Properties

Label 304.2.i.e.273.1
Level $304$
Weight $2$
Character 304.273
Analytic conductor $2.427$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [304,2,Mod(49,304)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(304, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("304.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 304 = 2^{4} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 304.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.42745222145\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{7})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 7x^{2} + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 38)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 273.1
Root \(-1.32288 - 2.29129i\) of defining polynomial
Character \(\chi\) \(=\) 304.273
Dual form 304.2.i.e.49.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.32288 - 2.29129i) q^{3} +(-1.82288 - 3.15731i) q^{5} +1.64575 q^{7} +(-2.00000 + 3.46410i) q^{9} -0.645751 q^{11} +(-1.00000 + 1.73205i) q^{13} +(-4.82288 + 8.35347i) q^{15} +(-4.32288 + 0.559237i) q^{19} +(-2.17712 - 3.77089i) q^{21} +(1.82288 - 3.15731i) q^{23} +(-4.14575 + 7.18065i) q^{25} +2.64575 q^{27} +(1.82288 - 3.15731i) q^{29} +0.354249 q^{31} +(0.854249 + 1.47960i) q^{33} +(-3.00000 - 5.19615i) q^{35} +5.64575 q^{37} +5.29150 q^{39} +(-5.14575 - 8.91270i) q^{41} +(0.354249 + 0.613577i) q^{43} +14.5830 q^{45} +(4.82288 - 8.35347i) q^{47} -4.29150 q^{49} +(-4.29150 + 7.43310i) q^{53} +(1.17712 + 2.03884i) q^{55} +(7.00000 + 9.16515i) q^{57} +(3.96863 + 6.87386i) q^{59} +(7.46863 - 12.9360i) q^{61} +(-3.29150 + 5.70105i) q^{63} +7.29150 q^{65} +(-2.32288 + 4.02334i) q^{67} -9.64575 q^{69} +(-6.64575 - 11.5108i) q^{71} +(-6.14575 - 10.6448i) q^{73} +21.9373 q^{75} -1.06275 q^{77} +(-2.00000 - 3.46410i) q^{79} +(2.50000 + 4.33013i) q^{81} +7.93725 q^{83} -9.64575 q^{87} +(-1.64575 + 2.85052i) q^{91} +(-0.468627 - 0.811686i) q^{93} +(9.64575 + 12.6293i) q^{95} +(7.14575 + 12.3768i) q^{97} +(1.29150 - 2.23695i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{5} - 4 q^{7} - 8 q^{9} + 8 q^{11} - 4 q^{13} - 14 q^{15} - 12 q^{19} - 14 q^{21} + 2 q^{23} - 6 q^{25} + 2 q^{29} + 12 q^{31} + 14 q^{33} - 12 q^{35} + 12 q^{37} - 10 q^{41} + 12 q^{43} + 16 q^{45}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/304\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(191\) \(229\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.32288 2.29129i −0.763763 1.32288i −0.940898 0.338689i \(-0.890016\pi\)
0.177136 0.984186i \(-0.443317\pi\)
\(4\) 0 0
\(5\) −1.82288 3.15731i −0.815215 1.41199i −0.909174 0.416417i \(-0.863286\pi\)
0.0939588 0.995576i \(-0.470048\pi\)
\(6\) 0 0
\(7\) 1.64575 0.622036 0.311018 0.950404i \(-0.399330\pi\)
0.311018 + 0.950404i \(0.399330\pi\)
\(8\) 0 0
\(9\) −2.00000 + 3.46410i −0.666667 + 1.15470i
\(10\) 0 0
\(11\) −0.645751 −0.194701 −0.0973507 0.995250i \(-0.531037\pi\)
−0.0973507 + 0.995250i \(0.531037\pi\)
\(12\) 0 0
\(13\) −1.00000 + 1.73205i −0.277350 + 0.480384i −0.970725 0.240192i \(-0.922790\pi\)
0.693375 + 0.720577i \(0.256123\pi\)
\(14\) 0 0
\(15\) −4.82288 + 8.35347i −1.24526 + 2.15686i
\(16\) 0 0
\(17\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(18\) 0 0
\(19\) −4.32288 + 0.559237i −0.991736 + 0.128298i
\(20\) 0 0
\(21\) −2.17712 3.77089i −0.475087 0.822876i
\(22\) 0 0
\(23\) 1.82288 3.15731i 0.380096 0.658345i −0.610980 0.791646i \(-0.709224\pi\)
0.991076 + 0.133301i \(0.0425577\pi\)
\(24\) 0 0
\(25\) −4.14575 + 7.18065i −0.829150 + 1.43613i
\(26\) 0 0
\(27\) 2.64575 0.509175
\(28\) 0 0
\(29\) 1.82288 3.15731i 0.338500 0.586298i −0.645651 0.763632i \(-0.723414\pi\)
0.984151 + 0.177334i \(0.0567473\pi\)
\(30\) 0 0
\(31\) 0.354249 0.0636249 0.0318125 0.999494i \(-0.489872\pi\)
0.0318125 + 0.999494i \(0.489872\pi\)
\(32\) 0 0
\(33\) 0.854249 + 1.47960i 0.148706 + 0.257566i
\(34\) 0 0
\(35\) −3.00000 5.19615i −0.507093 0.878310i
\(36\) 0 0
\(37\) 5.64575 0.928156 0.464078 0.885794i \(-0.346386\pi\)
0.464078 + 0.885794i \(0.346386\pi\)
\(38\) 0 0
\(39\) 5.29150 0.847319
\(40\) 0 0
\(41\) −5.14575 8.91270i −0.803631 1.39193i −0.917211 0.398401i \(-0.869565\pi\)
0.113580 0.993529i \(-0.463768\pi\)
\(42\) 0 0
\(43\) 0.354249 + 0.613577i 0.0540224 + 0.0935696i 0.891772 0.452485i \(-0.149462\pi\)
−0.837750 + 0.546055i \(0.816129\pi\)
\(44\) 0 0
\(45\) 14.5830 2.17391
\(46\) 0 0
\(47\) 4.82288 8.35347i 0.703489 1.21848i −0.263745 0.964592i \(-0.584958\pi\)
0.967234 0.253886i \(-0.0817088\pi\)
\(48\) 0 0
\(49\) −4.29150 −0.613072
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −4.29150 + 7.43310i −0.589483 + 1.02101i 0.404817 + 0.914398i \(0.367335\pi\)
−0.994300 + 0.106617i \(0.965998\pi\)
\(54\) 0 0
\(55\) 1.17712 + 2.03884i 0.158723 + 0.274917i
\(56\) 0 0
\(57\) 7.00000 + 9.16515i 0.927173 + 1.21395i
\(58\) 0 0
\(59\) 3.96863 + 6.87386i 0.516671 + 0.894901i 0.999813 + 0.0193585i \(0.00616237\pi\)
−0.483141 + 0.875542i \(0.660504\pi\)
\(60\) 0 0
\(61\) 7.46863 12.9360i 0.956260 1.65629i 0.224801 0.974405i \(-0.427827\pi\)
0.731459 0.681886i \(-0.238840\pi\)
\(62\) 0 0
\(63\) −3.29150 + 5.70105i −0.414690 + 0.718265i
\(64\) 0 0
\(65\) 7.29150 0.904400
\(66\) 0 0
\(67\) −2.32288 + 4.02334i −0.283784 + 0.491529i −0.972314 0.233680i \(-0.924923\pi\)
0.688529 + 0.725209i \(0.258257\pi\)
