.8254i −0.535030 + 0.926699i
\(371\) −7.06275 + 12.2330i −0.366680 + 0.635108i
\(372\) 0.937254 0.0485944
\(373\) 4.00000 0.207112 0.103556 0.994624i \(-0.466978\pi\)
0.103556 + 0.994624i \(0.466978\pi\)
\(374\) 0 0
\(375\) −15.8745 27.4955i −0.819756 1.41986i
\(376\) 4.82288 8.35347i 0.248721 0.430797i
\(377\) 3.64575 + 6.31463i 0.187766 + 0.325220i
\(378\) −2.17712 3.77089i −0.111979 0.193954i
\(379\) −21.2915 −1.09367 −0.546836 0.837240i \(-0.684168\pi\)
−0.546836 + 0.837240i \(0.684168\pi\)
\(380\) 0 0
\(381\) 7.16601 0.367126
\(382\) −7.29150 12.6293i −0.373066 0.646169i
\(383\) −15.7601 27.2973i −0.805305 1.39483i −0.916085 0.400984i \(-0.868668\pi\)
0.110780 0.993845i \(-0.464665\pi\)
\(384\) 1.32288 2.29129i 0.0675077 0.116927i
\(385\) 1.93725 + 3.35542i 0.0987316 + 0.171008i
\(386\) 3.29150 5.70105i 0.167533 0.290176i
\(387\) 2.83399 0.144060
\(388\) 14.2915 0.725541
\(389\) −6.00000 + 10.3923i −0.304212 + 0.526911i −0.977086 0.212847i \(-0.931726\pi\)
0.672874 + 0.739758i \(0.265060\pi\)
\(390\) −9.64575 + 16.7069i −0.488432 + 0.845988i
\(391\) 0 0
\(392\) 4.29150 0.216754
\(393\) 18.4373 31.9343i 0.930036 1.61087i
\(394\) −1.17712 2.03884i −0.0593027 0.102715i
\(395\) −7.29150 + 12.6293i −0.366875 + 0.635447i
\(396\) −1.29150 2.23695i −0.0649004 0.112411i
\(397\) −18.4686 31.9886i −0.926914 1.60546i −0.788454 0.615094i \(-0.789118\pi\)
−0.138460 0.990368i \(-0.544215\pi\)
\(398\) −11.8745 −0.595215
\(399\) 0 0
\(400\) 8.29150 0.414575
\(401\) 3.20850 + 5.55728i 0.160225 + 0.277517i 0.934949 0.354782i \(-0.115445\pi\)
−0.774724 + 0.632299i \(0.782111\pi\)
\(402\) 6.14575 + 10.6448i 0.306522 + 0.530912i
\(403\) 0.354249 0.613577i 0.0176464 0.0305644i
\(404\) 4.17712 + 7.23499i 0.207820 + 0.359954i
\(405\) 9.11438 15.7866i 0.452897 0.784441i
\(406\) 6.00000 0.297775
\(407\) −3.64575 −0.180713
\(408\) 0 0
\(409\) 6.79150 11.7632i 0.335818 0.581654i −0.647823 0.761790i \(-0.724321\pi\)
0.983642 + 0.180136i \(0.0576539\pi\)
\(410\) 37.5203 1.85299
\(411\) −14.7712 −0.728612
\(412\) −1.35425 + 2.34563i −0.0667190 + 0.115561i
\(413\) −6.53137 11.3127i −0.321388 0.556660i
\(414\) 7.29150 12.6293i 0.358358 0.620694i
\(415\) 14.4686 + 25.0604i 0.710237 + 1.23017i
\(416\) −1.00000 1.73205i −0.0490290 0.0849208i
\(417\) 35.3320 1.73022
\(418\) 0 0
\(419\) 31.7490 1.55104 0.775520 0.631322i \(-0.217488\pi\)
0.775520 + 0.631322i \(0.217488\pi\)
\(420\) 7.93725 + 13.7477i 0.387298 + 0.670820i
\(421\) 11.4059 + 19.7556i 0.555889 + 0.962827i 0.997834 + 0.0657853i \(0.0209552\pi\)
−0.441945 + 0.897042i \(0.645711\pi\)
\(422\) 1.35425 2.34563i 0.0659238 0.114183i
\(423\) −19.2915 33.4139i −0.937985 1.62464i
\(424\) −4.29150 + 7.43310i −0.208414 + 0.360983i
\(425\) 0 0
\(426\) −35.1660 −1.70380
\(427\) −12.2915 + 21.2895i −0.594828 + 1.03027i
\(428\) 2.35425 4.07768i 0.113797 0.197102i
\(429\) −3.41699 −0.164974
\(430\) −2.58301 −0.124564
\(431\) −1.93725 + 3.35542i −0.0933142 + 0.161625i −0.908904 0.417006i \(-0.863079\pi\)
0.815590 + 0.578631i \(0.196413\pi\)
\(432\) −1.32288 2.29129i −0.0636469 0.110240i
\(433\) −6.93725 + 12.0157i −0.333383 + 0.577437i −0.983173 0.182677i \(-0.941524\pi\)
0.649790 + 0.760114i \(0.274857\pi\)
\(434\) −0.291503 0.504897i −0.0139926 0.0242358i
\(435\) −17.5830 30.4547i −0.843041 1.46019i
\(436\) 6.58301 0.315269
\(437\) 0 0
\(438\) −32.5203 −1.55388
\(439\) −18.4059 31.8799i −0.878465 1.52155i −0.853025 0.521869i \(-0.825235\pi\)
−0.0254393 0.999676i \(-0.508098\pi\)
\(440\) 1.17712 + 2.03884i 0.0561172 + 0.0971978i
\(441\) 8.58301 14.8662i 0.408715 0.707914i
\(442\) 0 0
\(443\) −2.67712 + 4.63692i −0.127194 + 0.220306i −0.922588 0.385786i \(-0.873930\pi\)
0.795394 + 0.606092i \(0.207264\pi\)
\(444\) −14.9373 −0.708891
\(445\) 0 0
\(446\) −14.4059 + 24.9517i −0.682138 + 1.18150i
\(447\) 6.53137 11.3127i 0.308923 0.535071i
\(448\) −1.64575 −0.0777544
\(449\) 13.7085 0.646944 0.323472 0.946238i \(-0.395150\pi\)
0.323472 + 0.946238i \(0.395150\pi\)
\(450\) 16.5830 28.7226i 0.781730 1.35400i
\(451\) 3.32288 + 5.75539i 0.156468 + 0.271011i
\(452\) 2.79150 4.83502i 0.131301 0.227420i
