Properties

Label 1216.2.i.l.961.1
Level $1216$
Weight $2$
Character 1216.961
Analytic conductor $9.710$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1216,2,Mod(577,1216)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1216.577"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1216, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1216 = 2^{6} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1216.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,2,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.70980888579\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{7})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 7x^{2} + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 38)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 961.1
Root \(-1.32288 + 2.29129i\) of defining polynomial
Character \(\chi\) \(=\) 1216.961
Dual form 1216.2.i.l.577.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.32288 + 2.29129i) q^{3} +(1.82288 - 3.15731i) q^{5} -1.64575 q^{7} +(-2.00000 - 3.46410i) q^{9} -0.645751 q^{11} +(1.00000 + 1.73205i) q^{13} +(4.82288 + 8.35347i) q^{15} +(-4.32288 - 0.559237i) q^{19} +(2.17712 - 3.77089i) q^{21} +(-1.82288 - 3.15731i) q^{23} +(-4.14575 - 7.18065i) q^{25} +2.64575 q^{27} +(-1.82288 - 3.15731i) q^{29} -0.354249 q^{31} +(0.854249 - 1.47960i) q^{33} +(-3.00000 + 5.19615i) q^{35} -5.64575 q^{37} -5.29150 q^{39} +(-5.14575 + 8.91270i) q^{41} +(0.354249 - 0.613577i) q^{43} -14.5830 q^{45} +(-4.82288 - 8.35347i) q^{47} -4.29150 q^{49} +(4.29150 + 7.43310i) q^{53} +(-1.17712 + 2.03884i) q^{55} +(7.00000 - 9.16515i) q^{57} +(3.96863 - 6.87386i) q^{59} +(-7.46863 - 12.9360i) q^{61} +(3.29150 + 5.70105i) q^{63} +7.29150 q^{65} +(-2.32288 - 4.02334i) q^{67} +9.64575 q^{69} +(6.64575 - 11.5108i) q^{71} +(-6.14575 + 10.6448i) q^{73} +21.9373 q^{75} +1.06275 q^{77} +(2.00000 - 3.46410i) q^{79} +(2.50000 - 4.33013i) q^{81} +7.93725 q^{83} +9.64575 q^{87} +(-1.64575 - 2.85052i) q^{91} +(0.468627 - 0.811686i) q^{93} +(-9.64575 + 12.6293i) q^{95} +(7.14575 - 12.3768i) q^{97} +(1.29150 + 2.23695i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{5} + 4 q^{7} - 8 q^{9} + 8 q^{11} + 4 q^{13} + 14 q^{15} - 12 q^{19} + 14 q^{21} - 2 q^{23} - 6 q^{25} - 2 q^{29} - 12 q^{31} + 14 q^{33} - 12 q^{35} - 12 q^{37} - 10 q^{41} + 12 q^{43} - 16 q^{45}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1216\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(705\) \(837\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.32288 + 2.29129i −0.763763 + 1.32288i 0.177136 + 0.984186i \(0.443317\pi\)
−0.940898 + 0.338689i \(0.890016\pi\)
\(4\) 0 0
\(5\) 1.82288 3.15731i 0.815215 1.41199i −0.0939588 0.995576i \(-0.529952\pi\)
0.909174 0.416417i \(-0.136714\pi\)
\(6\) 0 0
\(7\) −1.64575 −0.622036 −0.311018 0.950404i \(-0.600670\pi\)
−0.311018 + 0.950404i \(0.600670\pi\)
\(8\) 0 0
\(9\) −2.00000 3.46410i −0.666667 1.15470i
\(10\) 0 0
\(11\) −0.645751 −0.194701 −0.0973507 0.995250i \(-0.531037\pi\)
−0.0973507 + 0.995250i \(0.531037\pi\)
\(12\) 0 0
\(13\) 1.00000 + 1.73205i 0.277350 + 0.480384i 0.970725 0.240192i \(-0.0772105\pi\)
−0.693375 + 0.720577i \(0.743877\pi\)
\(14\) 0 0
\(15\) 4.82288 + 8.35347i 1.24526 + 2.15686i
\(16\) 0 0
\(17\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(18\) 0 0
\(19\) −4.32288 0.559237i −0.991736 0.128298i
\(20\) 0 0
\(21\) 2.17712 3.77089i 0.475087 0.822876i
\(22\) 0 0
\(23\) −1.82288 3.15731i −0.380096 0.658345i 0.610980 0.791646i \(-0.290776\pi\)
−0.991076 + 0.133301i \(0.957442\pi\)
\(24\) 0 0
\(25\) −4.14575 7.18065i −0.829150 1.43613i
\(26\) 0 0
\(27\) 2.64575 0.509175
\(28\) 0 0
\(29\) −1.82288 3.15731i −0.338500 0.586298i 0.645651 0.763632i \(-0.276586\pi\)
−0.984151 + 0.177334i \(0.943253\pi\)
\(30\) 0 0
\(31\) −0.354249 −0.0636249 −0.0318125 0.999494i \(-0.510128\pi\)
−0.0318125 + 0.999494i \(0.510128\pi\)
\(32\) 0 0
\(33\) 0.854249 1.47960i 0.148706 0.257566i
\(34\) 0 0
\(35\) −3.00000 + 5.19615i −0.507093 + 0.878310i
\(36\) 0 0
\(37\) −5.64575 −0.928156 −0.464078 0.885794i \(-0.653614\pi\)
−0.464078 + 0.885794i \(0.653614\pi\)
\(38\) 0 0
\(39\) −5.29150 −0.847319
\(40\) 0 0
\(41\) −5.14575 + 8.91270i −0.803631 + 1.39193i 0.113580 + 0.993529i \(0.463768\pi\)
−0.917211 + 0.398401i \(0.869565\pi\)
\(42\) 0 0
\(43\) 0.354249 0.613577i 0.0540224 0.0935696i −0.837750 0.546055i \(-0.816129\pi\)
0.891772 + 0.452485i \(0.149462\pi\)
\(44\) 0 0
\(45\) −14.5830 −2.17391
\(46\) 0 0
\(47\) −4.82288 8.35347i −0.703489 1.21848i −0.967234 0.253886i \(-0.918291\pi\)
0.263745 0.964592i \(-0.415042\pi\)
\(48\) 0 0
\(49\) −4.29150 −0.613072
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 4.29150 + 7.43310i 0.589483 + 1.02101i 0.994300 + 0.106617i \(0.0340019\pi\)
−0.404817 + 0.914398i \(0.632665\pi\)
\(54\) 0 0
\(55\) −1.17712 + 2.03884i −0.158723 + 0.274917i
\(56\) 0 0
\(57\) 7.00000 9.16515i 0.927173 1.21395i
\(58\) 0 0
\(59\) 3.96863 6.87386i 0.516671 0.894901i −0.483141 0.875542i \(-0.660504\pi\)
0.999813 0.0193585i \(-0.00616237\pi\)
\(60\) 0 0
\(61\) −7.46863 12.9360i −0.956260 1.65629i −0.731459 0.681886i \(-0.761160\pi\)
−0.224801 0.974405i \(-0.572173\pi\)
\(62\) 0 0
\(63\) 3.29150 + 5.70105i 0.414690 + 0.718265i
\(64\) 0 0
\(65\) 7.29150 0.904400
\(66\) 0 0
\(67\) −2.32288 4.02334i −0.283784 0.491529i 0.688529 0.725209i \(-0.258257\pi\)