\(68\) 0 0
\(69\) −9.64575 −1.16121
\(70\) 0 0
\(71\) −6.64575 11.5108i −0.788706 1.36608i −0.926760 0.375654i \(-0.877418\pi\)
0.138055 0.990425i \(-0.455915\pi\)
\(72\) 0 0
\(73\) −6.14575 10.6448i −0.719306 1.24587i −0.961275 0.275590i \(-0.911127\pi\)
0.241969 0.970284i \(-0.422207\pi\)
\(74\) 0 0
\(75\) 21.9373 2.53310
\(76\) 0 0
\(77\) −1.06275 −0.121111
\(78\) 0 0
\(79\) −2.00000 3.46410i −0.225018 0.389742i 0.731307 0.682048i \(-0.238911\pi\)
−0.956325 + 0.292306i \(0.905577\pi\)
\(80\) 0 0
\(81\) 2.50000 + 4.33013i 0.277778 + 0.481125i
\(82\) 0 0
\(83\) 7.93725 0.871227 0.435613 0.900134i \(-0.356531\pi\)
0.435613 + 0.900134i \(0.356531\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −9.64575 −1.03413
\(88\) 0 0
\(89\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(90\) 0 0
\(91\) −1.64575 + 2.85052i −0.172522 + 0.298816i
\(92\) 0 0
\(93\) −0.468627 0.811686i −0.0485944 0.0841679i
\(94\) 0 0
\(95\) 9.64575 + 12.6293i 0.989633 + 1.29573i
\(96\) 0 0
\(97\) 7.14575 + 12.3768i 0.725541 + 1.25667i 0.958751 + 0.284248i \(0.0917438\pi\)
−0.233210 + 0.972426i \(0.574923\pi\)
\(98\) 0 0
\(99\) 1.29150 2.23695i 0.129801 0.224822i
\(100\) 0 0
\(101\) 4.17712 7.23499i 0.415639 0.719909i −0.579856 0.814719i \(-0.696891\pi\)
0.995495 + 0.0948105i \(0.0302245\pi\)
\(102\) 0 0
\(103\) 2.70850 0.266876 0.133438 0.991057i \(-0.457398\pi\)
0.133438 + 0.991057i \(0.457398\pi\)
\(104\) 0 0
\(105\) −7.93725 + 13.7477i −0.774597 + 1.34164i
\(106\) 0 0
\(107\) −4.70850 −0.455188 −0.227594 0.973756i \(-0.573086\pi\)
−0.227594 + 0.973756i \(0.573086\pi\)
\(108\) 0 0
\(109\) 3.29150 + 5.70105i 0.315269 + 0.546062i 0.979495 0.201470i \(-0.0645720\pi\)
−0.664226 + 0.747532i \(0.731239\pi\)
\(110\) 0 0
\(111\) −7.46863 12.9360i −0.708891 1.22783i
\(112\) 0 0
\(113\) 5.58301 0.525205 0.262602 0.964904i \(-0.415419\pi\)
0.262602 + 0.964904i \(0.415419\pi\)
\(114\) 0 0
\(115\) −13.2915 −1.23944
\(116\) 0 0
\(117\) −4.00000 6.92820i −0.369800 0.640513i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −10.5830 −0.962091
\(122\) 0 0
\(123\) −13.6144 + 23.5808i −1.22757 + 2.12621i
\(124\) 0 0
\(125\) 12.0000 1.07331
\(126\) 0 0
\(127\) −1.35425 + 2.34563i −0.120170 + 0.208141i −0.919835 0.392306i \(-0.871677\pi\)
0.799665 + 0.600447i \(0.205011\pi\)
\(128\) 0 0
\(129\) 0.937254 1.62337i 0.0825206 0.142930i
\(130\) 0 0
\(131\) −6.96863 12.0700i −0.608852 1.05456i −0.991430 0.130639i \(-0.958297\pi\)
0.382578 0.923923i \(-0.375036\pi\)
\(132\) 0 0
\(133\) −7.11438 + 0.920365i −0.616895 + 0.0798058i
\(134\) 0 0
\(135\) −4.82288 8.35347i −0.415087 0.718952i
\(136\) 0 0
\(137\) 2.79150 4.83502i 0.238494 0.413084i −0.721788 0.692114i \(-0.756680\pi\)
0.960282 + 0.279030i \(0.0900129\pi\)
\(138\) 0 0
\(139\) 6.67712 11.5651i 0.566346 0.980941i −0.430577 0.902554i \(-0.641690\pi\)
0.996923 0.0783866i \(-0.0249768\pi\)
\(140\) 0 0
\(141\) −25.5203 −2.14919
\(142\) 0 0
\(143\) 0.645751 1.11847i 0.0540004 0.0935315i
\(144\) 0 0
\(145\) −13.2915 −1.10380
\(146\) 0 0
\(147\) 5.67712 + 9.83307i 0.468241 + 0.811018i
\(148\) 0 0
\(149\) 2.46863 + 4.27579i 0.202238 + 0.350286i 0.949249 0.314525i \(-0.101845\pi\)
−0.747011 + 0.664811i \(0.768512\pi\)
\(150\) 0 0
\(151\) 2.93725 0.239030 0.119515 0.992832i \(-0.461866\pi\)
0.119515 + 0.992832i \(0.461866\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −0.645751 1.11847i −0.0518680 0.0898380i
\(156\) 0 0
\(157\) −5.29150 9.16515i −0.422308 0.731459i 0.573857 0.818956i \(-0.305447\pi\)
−0.996165 + 0.0874969i \(0.972113\pi\)
\(158\) 0 0
\(159\) 22.7085 1.80090
\(160\) 0 0
\(161\) 3.00000 5.19615i 0.236433 0.409514i
\(162\) 0 0
\(163\) 11.9373 0.934998 0.467499 0.883994i \(-0.345155\pi\)
0.467499 + 0.883994i \(0.345155\pi\)
\(164\) 0 0
\(165\) 3.11438 5.39426i 0.242454 0.419943i
\(166\) 0 0
\(167\) −6.00000 + 10.3923i −0.464294 + 0.804181i −0.999169 0.0407502i \(-0.987025\pi\)
0.534875 + 0.844931i \(0.320359\pi\)
\(168\) 0 0
\(169\) 4.50000 + 7.79423i 0.346154 + 0.599556i
\(170\) 0 0
\(171\) 6.70850 16.0934i 0.513012 1.23069i
\(172\) 0 0
\(173\) 3.00000 + 5.19615i 0.228086 + 0.395056i 0.957241 0.289292i \(-0.0934200\pi\)
−0.729155 + 0.684349i \(0.760087\pi\)
\(174\) 0 0
\(175\) −6.82288 + 11.8176i −0.515761 + 0.893324i
\(176\) 0 0
\(177\) 10.5000 18.1865i 0.789228 1.36698i
\(178\) 0 0
\(179\) −19.9373 −1.49018 −0.745090 0.666964i \(-0.767594\pi\)
−0.745090 + 0.666964i \(0.767594\pi\)
\(180\) 0 0
\(181\) 2.11438 3.66221i 0.157160 0.272210i −0.776683 0.629892i \(-0.783099\pi\)
0.933844 + 0.357682i \(0.116433\pi\)
\(182\) 0 0
\(183\) −39.5203 −2.92142
\(184\) 0 0
\(185\) −10.2915 17.8254i −0.756646 1.31055i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 4.35425 0.316725
\(190\) 0 0
\(191\) 14.5830 1.05519 0.527595 0.849496i \(-0.323094\pi\)
0.527595 + 0.849496i \(0.323094\pi\)
\(192\) 0 0
\(193\) 3.29150 + 5.70105i 0.236928 + 0.410371i 0.959831 0.280578i \(-0.0905263\pi\)
−0.722904 + 0.690949i \(0.757193\pi\)
\(194\) 0 0
\(195\) −9.64575 16.7069i −0.690747 1.19641i
\(196\) 0 0
\(197\) −2.35425 −0.167733 −0.0838666 0.996477i \(-0.526727\pi\)
−0.0838666 + 0.996477i \(0.526727\pi\)
\(198\) 0 0
\(199\) 5.93725 10.2836i 0.420881 0.728987i −0.575145 0.818051i \(-0.695054\pi\)
0.996026 + 0.0890645i \(0.0283877\pi\)
\(200\) 0 0
\(201\) 12.2915 0.866976
\(202\) 0 0