\(453\) −3.88562 6.73009i −0.182562 0.316207i
\(454\) 6.32288 + 10.9515i 0.296747 + 0.513981i
\(455\) 12.0000 0.562569
\(456\) 0 0
\(457\) 1.12549 0.0526483 0.0263242 0.999653i \(-0.491620\pi\)
0.0263242 + 0.999653i \(0.491620\pi\)
\(458\) 10.0000 + 17.3205i 0.467269 + 0.809334i
\(459\) 0 0
\(460\) −6.64575 + 11.5108i −0.309860 + 0.536693i
\(461\) 11.5830 + 20.0624i 0.539474 + 0.934397i 0.998932 + 0.0461975i \(0.0147103\pi\)
−0.459458 + 0.888200i \(0.651956\pi\)
\(462\) −1.40588 + 2.43506i −0.0654075 + 0.113289i
\(463\) 14.4575 0.671898 0.335949 0.941880i \(-0.390943\pi\)
0.335949 + 0.941880i \(0.390943\pi\)
\(464\) 3.64575 0.169250
\(465\) −1.70850 + 2.95920i −0.0792297 + 0.137230i
\(466\) −6.43725 + 11.1497i −0.298200 + 0.516498i
\(467\) −24.6458 −1.14047 −0.570235 0.821482i \(-0.693148\pi\)
−0.570235 + 0.821482i \(0.693148\pi\)
\(468\) −8.00000 −0.369800
\(469\) 3.82288 6.62141i 0.176524 0.305749i
\(470\) 17.5830 + 30.4547i 0.811044 + 1.40477i
\(471\) −14.0000 + 24.2487i −0.645086 + 1.11732i
\(472\) −3.96863 6.87386i −0.182671 0.316395i
\(473\) −0.228757 0.396218i −0.0105182 0.0182181i
\(474\) −10.5830 −0.486094
\(475\) 0 0
\(476\) 0 0
\(477\) 17.1660 + 29.7324i 0.785978 + 1.36135i
\(478\) −6.00000 10.3923i −0.274434 0.475333i
\(479\) 7.29150 12.6293i 0.333157 0.577045i −0.649972 0.759958i \(-0.725219\pi\)
0.983129 + 0.182913i \(0.0585527\pi\)
\(480\) 4.82288 + 8.35347i 0.220133 + 0.381282i
\(481\) −5.64575 + 9.77873i −0.257424 + 0.445872i
\(482\) 13.5830 0.618689
\(483\) −15.8745 −0.722315
\(484\) 5.29150 9.16515i 0.240523 0.416598i
\(485\) −26.0516 + 45.1228i −1.18294 + 2.04892i
\(486\) 21.1660 0.960110
\(487\) 22.2288 1.00728 0.503641 0.863913i \(-0.331994\pi\)
0.503641 + 0.863913i \(0.331994\pi\)
\(488\) −7.46863 + 12.9360i −0.338089 + 0.585587i
\(489\) 15.7915 + 27.3517i 0.714116 + 1.23689i
\(490\) −7.82288 + 13.5496i −0.353401 + 0.612109i
\(491\) −14.3542 24.8623i −0.647798 1.12202i −0.983648 0.180104i \(-0.942357\pi\)
0.335849 0.941916i \(-0.390977\pi\)
\(492\) 13.6144 + 23.5808i 0.613784 + 1.06310i
\(493\) 0 0
\(494\) 0 0
\(495\) 9.41699 0.423262
\(496\) −0.177124 0.306788i −0.00795312 0.0137752i
\(497\) 10.9373 + 18.9439i 0.490603 + 0.849749i
\(498\) −10.5000 + 18.1865i −0.470516 + 0.814958i
\(499\) 15.6144 + 27.0449i 0.698996 + 1.21070i 0.968815 + 0.247785i \(0.0797026\pi\)
−0.269819 + 0.962911i \(0.586964\pi\)
\(500\) −6.00000 + 10.3923i −0.268328 + 0.464758i
\(501\) 31.7490 1.41844
\(502\) −2.77124 −0.123687
\(503\) 12.5314 21.7050i 0.558746 0.967777i −0.438855 0.898558i \(-0.644616\pi\)
0.997601 0.0692192i \(-0.0220508\pi\)
\(504\) −3.29150 + 5.70105i −0.146615 + 0.253945i
\(505\) −30.4575 −1.35534
\(506\) −2.35425 −0.104659
\(507\) 11.9059 20.6216i 0.528759 0.915837i
\(508\) −1.35425 2.34563i −0.0600851 0.104070i
\(509\) 15.8745 27.4955i 0.703625 1.21871i −0.263560 0.964643i \(-0.584897\pi\)
0.967185 0.254072i \(-0.0817699\pi\)
\(510\) 0 0
\(511\) 10.1144 + 17.5186i 0.447434 + 0.774978i
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 1.70850 0.0753586
\(515\) −4.93725 8.55157i −0.217561 0.376827i
\(516\) −0.937254 1.62337i −0.0412603 0.0714649i
\(517\) −3.11438 + 5.39426i −0.136970 + 0.237239i
\(518\) 4.64575 + 8.04668i 0.204123 + 0.353551i
\(519\) −7.93725 + 13.7477i −0.348407 + 0.603458i
\(520\) 7.29150 0.319754
\(521\) 22.2915 0.976608 0.488304 0.872673i \(-0.337616\pi\)
0.488304 + 0.872673i \(0.337616\pi\)
\(522\) 7.29150 12.6293i 0.319140 0.552767i
\(523\) 14.9373 25.8721i 0.653161 1.13131i −0.329191 0.944263i \(-0.606776\pi\)
0.982352 0.187044i \(-0.0598906\pi\)
\(524\) −13.9373 −0.608852
\(525\) −36.1033 −1.57568
\(526\) 2.46863 4.27579i 0.107637 0.186433i
\(527\) 0 0
\(528\) −0.854249 + 1.47960i −0.0371764 + 0.0643914i
\(529\) 4.85425 + 8.40781i 0.211054 + 0.365557i
\(530\) −15.6458 27.0992i −0.679608 1.17712i
\(531\) −31.7490 −1.37779
\(532\) 0 0
\(533\) 20.5830 0.891549
\(534\) 0 0
\(535\) 8.58301 + 14.8662i 0.371076 + 0.642722i
\(536\) 2.32288 4.02334i 0.100333 0.173782i
\(537\) 26.3745 + 45.6820i 1.13814 + 1.97132i
\(538\) 0 0
\(539\) −2.77124 −0.119366
\(540\) 9.64575 0.415087
