Properties

Label 950.2.e.k.201.1
Level $950$
Weight $2$
Character 950.201
Analytic conductor $7.586$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [950,2,Mod(201,950)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("950.201"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(950, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 950 = 2 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 950.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,2,0,-2,0,0,-4,-4,-8,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.58578819202\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{7})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 7x^{2} + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 38)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 201.1
Root \(-1.32288 + 2.29129i\) of defining polynomial
Character \(\chi\) \(=\) 950.201
Dual form 950.2.e.k.501.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(-1.32288 + 2.29129i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(1.32288 + 2.29129i) q^{6} +1.64575 q^{7} -1.00000 q^{8} +(-2.00000 - 3.46410i) q^{9} +0.645751 q^{11} +2.64575 q^{12} +(1.00000 + 1.73205i) q^{13} +(0.822876 - 1.42526i) q^{14} +(-0.500000 + 0.866025i) q^{16} -4.00000 q^{18} +(4.32288 + 0.559237i) q^{19} +(-2.17712 + 3.77089i) q^{21} +(0.322876 - 0.559237i) q^{22} +(1.82288 + 3.15731i) q^{23} +(1.32288 - 2.29129i) q^{24} +2.00000 q^{26} +2.64575 q^{27} +(-0.822876 - 1.42526i) q^{28} +(1.82288 + 3.15731i) q^{29} -0.354249 q^{31} +(0.500000 + 0.866025i) q^{32} +(-0.854249 + 1.47960i) q^{33} +(-2.00000 + 3.46410i) q^{36} -5.64575 q^{37} +(2.64575 - 3.46410i) q^{38} -5.29150 q^{39} +(-5.14575 + 8.91270i) q^{41} +(2.17712 + 3.77089i) q^{42} +(0.354249 - 0.613577i) q^{43} +(-0.322876 - 0.559237i) q^{44} +3.64575 q^{46} +(4.82288 + 8.35347i) q^{47} +(-1.32288 - 2.29129i) q^{48} -4.29150 q^{49} +(1.00000 - 1.73205i) q^{52} +(4.29150 + 7.43310i) q^{53} +(1.32288 - 2.29129i) q^{54} -1.64575 q^{56} +(-7.00000 + 9.16515i) q^{57} +3.64575 q^{58} +(-3.96863 + 6.87386i) q^{59} +(7.46863 + 12.9360i) q^{61} +(-0.177124 + 0.306788i) q^{62} +(-3.29150 - 5.70105i) q^{63} +1.00000 q^{64} +(0.854249 + 1.47960i) q^{66} +(-2.32288 - 4.02334i) q^{67} -9.64575 q^{69} +(6.64575 - 11.5108i) q^{71} +(2.00000 + 3.46410i) q^{72} +(6.14575 - 10.6448i) q^{73} +(-2.82288 + 4.88936i) q^{74} +(-1.67712 - 4.02334i) q^{76} +1.06275 q^{77} +(-2.64575 + 4.58258i) q^{78} +(2.00000 - 3.46410i) q^{79} +(2.50000 - 4.33013i) q^{81} +(5.14575 + 8.91270i) q^{82} +7.93725 q^{83} +4.35425 q^{84} +(-0.354249 - 0.613577i) q^{86} -9.64575 q^{87} -0.645751 q^{88} +(1.64575 + 2.85052i) q^{91} +(1.82288 - 3.15731i) q^{92} +(0.468627 - 0.811686i) q^{93} +9.64575 q^{94} -2.64575 q^{96} +(-7.14575 + 12.3768i) q^{97} +(-2.14575 + 3.71655i) q^{98} +(-1.29150 - 2.23695i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 2 q^{4} - 4 q^{7} - 4 q^{8} - 8 q^{9} - 8 q^{11} + 4 q^{13} - 2 q^{14} - 2 q^{16} - 16 q^{18} + 12 q^{19} - 14 q^{21} - 4 q^{22} + 2 q^{23} + 8 q^{26} + 2 q^{28} + 2 q^{29} - 12 q^{31} + 2 q^{32}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/950\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) −1.32288 + 2.29129i −0.763763 + 1.32288i 0.177136 + 0.984186i \(0.443317\pi\)