\(203\) 3.00000 5.19615i 0.210559 0.364698i
\(204\) 0 0
\(205\) −18.7601 + 32.4935i −1.31026 + 2.26944i
\(206\) 0 0
\(207\) 7.29150 + 12.6293i 0.506794 + 0.877794i
\(208\) 0 0
\(209\) 2.79150 0.361128i 0.193092 0.0249797i
\(210\) 0 0
\(211\) −1.35425 2.34563i −0.0932303 0.161480i 0.815638 0.578562i \(-0.196386\pi\)
−0.908869 + 0.417082i \(0.863053\pi\)
\(212\) 0 0
\(213\) −17.5830 + 30.4547i −1.20477 + 2.08672i
\(214\) 0 0
\(215\) 1.29150 2.23695i 0.0880797 0.152559i
\(216\) 0 0
\(217\) 0.583005 0.0395770
\(218\) 0 0
\(219\) −16.2601 + 28.1634i −1.09876 + 1.90310i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 14.4059 + 24.9517i 0.964689 + 1.67089i 0.710448 + 0.703750i \(0.248492\pi\)
0.254241 + 0.967141i \(0.418174\pi\)
\(224\) 0 0
\(225\) −16.5830 28.7226i −1.10553 1.91484i
\(226\) 0 0
\(227\) 12.6458 0.839328 0.419664 0.907680i \(-0.362148\pi\)
0.419664 + 0.907680i \(0.362148\pi\)
\(228\) 0 0
\(229\) 20.0000 1.32164 0.660819 0.750546i \(-0.270209\pi\)
0.660819 + 0.750546i \(0.270209\pi\)
\(230\) 0 0
\(231\) 1.40588 + 2.43506i 0.0925002 + 0.160215i
\(232\) 0 0
\(233\) 6.43725 + 11.1497i 0.421719 + 0.730438i 0.996108 0.0881444i \(-0.0280937\pi\)
−0.574389 + 0.818582i \(0.694760\pi\)
\(234\) 0 0
\(235\) −35.1660 −2.29398
\(236\) 0 0
\(237\) −5.29150 + 9.16515i −0.343720 + 0.595341i
\(238\) 0 0
\(239\) 12.0000 0.776215 0.388108 0.921614i \(-0.373129\pi\)
0.388108 + 0.921614i \(0.373129\pi\)
\(240\) 0 0
\(241\) −6.79150 + 11.7632i −0.437479 + 0.757736i −0.997494 0.0707462i \(-0.977462\pi\)
0.560015 + 0.828482i \(0.310795\pi\)
\(242\) 0 0
\(243\) 10.5830 18.3303i 0.678900 1.17589i
\(244\) 0 0
\(245\) 7.82288 + 13.5496i 0.499785 + 0.865653i
\(246\) 0 0
\(247\) 3.35425 8.04668i 0.213426 0.511998i
\(248\) 0 0
\(249\) −10.5000 18.1865i −0.665410 1.15252i
\(250\) 0 0
\(251\) 1.38562 2.39997i 0.0874597 0.151485i −0.818977 0.573826i \(-0.805458\pi\)
0.906437 + 0.422342i \(0.138792\pi\)
\(252\) 0 0
\(253\) −1.17712 + 2.03884i −0.0740052 + 0.128181i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −0.854249 + 1.47960i −0.0532866 + 0.0922950i −0.891438 0.453142i \(-0.850303\pi\)
0.838152 + 0.545437i \(0.183636\pi\)
\(258\) 0 0
\(259\) 9.29150 0.577346
\(260\) 0 0
\(261\) 7.29150 + 12.6293i 0.451333 + 0.781731i
\(262\) 0 0
\(263\) 2.46863 + 4.27579i 0.152222 + 0.263656i 0.932044 0.362345i \(-0.118024\pi\)
−0.779822 + 0.626001i \(0.784690\pi\)
\(264\) 0 0
\(265\) 31.2915 1.92222
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(270\) 0 0
\(271\) 8.82288 + 15.2817i 0.535952 + 0.928295i 0.999117 + 0.0420233i \(0.0133804\pi\)
−0.463165 + 0.886272i \(0.653286\pi\)
\(272\) 0 0
\(273\) 8.70850 0.527062
\(274\) 0 0
\(275\) 2.67712 4.63692i 0.161437 0.279617i
\(276\) 0 0
\(277\) 9.52026 0.572017 0.286008 0.958227i \(-0.407671\pi\)
0.286008 + 0.958227i \(0.407671\pi\)
\(278\) 0 0
\(279\) −0.708497 + 1.22715i −0.0424166 + 0.0734678i
\(280\) 0 0
\(281\) 13.7288 23.7789i 0.818989 1.41853i −0.0874389 0.996170i \(-0.527868\pi\)
0.906428 0.422361i \(-0.138798\pi\)
\(282\) 0 0
\(283\) 12.6771 + 21.9574i 0.753577 + 1.30523i 0.946079 + 0.323937i \(0.105007\pi\)
−0.192502 + 0.981297i \(0.561660\pi\)
\(284\) 0 0
\(285\) 16.1771 38.8081i 0.958250 2.29879i
\(286\) 0 0
\(287\) −8.46863 14.6681i −0.499887 0.865830i
\(288\) 0 0
\(289\) 8.50000 14.7224i 0.500000 0.866025i
\(290\) 0 0
\(291\) 18.9059 32.7459i 1.10828 1.91960i
\(292\) 0 0
\(293\) 13.0627 0.763134 0.381567 0.924341i \(-0.375385\pi\)
0.381567 + 0.924341i \(0.375385\pi\)
\(294\) 0 0
\(295\) 14.4686 25.0604i 0.842396 1.45907i
\(296\) 0 0
\(297\) −1.70850 −0.0991371
\(298\) 0 0
\(299\) 3.64575 + 6.31463i 0.210839 + 0.365184i
\(300\) 0 0
\(301\) 0.583005 + 1.00979i 0.0336039 + 0.0582036i
\(302\) 0 0
\(303\) −22.1033 −1.26980
\(304\) 0 0
\(305\) −54.4575 −3.11823
\(306\) 0 0
\(307\) −2.32288 4.02334i −0.132574 0.229624i 0.792094 0.610399i \(-0.208991\pi\)
−0.924668 + 0.380775i \(0.875657\pi\)
\(308\) 0 0
\(309\) −3.58301 6.20595i −0.203830 0.353044i
\(310\) 0 0
\(311\) −8.35425 −0.473726 −0.236863 0.971543i \(-0.576119\pi\)
−0.236863 + 0.971543i \(0.576119\pi\)
\(312\) 0 0
\(313\) 11.4373 19.8099i 0.646472 1.11972i −0.337488 0.941330i \(-0.609577\pi\)
0.983959 0.178392i \(-0.0570895\pi\)
\(314\) 0 0
\(315\) 24.0000 1.35225
\(316\) 0 0
\(317\) 3.00000 5.19615i 0.168497 0.291845i −0.769395 0.638774i \(-0.779442\pi\)
0.937892 + 0.346929i \(0.112775\pi\)
\(318\) 0 0
\(319\) −1.17712 + 2.03884i −0.0659063 + 0.114153i
\(320\) 0 0
\(321\) 6.22876 + 10.7885i 0.347655 + 0.602157i
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −8.29150 14.3613i −0.459930 0.796622i
\(326\) 0 0
\(327\) 8.70850 15.0836i 0.481581 0.834123i
\(328\) 0 0
\(329\) 7.93725 13.7477i 0.437595 0.757937i
\(330\) 0 0
\(331\) 27.8118 1.52867 0.764336 0.644818i \(-0.223067\pi\)
0.764336 + 0.644818i \(0.223067\pi\)
\(332\) 0 0
\(333\) −11.2915 + 19.5575i −0.618771 + 1.07174i
\(334\) 0 0
\(335\) 16.9373 0.925381
\(336\) 0 0
\(337\) 10.1458 + 17.5730i 0.552674 + 0.957260i 0.998080 + 0.0619313i \(0.0197260\pi\)
−0.445406 + 0.895329i \(0.646941\pi\)
\(338\) 0 0
\(339\) −7.38562 12.7923i −0.401132 0.694781i
\(340\) 0 0
\(341\) −0.228757 −0.0123879
\(342\) 0 0
\(343\) −18.5830 −1.00339
\(344\) 0 0
\(345\) 17.5830 + 30.4547i 0.946637 + 1.63962i
\(346\) 0 0
\(347\) 1.61438 + 2.79619i 0.0866644 + 0.150107i 0.906099 0.423065i \(-0.139046\pi\)