\(541\) −4.00000 + 6.92820i −0.171973 + 0.297867i −0.939110 0.343617i \(-0.888348\pi\)
0.767136 + 0.641484i \(0.221681\pi\)
\(542\) 8.82288 15.2817i 0.378975 0.656404i
\(543\) 11.1882 0.480133
\(544\) 0 0
\(545\) −12.0000 + 20.7846i −0.514024 + 0.890315i
\(546\) 4.35425 + 7.54178i 0.186345 + 0.322758i
\(547\) 0.354249 0.613577i 0.0151466 0.0262346i −0.858353 0.513060i \(-0.828512\pi\)
0.873499 + 0.486825i \(0.161845\pi\)
\(548\) 2.79150 + 4.83502i 0.119247 + 0.206542i
\(549\) 29.8745 + 51.7442i 1.27501 + 2.20839i
\(550\) −5.35425 −0.228306
\(551\) 0 0
\(552\) −9.64575 −0.410550
\(553\) 3.29150 + 5.70105i 0.139969 + 0.242433i
\(554\) 4.76013 + 8.24479i 0.202239 + 0.350287i
\(555\) 27.2288 47.1616i 1.15580 2.00190i
\(556\) −6.67712 11.5651i −0.283173 0.490470i
\(557\) 13.2915 23.0216i 0.563179 0.975455i −0.434037 0.900895i \(-0.642911\pi\)
0.997217 0.0745599i \(-0.0237552\pi\)
\(558\) −1.41699 −0.0599862
\(559\) −1.41699 −0.0599325
\(560\) 3.00000 5.19615i 0.126773 0.219578i
\(561\) 0 0
\(562\) −27.4575 −1.15823
\(563\) −25.9373 −1.09312 −0.546562 0.837418i \(-0.684064\pi\)
−0.546562 + 0.837418i \(0.684064\pi\)
\(564\) −12.7601 + 22.1012i −0.537298 + 0.930628i
\(565\) 10.1771 + 17.6273i 0.428155 + 0.741586i
\(566\) 12.6771 21.9574i 0.532859 0.922939i
\(567\) −4.11438 7.12631i −0.172788 0.299277i
\(568\) 6.64575 + 11.5108i 0.278850 + 0.482982i
\(569\) 14.5830 0.611351 0.305676 0.952136i \(-0.401118\pi\)
0.305676 + 0.952136i \(0.401118\pi\)
\(570\) 0 0
\(571\) −39.8118 −1.66607 −0.833035 0.553220i \(-0.813399\pi\)
−0.833035 + 0.553220i \(0.813399\pi\)
\(572\) 0.645751 + 1.11847i 0.0270002 + 0.0467658i
\(573\) 19.2915 + 33.4139i 0.805914 + 1.39588i
\(574\) 8.46863 14.6681i 0.353474 0.612234i
\(575\) −15.1144 26.1789i −0.630313 1.09173i
\(576\) −2.00000 + 3.46410i −0.0833333 + 0.144338i
\(577\) 11.0000 0.457936 0.228968 0.973434i \(-0.426465\pi\)
0.228968 + 0.973434i \(0.426465\pi\)
\(578\) 17.0000 0.707107
\(579\) −8.70850 + 15.0836i −0.361913 + 0.626851i
\(580\) −6.64575 + 11.5108i −0.275950 + 0.477959i
\(581\) 13.0627 0.541934
\(582\) −37.8118 −1.56735
\(583\) 2.77124 4.79993i 0.114773 0.198793i
\(584\) 6.14575 + 10.6448i 0.254313 + 0.440483i
\(585\) 14.5830 25.2585i 0.602933 1.04431i
\(586\) −6.53137 11.3127i −0.269809 0.467322i
\(587\) 22.9373 + 39.7285i 0.946722 + 1.63977i 0.752267 + 0.658859i \(0.228961\pi\)
0.194455 + 0.980911i \(0.437706\pi\)
\(588\) −11.3542 −0.468241
\(589\) 0 0
\(590\) 28.9373 1.19133
\(591\) 3.11438 + 5.39426i 0.128108 + 0.221890i
\(592\) 2.82288 + 4.88936i 0.116019 + 0.200952i
\(593\) −20.1458 + 34.8935i −0.827287 + 1.43290i 0.0728721 + 0.997341i \(0.476784\pi\)
−0.900159 + 0.435562i \(0.856550\pi\)
\(594\) 0.854249 + 1.47960i 0.0350502 + 0.0607088i
\(595\) 0 0
\(596\) −4.93725 −0.202238
\(597\) 31.4170 1.28581
\(598\) −3.64575 + 6.31463i −0.149086 + 0.258224i
\(599\) −0.531373 + 0.920365i −0.0217113 + 0.0376051i −0.876677 0.481080i \(-0.840245\pi\)
0.854966 + 0.518685i \(0.173578\pi\)
\(600\) −21.9373 −0.895585
\(601\) −31.5830 −1.28830 −0.644149 0.764900i \(-0.722788\pi\)
−0.644149 + 0.764900i \(0.722788\pi\)
\(602\) −0.583005 + 1.00979i −0.0237615 + 0.0411562i
\(603\) −9.29150 16.0934i −0.378379 0.655372i
\(604\) −1.46863 + 2.54374i −0.0597576 + 0.103503i
\(605\) 19.2915 + 33.4139i 0.784311 + 1.35847i
\(606\) −11.0516 19.1420i −0.448942 0.777590i
\(607\) 8.93725 0.362752 0.181376 0.983414i \(-0.441945\pi\)
0.181376 + 0.983414i \(0.441945\pi\)
\(608\) 0 0
\(609\) −15.8745 −0.643268
\(610\) −27.2288 47.1616i −1.10246 1.90952i
\(611\) 9.64575 + 16.7069i 0.390225 + 0.675890i
\(612\) 0 0
\(613\) −14.2915 24.7536i −0.577228 0.999789i −0.995796 0.0916030i \(-0.970801\pi\)
0.418567 0.908186i \(-0.362532\pi\)
\(614\) 2.32288 4.02334i 0.0937436 0.162369i
\(615\) −99.2693 −4.00292
\(616\) 1.06275 0.0428193
\(617\) −0.437254 + 0.757346i −0.0176032 + 0.0304896i −0.874693 0.484678i \(-0.838937\pi\)
0.857090 + 0.515167i \(0.172270\pi\)
\(618\) 3.58301 6.20595i 0.144130 0.249640i
\(619\) 44.4575 1.78690 0.893449 0.449164i \(-0.148278\pi\)
0.893449 + 0.449164i \(0.148278\pi\)