−0.972314 + 0.233680i \(0.924923\pi\)
\(68\) 0 0
\(69\) 9.64575 1.16121
\(70\) 0 0
\(71\) 6.64575 11.5108i 0.788706 1.36608i −0.138055 0.990425i \(-0.544085\pi\)
0.926760 0.375654i \(-0.122582\pi\)
\(72\) 0 0
\(73\) −6.14575 + 10.6448i −0.719306 + 1.24587i 0.241969 + 0.970284i \(0.422207\pi\)
−0.961275 + 0.275590i \(0.911127\pi\)
\(74\) 0 0
\(75\) 21.9373 2.53310
\(76\) 0 0
\(77\) 1.06275 0.121111
\(78\) 0 0
\(79\) 2.00000 3.46410i 0.225018 0.389742i −0.731307 0.682048i \(-0.761089\pi\)
0.956325 + 0.292306i \(0.0944227\pi\)
\(80\) 0 0
\(81\) 2.50000 4.33013i 0.277778 0.481125i
\(82\) 0 0
\(83\) 7.93725 0.871227 0.435613 0.900134i \(-0.356531\pi\)
0.435613 + 0.900134i \(0.356531\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 9.64575 1.03413
\(88\) 0 0
\(89\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(90\) 0 0
\(91\) −1.64575 2.85052i −0.172522 0.298816i
\(92\) 0 0
\(93\) 0.468627 0.811686i 0.0485944 0.0841679i
\(94\) 0 0
\(95\) −9.64575 + 12.6293i −0.989633 + 1.29573i
\(96\) 0 0
\(97\) 7.14575 12.3768i 0.725541 1.25667i −0.233210 0.972426i \(-0.574923\pi\)
0.958751 0.284248i \(-0.0917438\pi\)
\(98\) 0 0
\(99\) 1.29150 + 2.23695i 0.129801 + 0.224822i
\(100\) 0 0
\(101\) −4.17712 7.23499i −0.415639 0.719909i 0.579856 0.814719i \(-0.303109\pi\)
−0.995495 + 0.0948105i \(0.969775\pi\)
\(102\) 0 0
\(103\) −2.70850 −0.266876 −0.133438 0.991057i \(-0.542602\pi\)
−0.133438 + 0.991057i \(0.542602\pi\)
\(104\) 0 0
\(105\) −7.93725 13.7477i −0.774597 1.34164i
\(106\) 0 0
\(107\) −4.70850 −0.455188 −0.227594 0.973756i \(-0.573086\pi\)
−0.227594 + 0.973756i \(0.573086\pi\)
\(108\) 0 0
\(109\) −3.29150 + 5.70105i −0.315269 + 0.546062i −0.979495 0.201470i \(-0.935428\pi\)
0.664226 + 0.747532i \(0.268761\pi\)
\(110\) 0 0
\(111\) 7.46863 12.9360i 0.708891 1.22783i
\(112\) 0 0
\(113\) 5.58301 0.525205 0.262602 0.964904i \(-0.415419\pi\)
0.262602 + 0.964904i \(0.415419\pi\)
\(114\) 0 0
\(115\) −13.2915 −1.23944
\(116\) 0 0
\(117\) 4.00000 6.92820i 0.369800 0.640513i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −10.5830 −0.962091
\(122\) 0 0
\(123\) −13.6144 23.5808i −1.22757 2.12621i
\(124\) 0 0
\(125\) −12.0000 −1.07331
\(126\) 0 0
\(127\) 1.35425 + 2.34563i 0.120170 + 0.208141i 0.919835 0.392306i \(-0.128323\pi\)
−0.799665 + 0.600447i \(0.794989\pi\)
\(128\) 0 0
\(129\) 0.937254 + 1.62337i 0.0825206 + 0.142930i
\(130\) 0 0
\(131\) −6.96863 + 12.0700i −0.608852 + 1.05456i 0.382578 + 0.923923i \(0.375036\pi\)
−0.991430 + 0.130639i \(0.958297\pi\)
\(132\) 0 0
\(133\) 7.11438 + 0.920365i 0.616895 + 0.0798058i
\(134\) 0 0
\(135\) 4.82288 8.35347i 0.415087 0.718952i
\(136\) 0 0
\(137\) 2.79150 + 4.83502i 0.238494 + 0.413084i 0.960282 0.279030i \(-0.0900129\pi\)
−0.721788 + 0.692114i \(0.756680\pi\)
\(138\) 0 0
\(139\) 6.67712 + 11.5651i 0.566346 + 0.980941i 0.996923 + 0.0783866i \(0.0249768\pi\)
−0.430577 + 0.902554i \(0.641690\pi\)
\(140\) 0 0
\(141\) 25.5203 2.14919
\(142\) 0 0
\(143\) −0.645751 1.11847i −0.0540004 0.0935315i
\(144\) 0 0
\(145\) −13.2915 −1.10380
\(146\) 0 0
\(147\) 5.67712 9.83307i 0.468241 0.811018i
\(148\) 0 0
\(149\) −2.46863 + 4.27579i −0.202238 + 0.350286i −0.949249 0.314525i \(-0.898155\pi\)
0.747011 + 0.664811i \(0.231488\pi\)
\(150\) 0 0
\(151\) −2.93725 −0.239030 −0.119515 0.992832i \(-0.538134\pi\)
−0.119515 + 0.992832i \(0.538134\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −0.645751 + 1.11847i −0.0518680 + 0.0898380i
\(156\) 0 0
\(157\) 5.29150 9.16515i 0.422308 0.731459i −0.573857 0.818956i \(-0.694553\pi\)
0.996165 + 0.0874969i \(0.0278868\pi\)
\(158\) 0 0
\(159\) −22.7085 −1.80090
\(160\) 0 0
\(161\) 3.00000 + 5.19615i 0.236433 + 0.409514i
\(162\) 0 0
\(163\) 11.9373 0.934998 0.467499 0.883994i \(-0.345155\pi\)
0.467499 + 0.883994i \(0.345155\pi\)
\(164\) 0 0
\(165\) −3.11438 5.39426i −0.242454 0.419943i
\(166\) 0 0
\(167\) 6.00000 + 10.3923i 0.464294 + 0.804181i 0.999169 0.0407502i \(-0.0129748\pi\)
−0.534875 + 0.844931i \(0.679641\pi\)
\(168\) 0 0
\(169\) 4.50000 7.79423i 0.346154 0.599556i
\(170\) 0 0
\(171\) 6.70850 + 16.0934i 0.513012 + 1.23069i
\(172\) 0 0
\(173\) −3.00000 + 5.19615i −0.228086 + 0.395056i −0.957241 0.289292i \(-0.906580\pi\)
0.729155 + 0.684349i \(0.239913\pi\)
\(174\) 0 0
\(175\) 6.82288 + 11.8176i 0.515761 + 0.893324i
\(176\) 0 0
\(177\) 10.5000 + 18.1865i 0.789228 + 1.36698i
\(178\) 0 0
\(179\) −19.9373 −1.49018 −0.745090 0.666964i \(-0.767594\pi\)
−0.745090 + 0.666964i \(0.767594\pi\)
\(180\) 0 0
\(181\) −2.11438 3.66221i −0.157160 0.272210i 0.776683 0.629892i \(-0.216901\pi\)
−0.933844 + 0.357682i \(0.883567\pi\)
\(182\) 0 0
\(183\) 39.5203 2.92142
\(184\) 0 0
\(185\) −10.2915 + 17.8254i −0.756646 + 1.31055i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −4.35425 −0.316725
\(190\) 0 0
\(191\) −14.5830 −1.05519 −0.527595 0.849496i \(-0.676906\pi\)
−0.527595 + 0.849496i \(0.676906\pi\)
\(192\) 0 0
\(193\) 3.29150 5.70105i 0.236928 0.410371i −0.722904 0.690949i \(-0.757193\pi\)
0.959831 + 0.280578i \(0.0905263\pi\)
\(194\) 0 0
\(195\) −9.64575 + 16.7069i −0.690747 + 1.19641i
\(196\) 0 0
\(197\) 2.35425 0.167733 0.0838666 0.996477i \(-0.473273\pi\)
0.0838666 + 0.996477i \(0.473273\pi\)
\(198\) 0 0
\(199\) −5.93725 10.2836i −0.420881 0.728987i 0.575145 0.818051i \(-0.304946\pi\)
−0.996026 + 0.0890645i \(0.971612\pi\)
\(200\) 0 0