−0.940898 + 0.338689i \(0.890016\pi\)
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 0 0
\(6\) 1.32288 + 2.29129i 0.540062 + 0.935414i
\(7\) 1.64575 0.622036 0.311018 0.950404i \(-0.399330\pi\)
0.311018 + 0.950404i \(0.399330\pi\)
\(8\) −1.00000 −0.353553
\(9\) −2.00000 3.46410i −0.666667 1.15470i
\(10\) 0 0
\(11\) 0.645751 0.194701 0.0973507 0.995250i \(-0.468963\pi\)
0.0973507 + 0.995250i \(0.468963\pi\)
\(12\) 2.64575 0.763763
\(13\) 1.00000 + 1.73205i 0.277350 + 0.480384i 0.970725 0.240192i \(-0.0772105\pi\)
−0.693375 + 0.720577i \(0.743877\pi\)
\(14\) 0.822876 1.42526i 0.219923 0.380917i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(18\) −4.00000 −0.942809
\(19\) 4.32288 + 0.559237i 0.991736 + 0.128298i
\(20\) 0 0
\(21\) −2.17712 + 3.77089i −0.475087 + 0.822876i
\(22\) 0.322876 0.559237i 0.0688373 0.119230i
\(23\) 1.82288 + 3.15731i 0.380096 + 0.658345i 0.991076 0.133301i \(-0.0425577\pi\)
−0.610980 + 0.791646i \(0.709224\pi\)
\(24\) 1.32288 2.29129i 0.270031 0.467707i
\(25\) 0 0
\(26\) 2.00000 0.392232
\(27\) 2.64575 0.509175
\(28\) −0.822876 1.42526i −0.155509 0.269349i
\(29\) 1.82288 + 3.15731i 0.338500 + 0.586298i 0.984151 0.177334i \(-0.0567473\pi\)
−0.645651 + 0.763632i \(0.723414\pi\)
\(30\) 0 0
\(31\) −0.354249 −0.0636249 −0.0318125 0.999494i \(-0.510128\pi\)
−0.0318125 + 0.999494i \(0.510128\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) −0.854249 + 1.47960i −0.148706 + 0.257566i
\(34\) 0 0
\(35\) 0 0
\(36\) −2.00000 + 3.46410i −0.333333 + 0.577350i
\(37\) −5.64575 −0.928156 −0.464078 0.885794i \(-0.653614\pi\)
−0.464078 + 0.885794i \(0.653614\pi\)
\(38\) 2.64575 3.46410i 0.429198 0.561951i
\(39\) −5.29150 −0.847319
\(40\) 0 0
\(41\) −5.14575 + 8.91270i −0.803631 + 1.39193i 0.113580 + 0.993529i \(0.463768\pi\)
−0.917211 + 0.398401i \(0.869565\pi\)
\(42\) 2.17712 + 3.77089i 0.335938 + 0.581861i
\(43\) 0.354249 0.613577i 0.0540224 0.0935696i −0.837750 0.546055i \(-0.816129\pi\)
0.891772 + 0.452485i \(0.149462\pi\)
\(44\) −0.322876 0.559237i −0.0486753 0.0843082i
\(45\) 0 0
\(46\) 3.64575 0.537537
\(47\) 4.82288 + 8.35347i 0.703489 + 1.21848i 0.967234 + 0.253886i \(0.0817088\pi\)
−0.263745 + 0.964592i \(0.584958\pi\)
\(48\) −1.32288 2.29129i −0.190941 0.330719i
\(49\) −4.29150 −0.613072
\(50\) 0 0
\(51\) 0 0
\(52\) 1.00000 1.73205i 0.138675 0.240192i
\(53\) 4.29150 + 7.43310i 0.589483 + 1.02101i 0.994300 + 0.106617i \(0.0340019\pi\)
−0.404817 + 0.914398i \(0.632665\pi\)
\(54\) 1.32288 2.29129i 0.180021 0.311805i
\(55\) 0 0
\(56\) −1.64575 −0.219923