\(620\) 1.29150 0.0518680
\(621\) −4.82288 + 8.35347i −0.193535 + 0.335213i
\(622\) 4.17712 + 7.23499i 0.167487 + 0.290097i
\(623\) 0 0
\(624\) 2.64575 + 4.58258i 0.105915 + 0.183450i
\(625\) −1.14575 1.98450i −0.0458301 0.0793800i
\(626\) 22.8745 0.914249
\(627\) 0 0
\(628\) 10.5830 0.422308
\(629\) 0 0
\(630\) −12.0000 20.7846i −0.478091 0.828079i
\(631\) −11.4059 + 19.7556i −0.454061 + 0.786457i −0.998634 0.0522570i \(-0.983359\pi\)
0.544573 + 0.838714i \(0.316692\pi\)
\(632\) 2.00000 + 3.46410i 0.0795557 + 0.137795i
\(633\) −3.58301 + 6.20595i −0.142412 + 0.246664i
\(634\) −6.00000 −0.238290
\(635\) 9.87451 0.391858
\(636\) 11.3542 19.6661i 0.450225 0.779813i
\(637\) −4.29150 + 7.43310i −0.170036 + 0.294510i
\(638\) −2.35425 −0.0932056
\(639\) 53.1660 2.10321
\(640\) 1.82288 3.15731i 0.0720555 0.124804i
\(641\) −9.43725 16.3458i −0.372749 0.645620i 0.617238 0.786776i \(-0.288251\pi\)
−0.989987 + 0.141156i \(0.954918\pi\)
\(642\) −6.22876 + 10.7885i −0.245829 + 0.425789i
\(643\) −15.2601 26.4313i −0.601801 1.04235i −0.992548 0.121852i \(-0.961117\pi\)
0.390748 0.920498i \(-0.372217\pi\)
\(644\) 3.00000 + 5.19615i 0.118217 + 0.204757i
\(645\) 6.83399 0.269088
\(646\) 0 0
\(647\) 30.4575 1.19741 0.598704 0.800970i \(-0.295683\pi\)
0.598704 + 0.800970i \(0.295683\pi\)
\(648\) −2.50000 4.33013i −0.0982093 0.170103i
\(649\) 2.56275 + 4.43881i 0.100597 + 0.174238i
\(650\) −8.29150 + 14.3613i −0.325219 + 0.563297i
\(651\) 0.771243 + 1.33583i 0.0302274 + 0.0523554i
\(652\) 5.96863 10.3380i 0.233749 0.404866i
\(653\) 24.0000 0.939193 0.469596 0.882881i \(-0.344399\pi\)
0.469596 + 0.882881i \(0.344399\pi\)
\(654\) −17.4170 −0.681058
\(655\) 25.4059 44.0043i 0.992690 1.71939i
\(656\) 5.14575 8.91270i 0.200908 0.347983i
\(657\) 49.1660 1.91815
\(658\) 15.8745 0.618853
\(659\) 1.29150 2.23695i 0.0503098 0.0871391i −0.839774 0.542936i \(-0.817312\pi\)
0.890084 + 0.455797i \(0.150646\pi\)
\(660\) −3.11438 5.39426i −0.121227 0.209971i
\(661\) −5.11438 + 8.85836i −0.198926 + 0.344550i −0.948181 0.317732i \(-0.897079\pi\)
0.749254 + 0.662282i \(0.230412\pi\)
\(662\) 13.9059 + 24.0857i 0.540467 + 0.936117i
\(663\) 0 0
\(664\) 7.93725 0.308025
\(665\) 0 0
\(666\) 22.5830 0.875074
\(667\) −6.64575 11.5108i −0.257325 0.445699i
\(668\) −6.00000 10.3923i −0.232147 0.402090i
\(669\) 38.1144 66.0160i 1.47359 2.55233i
\(670\) 8.46863 + 14.6681i 0.327172 + 0.566678i
\(671\) 4.82288 8.35347i 0.186185 0.322482i
\(672\) 4.35425 0.167969
\(673\) −17.8745 −0.689012 −0.344506 0.938784i \(-0.611954\pi\)
−0.344506 + 0.938784i \(0.611954\pi\)
\(674\) 10.1458 17.5730i 0.390800 0.676885i
\(675\) −10.9686 + 18.9982i −0.422183 + 0.731242i
\(676\) −9.00000 −0.346154
\(677\) 32.5830 1.25227 0.626133 0.779716i \(-0.284637\pi\)
0.626133 + 0.779716i \(0.284637\pi\)
\(678\) −7.38562 + 12.7923i −0.283643 + 0.491284i
\(679\) 11.7601 + 20.3691i 0.451312 + 0.781696i
\(680\) 0 0
\(681\) −16.7288 28.9751i −0.641047 1.11033i
\(682\) 0.114378 + 0.198109i 0.00437977 + 0.00758599i
\(683\) 26.5830 1.01717 0.508585 0.861012i \(-0.330169\pi\)
0.508585 + 0.861012i \(0.330169\pi\)
\(684\) 0 0
\(685\) −20.3542 −0.777696
\(686\) 9.29150 + 16.0934i 0.354751 + 0.614447i
\(687\) −26.4575 45.8258i −1.00942 1.74836i
\(688\) −0.354249 + 0.613577i −0.0135056 + 0.0233924i
\(689\) −8.58301 14.8662i −0.326986 0.566357i
\(690\) 17.5830 30.4547i 0.669374 1.15939i
\(691\) −18.5830 −0.706931 −0.353465 0.935448i \(-0.614997\pi\)
−0.353465 + 0.935448i \(0.614997\pi\)
\(692\) 6.00000 0.228086
\(693\) 2.12549 3.68146i 0.0807408 0.139847i
\(694\) 1.61438 2.79619i 0.0612810 0.106142i
\(695\) 48.6863 1.84678
\(696\) −9.64575 −0.365621
\(697\) 0 0
\(698\) −10.5830 18.3303i −0.400573 0.693812i
\(699\) 17.0314 29.4992i 0.644186 1.11576i
\(700\) 6.82288 + 11.8176i 0.257880 + 0.446662i
\(701\) −7.82288 13.5496i −0.295466 0.511762i 0.679627 0.733558i \(-0.262142\pi\)
−0.975093 + 0.221796i \(0.928808\pi\)
\(702\) 5.29150 0.199715
\(703\) 0 0
\(704\) 0.645751 0.0243377
\(705\) −46.5203 80.5755i −1.75205 3.03465i
\(706\) −9.43725 16.3458i −0.355176 0.615182i
\(707\) −6.87451 + 11.9070i −0.258542 + 0.447809i