\(201\) 12.2915 0.866976
\(202\) 0 0
\(203\) 3.00000 + 5.19615i 0.210559 + 0.364698i
\(204\) 0 0
\(205\) 18.7601 + 32.4935i 1.31026 + 2.26944i
\(206\) 0 0
\(207\) −7.29150 + 12.6293i −0.506794 + 0.877794i
\(208\) 0 0
\(209\) 2.79150 + 0.361128i 0.193092 + 0.0249797i
\(210\) 0 0
\(211\) −1.35425 + 2.34563i −0.0932303 + 0.161480i −0.908869 0.417082i \(-0.863053\pi\)
0.815638 + 0.578562i \(0.196386\pi\)
\(212\) 0 0
\(213\) 17.5830 + 30.4547i 1.20477 + 2.08672i
\(214\) 0 0
\(215\) −1.29150 2.23695i −0.0880797 0.152559i
\(216\) 0 0
\(217\) 0.583005 0.0395770
\(218\) 0 0
\(219\) −16.2601 28.1634i −1.09876 1.90310i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −14.4059 + 24.9517i −0.964689 + 1.67089i −0.254241 + 0.967141i \(0.581826\pi\)
−0.710448 + 0.703750i \(0.751508\pi\)
\(224\) 0 0
\(225\) −16.5830 + 28.7226i −1.10553 + 1.91484i
\(226\) 0 0
\(227\) 12.6458 0.839328 0.419664 0.907680i \(-0.362148\pi\)
0.419664 + 0.907680i \(0.362148\pi\)
\(228\) 0 0
\(229\) −20.0000 −1.32164 −0.660819 0.750546i \(-0.729791\pi\)
−0.660819 + 0.750546i \(0.729791\pi\)
\(230\) 0 0
\(231\) −1.40588 + 2.43506i −0.0925002 + 0.160215i
\(232\) 0 0
\(233\) 6.43725 11.1497i 0.421719 0.730438i −0.574389 0.818582i \(-0.694760\pi\)
0.996108 + 0.0881444i \(0.0280937\pi\)
\(234\) 0 0
\(235\) −35.1660 −2.29398
\(236\) 0 0
\(237\) 5.29150 + 9.16515i 0.343720 + 0.595341i
\(238\) 0 0
\(239\) −12.0000 −0.776215 −0.388108 0.921614i \(-0.626871\pi\)
−0.388108 + 0.921614i \(0.626871\pi\)
\(240\) 0 0
\(241\) −6.79150 11.7632i −0.437479 0.757736i 0.560015 0.828482i \(-0.310795\pi\)
−0.997494 + 0.0707462i \(0.977462\pi\)
\(242\) 0 0
\(243\) 10.5830 + 18.3303i 0.678900 + 1.17589i
\(244\) 0 0
\(245\) −7.82288 + 13.5496i −0.499785 + 0.865653i
\(246\) 0 0
\(247\) −3.35425 8.04668i −0.213426 0.511998i
\(248\) 0 0
\(249\) −10.5000 + 18.1865i −0.665410 + 1.15252i
\(250\) 0 0
\(251\) 1.38562 + 2.39997i 0.0874597 + 0.151485i 0.906437 0.422342i \(-0.138792\pi\)
−0.818977 + 0.573826i \(0.805458\pi\)
\(252\) 0 0
\(253\) 1.17712 + 2.03884i 0.0740052 + 0.128181i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −0.854249 1.47960i −0.0532866 0.0922950i 0.838152 0.545437i \(-0.183636\pi\)
−0.891438 + 0.453142i \(0.850303\pi\)
\(258\) 0 0
\(259\) 9.29150 0.577346
\(260\) 0 0
\(261\) −7.29150 + 12.6293i −0.451333 + 0.781731i
\(262\) 0 0
\(263\) −2.46863 + 4.27579i −0.152222 + 0.263656i −0.932044 0.362345i \(-0.881976\pi\)
0.779822 + 0.626001i \(0.215310\pi\)
\(264\) 0 0
\(265\) 31.2915 1.92222
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(270\) 0 0
\(271\) −8.82288 + 15.2817i −0.535952 + 0.928295i 0.463165 + 0.886272i \(0.346714\pi\)
−0.999117 + 0.0420233i \(0.986620\pi\)
\(272\) 0 0
\(273\) 8.70850 0.527062
\(274\) 0 0
\(275\) 2.67712 + 4.63692i 0.161437 + 0.279617i
\(276\) 0 0
\(277\) −9.52026 −0.572017 −0.286008 0.958227i \(-0.592329\pi\)
−0.286008 + 0.958227i \(0.592329\pi\)
\(278\) 0 0
\(279\) 0.708497 + 1.22715i 0.0424166 + 0.0734678i
\(280\) 0 0
\(281\) 13.7288 + 23.7789i 0.818989 + 1.41853i 0.906428 + 0.422361i \(0.138798\pi\)
−0.0874389 + 0.996170i \(0.527868\pi\)
\(282\) 0 0
\(283\) 12.6771 21.9574i 0.753577 1.30523i −0.192502 0.981297i \(-0.561660\pi\)
0.946079 0.323937i \(-0.105007\pi\)
\(284\) 0 0
\(285\) −16.1771 38.8081i −0.958250 2.29879i
\(286\) 0 0
\(287\) 8.46863 14.6681i 0.499887 0.865830i
\(288\) 0 0
\(289\) 8.50000 + 14.7224i 0.500000 + 0.866025i
\(290\) 0 0
\(291\) 18.9059 + 32.7459i 1.10828 + 1.91960i
\(292\) 0 0
\(293\) −13.0627 −0.763134 −0.381567 0.924341i \(-0.624615\pi\)
−0.381567 + 0.924341i \(0.624615\pi\)
\(294\) 0 0
\(295\) −14.4686 25.0604i −0.842396 1.45907i
\(296\) 0 0
\(297\) −1.70850 −0.0991371
\(298\) 0 0
\(299\) 3.64575 6.31463i 0.210839 0.365184i
\(300\) 0 0
\(301\) −0.583005 + 1.00979i −0.0336039 + 0.0582036i
\(302\) 0 0
\(303\) 22.1033 1.26980
\(304\) 0 0
\(305\) −54.4575 −3.11823
\(306\) 0 0
\(307\) −2.32288 + 4.02334i −0.132574 + 0.229624i −0.924668 0.380775i \(-0.875657\pi\)
0.792094 + 0.610399i \(0.208991\pi\)
\(308\) 0 0
\(309\) 3.58301 6.20595i 0.203830 0.353044i
\(310\) 0 0
\(311\) 8.35425 0.473726 0.236863 0.971543i \(-0.423881\pi\)
0.236863 + 0.971543i \(0.423881\pi\)
\(312\) 0 0
\(313\) 11.4373 + 19.8099i 0.646472 + 1.11972i 0.983959 + 0.178392i \(0.0570895\pi\)
−0.337488 + 0.941330i \(0.609577\pi\)
\(314\) 0 0
\(315\) 24.0000 1.35225
\(316\) 0 0
\(317\) −3.00000 5.19615i −0.168497 0.291845i 0.769395 0.638774i \(-0.220558\pi\)
−0.937892 + 0.346929i \(0.887225\pi\)
\(318\) 0 0
\(319\) 1.17712 + 2.03884i 0.0659063 + 0.114153i
\(320\) 0 0
\(321\) 6.22876 10.7885i 0.347655 0.602157i
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 8.29150 14.3613i 0.459930 0.796622i
\(326\) 0 0
\(327\) −8.70850 15.0836i −0.481581 0.834123i
\(328\) 0 0
\(329\) 7.93725 + 13.7477i 0.437595 + 0.757937i
\(330\) 0 0
\(331\) 27.8118 1.52867 0.764336 0.644818i \(-0.223067\pi\)
0.764336 + 0.644818i \(0.223067\pi\)
\(332\) 0 0
\(333\) 11.2915 + 19.5575i 0.618771 + 1.07174i
\(334\) 0 0
\(335\) −16.9373 −0.925381
\(336\) 0 0
\(337\) 10.1458 17.5730i 0.552674 0.957260i −0.445406 0.895329i \(-0.646941\pi\)
0.998080 0.0619313i \(-0.0197260\pi\)
\(338\) 0 0
\(339\) −7.38562 + 12.7923i −0.401132 + 0.694781i
\(340\) 0 0
\(341\) 0.228757 0.0123879
\(342\) 0 0
\(343\) 18.5830 1.00339
\(344\) 0 0
\(345\) 17.5830 30.4547i 0.946637 1.63962i