\(57\) −7.00000 + 9.16515i −0.927173 + 1.21395i
\(58\) 3.64575 0.478711
\(59\) −3.96863 + 6.87386i −0.516671 + 0.894901i 0.483141 + 0.875542i \(0.339496\pi\)
−0.999813 + 0.0193585i \(0.993838\pi\)
\(60\) 0 0
\(61\) 7.46863 + 12.9360i 0.956260 + 1.65629i 0.731459 + 0.681886i \(0.238840\pi\)
0.224801 + 0.974405i \(0.427827\pi\)
\(62\) −0.177124 + 0.306788i −0.0224948 + 0.0389622i
\(63\) −3.29150 5.70105i −0.414690 0.718265i
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0.854249 + 1.47960i 0.105151 + 0.182126i
\(67\) −2.32288 4.02334i −0.283784 0.491529i 0.688529 0.725209i \(-0.258257\pi\)
−0.972314 + 0.233680i \(0.924923\pi\)
\(68\) 0 0
\(69\) −9.64575 −1.16121
\(70\) 0 0
\(71\) 6.64575 11.5108i 0.788706 1.36608i −0.138055 0.990425i \(-0.544085\pi\)
0.926760 0.375654i \(-0.122582\pi\)
\(72\) 2.00000 + 3.46410i 0.235702 + 0.408248i
\(73\) 6.14575 10.6448i 0.719306 1.24587i −0.241969 0.970284i \(-0.577793\pi\)
0.961275 0.275590i \(-0.0888733\pi\)
\(74\) −2.82288 + 4.88936i −0.328153 + 0.568377i
\(75\) 0 0
\(76\) −1.67712 4.02334i −0.192379 0.461509i
\(77\) 1.06275 0.121111
\(78\) −2.64575 + 4.58258i −0.299572 + 0.518875i
\(79\) 2.00000 3.46410i 0.225018 0.389742i −0.731307 0.682048i \(-0.761089\pi\)
0.956325 + 0.292306i \(0.0944227\pi\)
\(80\) 0 0
\(81\) 2.50000 4.33013i 0.277778 0.481125i
\(82\) 5.14575 + 8.91270i 0.568253 + 0.984243i
\(83\) 7.93725 0.871227 0.435613 0.900134i \(-0.356531\pi\)
0.435613 + 0.900134i \(0.356531\pi\)
\(84\) 4.35425 0.475087
\(85\) 0 0
\(86\) −0.354249 0.613577i −0.0381996 0.0661637i
\(87\) −9.64575 −1.03413
\(88\) −0.645751 −0.0688373
\(89\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(90\) 0 0
\(91\) 1.64575 + 2.85052i 0.172522 + 0.298816i
\(92\) 1.82288 3.15731i 0.190048 0.329173i
\(93\) 0.468627 0.811686i 0.0485944 0.0841679i
\(94\) 9.64575 0.994883
\(95\) 0 0
\(96\) −2.64575 −0.270031
\(97\) −7.14575 + 12.3768i −0.725541 + 1.25667i 0.233210 + 0.972426i \(0.425077\pi\)
−0.958751 + 0.284248i \(0.908256\pi\)
\(98\) −2.14575 + 3.71655i −0.216754 + 0.375428i
\(99\) −1.29150 2.23695i −0.129801 0.224822i
\(100\) 0 0
\(101\) 4.17712 + 7.23499i 0.415639 + 0.719909i 0.995495 0.0948105i \(-0.0302245\pi\)
−0.579856 + 0.814719i \(0.696891\pi\)
\(102\) 0 0
\(103\) 2.70850 0.266876 0.133438 0.991057i \(-0.457398\pi\)
0.133438 + 0.991057i \(0.457398\pi\)
\(104\) −1.00000 1.73205i −0.0980581 0.169842i
\(105\) 0 0
\(106\) 8.58301 0.833655
\(107\) −4.70850 −0.455188 −0.227594 0.973756i \(-0.573086\pi\)
−0.227594 + 0.973756i \(0.573086\pi\)
\(108\) −1.32288 2.29129i −0.127294 0.220479i
\(109\) 3.29150 5.70105i 0.315269 0.546062i −0.664226 0.747532i \(-0.731239\pi\)
0.979495 + 0.201470i \(0.0645720\pi\)
\(110\) 0 0
\(111\) 7.46863 12.9360i 0.708891 1.22783i
\(112\) −0.822876 + 1.42526i −0.0777544 + 0.134675i
\(113\) −5.58301 −0.525205 −0.262602 0.964904i \(-0.584581\pi\)
−0.262602 + 0.964904i \(0.584581\pi\)