\(708\) 10.5000 + 18.1865i 0.394614 + 0.683492i
\(709\) 0.822876 1.42526i 0.0309037 0.0535269i −0.850160 0.526525i \(-0.823495\pi\)
0.881064 + 0.472998i \(0.156828\pi\)
\(710\) −48.4575 −1.81858
\(711\) 16.0000 0.600047
\(712\) 0 0
\(713\) −0.645751 + 1.11847i −0.0241836 + 0.0418872i
\(714\) 0 0
\(715\) −4.70850 −0.176088
\(716\) 9.96863 17.2662i 0.372545 0.645267i
\(717\) 15.8745 + 27.4955i 0.592844 + 1.02684i
\(718\) 5.46863 9.47194i 0.204087 0.353490i
\(719\) −6.64575 11.5108i −0.247845 0.429280i 0.715083 0.699040i \(-0.246389\pi\)
−0.962928 + 0.269760i \(0.913056\pi\)
\(720\) −7.29150 12.6293i −0.271738 0.470664i
\(721\) −4.45751 −0.166006
\(722\) 0 0
\(723\) −35.9373 −1.33652
\(724\) −2.11438 3.66221i −0.0785802 0.136105i
\(725\) −15.1144 26.1789i −0.561334 0.972259i
\(726\) −14.0000 + 24.2487i −0.519589 + 0.899954i
\(727\) −11.2915 19.5575i −0.418779 0.725346i 0.577038 0.816717i \(-0.304208\pi\)
−0.995817 + 0.0913712i \(0.970875\pi\)
\(728\) 1.64575 2.85052i 0.0609956 0.105647i
\(729\) −41.0000 −1.51852
\(730\) −44.8118 −1.65856
\(731\) 0 0
\(732\) 19.7601 34.2255i 0.730355 1.26501i
\(733\) 42.1033 1.55512 0.777560 0.628809i \(-0.216457\pi\)
0.777560 + 0.628809i \(0.216457\pi\)
\(734\) 10.2288 0.377550
\(735\) 20.6974 35.8489i 0.763434 1.32231i
\(736\) 1.82288 + 3.15731i 0.0671921 + 0.116380i
\(737\) −1.50000 + 2.59808i −0.0552532 + 0.0957014i
\(738\) −20.5830 35.6508i −0.757671 1.31232i
\(739\) −6.90588 11.9613i −0.254037 0.440005i 0.710597 0.703600i \(-0.248425\pi\)
−0.964633 + 0.263595i \(0.915092\pi\)
\(740\) −20.5830 −0.756646
\(741\) 0 0
\(742\) −14.1255 −0.518563
\(743\) −5.23987 9.07572i −0.192232 0.332956i 0.753757 0.657153i \(-0.228239\pi\)
−0.945990 + 0.324197i \(0.894906\pi\)
\(744\) 0.468627 + 0.811686i 0.0171807 + 0.0297578i
\(745\) 9.00000 15.5885i 0.329734 0.571117i
\(746\) 2.00000 + 3.46410i 0.0732252 + 0.126830i
\(747\) 15.8745 27.4955i 0.580818 1.00601i
\(748\) 0 0
\(749\) 7.74902 0.283143
\(750\) 15.8745 27.4955i 0.579655 1.00399i
\(751\) 11.9373 20.6759i 0.435597 0.754475i −0.561748 0.827309i \(-0.689871\pi\)
0.997344 + 0.0728333i \(0.0232041\pi\)
\(752\) 9.64575 0.351744
\(753\) 7.33202 0.267194
\(754\) −3.64575 + 6.31463i −0.132770 + 0.229965i
\(755\) −5.35425 9.27383i −0.194861 0.337509i
\(756\) 2.17712 3.77089i 0.0791812 0.137146i
\(757\) −8.29150 14.3613i −0.301360 0.521970i 0.675084 0.737740i \(-0.264107\pi\)
−0.976444 + 0.215770i \(0.930774\pi\)
\(758\) −10.6458 18.4390i −0.386671 0.669734i
\(759\) 6.22876 0.226090
\(760\) 0 0
\(761\) 11.1255 0.403299 0.201649 0.979458i \(-0.435370\pi\)
0.201649 + 0.979458i \(0.435370\pi\)
\(762\) 3.58301 + 6.20595i 0.129799 + 0.224818i
\(763\) 5.41699 + 9.38251i 0.196108 + 0.339670i
\(764\) 7.29150 12.6293i 0.263797 0.456910i
\(765\) 0 0
\(766\) 15.7601 27.2973i 0.569437 0.986293i
\(767\) 15.8745 0.573195
\(768\) 2.64575 0.0954703
\(769\) −12.3542 + 21.3982i −0.445506 + 0.771638i −0.998087 0.0618204i \(-0.980309\pi\)
0.552582 + 0.833459i \(0.313643\pi\)
\(770\) −1.93725 + 3.35542i −0.0698138 + 0.120921i
\(771\) −4.52026 −0.162793
\(772\) 6.58301 0.236928
\(773\) 5.46863 9.47194i 0.196693 0.340682i −0.750761 0.660574i \(-0.770313\pi\)
0.947454 + 0.319892i \(0.103646\pi\)
\(774\) 1.41699 + 2.45431i 0.0509328 + 0.0882182i
\(775\) −1.46863 + 2.54374i −0.0527546 + 0.0913737i
\(776\) 7.14575 + 12.3768i 0.256518 + 0.444301i
\(777\) −12.2915 21.2895i −0.440955 0.763757i
\(778\) −12.0000 −0.430221
\(779\) 0 0
\(780\) −19.2915 −0.690747
\(781\) −4.29150 7.43310i −0.153562 0.265977i
\(782\) 0 0
\(783\) −4.82288 + 8.35347i −0.172356 + 0.298529i
\(784\) 2.14575 + 3.71655i 0.0766340 + 0.132734i
\(785\) −19.2915 + 33.4139i −0.688543 + 1.19259i
\(786\) 36.8745 1.31527
\(787\) 5.47974 0.195332 0.0976658 0.995219i \(-0.468862\pi\)
0.0976658 + 0.995219i \(0.468862\pi\)
\(788\) 1.17712 2.03884i 0.0419333 0.0726306i
\(789\) −6.53137 + 11.3127i −0.232523 + 0.402742i
\(790\) −14.5830 −0.518840
\(791\) 9.18824 0.326696
\(792\) 1.29150 2.23695i 0.0458915 0.0794865i
\(793\) −14.9373 25.8721i −0.530437 0.918745i
\(794\) 18.4686 31.9886i 0.655427 1.13523i