−0.819435 + 0.573172i \(0.805713\pi\)
\(348\) 0 0
\(349\) −21.1660 −1.13299 −0.566495 0.824065i \(-0.691701\pi\)
−0.566495 + 0.824065i \(0.691701\pi\)
\(350\) 0 0
\(351\) −2.64575 + 4.58258i −0.141220 + 0.244600i
\(352\) 0 0
\(353\) −18.8745 −1.00459 −0.502294 0.864697i \(-0.667511\pi\)
−0.502294 + 0.864697i \(0.667511\pi\)
\(354\) 0 0
\(355\) −24.2288 + 41.9654i −1.28593 + 2.22729i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 5.46863 + 9.47194i 0.288623 + 0.499910i 0.973481 0.228766i \(-0.0734692\pi\)
−0.684858 + 0.728676i \(0.740136\pi\)
\(360\) 0 0
\(361\) 18.3745 4.83502i 0.967079 0.254475i
\(362\) 0 0
\(363\) 14.0000 + 24.2487i 0.734809 + 1.27273i
\(364\) 0 0
\(365\) −22.4059 + 38.8081i −1.17278 + 2.03131i
\(366\) 0 0
\(367\) −5.11438 + 8.85836i −0.266968 + 0.462403i −0.968077 0.250651i \(-0.919355\pi\)
0.701109 + 0.713054i \(0.252689\pi\)
\(368\) 0 0
\(369\) 41.1660 2.14302
\(370\) 0 0
\(371\) −7.06275 + 12.2330i −0.366680 + 0.635108i
\(372\) 0 0
\(373\) −4.00000 −0.207112 −0.103556 0.994624i \(-0.533022\pi\)
−0.103556 + 0.994624i \(0.533022\pi\)
\(374\) 0 0
\(375\) −15.8745 27.4955i −0.819756 1.41986i
\(376\) 0 0
\(377\) 3.64575 + 6.31463i 0.187766 + 0.325220i
\(378\) 0 0
\(379\) −21.2915 −1.09367 −0.546836 0.837240i \(-0.684168\pi\)
−0.546836 + 0.837240i \(0.684168\pi\)
\(380\) 0 0
\(381\) 7.16601 0.367126
\(382\) 0 0
\(383\) −15.7601 27.2973i −0.805305 1.39483i −0.916085 0.400984i \(-0.868668\pi\)
0.110780 0.993845i \(-0.464665\pi\)
\(384\) 0 0
\(385\) 1.93725 + 3.35542i 0.0987316 + 0.171008i
\(386\) 0 0
\(387\) −2.83399 −0.144060
\(388\) 0 0
\(389\) −6.00000 + 10.3923i −0.304212 + 0.526911i −0.977086 0.212847i \(-0.931726\pi\)
0.672874 + 0.739758i \(0.265060\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −18.4373 + 31.9343i −0.930036 + 1.61087i
\(394\) 0 0
\(395\) −7.29150 + 12.6293i −0.366875 + 0.635447i
\(396\) 0 0
\(397\) −18.4686 31.9886i −0.926914 1.60546i −0.788454 0.615094i \(-0.789118\pi\)
−0.138460 0.990368i \(-0.544215\pi\)
\(398\) 0 0
\(399\) 11.5203 + 15.0836i 0.576734 + 0.755122i
\(400\) 0 0
\(401\) −3.20850 5.55728i −0.160225 0.277517i 0.774724 0.632299i \(-0.217889\pi\)
−0.934949 + 0.354782i \(0.884555\pi\)
\(402\) 0 0
\(403\) −0.354249 + 0.613577i −0.0176464 + 0.0305644i
\(404\) 0 0
\(405\) 9.11438 15.7866i 0.452897 0.784441i
\(406\) 0 0
\(407\) −3.64575 −0.180713
\(408\) 0 0
\(409\) −6.79150 + 11.7632i −0.335818 + 0.581654i −0.983642 0.180136i \(-0.942346\pi\)
0.647823 + 0.761790i \(0.275679\pi\)
\(410\) 0 0
\(411\) −14.7712 −0.728612
\(412\) 0 0
\(413\) 6.53137 + 11.3127i 0.321388 + 0.556660i
\(414\) 0 0
\(415\) −14.4686 25.0604i −0.710237 1.23017i
\(416\) 0 0
\(417\) −35.3320 −1.73022
\(418\) 0 0
\(419\) −31.7490 −1.55104 −0.775520 0.631322i \(-0.782512\pi\)
−0.775520 + 0.631322i \(0.782512\pi\)
\(420\) 0 0
\(421\) −11.4059 19.7556i −0.555889 0.962827i −0.997834 0.0657853i \(-0.979045\pi\)
0.441945 0.897042i \(-0.354289\pi\)
\(422\) 0 0
\(423\) 19.2915 + 33.4139i 0.937985 + 1.62464i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 12.2915 21.2895i 0.594828 1.03027i
\(428\) 0 0
\(429\) −3.41699 −0.164974
\(430\) 0 0
\(431\) −1.93725 + 3.35542i −0.0933142 + 0.161625i −0.908904 0.417006i \(-0.863079\pi\)
0.815590 + 0.578631i \(0.196413\pi\)
\(432\) 0 0
\(433\) 6.93725 12.0157i 0.333383 0.577437i −0.649790 0.760114i \(-0.725143\pi\)
0.983173 + 0.182677i \(0.0584764\pi\)
\(434\) 0 0
\(435\) 17.5830 + 30.4547i 0.843041 + 1.46019i
\(436\) 0 0
\(437\) −6.11438 + 14.6681i −0.292490 + 0.701670i
\(438\) 0 0
\(439\) −18.4059 31.8799i −0.878465 1.52155i −0.853025 0.521869i \(-0.825235\pi\)
−0.0254393 0.999676i \(-0.508098\pi\)
\(440\) 0 0
\(441\) 8.58301 14.8662i 0.408715 0.707914i
\(442\) 0 0
\(443\) 2.67712 4.63692i 0.127194 0.220306i −0.795394 0.606092i \(-0.792736\pi\)
0.922588 + 0.385786i \(0.126070\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 6.53137 11.3127i 0.308923 0.535071i
\(448\) 0 0
\(449\) −13.7085 −0.646944 −0.323472 0.946238i \(-0.604850\pi\)
−0.323472 + 0.946238i \(0.604850\pi\)
\(450\) 0 0
\(451\) 3.32288 + 5.75539i 0.156468 + 0.271011i
\(452\) 0 0
\(453\) −3.88562 6.73009i −0.182562 0.316207i
\(454\) 0 0
\(455\) 12.0000 0.562569
\(456\) 0 0
\(457\) 1.12549 0.0526483 0.0263242 0.999653i \(-0.491620\pi\)
0.0263242 + 0.999653i \(0.491620\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 11.5830 + 20.0624i 0.539474 + 0.934397i 0.998932 + 0.0461975i \(0.0147103\pi\)
−0.459458 + 0.888200i \(0.651956\pi\)
\(462\) 0 0
\(463\) −14.4575 −0.671898 −0.335949 0.941880i \(-0.609057\pi\)
−0.335949 + 0.941880i \(0.609057\pi\)
\(464\) 0 0
\(465\) −1.70850 + 2.95920i −0.0792297 + 0.137230i
\(466\) 0 0
\(467\) 24.6458 1.14047 0.570235 0.821482i \(-0.306852\pi\)
0.570235 + 0.821482i \(0.306852\pi\)
\(468\) 0 0
\(469\) −3.82288 + 6.62141i −0.176524 + 0.305749i
\(470\) 0 0
\(471\) −14.0000 + 24.2487i −0.645086 + 1.11732i
\(472\) 0 0
\(473\) −0.228757 0.396218i −0.0105182 0.0182181i
\(474\) 0 0
\(475\) 13.9059 33.3595i 0.638046 1.53064i
\(476\) 0 0
\(477\) −17.1660 29.7324i −0.785978 1.36135i
\(478\) 0 0
\(479\) −7.29150 + 12.6293i −0.333157 + 0.577045i −0.983129 0.182913i \(-0.941447\pi\)
0.649972 + 0.759958i \(0.274781\pi\)
\(480\) 0 0
\(481\) −5.64575 + 9.77873i −0.257424 + 0.445872i
\(482\) 0 0