\(346\) 0 0
\(347\) 1.61438 2.79619i 0.0866644 0.150107i −0.819435 0.573172i \(-0.805713\pi\)
0.906099 + 0.423065i \(0.139046\pi\)
\(348\) 0 0
\(349\) 21.1660 1.13299 0.566495 0.824065i \(-0.308299\pi\)
0.566495 + 0.824065i \(0.308299\pi\)
\(350\) 0 0
\(351\) 2.64575 + 4.58258i 0.141220 + 0.244600i
\(352\) 0 0
\(353\) −18.8745 −1.00459 −0.502294 0.864697i \(-0.667511\pi\)
−0.502294 + 0.864697i \(0.667511\pi\)
\(354\) 0 0
\(355\) −24.2288 41.9654i −1.28593 2.22729i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −5.46863 + 9.47194i −0.288623 + 0.499910i −0.973481 0.228766i \(-0.926531\pi\)
0.684858 + 0.728676i \(0.259864\pi\)
\(360\) 0 0
\(361\) 18.3745 + 4.83502i 0.967079 + 0.254475i
\(362\) 0 0
\(363\) 14.0000 24.2487i 0.734809 1.27273i
\(364\) 0 0
\(365\) 22.4059 + 38.8081i 1.17278 + 2.03131i
\(366\) 0 0
\(367\) 5.11438 + 8.85836i 0.266968 + 0.462403i 0.968077 0.250651i \(-0.0806447\pi\)
−0.701109 + 0.713054i \(0.747311\pi\)
\(368\) 0 0
\(369\) 41.1660 2.14302
\(370\) 0 0
\(371\) −7.06275 12.2330i −0.366680 0.635108i
\(372\) 0 0
\(373\) 4.00000 0.207112 0.103556 0.994624i \(-0.466978\pi\)
0.103556 + 0.994624i \(0.466978\pi\)
\(374\) 0 0
\(375\) 15.8745 27.4955i 0.819756 1.41986i
\(376\) 0 0
\(377\) 3.64575 6.31463i 0.187766 0.325220i
\(378\) 0 0
\(379\) −21.2915 −1.09367 −0.546836 0.837240i \(-0.684168\pi\)
−0.546836 + 0.837240i \(0.684168\pi\)
\(380\) 0 0
\(381\) −7.16601 −0.367126
\(382\) 0 0
\(383\) 15.7601 27.2973i 0.805305 1.39483i −0.110780 0.993845i \(-0.535335\pi\)
0.916085 0.400984i \(-0.131332\pi\)
\(384\) 0 0
\(385\) 1.93725 3.35542i 0.0987316 0.171008i
\(386\) 0 0
\(387\) −2.83399 −0.144060
\(388\) 0 0
\(389\) 6.00000 + 10.3923i 0.304212 + 0.526911i 0.977086 0.212847i \(-0.0682735\pi\)
−0.672874 + 0.739758i \(0.734940\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −18.4373 31.9343i −0.930036 1.61087i
\(394\) 0 0
\(395\) −7.29150 12.6293i −0.366875 0.635447i
\(396\) 0 0
\(397\) 18.4686 31.9886i 0.926914 1.60546i 0.138460 0.990368i \(-0.455785\pi\)
0.788454 0.615094i \(-0.210882\pi\)
\(398\) 0 0
\(399\) −11.5203 + 15.0836i −0.576734 + 0.755122i
\(400\) 0 0
\(401\) −3.20850 + 5.55728i −0.160225 + 0.277517i −0.934949 0.354782i \(-0.884555\pi\)
0.774724 + 0.632299i \(0.217889\pi\)
\(402\) 0 0
\(403\) −0.354249 0.613577i −0.0176464 0.0305644i
\(404\) 0 0
\(405\) −9.11438 15.7866i −0.452897 0.784441i
\(406\) 0 0
\(407\) 3.64575 0.180713
\(408\) 0 0
\(409\) −6.79150 11.7632i −0.335818 0.581654i 0.647823 0.761790i \(-0.275679\pi\)
−0.983642 + 0.180136i \(0.942346\pi\)
\(410\) 0 0
\(411\) −14.7712 −0.728612
\(412\) 0 0
\(413\) −6.53137 + 11.3127i −0.321388 + 0.556660i
\(414\) 0 0
\(415\) 14.4686 25.0604i 0.710237 1.23017i
\(416\) 0 0
\(417\) −35.3320 −1.73022
\(418\) 0 0
\(419\) −31.7490 −1.55104 −0.775520 0.631322i \(-0.782512\pi\)
−0.775520 + 0.631322i \(0.782512\pi\)
\(420\) 0 0
\(421\) 11.4059 19.7556i 0.555889 0.962827i −0.441945 0.897042i \(-0.645711\pi\)
0.997834 0.0657853i \(-0.0209552\pi\)
\(422\) 0 0
\(423\) −19.2915 + 33.4139i −0.937985 + 1.62464i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 12.2915 + 21.2895i 0.594828 + 1.03027i
\(428\) 0 0
\(429\) 3.41699 0.164974
\(430\) 0 0
\(431\) 1.93725 + 3.35542i 0.0933142 + 0.161625i 0.908904 0.417006i \(-0.136921\pi\)
−0.815590 + 0.578631i \(0.803587\pi\)
\(432\) 0 0
\(433\) 6.93725 + 12.0157i 0.333383 + 0.577437i 0.983173 0.182677i \(-0.0584764\pi\)
−0.649790 + 0.760114i \(0.725143\pi\)
\(434\) 0 0
\(435\) 17.5830 30.4547i 0.843041 1.46019i
\(436\) 0 0
\(437\) 6.11438 + 14.6681i 0.292490 + 0.701670i
\(438\) 0 0
\(439\) 18.4059 31.8799i 0.878465 1.52155i 0.0254393 0.999676i \(-0.491902\pi\)
0.853025 0.521869i \(-0.174765\pi\)
\(440\) 0 0
\(441\) 8.58301 + 14.8662i 0.408715 + 0.707914i
\(442\) 0 0
\(443\) 2.67712 + 4.63692i 0.127194 + 0.220306i 0.922588 0.385786i \(-0.126070\pi\)
−0.795394 + 0.606092i \(0.792736\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −6.53137 11.3127i −0.308923 0.535071i
\(448\) 0 0
\(449\) −13.7085 −0.646944 −0.323472 0.946238i \(-0.604850\pi\)
−0.323472 + 0.946238i \(0.604850\pi\)
\(450\) 0 0
\(451\) 3.32288 5.75539i 0.156468 0.271011i
\(452\) 0 0
\(453\) 3.88562 6.73009i 0.182562 0.316207i
\(454\) 0 0
\(455\) −12.0000 −0.562569
\(456\) 0 0
\(457\) 1.12549 0.0526483 0.0263242 0.999653i \(-0.491620\pi\)
0.0263242 + 0.999653i \(0.491620\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −11.5830 + 20.0624i −0.539474 + 0.934397i 0.459458 + 0.888200i \(0.348044\pi\)
−0.998932 + 0.0461975i \(0.985290\pi\)
\(462\) 0 0
\(463\) 14.4575 0.671898 0.335949 0.941880i \(-0.390943\pi\)
0.335949 + 0.941880i \(0.390943\pi\)
\(464\) 0 0
\(465\) −1.70850 2.95920i −0.0792297 0.137230i
\(466\) 0 0
\(467\) 24.6458 1.14047 0.570235 0.821482i \(-0.306852\pi\)
0.570235 + 0.821482i \(0.306852\pi\)
\(468\) 0 0
\(469\) 3.82288 + 6.62141i 0.176524 + 0.305749i
\(470\) 0 0
\(471\) 14.0000 + 24.2487i 0.645086 + 1.11732i
\(472\) 0 0
\(473\) −0.228757 + 0.396218i −0.0105182 + 0.0182181i
\(474\) 0 0
\(475\) 13.9059 + 33.3595i 0.638046 + 1.53064i
\(476\) 0 0
\(477\) 17.1660 29.7324i 0.785978 1.36135i
\(478\) 0 0
\(479\) 7.29150 + 12.6293i 0.333157 + 0.577045i 0.983129 0.182913i \(-0.0585527\pi\)
−0.649972 + 0.759958i \(0.725219\pi\)
\(480\) 0 0
\(481\) −5.64575 9.77873i −0.257424 0.445872i
\(482\) 0 0
\(483\) −15.8745 −0.722315