\(795\) 41.3948 + 71.6978i 1.46812 + 2.54286i
\(796\) −5.93725 10.2836i −0.210440 0.364493i
\(797\) −2.81176 −0.0995977 −0.0497989 0.998759i \(-0.515858\pi\)
−0.0497989 + 0.998759i \(0.515858\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 4.14575 + 7.18065i 0.146574 + 0.253874i
\(801\) 0 0
\(802\) −3.20850 + 5.55728i −0.113296 + 0.196234i
\(803\) −3.96863 6.87386i −0.140050 0.242573i
\(804\) −6.14575 + 10.6448i −0.216744 + 0.375412i
\(805\) −21.8745 −0.770975
\(806\) 0.708497 0.0249558
\(807\) 0 0
\(808\) −4.17712 + 7.23499i −0.146951 + 0.254526i
\(809\) −9.00000 −0.316423 −0.158212 0.987405i \(-0.550573\pi\)
−0.158212 + 0.987405i \(0.550573\pi\)
\(810\) 18.2288 0.640493
\(811\) −10.3542 + 17.9341i −0.363587 + 0.629751i −0.988548 0.150905i \(-0.951781\pi\)
0.624961 + 0.780656i \(0.285115\pi\)
\(812\) 3.00000 + 5.19615i 0.105279 + 0.182349i
\(813\) −23.3431 + 40.4315i −0.818679 + 1.41799i
\(814\) −1.82288 3.15731i −0.0638918 0.110664i
\(815\) 21.7601 + 37.6897i 0.762224 + 1.32021i
\(816\) 0 0
\(817\) 0 0
\(818\) 13.5830 0.474919
\(819\) −6.58301 11.4021i −0.230029 0.398422i
\(820\) 18.7601 + 32.4935i 0.655132 + 1.13472i
\(821\) 3.00000 5.19615i 0.104701 0.181347i −0.808915 0.587925i \(-0.799945\pi\)
0.913616 + 0.406578i \(0.133278\pi\)
\(822\) −7.38562 12.7923i −0.257603 0.446182i
\(823\) 0.0627461 0.108679i 0.00218719 0.00378832i −0.864930 0.501893i \(-0.832637\pi\)
0.867117 + 0.498105i \(0.165970\pi\)
\(824\) −2.70850 −0.0943550
\(825\) 14.1660 0.493197
\(826\) 6.53137 11.3127i 0.227256 0.393618i
\(827\) −23.6771 + 41.0100i −0.823334 + 1.42606i 0.0798514 + 0.996807i \(0.474555\pi\)
−0.903186 + 0.429250i \(0.858778\pi\)
\(828\) 14.5830 0.506794
\(829\) −25.1660 −0.874052 −0.437026 0.899449i \(-0.643968\pi\)
−0.437026 + 0.899449i \(0.643968\pi\)
\(830\) −14.4686 + 25.0604i −0.502213 + 0.869859i
\(831\) −12.5941 21.8137i −0.436885 0.756707i
\(832\) 1.00000 1.73205i 0.0346688 0.0600481i
\(833\) 0 0
\(834\) 17.6660 + 30.5984i 0.611724 + 1.05954i
\(835\) 43.7490 1.51400
\(836\) 0 0
\(837\) 0.937254 0.0323962
\(838\) 15.8745 + 27.4955i 0.548376 + 0.949815i
\(839\) −2.23987 3.87957i −0.0773289 0.133938i 0.824768 0.565472i \(-0.191306\pi\)
−0.902097 + 0.431534i \(0.857972\pi\)
\(840\) −7.93725 + 13.7477i −0.273861 + 0.474342i
\(841\) 7.85425 + 13.6040i 0.270836 + 0.469102i
\(842\) −11.4059 + 19.7556i −0.393073 + 0.680822i
\(843\) 72.6458 2.50205
\(844\) 2.70850 0.0932303
\(845\) 16.4059 28.4158i 0.564379 0.977534i
\(846\) 19.2915 33.4139i 0.663256 1.14879i
\(847\) 17.4170 0.598455
\(848\) −8.58301 −0.294742
\(849\) −33.5405 + 58.0939i −1.15111 + 1.99378i
\(850\) 0 0
\(851\) 10.2915 17.8254i 0.352788 0.611047i
\(852\) −17.5830 30.4547i −0.602384 1.04336i
\(853\) 6.29150 + 10.8972i 0.215417 + 0.373113i 0.953401 0.301705i \(-0.0975556\pi\)
−0.737985 + 0.674818i \(0.764222\pi\)
\(854\) −24.5830 −0.841213
\(855\) 0 0
\(856\) 4.70850 0.160933
\(857\) 10.5000 + 18.1865i 0.358673 + 0.621240i 0.987739 0.156112i \(-0.0498959\pi\)
−0.629066 + 0.777352i \(0.716563\pi\)
\(858\) −1.70850 2.95920i −0.0583271 0.101026i
\(859\) 6.61438 11.4564i 0.225680 0.390889i −0.730843 0.682545i \(-0.760873\pi\)
0.956523 + 0.291656i \(0.0942064\pi\)
\(860\) −1.29150 2.23695i −0.0440399 0.0762793i
\(861\) −22.4059 + 38.8081i −0.763590 + 1.32258i
\(862\) −3.87451 −0.131966
\(863\) 46.9373 1.59776 0.798881 0.601489i \(-0.205425\pi\)
0.798881 + 0.601489i \(0.205425\pi\)
\(864\) 1.32288 2.29129i 0.0450051 0.0779512i
\(865\) −10.9373 + 18.9439i −0.371878 + 0.644111i
\(866\) −13.8745 −0.471475
\(867\) −44.9778 −1.52753
\(868\) 0.291503 0.504897i 0.00989424 0.0171373i
\(869\) −1.29150 2.23695i −0.0438112 0.0758833i
\(870\) 17.5830 30.4547i 0.596120 1.03251i
\(871\) 4.64575 + 8.04668i 0.157415 + 0.272651i
\(872\) 3.29150 + 5.70105i 0.111464 + 0.193062i
\(873\) 57.1660 1.93478
\(874\) 0 0
\(875\) −19.7490 −0.667639
\(876\) −16.2601 28.1634i −0.549379 0.951552i
\(877\) −18.1771 31.4837i −0.613798 1.06313i −0.990594 0.136833i \(-0.956308\pi\)
0.376796 0.926296i \(-0.377026\pi\)
\(878\) 18.4059 31.8799i 0.621168 1.07590i