\(483\) −15.8745 −0.722315
\(484\) 0 0
\(485\) 26.0516 45.1228i 1.18294 2.04892i
\(486\) 0 0
\(487\) 22.2288 1.00728 0.503641 0.863913i \(-0.331994\pi\)
0.503641 + 0.863913i \(0.331994\pi\)
\(488\) 0 0
\(489\) −15.7915 27.3517i −0.714116 1.23689i
\(490\) 0 0
\(491\) 14.3542 + 24.8623i 0.647798 + 1.12202i 0.983648 + 0.180104i \(0.0576433\pi\)
−0.335849 + 0.941916i \(0.609023\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −9.41699 −0.423262
\(496\) 0 0
\(497\) −10.9373 18.9439i −0.490603 0.849749i
\(498\) 0 0
\(499\) −15.6144 27.0449i −0.698996 1.21070i −0.968815 0.247785i \(-0.920297\pi\)
0.269819 0.962911i \(-0.413036\pi\)
\(500\) 0 0
\(501\) 31.7490 1.41844
\(502\) 0 0
\(503\) −12.5314 + 21.7050i −0.558746 + 0.967777i 0.438855 + 0.898558i \(0.355384\pi\)
−0.997601 + 0.0692192i \(0.977949\pi\)
\(504\) 0 0
\(505\) −30.4575 −1.35534
\(506\) 0 0
\(507\) 11.9059 20.6216i 0.528759 0.915837i
\(508\) 0 0
\(509\) −15.8745 + 27.4955i −0.703625 + 1.21871i 0.263560 + 0.964643i \(0.415103\pi\)
−0.967185 + 0.254072i \(0.918230\pi\)
\(510\) 0 0
\(511\) −10.1144 17.5186i −0.447434 0.774978i
\(512\) 0 0
\(513\) −11.4373 + 1.47960i −0.504967 + 0.0653260i
\(514\) 0 0
\(515\) −4.93725 8.55157i −0.217561 0.376827i
\(516\) 0 0
\(517\) −3.11438 + 5.39426i −0.136970 + 0.237239i
\(518\) 0 0
\(519\) 7.93725 13.7477i 0.348407 0.603458i
\(520\) 0 0
\(521\) −22.2915 −0.976608 −0.488304 0.872673i \(-0.662384\pi\)
−0.488304 + 0.872673i \(0.662384\pi\)
\(522\) 0 0
\(523\) 14.9373 25.8721i 0.653161 1.13131i −0.329191 0.944263i \(-0.606776\pi\)
0.982352 0.187044i \(-0.0598906\pi\)
\(524\) 0 0
\(525\) 36.1033 1.57568
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 4.85425 + 8.40781i 0.211054 + 0.365557i
\(530\) 0 0
\(531\) −31.7490 −1.37779
\(532\) 0 0
\(533\) 20.5830 0.891549
\(534\) 0 0
\(535\) 8.58301 + 14.8662i 0.371076 + 0.642722i
\(536\) 0 0
\(537\) 26.3745 + 45.6820i 1.13814 + 1.97132i
\(538\) 0 0
\(539\) 2.77124 0.119366
\(540\) 0 0
\(541\) −4.00000 + 6.92820i −0.171973 + 0.297867i −0.939110 0.343617i \(-0.888348\pi\)
0.767136 + 0.641484i \(0.221681\pi\)
\(542\) 0 0
\(543\) −11.1882 −0.480133
\(544\) 0 0
\(545\) 12.0000 20.7846i 0.514024 0.890315i
\(546\) 0 0
\(547\) 0.354249 0.613577i 0.0151466 0.0262346i −0.858353 0.513060i \(-0.828512\pi\)
0.873499 + 0.486825i \(0.161845\pi\)
\(548\) 0 0
\(549\) 29.8745 + 51.7442i 1.27501 + 2.20839i
\(550\) 0 0
\(551\) −6.11438 + 14.6681i −0.260481 + 0.624882i
\(552\) 0 0
\(553\) −3.29150 5.70105i −0.139969 0.242433i
\(554\) 0 0
\(555\) −27.2288 + 47.1616i −1.15580 + 2.00190i
\(556\) 0 0
\(557\) 13.2915 23.0216i 0.563179 0.975455i −0.434037 0.900895i \(-0.642911\pi\)
0.997217 0.0745599i \(-0.0237552\pi\)
\(558\) 0 0
\(559\) −1.41699 −0.0599325
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −25.9373 −1.09312 −0.546562 0.837418i \(-0.684064\pi\)
−0.546562 + 0.837418i \(0.684064\pi\)
\(564\) 0 0
\(565\) −10.1771 17.6273i −0.428155 0.741586i
\(566\) 0 0
\(567\) 4.11438 + 7.12631i 0.172788 + 0.299277i
\(568\) 0 0
\(569\) −14.5830 −0.611351 −0.305676 0.952136i \(-0.598882\pi\)
−0.305676 + 0.952136i \(0.598882\pi\)
\(570\) 0 0
\(571\) 39.8118 1.66607 0.833035 0.553220i \(-0.186601\pi\)
0.833035 + 0.553220i \(0.186601\pi\)
\(572\) 0 0
\(573\) −19.2915 33.4139i −0.805914 1.39588i
\(574\) 0 0
\(575\) 15.1144 + 26.1789i 0.630313 + 1.09173i
\(576\) 0 0
\(577\) 11.0000 0.457936 0.228968 0.973434i \(-0.426465\pi\)
0.228968 + 0.973434i \(0.426465\pi\)
\(578\) 0 0
\(579\) 8.70850 15.0836i 0.361913 0.626851i
\(580\) 0 0
\(581\) 13.0627 0.541934
\(582\) 0 0
\(583\) 2.77124 4.79993i 0.114773 0.198793i
\(584\) 0 0
\(585\) −14.5830 + 25.2585i −0.602933 + 1.04431i
\(586\) 0 0
\(587\) −22.9373 39.7285i −0.946722 1.63977i −0.752267 0.658859i \(-0.771039\pi\)
−0.194455 0.980911i \(-0.562294\pi\)
\(588\) 0 0
\(589\) −1.53137 + 0.198109i −0.0630991 + 0.00816294i
\(590\) 0 0
\(591\) 3.11438 + 5.39426i 0.128108 + 0.221890i
\(592\) 0 0
\(593\) −20.1458 + 34.8935i −0.827287 + 1.43290i 0.0728721 + 0.997341i \(0.476784\pi\)
−0.900159 + 0.435562i \(0.856550\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −31.4170 −1.28581
\(598\) 0 0
\(599\) −0.531373 + 0.920365i −0.0217113 + 0.0376051i −0.876677 0.481080i \(-0.840245\pi\)
0.854966 + 0.518685i \(0.173578\pi\)
\(600\) 0 0
\(601\) 31.5830 1.28830 0.644149 0.764900i \(-0.277212\pi\)
0.644149 + 0.764900i \(0.277212\pi\)
\(602\) 0 0
\(603\) −9.29150 16.0934i −0.378379 0.655372i
\(604\) 0 0
\(605\) 19.2915 + 33.4139i 0.784311 + 1.35847i
\(606\) 0 0
\(607\) 8.93725 0.362752 0.181376 0.983414i \(-0.441945\pi\)
0.181376 + 0.983414i \(0.441945\pi\)
\(608\) 0 0
\(609\) −15.8745 −0.643268
\(610\) 0 0
\(611\) 9.64575 + 16.7069i 0.390225 + 0.675890i
\(612\) 0 0
\(613\) −14.2915 24.7536i −0.577228 0.999789i −0.995796 0.0916030i \(-0.970801\pi\)
0.418567 0.908186i \(-0.362532\pi\)
\(614\) 0 0
\(615\) 99.2693 4.00292
\(616\) 0 0
\(617\) −0.437254 + 0.757346i −0.0176032 + 0.0304896i −0.874693 0.484678i \(-0.838937\pi\)
0.857090 + 0.515167i \(0.172270\pi\)
\(618\) 0 0
\(619\) −44.4575 −1.78690 −0.893449 0.449164i \(-0.851722\pi\)
−0.893449 + 0.449164i \(0.851722\pi\)
\(620\) 0 0
\(621\) 4.82288 8.35347i 0.193535 0.335213i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −1.14575 1.98450i −0.0458301 0.0793800i
\(626\) 0 0