\(484\) 0 0
\(485\) −26.0516 45.1228i −1.18294 2.04892i
\(486\) 0 0
\(487\) −22.2288 −1.00728 −0.503641 0.863913i \(-0.668006\pi\)
−0.503641 + 0.863913i \(0.668006\pi\)
\(488\) 0 0
\(489\) −15.7915 + 27.3517i −0.714116 + 1.23689i
\(490\) 0 0
\(491\) 14.3542 24.8623i 0.647798 1.12202i −0.335849 0.941916i \(-0.609023\pi\)
0.983648 0.180104i \(-0.0576433\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 9.41699 0.423262
\(496\) 0 0
\(497\) −10.9373 + 18.9439i −0.490603 + 0.849749i
\(498\) 0 0
\(499\) −15.6144 + 27.0449i −0.698996 + 1.21070i 0.269819 + 0.962911i \(0.413036\pi\)
−0.968815 + 0.247785i \(0.920297\pi\)
\(500\) 0 0
\(501\) −31.7490 −1.41844
\(502\) 0 0
\(503\) 12.5314 + 21.7050i 0.558746 + 0.967777i 0.997601 + 0.0692192i \(0.0220508\pi\)
−0.438855 + 0.898558i \(0.644616\pi\)
\(504\) 0 0
\(505\) −30.4575 −1.35534
\(506\) 0 0
\(507\) 11.9059 + 20.6216i 0.528759 + 0.915837i
\(508\) 0 0
\(509\) 15.8745 + 27.4955i 0.703625 + 1.21871i 0.967185 + 0.254072i \(0.0817699\pi\)
−0.263560 + 0.964643i \(0.584897\pi\)
\(510\) 0 0
\(511\) 10.1144 17.5186i 0.447434 0.774978i
\(512\) 0 0
\(513\) −11.4373 1.47960i −0.504967 0.0653260i
\(514\) 0 0
\(515\) −4.93725 + 8.55157i −0.217561 + 0.376827i
\(516\) 0 0
\(517\) 3.11438 + 5.39426i 0.136970 + 0.237239i
\(518\) 0 0
\(519\) −7.93725 13.7477i −0.348407 0.603458i
\(520\) 0 0
\(521\) −22.2915 −0.976608 −0.488304 0.872673i \(-0.662384\pi\)
−0.488304 + 0.872673i \(0.662384\pi\)
\(522\) 0 0
\(523\) 14.9373 + 25.8721i 0.653161 + 1.13131i 0.982352 + 0.187044i \(0.0598906\pi\)
−0.329191 + 0.944263i \(0.606776\pi\)
\(524\) 0 0
\(525\) −36.1033 −1.57568
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 4.85425 8.40781i 0.211054 0.365557i
\(530\) 0 0
\(531\) −31.7490 −1.37779
\(532\) 0 0
\(533\) −20.5830 −0.891549
\(534\) 0 0
\(535\) −8.58301 + 14.8662i −0.371076 + 0.642722i
\(536\) 0 0
\(537\) 26.3745 45.6820i 1.13814 1.97132i
\(538\) 0 0
\(539\) 2.77124 0.119366
\(540\) 0 0
\(541\) 4.00000 + 6.92820i 0.171973 + 0.297867i 0.939110 0.343617i \(-0.111652\pi\)
−0.767136 + 0.641484i \(0.778319\pi\)
\(542\) 0 0
\(543\) 11.1882 0.480133
\(544\) 0 0
\(545\) 12.0000 + 20.7846i 0.514024 + 0.890315i
\(546\) 0 0
\(547\) 0.354249 + 0.613577i 0.0151466 + 0.0262346i 0.873499 0.486825i \(-0.161845\pi\)
−0.858353 + 0.513060i \(0.828512\pi\)
\(548\) 0 0
\(549\) −29.8745 + 51.7442i −1.27501 + 2.20839i
\(550\) 0 0
\(551\) 6.11438 + 14.6681i 0.260481 + 0.624882i
\(552\) 0 0
\(553\) −3.29150 + 5.70105i −0.139969 + 0.242433i
\(554\) 0 0
\(555\) −27.2288 47.1616i −1.15580 2.00190i
\(556\) 0 0
\(557\) −13.2915 23.0216i −0.563179 0.975455i −0.997217 0.0745599i \(-0.976245\pi\)
0.434037 0.900895i \(-0.357089\pi\)
\(558\) 0 0
\(559\) 1.41699 0.0599325
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −25.9373 −1.09312 −0.546562 0.837418i \(-0.684064\pi\)
−0.546562 + 0.837418i \(0.684064\pi\)
\(564\) 0 0
\(565\) 10.1771 17.6273i 0.428155 0.741586i
\(566\) 0 0
\(567\) −4.11438 + 7.12631i −0.172788 + 0.299277i
\(568\) 0 0
\(569\) −14.5830 −0.611351 −0.305676 0.952136i \(-0.598882\pi\)
−0.305676 + 0.952136i \(0.598882\pi\)
\(570\) 0 0
\(571\) 39.8118 1.66607 0.833035 0.553220i \(-0.186601\pi\)
0.833035 + 0.553220i \(0.186601\pi\)
\(572\) 0 0
\(573\) 19.2915 33.4139i 0.805914 1.39588i
\(574\) 0 0
\(575\) −15.1144 + 26.1789i −0.630313 + 1.09173i
\(576\) 0 0
\(577\) 11.0000 0.457936 0.228968 0.973434i \(-0.426465\pi\)
0.228968 + 0.973434i \(0.426465\pi\)
\(578\) 0 0
\(579\) 8.70850 + 15.0836i 0.361913 + 0.626851i
\(580\) 0 0
\(581\) −13.0627 −0.541934
\(582\) 0 0
\(583\) −2.77124 4.79993i −0.114773 0.198793i
\(584\) 0 0
\(585\) −14.5830 25.2585i −0.602933 1.04431i
\(586\) 0 0
\(587\) −22.9373 + 39.7285i −0.946722 + 1.63977i −0.194455 + 0.980911i \(0.562294\pi\)
−0.752267 + 0.658859i \(0.771039\pi\)
\(588\) 0 0
\(589\) 1.53137 + 0.198109i 0.0630991 + 0.00816294i
\(590\) 0 0
\(591\) −3.11438 + 5.39426i −0.128108 + 0.221890i
\(592\) 0 0
\(593\) −20.1458 34.8935i −0.827287 1.43290i −0.900159 0.435562i \(-0.856550\pi\)
0.0728721 0.997341i \(-0.476784\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 31.4170 1.28581
\(598\) 0 0
\(599\) 0.531373 + 0.920365i 0.0217113 + 0.0376051i 0.876677 0.481080i \(-0.159755\pi\)
−0.854966 + 0.518685i \(0.826422\pi\)
\(600\) 0 0
\(601\) 31.5830 1.28830 0.644149 0.764900i \(-0.277212\pi\)
0.644149 + 0.764900i \(0.277212\pi\)
\(602\) 0 0
\(603\) −9.29150 + 16.0934i −0.378379 + 0.655372i
\(604\) 0 0
\(605\) −19.2915 + 33.4139i −0.784311 + 1.35847i
\(606\) 0 0
\(607\) −8.93725 −0.362752 −0.181376 0.983414i \(-0.558055\pi\)
−0.181376 + 0.983414i \(0.558055\pi\)
\(608\) 0 0
\(609\) −15.8745 −0.643268
\(610\) 0 0
\(611\) 9.64575 16.7069i 0.390225 0.675890i
\(612\) 0 0
\(613\) 14.2915 24.7536i 0.577228 0.999789i −0.418567 0.908186i \(-0.637468\pi\)
0.995796 0.0916030i \(-0.0291991\pi\)
\(614\) 0 0
\(615\) −99.2693 −4.00292
\(616\) 0 0
\(617\) −0.437254 0.757346i −0.0176032 0.0304896i 0.857090 0.515167i \(-0.172270\pi\)
−0.874693 + 0.484678i \(0.838937\pi\)
\(618\) 0 0
\(619\) −44.4575 −1.78690 −0.893449 0.449164i \(-0.851722\pi\)
−0.893449 + 0.449164i \(0.851722\pi\)
\(620\) 0 0
\(621\) −4.82288 8.35347i −0.193535 0.335213i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −1.14575 + 1.98450i −0.0458301 + 0.0793800i
\(626\) 0 0