\(879\) 17.2804 + 29.9305i 0.582853 + 1.00953i
\(880\) −1.17712 + 2.03884i −0.0396809 + 0.0687293i
\(881\) −5.12549 −0.172682 −0.0863411 0.996266i \(-0.527517\pi\)
−0.0863411 + 0.996266i \(0.527517\pi\)
\(882\) 17.1660 0.578010
\(883\) −20.1974 + 34.9829i −0.679696 + 1.17727i 0.295376 + 0.955381i \(0.404555\pi\)
−0.975072 + 0.221887i \(0.928778\pi\)
\(884\) 0 0
\(885\) −76.5608 −2.57356
\(886\) −5.35425 −0.179880
\(887\) −19.2915 + 33.4139i −0.647745 + 1.12193i 0.335915 + 0.941892i \(0.390955\pi\)
−0.983660 + 0.180035i \(0.942379\pi\)
\(888\) −7.46863 12.9360i −0.250631 0.434105i
\(889\) 2.22876 3.86032i 0.0747501 0.129471i
\(890\) 0 0
\(891\) 1.61438 + 2.79619i 0.0540837 + 0.0936757i
\(892\) −28.8118 −0.964689
\(893\) 0 0
\(894\) 13.0627 0.436884
\(895\) 36.3431 + 62.9482i 1.21482 + 2.10412i
\(896\) −0.822876 1.42526i −0.0274903 0.0476147i
\(897\) 9.64575 16.7069i 0.322062 0.557828i
\(898\) 6.85425 + 11.8719i 0.228729 + 0.396171i
\(899\) −0.645751 + 1.11847i −0.0215370 + 0.0373032i
\(900\) 33.1660 1.10553
\(901\) 0 0
\(902\) −3.32288 + 5.75539i −0.110640 + 0.191634i
\(903\) 1.54249 2.67167i 0.0513307 0.0889075i
\(904\) 5.58301 0.185688
\(905\) 15.4170 0.512478
\(906\) 3.88562 6.73009i 0.129091 0.223592i
\(907\) 12.0314 + 20.8389i 0.399495 + 0.691946i 0.993664 0.112395i \(-0.0358521\pi\)
−0.594168 + 0.804341i \(0.702519\pi\)
\(908\) −6.32288 + 10.9515i −0.209832 + 0.363440i
\(909\) 16.7085 + 28.9400i 0.554186 + 0.959878i
\(910\) 6.00000 + 10.3923i 0.198898 + 0.344502i
\(911\) −1.06275 −0.0352103 −0.0176052 0.999845i \(-0.505604\pi\)
−0.0176052 + 0.999845i \(0.505604\pi\)
\(912\) 0 0
\(913\) −5.12549 −0.169629
\(914\) 0.562746 + 0.974705i 0.0186140 + 0.0322404i
\(915\) 72.0405 + 124.778i 2.38159 + 4.12503i
\(916\) −10.0000 + 17.3205i −0.330409 + 0.572286i
\(917\) −11.4686 19.8642i −0.378727 0.655975i
\(918\) 0 0
\(919\) 11.8745 0.391704 0.195852 0.980633i \(-0.437253\pi\)
0.195852 + 0.980633i \(0.437253\pi\)
\(920\) −13.2915 −0.438208
\(921\) −6.14575 + 10.6448i −0.202509 + 0.350757i
\(922\) −11.5830 + 20.0624i −0.381466 + 0.660718i
\(923\) −26.5830 −0.874990
\(924\) −2.81176 −0.0925002
\(925\) 23.4059 40.5402i 0.769581 1.33295i
\(926\) 7.22876 + 12.5206i 0.237552 + 0.411452i
\(927\) −5.41699 + 9.38251i −0.177917 + 0.308162i
\(928\) 1.82288 + 3.15731i 0.0598388 + 0.103644i
\(929\) −5.79150 10.0312i −0.190013 0.329112i 0.755241 0.655447i \(-0.227520\pi\)
−0.945254 + 0.326335i \(0.894186\pi\)
\(930\) −3.41699 −0.112048
\(931\) 0 0
\(932\) −12.8745 −0.421719
\(933\) −11.0516 19.1420i −0.361814 0.626681i
\(934\) −12.3229 21.3438i −0.403217 0.698392i
\(935\) 0 0
\(936\) −4.00000 6.92820i −0.130744 0.226455i
\(937\) −19.4373 + 33.6663i −0.634987 + 1.09983i 0.351530 + 0.936176i \(0.385661\pi\)
−0.986518 + 0.163654i \(0.947672\pi\)
\(938\) 7.64575 0.249643
\(939\) −60.5203 −1.97500
\(940\) −17.5830 + 30.4547i −0.573494 + 0.993321i
\(941\) 29.5830 51.2393i 0.964378 1.67035i 0.253103 0.967439i \(-0.418549\pi\)
0.711276 0.702913i \(-0.248118\pi\)
\(942\) −28.0000 −0.912289
\(943\) −37.5203 −1.22183
\(944\) 3.96863 6.87386i 0.129168 0.223725i
\(945\) 7.93725 + 13.7477i 0.258199 + 0.447214i
\(946\) 0.228757 0.396218i 0.00743752 0.0128822i
\(947\) −27.8745 48.2801i −0.905800 1.56889i −0.819840 0.572593i \(-0.805938\pi\)
−0.0859598 0.996299i \(-0.527396\pi\)
\(948\) −5.29150 9.16515i −0.171860 0.297670i
\(949\) −24.5830 −0.797998
\(950\) 0 0
\(951\) 15.8745 0.514766
\(952\) 0 0
\(953\) 19.7288 + 34.1712i 0.639077 + 1.10691i 0.985636 + 0.168886i \(0.0540169\pi\)
−0.346559 + 0.938028i \(0.612650\pi\)
\(954\) −17.1660 + 29.7324i −0.555770 + 0.962622i
\(955\) 26.5830 + 46.0431i 0.860206 + 1.48992i
\(956\) 6.00000 10.3923i 0.194054 0.336111i
\(957\) 6.22876 0.201347
\(958\) 14.5830 0.471156
\(959\) −4.59412 + 7.95725i −0.148352 + 0.256953i
\(960\) −4.82288 + 8.35347i −0.155658 + 0.269607i
\(961\) −30.8745 −0.995952
\(962\) −11.2915 −0.364053
\(963\) 9.41699 16.3107i 0.303458 0.525605i
\(964\) 6.79150 + 11.7632i 0.218740 + 0.378868i
\(965\) −12.0000 + 20.7846i −0.386294 + 0.669080i
\(966\) −7.93725 13.7477i −0.255377 0.442326i