\(627\) −4.52026 5.91841i −0.180522 0.236358i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 11.4059 19.7556i 0.454061 0.786457i −0.544573 0.838714i \(-0.683308\pi\)
0.998634 + 0.0522570i \(0.0166415\pi\)
\(632\) 0 0
\(633\) −3.58301 + 6.20595i −0.142412 + 0.246664i
\(634\) 0 0
\(635\) 9.87451 0.391858
\(636\) 0 0
\(637\) 4.29150 7.43310i 0.170036 0.294510i
\(638\) 0 0
\(639\) 53.1660 2.10321
\(640\) 0 0
\(641\) 9.43725 + 16.3458i 0.372749 + 0.645620i 0.989987 0.141156i \(-0.0450819\pi\)
−0.617238 + 0.786776i \(0.711749\pi\)
\(642\) 0 0
\(643\) 15.2601 + 26.4313i 0.601801 + 1.04235i 0.992548 + 0.121852i \(0.0388832\pi\)
−0.390748 + 0.920498i \(0.627783\pi\)
\(644\) 0 0
\(645\) −6.83399 −0.269088
\(646\) 0 0
\(647\) −30.4575 −1.19741 −0.598704 0.800970i \(-0.704317\pi\)
−0.598704 + 0.800970i \(0.704317\pi\)
\(648\) 0 0
\(649\) −2.56275 4.43881i −0.100597 0.174238i
\(650\) 0 0
\(651\) −0.771243 1.33583i −0.0302274 0.0523554i
\(652\) 0 0
\(653\) 24.0000 0.939193 0.469596 0.882881i \(-0.344399\pi\)
0.469596 + 0.882881i \(0.344399\pi\)
\(654\) 0 0
\(655\) −25.4059 + 44.0043i −0.992690 + 1.71939i
\(656\) 0 0
\(657\) 49.1660 1.91815
\(658\) 0 0
\(659\) 1.29150 2.23695i 0.0503098 0.0871391i −0.839774 0.542936i \(-0.817312\pi\)
0.890084 + 0.455797i \(0.150646\pi\)
\(660\) 0 0
\(661\) 5.11438 8.85836i 0.198926 0.344550i −0.749254 0.662282i \(-0.769588\pi\)
0.948181 + 0.317732i \(0.102921\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 15.8745 + 20.7846i 0.615587 + 0.805993i
\(666\) 0 0
\(667\) −6.64575 11.5108i −0.257325 0.445699i
\(668\) 0 0
\(669\) 38.1144 66.0160i 1.47359 2.55233i
\(670\) 0 0
\(671\) −4.82288 + 8.35347i −0.186185 + 0.322482i
\(672\) 0 0
\(673\) 17.8745 0.689012 0.344506 0.938784i \(-0.388046\pi\)
0.344506 + 0.938784i \(0.388046\pi\)
\(674\) 0 0
\(675\) −10.9686 + 18.9982i −0.422183 + 0.731242i
\(676\) 0 0
\(677\) −32.5830 −1.25227 −0.626133 0.779716i \(-0.715363\pi\)
−0.626133 + 0.779716i \(0.715363\pi\)
\(678\) 0 0
\(679\) 11.7601 + 20.3691i 0.451312 + 0.781696i
\(680\) 0 0
\(681\) −16.7288 28.9751i −0.641047 1.11033i
\(682\) 0 0
\(683\) 26.5830 1.01717 0.508585 0.861012i \(-0.330169\pi\)
0.508585 + 0.861012i \(0.330169\pi\)
\(684\) 0 0
\(685\) −20.3542 −0.777696
\(686\) 0 0
\(687\) −26.4575 45.8258i −1.00942 1.74836i
\(688\) 0 0
\(689\) −8.58301 14.8662i −0.326986 0.566357i
\(690\) 0 0
\(691\) 18.5830 0.706931 0.353465 0.935448i \(-0.385003\pi\)
0.353465 + 0.935448i \(0.385003\pi\)
\(692\) 0 0
\(693\) 2.12549 3.68146i 0.0807408 0.139847i
\(694\) 0 0
\(695\) −48.6863 −1.84678
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 17.0314 29.4992i 0.644186 1.11576i
\(700\) 0 0
\(701\) −7.82288 13.5496i −0.295466 0.511762i 0.679627 0.733558i \(-0.262142\pi\)
−0.975093 + 0.221796i \(0.928808\pi\)
\(702\) 0 0
\(703\) −24.4059 + 3.15731i −0.920485 + 0.119080i
\(704\) 0 0
\(705\) 46.5203 + 80.5755i 1.75205 + 3.03465i
\(706\) 0 0
\(707\) 6.87451 11.9070i 0.258542 0.447809i
\(708\) 0 0
\(709\) 0.822876 1.42526i 0.0309037 0.0535269i −0.850160 0.526525i \(-0.823495\pi\)
0.881064 + 0.472998i \(0.156828\pi\)
\(710\) 0 0
\(711\) 16.0000 0.600047
\(712\) 0 0
\(713\) 0.645751 1.11847i 0.0241836 0.0418872i
\(714\) 0 0
\(715\) −4.70850 −0.176088
\(716\) 0 0
\(717\) −15.8745 27.4955i −0.592844 1.02684i
\(718\) 0 0
\(719\) 6.64575 + 11.5108i 0.247845 + 0.429280i 0.962928 0.269760i \(-0.0869444\pi\)
−0.715083 + 0.699040i \(0.753611\pi\)
\(720\) 0 0
\(721\) 4.45751 0.166006
\(722\) 0 0
\(723\) 35.9373 1.33652
\(724\) 0 0
\(725\) 15.1144 + 26.1789i 0.561334 + 0.972259i
\(726\) 0 0
\(727\) 11.2915 + 19.5575i 0.418779 + 0.725346i 0.995817 0.0913712i \(-0.0291250\pi\)
−0.577038 + 0.816717i \(0.695792\pi\)
\(728\) 0 0
\(729\) −41.0000 −1.51852
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 42.1033 1.55512 0.777560 0.628809i \(-0.216457\pi\)
0.777560 + 0.628809i \(0.216457\pi\)
\(734\) 0 0
\(735\) 20.6974 35.8489i 0.763434 1.32231i
\(736\) 0 0
\(737\) 1.50000 2.59808i 0.0552532 0.0957014i
\(738\) 0 0
\(739\) 6.90588 + 11.9613i 0.254037 + 0.440005i 0.964633 0.263595i \(-0.0849082\pi\)
−0.710597 + 0.703600i \(0.751575\pi\)
\(740\) 0 0
\(741\) −22.8745 + 2.95920i −0.840316 + 0.108709i
\(742\) 0 0
\(743\) −5.23987 9.07572i −0.192232 0.332956i 0.753757 0.657153i \(-0.228239\pi\)
−0.945990 + 0.324197i \(0.894906\pi\)
\(744\) 0 0
\(745\) 9.00000 15.5885i 0.329734 0.571117i
\(746\) 0 0
\(747\) −15.8745 + 27.4955i −0.580818 + 1.00601i
\(748\) 0 0
\(749\) −7.74902 −0.283143
\(750\) 0 0
\(751\) 11.9373 20.6759i 0.435597 0.754475i −0.561748 0.827309i \(-0.689871\pi\)
0.997344 + 0.0728333i \(0.0232041\pi\)
\(752\) 0 0
\(753\) −7.33202 −0.267194
\(754\) 0 0
\(755\) −5.35425 9.27383i −0.194861 0.337509i
\(756\) 0 0
\(757\) −8.29150 14.3613i −0.301360 0.521970i 0.675084 0.737740i \(-0.264107\pi\)
−0.976444 + 0.215770i \(0.930774\pi\)
\(758\) 0 0
\(759\) 6.22876 0.226090
\(760\) 0 0
\(761\) 11.1255 0.403299 0.201649 0.979458i \(-0.435370\pi\)
0.201649 + 0.979458i \(0.435370\pi\)
\(762\) 0 0
\(763\) 5.41699 + 9.38251i 0.196108 + 0.339670i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −15.8745 −0.573195
\(768\) 0 0
\(769\) −12.3542 + 21.3982i −0.445506 + 0.771638i −0.998087 0.0618204i \(-0.980309\pi\)
0.552582 + 0.833459i \(0.313643\pi\)
\(770\) 0 0
\(771\) 4.52026 0.162793
\(772\) 0 0