\(627\) −4.52026 + 5.91841i −0.180522 + 0.236358i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −11.4059 19.7556i −0.454061 0.786457i 0.544573 0.838714i \(-0.316692\pi\)
−0.998634 + 0.0522570i \(0.983359\pi\)
\(632\) 0 0
\(633\) −3.58301 6.20595i −0.142412 0.246664i
\(634\) 0 0
\(635\) 9.87451 0.391858
\(636\) 0 0
\(637\) −4.29150 7.43310i −0.170036 0.294510i
\(638\) 0 0
\(639\) −53.1660 −2.10321
\(640\) 0 0
\(641\) 9.43725 16.3458i 0.372749 0.645620i −0.617238 0.786776i \(-0.711749\pi\)
0.989987 + 0.141156i \(0.0450819\pi\)
\(642\) 0 0
\(643\) 15.2601 26.4313i 0.601801 1.04235i −0.390748 0.920498i \(-0.627783\pi\)
0.992548 0.121852i \(-0.0388832\pi\)
\(644\) 0 0
\(645\) 6.83399 0.269088
\(646\) 0 0
\(647\) 30.4575 1.19741 0.598704 0.800970i \(-0.295683\pi\)
0.598704 + 0.800970i \(0.295683\pi\)
\(648\) 0 0
\(649\) −2.56275 + 4.43881i −0.100597 + 0.174238i
\(650\) 0 0
\(651\) −0.771243 + 1.33583i −0.0302274 + 0.0523554i
\(652\) 0 0
\(653\) −24.0000 −0.939193 −0.469596 0.882881i \(-0.655601\pi\)
−0.469596 + 0.882881i \(0.655601\pi\)
\(654\) 0 0
\(655\) 25.4059 + 44.0043i 0.992690 + 1.71939i
\(656\) 0 0
\(657\) 49.1660 1.91815
\(658\) 0 0
\(659\) 1.29150 + 2.23695i 0.0503098 + 0.0871391i 0.890084 0.455797i \(-0.150646\pi\)
−0.839774 + 0.542936i \(0.817312\pi\)
\(660\) 0 0
\(661\) −5.11438 8.85836i −0.198926 0.344550i 0.749254 0.662282i \(-0.230412\pi\)
−0.948181 + 0.317732i \(0.897079\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 15.8745 20.7846i 0.615587 0.805993i
\(666\) 0 0
\(667\) −6.64575 + 11.5108i −0.257325 + 0.445699i
\(668\) 0 0
\(669\) −38.1144 66.0160i −1.47359 2.55233i
\(670\) 0 0
\(671\) 4.82288 + 8.35347i 0.186185 + 0.322482i
\(672\) 0 0
\(673\) 17.8745 0.689012 0.344506 0.938784i \(-0.388046\pi\)
0.344506 + 0.938784i \(0.388046\pi\)
\(674\) 0 0
\(675\) −10.9686 18.9982i −0.422183 0.731242i
\(676\) 0 0
\(677\) 32.5830 1.25227 0.626133 0.779716i \(-0.284637\pi\)
0.626133 + 0.779716i \(0.284637\pi\)
\(678\) 0 0
\(679\) −11.7601 + 20.3691i −0.451312 + 0.781696i
\(680\) 0 0
\(681\) −16.7288 + 28.9751i −0.641047 + 1.11033i
\(682\) 0 0
\(683\) 26.5830 1.01717 0.508585 0.861012i \(-0.330169\pi\)
0.508585 + 0.861012i \(0.330169\pi\)
\(684\) 0 0
\(685\) 20.3542 0.777696
\(686\) 0 0
\(687\) 26.4575 45.8258i 1.00942 1.74836i
\(688\) 0 0
\(689\) −8.58301 + 14.8662i −0.326986 + 0.566357i
\(690\) 0 0
\(691\) 18.5830 0.706931 0.353465 0.935448i \(-0.385003\pi\)
0.353465 + 0.935448i \(0.385003\pi\)
\(692\) 0 0
\(693\) −2.12549 3.68146i −0.0807408 0.139847i
\(694\) 0 0
\(695\) 48.6863 1.84678
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 17.0314 + 29.4992i 0.644186 + 1.11576i
\(700\) 0 0
\(701\) 7.82288 13.5496i 0.295466 0.511762i −0.679627 0.733558i \(-0.737858\pi\)
0.975093 + 0.221796i \(0.0711918\pi\)
\(702\) 0 0
\(703\) 24.4059 + 3.15731i 0.920485 + 0.119080i
\(704\) 0 0
\(705\) 46.5203 80.5755i 1.75205 3.03465i
\(706\) 0 0
\(707\) 6.87451 + 11.9070i 0.258542 + 0.447809i
\(708\) 0 0
\(709\) −0.822876 1.42526i −0.0309037 0.0535269i 0.850160 0.526525i \(-0.176505\pi\)
−0.881064 + 0.472998i \(0.843172\pi\)
\(710\) 0 0
\(711\) −16.0000 −0.600047
\(712\) 0 0
\(713\) 0.645751 + 1.11847i 0.0241836 + 0.0418872i
\(714\) 0 0
\(715\) −4.70850 −0.176088
\(716\) 0 0
\(717\) 15.8745 27.4955i 0.592844 1.02684i
\(718\) 0 0
\(719\) −6.64575 + 11.5108i −0.247845 + 0.429280i −0.962928 0.269760i \(-0.913056\pi\)
0.715083 + 0.699040i \(0.246389\pi\)
\(720\) 0 0
\(721\) 4.45751 0.166006
\(722\) 0 0
\(723\) 35.9373 1.33652
\(724\) 0 0
\(725\) −15.1144 + 26.1789i −0.561334 + 0.972259i
\(726\) 0 0
\(727\) −11.2915 + 19.5575i −0.418779 + 0.725346i −0.995817 0.0913712i \(-0.970875\pi\)
0.577038 + 0.816717i \(0.304208\pi\)
\(728\) 0 0
\(729\) −41.0000 −1.51852
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −42.1033 −1.55512 −0.777560 0.628809i \(-0.783543\pi\)
−0.777560 + 0.628809i \(0.783543\pi\)
\(734\) 0 0
\(735\) −20.6974 35.8489i −0.763434 1.32231i
\(736\) 0 0
\(737\) 1.50000 + 2.59808i 0.0552532 + 0.0957014i
\(738\) 0 0
\(739\) 6.90588 11.9613i 0.254037 0.440005i −0.710597 0.703600i \(-0.751575\pi\)
0.964633 + 0.263595i \(0.0849082\pi\)
\(740\) 0 0
\(741\) 22.8745 + 2.95920i 0.840316 + 0.108709i
\(742\) 0 0
\(743\) 5.23987 9.07572i 0.192232 0.332956i −0.753757 0.657153i \(-0.771761\pi\)
0.945990 + 0.324197i \(0.105094\pi\)
\(744\) 0 0
\(745\) 9.00000 + 15.5885i 0.329734 + 0.571117i
\(746\) 0 0
\(747\) −15.8745 27.4955i −0.580818 1.00601i
\(748\) 0 0
\(749\) 7.74902 0.283143
\(750\) 0 0
\(751\) −11.9373 20.6759i −0.435597 0.754475i 0.561748 0.827309i \(-0.310129\pi\)
−0.997344 + 0.0728333i \(0.976796\pi\)
\(752\) 0 0
\(753\) −7.33202 −0.267194
\(754\) 0 0
\(755\) −5.35425 + 9.27383i −0.194861 + 0.337509i
\(756\) 0 0
\(757\) 8.29150 14.3613i 0.301360 0.521970i −0.675084 0.737740i \(-0.735893\pi\)
0.976444 + 0.215770i \(0.0692261\pi\)
\(758\) 0 0
\(759\) −6.22876 −0.226090
\(760\) 0 0
\(761\) 11.1255 0.403299 0.201649 0.979458i \(-0.435370\pi\)
0.201649 + 0.979458i \(0.435370\pi\)
\(762\) 0 0
\(763\) 5.41699 9.38251i 0.196108 0.339670i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 15.8745 0.573195
\(768\) 0 0
\(769\) −12.3542 21.3982i −0.445506 0.771638i 0.552582 0.833459i \(-0.313643\pi\)
−0.998087 + 0.0618204i \(0.980309\pi\)
\(770\) 0 0
\(771\) 4.52026 0.162793
\(772\) 0 0
\(773\) 5.46863 + 9.47194i 0.196693 + 0.340682i 0.947454 0.319892i \(-0.103646\pi\)