\(967\) 1.35425 + 2.34563i 0.0435497 + 0.0754303i 0.886979 0.461810i \(-0.152800\pi\)
−0.843429 + 0.537241i \(0.819467\pi\)
\(968\) 10.5830 0.340151
\(969\) 0 0
\(970\) −52.1033 −1.67293
\(971\) 7.19738 + 12.4662i 0.230975 + 0.400060i 0.958095 0.286450i \(-0.0924751\pi\)
−0.727120 + 0.686510i \(0.759142\pi\)
\(972\) 10.5830 + 18.3303i 0.339450 + 0.587945i
\(973\) 10.9889 19.0333i 0.352288 0.610180i
\(974\) 11.1144 + 19.2507i 0.356128 + 0.616831i
\(975\) 21.9373 37.9964i 0.702554 1.21686i
\(976\) −14.9373 −0.478130
\(977\) −45.4575 −1.45431 −0.727157 0.686471i \(-0.759159\pi\)
−0.727157 + 0.686471i \(0.759159\pi\)
\(978\) −15.7915 + 27.3517i −0.504957 + 0.874610i
\(979\) 0 0
\(980\) −15.6458 −0.499785
\(981\) 26.3320 0.840717
\(982\) 14.3542 24.8623i 0.458062 0.793387i
\(983\) −15.8745 27.4955i −0.506318 0.876969i −0.999973 0.00731102i \(-0.997673\pi\)
0.493655 0.869658i \(-0.335661\pi\)
\(984\) −13.6144 + 23.5808i −0.434011 + 0.751728i
\(985\) 4.29150 + 7.43310i 0.136739 + 0.236838i
\(986\) 0 0
\(987\) −42.0000 −1.33687
\(988\) 0 0
\(989\) 2.58301 0.0821348
\(990\) 4.70850 + 8.15536i 0.149646 + 0.259194i
\(991\) −22.5830 39.1149i −0.717373 1.24253i −0.962037 0.272918i \(-0.912011\pi\)
0.244664 0.969608i \(-0.421322\pi\)
\(992\) 0.177124 0.306788i 0.00562370 0.00974054i
\(993\) −36.7915 63.7248i −1.16754 2.02224i
\(994\) −10.9373 + 18.9439i −0.346909 + 0.600863i
\(995\) 43.2915 1.37243
\(996\) −21.0000 −0.665410
\(997\) 5.11438 8.85836i 0.161974 0.280547i −0.773603 0.633671i \(-0.781547\pi\)
0.935577 + 0.353124i \(0.114881\pi\)
\(998\) −15.6144 + 27.0449i −0.494265 + 0.856091i
\(999\) −14.9373 −0.472594
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 722.2.c.j.653.1 4
19.2 odd 18 722.2.e.n.389.1 12
19.3 odd 18 722.2.e.n.595.2 12
19.4 even 9 722.2.e.o.245.2 12
19.5 even 9 722.2.e.o.99.2 12
19.6 even 9 722.2.e.o.423.2 12
19.7 even 3 722.2.a.g.1.2 2
19.8 odd 6 38.2.c.b.11.2 yes 4
19.9 even 9 722.2.e.o.415.1 12
19.10 odd 18 722.2.e.n.415.2 12
19.11 even 3 inner 722.2.c.j.429.1 4
19.12 odd 6 722.2.a.j.1.1 2
19.13 odd 18 722.2.e.n.423.1 12
19.14 odd 18 722.2.e.n.99.1 12
19.15 odd 18 722.2.e.n.245.1 12
19.16 even 9 722.2.e.o.595.1 12
19.17 even 9 722.2.e.o.389.2 12
19.18 odd 2 38.2.c.b.7.2 4
57.8 even 6 342.2.g.f.163.2 4
57.26 odd 6 6498.2.a.bg.1.1 2
57.50 even 6 6498.2.a.ba.1.1 2
57.56 even 2 342.2.g.f.235.2 4
76.7 odd 6 5776.2.a.z.1.1 2
76.27 even 6 304.2.i.e.49.1 4
76.31 even 6 5776.2.a.ba.1.2 2
76.75 even 2 304.2.i.e.273.1 4
95.8 even 12 950.2.j.g.49.4 8
95.18 even 4 950.2.j.g.349.1 8
95.27 even 12 950.2.j.g.49.1 8
95.37 even 4 950.2.j.g.349.4 8
95.84 odd 6 950.2.e.k.201.1 4
95.94 odd 2 950.2.e.k.501.1 4
152.27 even 6 1216.2.i.k.961.2 4
152.37 odd 2 1216.2.i.l.577.1 4
152.75 even 2 1216.2.i.k.577.2 4
152.141 odd 6 1216.2.i.l.961.1 4
228.179 odd 6 2736.2.s.v.1873.2 4
228.227 odd 2 2736.2.s.v.577.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
38.2.c.b.7.2 4 19.18 odd 2
38.2.c.b.11.2 yes 4 19.8 odd 6
304.2.i.e.49.1 4 76.27 even 6
304.2.i.e.273.1 4 76.75 even 2
342.2.g.f.163.2 4 57.8 even 6
342.2.g.f.235.2 4 57.56 even 2
722.2.a.g.1.2 2 19.7 even 3
722.2.a.j.1.1 2 19.12 odd 6
722.2.c.j.429.1 4 19.11 even 3 inner
722.2.c.j.653.1 4 1.1 even 1 trivial
722.2.e.n.99.1 12 19.14 odd 18
722.2.e.n.245.1 12 19.15 odd 18
722.2.e.n.389.1 12 19.2 odd 18
722.2.e.n.415.2 12 19.10 odd 18
722.2.e.n.423.1 12 19.13 odd 18
722.2.e.n.595.2 12 19.3 odd 18
722.2.e.o.99.2 12 19.5 even 9
722.2.e.o.245.2 12 19.4 even 9
722.2.e.o.389.2 12 19.17 even 9
722.2.e.o.415.1 12 19.9 even 9
722.2.e.o.423.2 12 19.6 even 9
722.2.e.o.595.1 12 19.16 even 9
950.2.e.k.201.1 4 95.84 odd 6
950.2.e.k.501.1 4 95.94 odd 2
950.2.j.g.49.1 8 95.27 even 12
950.2.j.g.49.4 8 95.8 even 12
950.2.j.g.349.1 8 95.18 even 4
950.2.j.g.349.4 8 95.37 even 4
1216.2.i.k.577.2 4 152.75 even 2
1216.2.i.k.961.2 4 152.27 even 6
1216.2.i.l.577.1 4 152.37 odd 2
1216.2.i.l.961.1 4 152.141 odd 6
2736.2.s.v.577.2 4 228.227 odd 2
2736.2.s.v.1873.2 4 228.179 odd 6
5776.2.a.z.1.1 2 76.7 odd 6
5776.2.a.ba.1.2 2 76.31 even 6
6498.2.a.ba.1.1 2 57.50 even 6
6498.2.a.bg.1.1 2 57.26 odd 6