\(773\) −5.46863 + 9.47194i −0.196693 + 0.340682i −0.947454 0.319892i \(-0.896354\pi\)
0.750761 + 0.660574i \(0.229687\pi\)
\(774\) 0 0
\(775\) −1.46863 + 2.54374i −0.0527546 + 0.0913737i
\(776\) 0 0
\(777\) −12.2915 21.2895i −0.440955 0.763757i
\(778\) 0 0
\(779\) 27.2288 + 35.6508i 0.975571 + 1.27732i
\(780\) 0 0
\(781\) 4.29150 + 7.43310i 0.153562 + 0.265977i
\(782\) 0 0
\(783\) 4.82288 8.35347i 0.172356 0.298529i
\(784\) 0 0
\(785\) −19.2915 + 33.4139i −0.688543 + 1.19259i
\(786\) 0 0
\(787\) 5.47974 0.195332 0.0976658 0.995219i \(-0.468862\pi\)
0.0976658 + 0.995219i \(0.468862\pi\)
\(788\) 0 0
\(789\) 6.53137 11.3127i 0.232523 0.402742i
\(790\) 0 0
\(791\) 9.18824 0.326696
\(792\) 0 0
\(793\) 14.9373 + 25.8721i 0.530437 + 0.918745i
\(794\) 0 0
\(795\) −41.3948 71.6978i −1.46812 2.54286i
\(796\) 0 0
\(797\) 2.81176 0.0995977 0.0497989 0.998759i \(-0.484142\pi\)
0.0497989 + 0.998759i \(0.484142\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 3.96863 + 6.87386i 0.140050 + 0.242573i
\(804\) 0 0
\(805\) −21.8745 −0.770975
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −9.00000 −0.316423 −0.158212 0.987405i \(-0.550573\pi\)
−0.158212 + 0.987405i \(0.550573\pi\)
\(810\) 0 0
\(811\) −10.3542 + 17.9341i −0.363587 + 0.629751i −0.988548 0.150905i \(-0.951781\pi\)
0.624961 + 0.780656i \(0.285115\pi\)
\(812\) 0 0
\(813\) 23.3431 40.4315i 0.818679 1.41799i
\(814\) 0 0
\(815\) −21.7601 37.6897i −0.762224 1.32021i
\(816\) 0 0
\(817\) −1.87451 2.45431i −0.0655807 0.0858653i
\(818\) 0 0
\(819\) −6.58301 11.4021i −0.230029 0.398422i
\(820\) 0 0
\(821\) 3.00000 5.19615i 0.104701 0.181347i −0.808915 0.587925i \(-0.799945\pi\)
0.913616 + 0.406578i \(0.133278\pi\)
\(822\) 0 0
\(823\) −0.0627461 + 0.108679i −0.00218719 + 0.00378832i −0.867117 0.498105i \(-0.834030\pi\)
0.864930 + 0.501893i \(0.167363\pi\)
\(824\) 0 0
\(825\) −14.1660 −0.493197
\(826\) 0 0
\(827\) −23.6771 + 41.0100i −0.823334 + 1.42606i 0.0798514 + 0.996807i \(0.474555\pi\)
−0.903186 + 0.429250i \(0.858778\pi\)
\(828\) 0 0
\(829\) 25.1660 0.874052 0.437026 0.899449i \(-0.356032\pi\)
0.437026 + 0.899449i \(0.356032\pi\)
\(830\) 0 0
\(831\) −12.5941 21.8137i −0.436885 0.756707i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 43.7490 1.51400
\(836\) 0 0
\(837\) 0.937254 0.0323962
\(838\) 0 0
\(839\) −2.23987 3.87957i −0.0773289 0.133938i 0.824768 0.565472i \(-0.191306\pi\)
−0.902097 + 0.431534i \(0.857972\pi\)
\(840\) 0 0
\(841\) 7.85425 + 13.6040i 0.270836 + 0.469102i
\(842\) 0 0
\(843\) −72.6458 −2.50205
\(844\) 0 0
\(845\) 16.4059 28.4158i 0.564379 0.977534i
\(846\) 0 0
\(847\) −17.4170 −0.598455
\(848\) 0 0
\(849\) 33.5405 58.0939i 1.15111 1.99378i
\(850\) 0 0
\(851\) 10.2915 17.8254i 0.352788 0.611047i
\(852\) 0 0
\(853\) 6.29150 + 10.8972i 0.215417 + 0.373113i 0.953401 0.301705i \(-0.0975556\pi\)
−0.737985 + 0.674818i \(0.764222\pi\)
\(854\) 0 0
\(855\) −63.0405 + 8.15536i −2.15594 + 0.278907i
\(856\) 0 0
\(857\) −10.5000 18.1865i −0.358673 0.621240i 0.629066 0.777352i \(-0.283437\pi\)
−0.987739 + 0.156112i \(0.950104\pi\)
\(858\) 0 0
\(859\) −6.61438 + 11.4564i −0.225680 + 0.390889i −0.956523 0.291656i \(-0.905794\pi\)
0.730843 + 0.682545i \(0.239127\pi\)
\(860\) 0 0
\(861\) −22.4059 + 38.8081i −0.763590 + 1.32258i
\(862\) 0 0
\(863\) 46.9373 1.59776 0.798881 0.601489i \(-0.205425\pi\)
0.798881 + 0.601489i \(0.205425\pi\)
\(864\) 0 0
\(865\) 10.9373 18.9439i 0.371878 0.644111i
\(866\) 0 0
\(867\) −44.9778 −1.52753
\(868\) 0 0
\(869\) 1.29150 + 2.23695i 0.0438112 + 0.0758833i
\(870\) 0 0
\(871\) −4.64575 8.04668i −0.157415 0.272651i
\(872\) 0 0
\(873\) −57.1660 −1.93478
\(874\) 0 0
\(875\) 19.7490 0.667639
\(876\) 0 0
\(877\) 18.1771 + 31.4837i 0.613798 + 1.06313i 0.990594 + 0.136833i \(0.0436924\pi\)
−0.376796 + 0.926296i \(0.622974\pi\)
\(878\) 0 0
\(879\) −17.2804 29.9305i −0.582853 1.00953i
\(880\) 0 0
\(881\) −5.12549 −0.172682 −0.0863411 0.996266i \(-0.527517\pi\)
−0.0863411 + 0.996266i \(0.527517\pi\)
\(882\) 0 0
\(883\) 20.1974 34.9829i 0.679696 1.17727i −0.295376 0.955381i \(-0.595445\pi\)
0.975072 0.221887i \(-0.0712217\pi\)
\(884\) 0 0
\(885\) −76.5608 −2.57356
\(886\) 0 0
\(887\) −19.2915 + 33.4139i −0.647745 + 1.12193i 0.335915 + 0.941892i \(0.390955\pi\)
−0.983660 + 0.180035i \(0.942379\pi\)
\(888\) 0 0
\(889\) −2.22876 + 3.86032i −0.0747501 + 0.129471i
\(890\) 0 0
\(891\) −1.61438 2.79619i −0.0540837 0.0936757i
\(892\) 0 0
\(893\) −16.1771 + 38.8081i −0.541347 + 1.29866i
\(894\) 0 0
\(895\) 36.3431 + 62.9482i 1.21482 + 2.10412i
\(896\) 0 0
\(897\) 9.64575 16.7069i 0.322062 0.557828i
\(898\) 0 0
\(899\) 0.645751 1.11847i 0.0215370 0.0373032i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 1.54249 2.67167i 0.0513307 0.0889075i
\(904\) 0 0
\(905\) −15.4170 −0.512478
\(906\) 0 0
\(907\) 12.0314 + 20.8389i 0.399495 + 0.691946i 0.993664 0.112395i \(-0.0358521\pi\)
−0.594168 + 0.804341i \(0.702519\pi\)
\(908\) 0 0
\(909\) 16.7085 + 28.9400i 0.554186 + 0.959878i
\(910\) 0 0
\(911\) −1.06275 −0.0352103 −0.0176052 0.999845i \(-0.505604\pi\)
−0.0176052 + 0.999845i \(0.505604\pi\)
\(912\) 0 0
\(913\) −5.12549 −0.169629
\(914\) 0 0
\(915\) 72.0405 + 124.778i 2.38159 + 4.12503i
\(916\) 0 0
\(917\) −11.4686 19.8642i −0.378727 0.655975i
\(918\) 0 0
\(919\) −11.8745 −0.391704 −0.195852 0.980633i \(-0.562747\pi\)
−0.195852 + 0.980633i \(0.562747\pi\)