−0.750761 + 0.660574i \(0.770313\pi\)
\(774\) 0 0
\(775\) 1.46863 + 2.54374i 0.0527546 + 0.0913737i
\(776\) 0 0
\(777\) −12.2915 + 21.2895i −0.440955 + 0.763757i
\(778\) 0 0
\(779\) 27.2288 35.6508i 0.975571 1.27732i
\(780\) 0 0
\(781\) −4.29150 + 7.43310i −0.153562 + 0.265977i
\(782\) 0 0
\(783\) −4.82288 8.35347i −0.172356 0.298529i
\(784\) 0 0
\(785\) −19.2915 33.4139i −0.688543 1.19259i
\(786\) 0 0
\(787\) 5.47974 0.195332 0.0976658 0.995219i \(-0.468862\pi\)
0.0976658 + 0.995219i \(0.468862\pi\)
\(788\) 0 0
\(789\) −6.53137 11.3127i −0.232523 0.402742i
\(790\) 0 0
\(791\) −9.18824 −0.326696
\(792\) 0 0
\(793\) 14.9373 25.8721i 0.530437 0.918745i
\(794\) 0 0
\(795\) −41.3948 + 71.6978i −1.46812 + 2.54286i
\(796\) 0 0
\(797\) −2.81176 −0.0995977 −0.0497989 0.998759i \(-0.515858\pi\)
−0.0497989 + 0.998759i \(0.515858\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 3.96863 6.87386i 0.140050 0.242573i
\(804\) 0 0
\(805\) 21.8745 0.770975
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −9.00000 −0.316423 −0.158212 0.987405i \(-0.550573\pi\)
−0.158212 + 0.987405i \(0.550573\pi\)
\(810\) 0 0
\(811\) −10.3542 17.9341i −0.363587 0.629751i 0.624961 0.780656i \(-0.285115\pi\)
−0.988548 + 0.150905i \(0.951781\pi\)
\(812\) 0 0
\(813\) −23.3431 40.4315i −0.818679 1.41799i
\(814\) 0 0
\(815\) 21.7601 37.6897i 0.762224 1.32021i
\(816\) 0 0
\(817\) −1.87451 + 2.45431i −0.0655807 + 0.0858653i
\(818\) 0 0
\(819\) −6.58301 + 11.4021i −0.230029 + 0.398422i
\(820\) 0 0
\(821\) −3.00000 5.19615i −0.104701 0.181347i 0.808915 0.587925i \(-0.200055\pi\)
−0.913616 + 0.406578i \(0.866722\pi\)
\(822\) 0 0
\(823\) 0.0627461 + 0.108679i 0.00218719 + 0.00378832i 0.867117 0.498105i \(-0.165970\pi\)
−0.864930 + 0.501893i \(0.832637\pi\)
\(824\) 0 0
\(825\) −14.1660 −0.493197
\(826\) 0 0
\(827\) −23.6771 41.0100i −0.823334 1.42606i −0.903186 0.429250i \(-0.858778\pi\)
0.0798514 0.996807i \(-0.474555\pi\)
\(828\) 0 0
\(829\) −25.1660 −0.874052 −0.437026 0.899449i \(-0.643968\pi\)
−0.437026 + 0.899449i \(0.643968\pi\)
\(830\) 0 0
\(831\) 12.5941 21.8137i 0.436885 0.756707i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 43.7490 1.51400
\(836\) 0 0
\(837\) −0.937254 −0.0323962
\(838\) 0 0
\(839\) 2.23987 3.87957i 0.0773289 0.133938i −0.824768 0.565472i \(-0.808694\pi\)
0.902097 + 0.431534i \(0.142028\pi\)
\(840\) 0 0
\(841\) 7.85425 13.6040i 0.270836 0.469102i
\(842\) 0 0
\(843\) −72.6458 −2.50205
\(844\) 0 0
\(845\) −16.4059 28.4158i −0.564379 0.977534i
\(846\) 0 0
\(847\) 17.4170 0.598455
\(848\) 0 0
\(849\) 33.5405 + 58.0939i 1.15111 + 1.99378i
\(850\) 0 0
\(851\) 10.2915 + 17.8254i 0.352788 + 0.611047i
\(852\) 0 0
\(853\) −6.29150 + 10.8972i −0.215417 + 0.373113i −0.953401 0.301705i \(-0.902444\pi\)
0.737985 + 0.674818i \(0.235778\pi\)
\(854\) 0 0
\(855\) 63.0405 + 8.15536i 2.15594 + 0.278907i
\(856\) 0 0
\(857\) −10.5000 + 18.1865i −0.358673 + 0.621240i −0.987739 0.156112i \(-0.950104\pi\)
0.629066 + 0.777352i \(0.283437\pi\)
\(858\) 0 0
\(859\) −6.61438 11.4564i −0.225680 0.390889i 0.730843 0.682545i \(-0.239127\pi\)
−0.956523 + 0.291656i \(0.905794\pi\)
\(860\) 0 0
\(861\) 22.4059 + 38.8081i 0.763590 + 1.32258i
\(862\) 0 0
\(863\) −46.9373 −1.59776 −0.798881 0.601489i \(-0.794575\pi\)
−0.798881 + 0.601489i \(0.794575\pi\)
\(864\) 0 0
\(865\) 10.9373 + 18.9439i 0.371878 + 0.644111i
\(866\) 0 0
\(867\) −44.9778 −1.52753
\(868\) 0 0
\(869\) −1.29150 + 2.23695i −0.0438112 + 0.0758833i
\(870\) 0 0
\(871\) 4.64575 8.04668i 0.157415 0.272651i
\(872\) 0 0
\(873\) −57.1660 −1.93478
\(874\) 0 0
\(875\) 19.7490 0.667639
\(876\) 0 0
\(877\) −18.1771 + 31.4837i −0.613798 + 1.06313i 0.376796 + 0.926296i \(0.377026\pi\)
−0.990594 + 0.136833i \(0.956308\pi\)
\(878\) 0 0
\(879\) 17.2804 29.9305i 0.582853 1.00953i
\(880\) 0 0
\(881\) −5.12549 −0.172682 −0.0863411 0.996266i \(-0.527517\pi\)
−0.0863411 + 0.996266i \(0.527517\pi\)
\(882\) 0 0
\(883\) 20.1974 + 34.9829i 0.679696 + 1.17727i 0.975072 + 0.221887i \(0.0712217\pi\)
−0.295376 + 0.955381i \(0.595445\pi\)
\(884\) 0 0
\(885\) 76.5608 2.57356
\(886\) 0 0
\(887\) 19.2915 + 33.4139i 0.647745 + 1.12193i 0.983660 + 0.180035i \(0.0576212\pi\)
−0.335915 + 0.941892i \(0.609045\pi\)
\(888\) 0 0
\(889\) −2.22876 3.86032i −0.0747501 0.129471i
\(890\) 0 0
\(891\) −1.61438 + 2.79619i −0.0540837 + 0.0936757i
\(892\) 0 0
\(893\) 16.1771 + 38.8081i 0.541347 + 1.29866i
\(894\) 0 0
\(895\) −36.3431 + 62.9482i −1.21482 + 2.10412i
\(896\) 0 0
\(897\) 9.64575 + 16.7069i 0.322062 + 0.557828i
\(898\) 0 0
\(899\) 0.645751 + 1.11847i 0.0215370 + 0.0373032i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −1.54249 2.67167i −0.0513307 0.0889075i
\(904\) 0 0
\(905\) −15.4170 −0.512478
\(906\) 0 0
\(907\) 12.0314 20.8389i 0.399495 0.691946i −0.594168 0.804341i \(-0.702519\pi\)
0.993664 + 0.112395i \(0.0358521\pi\)
\(908\) 0 0
\(909\) −16.7085 + 28.9400i −0.554186 + 0.959878i
\(910\) 0 0
\(911\) 1.06275 0.0352103 0.0176052 0.999845i \(-0.494396\pi\)
0.0176052 + 0.999845i \(0.494396\pi\)
\(912\) 0 0
\(913\) −5.12549 −0.169629
\(914\) 0 0
\(915\) 72.0405 124.778i 2.38159 4.12503i
\(916\) 0 0
\(917\) 11.4686 19.8642i 0.378727 0.655975i
\(918\) 0 0
\(919\) 11.8745 0.391704 0.195852 0.980633i \(-0.437253\pi\)
0.195852 + 0.980633i \(0.437253\pi\)
\(920\) 0 0