\(920\) 0 0
\(921\) −6.14575 + 10.6448i −0.202509 + 0.350757i
\(922\) 0 0
\(923\) 26.5830 0.874990
\(924\) 0 0
\(925\) −23.4059 + 40.5402i −0.769581 + 1.33295i
\(926\) 0 0
\(927\) −5.41699 + 9.38251i −0.177917 + 0.308162i
\(928\) 0 0
\(929\) −5.79150 10.0312i −0.190013 0.329112i 0.755241 0.655447i \(-0.227520\pi\)
−0.945254 + 0.326335i \(0.894186\pi\)
\(930\) 0 0
\(931\) 18.5516 2.39997i 0.608005 0.0786557i
\(932\) 0 0
\(933\) 11.0516 + 19.1420i 0.361814 + 0.626681i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −19.4373 + 33.6663i −0.634987 + 1.09983i 0.351530 + 0.936176i \(0.385661\pi\)
−0.986518 + 0.163654i \(0.947672\pi\)
\(938\) 0 0
\(939\) −60.5203 −1.97500
\(940\) 0 0
\(941\) −29.5830 + 51.2393i −0.964378 + 1.67035i −0.253103 + 0.967439i \(0.581451\pi\)
−0.711276 + 0.702913i \(0.751882\pi\)
\(942\) 0 0
\(943\) −37.5203 −1.22183
\(944\) 0 0
\(945\) −7.93725 13.7477i −0.258199 0.447214i
\(946\) 0 0
\(947\) 27.8745 + 48.2801i 0.905800 + 1.56889i 0.819840 + 0.572593i \(0.194062\pi\)
0.0859598 + 0.996299i \(0.472604\pi\)
\(948\) 0 0
\(949\) 24.5830 0.797998
\(950\) 0 0
\(951\) −15.8745 −0.514766
\(952\) 0 0
\(953\) −19.7288 34.1712i −0.639077 1.10691i −0.985636 0.168886i \(-0.945983\pi\)
0.346559 0.938028i \(-0.387350\pi\)
\(954\) 0 0
\(955\) −26.5830 46.0431i −0.860206 1.48992i
\(956\) 0 0
\(957\) 6.22876 0.201347
\(958\) 0 0
\(959\) 4.59412 7.95725i 0.148352 0.256953i
\(960\) 0 0
\(961\) −30.8745 −0.995952
\(962\) 0 0
\(963\) 9.41699 16.3107i 0.303458 0.525605i
\(964\) 0 0
\(965\) 12.0000 20.7846i 0.386294 0.669080i
\(966\) 0 0
\(967\) −1.35425 2.34563i −0.0435497 0.0754303i 0.843429 0.537241i \(-0.180533\pi\)
−0.886979 + 0.461810i \(0.847200\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 7.19738 + 12.4662i 0.230975 + 0.400060i 0.958095 0.286450i \(-0.0924751\pi\)
−0.727120 + 0.686510i \(0.759142\pi\)
\(972\) 0 0
\(973\) 10.9889 19.0333i 0.352288 0.610180i
\(974\) 0 0
\(975\) −21.9373 + 37.9964i −0.702554 + 1.21686i
\(976\) 0 0
\(977\) 45.4575 1.45431 0.727157 0.686471i \(-0.240841\pi\)
0.727157 + 0.686471i \(0.240841\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −26.3320 −0.840717
\(982\) 0 0
\(983\) −15.8745 27.4955i −0.506318 0.876969i −0.999973 0.00731102i \(-0.997673\pi\)
0.493655 0.869658i \(-0.335661\pi\)
\(984\) 0 0
\(985\) 4.29150 + 7.43310i 0.136739 + 0.236838i
\(986\) 0 0
\(987\) −42.0000 −1.33687
\(988\) 0 0
\(989\) 2.58301 0.0821348
\(990\) 0 0
\(991\) −22.5830 39.1149i −0.717373 1.24253i −0.962037 0.272918i \(-0.912011\pi\)
0.244664 0.969608i \(-0.421322\pi\)
\(992\) 0 0
\(993\) −36.7915 63.7248i −1.16754 2.02224i
\(994\) 0 0
\(995\) −43.2915 −1.37243
\(996\) 0 0
\(997\) 5.11438 8.85836i 0.161974 0.280547i −0.773603 0.633671i \(-0.781547\pi\)
0.935577 + 0.353124i \(0.114881\pi\)
\(998\) 0 0
\(999\) 14.9373 0.472594
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 304.2.i.e.273.1 4
3.2 odd 2 2736.2.s.v.577.2 4
4.3 odd 2 38.2.c.b.7.2 4
8.3 odd 2 1216.2.i.l.577.1 4
8.5 even 2 1216.2.i.k.577.2 4
12.11 even 2 342.2.g.f.235.2 4
19.7 even 3 5776.2.a.ba.1.2 2
19.11 even 3 inner 304.2.i.e.49.1 4
19.12 odd 6 5776.2.a.z.1.1 2
20.3 even 4 950.2.j.g.349.1 8
20.7 even 4 950.2.j.g.349.4 8
20.19 odd 2 950.2.e.k.501.1 4
57.11 odd 6 2736.2.s.v.1873.2 4
76.3 even 18 722.2.e.o.595.1 12
76.7 odd 6 722.2.a.j.1.1 2
76.11 odd 6 38.2.c.b.11.2 yes 4
76.15 even 18 722.2.e.o.245.2 12
76.23 odd 18 722.2.e.n.245.1 12
76.27 even 6 722.2.c.j.429.1 4
76.31 even 6 722.2.a.g.1.2 2
76.35 odd 18 722.2.e.n.595.2 12
76.43 odd 18 722.2.e.n.99.1 12
76.47 odd 18 722.2.e.n.415.2 12
76.51 even 18 722.2.e.o.423.2 12
76.55 odd 18 722.2.e.n.389.1 12
76.59 even 18 722.2.e.o.389.2 12
76.63 odd 18 722.2.e.n.423.1 12
76.67 even 18 722.2.e.o.415.1 12
76.71 even 18 722.2.e.o.99.2 12
76.75 even 2 722.2.c.j.653.1 4
152.11 odd 6 1216.2.i.l.961.1 4
152.125 even 6 1216.2.i.k.961.2 4
228.11 even 6 342.2.g.f.163.2 4
228.83 even 6 6498.2.a.ba.1.1 2
228.107 odd 6 6498.2.a.bg.1.1 2
380.87 even 12 950.2.j.g.49.1 8
380.163 even 12 950.2.j.g.49.4 8
380.239 odd 6 950.2.e.k.201.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
38.2.c.b.7.2 4 4.3 odd 2
38.2.c.b.11.2 yes 4 76.11 odd 6
304.2.i.e.49.1 4 19.11 even 3 inner
304.2.i.e.273.1 4 1.1 even 1 trivial
342.2.g.f.163.2 4 228.11 even 6
342.2.g.f.235.2 4 12.11 even 2
722.2.a.g.1.2 2 76.31 even 6
722.2.a.j.1.1 2 76.7 odd 6
722.2.c.j.429.1 4 76.27 even 6
722.2.c.j.653.1 4 76.75 even 2
722.2.e.n.99.1 12 76.43 odd 18
722.2.e.n.245.1 12 76.23 odd 18
722.2.e.n.389.1 12 76.55 odd 18
722.2.e.n.415.2 12 76.47 odd 18
722.2.e.n.423.1 12 76.63 odd 18
722.2.e.n.595.2 12 76.35 odd 18
722.2.e.o.99.2 12 76.71 even 18
722.2.e.o.245.2 12 76.15 even 18
722.2.e.o.389.2 12 76.59 even 18
722.2.e.o.415.1 12 76.67 even 18
722.2.e.o.423.2 12 76.51 even 18
722.2.e.o.595.1 12 76.3 even 18
950.2.e.k.201.1 4 380.239 odd 6
950.2.e.k.501.1 4 20.19 odd 2
950.2.j.g.49.1 8 380.87 even 12
950.2.j.g.49.4 8 380.163 even 12
950.2.j.g.349.1 8 20.3 even 4
950.2.j.g.349.4 8 20.7 even 4
1216.2.i.k.577.2 4 8.5 even 2
1216.2.i.k.961.2 4 152.125 even 6
1216.2.i.l.577.1 4 8.3 odd 2
1216.2.i.l.961.1 4 152.11 odd 6
2736.2.s.v.577.2 4 3.2 odd 2
2736.2.s.v.1873.2 4 57.11 odd 6
5776.2.a.z.1.1 2 19.12 odd 6
5776.2.a.ba.1.2 2 19.7 even 3
6498.2.a.ba.1.1 2 228.83 even 6
6498.2.a.bg.1.1 2 228.107 odd 6