\(921\) −6.14575 10.6448i −0.202509 0.350757i
\(922\) 0 0
\(923\) 26.5830 0.874990
\(924\) 0 0
\(925\) 23.4059 + 40.5402i 0.769581 + 1.33295i
\(926\) 0 0
\(927\) 5.41699 + 9.38251i 0.177917 + 0.308162i
\(928\) 0 0
\(929\) −5.79150 + 10.0312i −0.190013 + 0.329112i −0.945254 0.326335i \(-0.894186\pi\)
0.755241 + 0.655447i \(0.227520\pi\)
\(930\) 0 0
\(931\) 18.5516 + 2.39997i 0.608005 + 0.0786557i
\(932\) 0 0
\(933\) −11.0516 + 19.1420i −0.361814 + 0.626681i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −19.4373 33.6663i −0.634987 1.09983i −0.986518 0.163654i \(-0.947672\pi\)
0.351530 0.936176i \(-0.385661\pi\)
\(938\) 0 0
\(939\) −60.5203 −1.97500
\(940\) 0 0
\(941\) 29.5830 + 51.2393i 0.964378 + 1.67035i 0.711276 + 0.702913i \(0.248118\pi\)
0.253103 + 0.967439i \(0.418549\pi\)
\(942\) 0 0
\(943\) 37.5203 1.22183
\(944\) 0 0
\(945\) −7.93725 + 13.7477i −0.258199 + 0.447214i
\(946\) 0 0
\(947\) 27.8745 48.2801i 0.905800 1.56889i 0.0859598 0.996299i \(-0.472604\pi\)
0.819840 0.572593i \(-0.194062\pi\)
\(948\) 0 0
\(949\) −24.5830 −0.797998
\(950\) 0 0
\(951\) 15.8745 0.514766
\(952\) 0 0
\(953\) −19.7288 + 34.1712i −0.639077 + 1.10691i 0.346559 + 0.938028i \(0.387350\pi\)
−0.985636 + 0.168886i \(0.945983\pi\)
\(954\) 0 0
\(955\) −26.5830 + 46.0431i −0.860206 + 1.48992i
\(956\) 0 0
\(957\) −6.22876 −0.201347
\(958\) 0 0
\(959\) −4.59412 7.95725i −0.148352 0.256953i
\(960\) 0 0
\(961\) −30.8745 −0.995952
\(962\) 0 0
\(963\) 9.41699 + 16.3107i 0.303458 + 0.525605i
\(964\) 0 0
\(965\) −12.0000 20.7846i −0.386294 0.669080i
\(966\) 0 0
\(967\) 1.35425 2.34563i 0.0435497 0.0754303i −0.843429 0.537241i \(-0.819467\pi\)
0.886979 + 0.461810i \(0.152800\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 7.19738 12.4662i 0.230975 0.400060i −0.727120 0.686510i \(-0.759142\pi\)
0.958095 + 0.286450i \(0.0924751\pi\)
\(972\) 0 0
\(973\) −10.9889 19.0333i −0.352288 0.610180i
\(974\) 0 0
\(975\) 21.9373 + 37.9964i 0.702554 + 1.21686i
\(976\) 0 0
\(977\) 45.4575 1.45431 0.727157 0.686471i \(-0.240841\pi\)
0.727157 + 0.686471i \(0.240841\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 26.3320 0.840717
\(982\) 0 0
\(983\) 15.8745 27.4955i 0.506318 0.876969i −0.493655 0.869658i \(-0.664339\pi\)
0.999973 0.00731102i \(-0.00232719\pi\)
\(984\) 0 0
\(985\) 4.29150 7.43310i 0.136739 0.236838i
\(986\) 0 0
\(987\) −42.0000 −1.33687
\(988\) 0 0
\(989\) −2.58301 −0.0821348
\(990\) 0 0
\(991\) 22.5830 39.1149i 0.717373 1.24253i −0.244664 0.969608i \(-0.578678\pi\)
0.962037 0.272918i \(-0.0879889\pi\)
\(992\) 0 0
\(993\) −36.7915 + 63.7248i −1.16754 + 2.02224i
\(994\) 0 0
\(995\) −43.2915 −1.37243
\(996\) 0 0
\(997\) −5.11438 8.85836i −0.161974 0.280547i 0.773603 0.633671i \(-0.218453\pi\)
−0.935577 + 0.353124i \(0.885119\pi\)
\(998\) 0 0
\(999\) −14.9373 −0.472594
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1216.2.i.l.961.1 4
4.3 odd 2 1216.2.i.k.961.2 4
8.3 odd 2 304.2.i.e.49.1 4
8.5 even 2 38.2.c.b.11.2 yes 4
19.7 even 3 inner 1216.2.i.l.577.1 4
24.5 odd 2 342.2.g.f.163.2 4
24.11 even 2 2736.2.s.v.1873.2 4
40.13 odd 4 950.2.j.g.49.4 8
40.29 even 2 950.2.e.k.201.1 4
40.37 odd 4 950.2.j.g.49.1 8
76.7 odd 6 1216.2.i.k.577.2 4
152.5 even 18 722.2.e.n.389.1 12
152.11 odd 6 5776.2.a.ba.1.2 2
152.13 odd 18 722.2.e.o.415.1 12
152.21 odd 18 722.2.e.o.595.1 12
152.27 even 6 5776.2.a.z.1.1 2
152.29 odd 18 722.2.e.o.245.2 12
152.37 odd 2 722.2.c.j.429.1 4
152.45 even 6 38.2.c.b.7.2 4
152.53 odd 18 722.2.e.o.423.2 12
152.61 even 18 722.2.e.n.423.1 12
152.69 odd 6 722.2.c.j.653.1 4
152.83 odd 6 304.2.i.e.273.1 4
152.85 even 18 722.2.e.n.245.1 12
152.93 even 18 722.2.e.n.595.2 12
152.101 even 18 722.2.e.n.415.2 12
152.109 odd 18 722.2.e.o.389.2 12
152.117 odd 18 722.2.e.o.99.2 12
152.125 even 6 722.2.a.j.1.1 2
152.141 odd 6 722.2.a.g.1.2 2
152.149 even 18 722.2.e.n.99.1 12
456.83 even 6 2736.2.s.v.577.2 4
456.125 odd 6 6498.2.a.ba.1.1 2
456.197 odd 6 342.2.g.f.235.2 4
456.293 even 6 6498.2.a.bg.1.1 2
760.197 odd 12 950.2.j.g.349.4 8
760.349 even 6 950.2.e.k.501.1 4
760.653 odd 12 950.2.j.g.349.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
38.2.c.b.7.2 4 152.45 even 6
38.2.c.b.11.2 yes 4 8.5 even 2
304.2.i.e.49.1 4 8.3 odd 2
304.2.i.e.273.1 4 152.83 odd 6
342.2.g.f.163.2 4 24.5 odd 2
342.2.g.f.235.2 4 456.197 odd 6
722.2.a.g.1.2 2 152.141 odd 6
722.2.a.j.1.1 2 152.125 even 6
722.2.c.j.429.1 4 152.37 odd 2
722.2.c.j.653.1 4 152.69 odd 6
722.2.e.n.99.1 12 152.149 even 18
722.2.e.n.245.1 12 152.85 even 18
722.2.e.n.389.1 12 152.5 even 18
722.2.e.n.415.2 12 152.101 even 18
722.2.e.n.423.1 12 152.61 even 18
722.2.e.n.595.2 12 152.93 even 18
722.2.e.o.99.2 12 152.117 odd 18
722.2.e.o.245.2 12 152.29 odd 18
722.2.e.o.389.2 12 152.109 odd 18
722.2.e.o.415.1 12 152.13 odd 18
722.2.e.o.423.2 12 152.53 odd 18
722.2.e.o.595.1 12 152.21 odd 18
950.2.e.k.201.1 4 40.29 even 2
950.2.e.k.501.1 4 760.349 even 6
950.2.j.g.49.1 8 40.37 odd 4
950.2.j.g.49.4 8 40.13 odd 4
950.2.j.g.349.1 8 760.653 odd 12
950.2.j.g.349.4 8 760.197 odd 12
1216.2.i.k.577.2 4 76.7 odd 6
1216.2.i.k.961.2 4 4.3 odd 2
1216.2.i.l.577.1 4 19.7 even 3 inner
1216.2.i.l.961.1 4 1.1 even 1 trivial
2736.2.s.v.577.2 4 456.83 even 6
2736.2.s.v.1873.2 4 24.11 even 2
5776.2.a.z.1.1 2 152.27 even 6
5776.2.a.ba.1.2 2 152.11 odd 6
6498.2.a.ba.1.1 2 456.125 odd 6
6498.2.a.bg.1.1 2 456.293 even 6