\(114\) 4.43725 + 10.6448i 0.415587 + 0.996973i
\(115\) 0 0
\(116\) 1.82288 3.15731i 0.169250 0.293149i
\(117\) 4.00000 6.92820i 0.369800 0.640513i
\(118\) 3.96863 + 6.87386i 0.365342 + 0.632790i
\(119\) 0 0
\(120\) 0 0
\(121\) −10.5830 −0.962091
\(122\) 14.9373 1.35236
\(123\) −13.6144 23.5808i −1.22757 2.12621i
\(124\) 0.177124 + 0.306788i 0.0159062 + 0.0275504i
\(125\) 0 0
\(126\) −6.58301 −0.586461
\(127\) −1.35425 2.34563i −0.120170 0.208141i 0.799665 0.600447i \(-0.205011\pi\)
−0.919835 + 0.392306i \(0.871677\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) 0.937254 + 1.62337i 0.0825206 + 0.142930i
\(130\) 0 0
\(131\) 6.96863 12.0700i 0.608852 1.05456i −0.382578 0.923923i \(-0.624964\pi\)
0.991430 0.130639i \(-0.0417029\pi\)
\(132\) 1.70850 0.148706
\(133\) 7.11438 + 0.920365i 0.616895 + 0.0798058i
\(134\) −4.64575 −0.401332
\(135\) 0 0
\(136\) 0 0
\(137\) −2.79150 4.83502i −0.238494 0.413084i 0.721788 0.692114i \(-0.243320\pi\)
−0.960282 + 0.279030i \(0.909987\pi\)
\(138\) −4.82288 + 8.35347i −0.410550 + 0.711094i
\(139\) −6.67712 11.5651i −0.566346 0.980941i −0.996923 0.0783866i \(-0.975023\pi\)
0.430577 0.902554i \(-0.358310\pi\)
\(140\) 0 0
\(141\) −25.5203 −2.14919
\(142\) −6.64575 11.5108i −0.557699 0.965963i
\(143\) 0.645751 + 1.11847i 0.0540004 + 0.0935315i
\(144\) 4.00000 0.333333
\(145\) 0 0
\(146\) −6.14575 10.6448i −0.508626 0.880966i
\(147\) 5.67712 9.83307i 0.468241 0.811018i
\(148\) 2.82288 + 4.88936i 0.232039 + 0.401903i
\(149\) 2.46863 4.27579i 0.202238 0.350286i −0.747011 0.664811i \(-0.768512\pi\)
0.949249 + 0.314525i \(0.101845\pi\)
\(150\) 0 0
\(151\) −2.93725 −0.239030 −0.119515 0.992832i \(-0.538134\pi\)
−0.119515 + 0.992832i \(0.538134\pi\)
\(152\) −4.32288 0.559237i −0.350632 0.0453601i
\(153\) 0 0
\(154\) 0.531373 0.920365i 0.0428193 0.0741651i
\(155\) 0 0
\(156\) 2.64575 + 4.58258i 0.211830 + 0.366900i
\(157\) 5.29150 9.16515i 0.422308 0.731459i −0.573857 0.818956i \(-0.694553\pi\)
0.996165 + 0.0874969i \(0.0278868\pi\)
\(158\) −2.00000 3.46410i −0.159111 0.275589i
\(159\) −22.7085 −1.80090
\(160\) 0 0
\(161\) 3.00000 + 5.19615i 0.236433 + 0.409514i
\(162\) −2.50000 4.33013i −0.196419 0.340207i
\(163\) 11.9373 0.934998 0.467499 0.883994i \(-0.345155\pi\)
0.467499 + 0.883994i \(0.345155\pi\)
\(164\) 10.2915 0.803631
\(165\) 0 0
\(166\) 3.96863 6.87386i 0.308025 0.533515i
\(167\) −6.00000 10.3923i −0.464294 0.804181i 0.534875 0.844931i \(-0.320359\pi\)
−0.999169 + 0.0407502i \(0.987025\pi\)
\(168\) 2.17712 3.77089i 0.167969 0.290930i
\(169\) 4.50000 7.79423i 0.346154 0.599556i
\(170\) 0 0
\(171\) −6.70850 16.0934i −0.513012 1.23069i
\(172\) −0.708497 −0.0540224
\(173\) −3.00000 + 5.19615i −0.228086 + 0.395056i −0.957241 0.289292i \(-0.906580\pi\)
0.729155 + 0.684349i \(0.239913\pi\)
\(174\) −4.82288 + 8.35347i −0.365621 + 0.633275i
\(175\) 0 0
\(176\) −0.322876 + 0.559237i −0.0243377 + 0.0421541i
\(177\) −10.5000 18.1865i −0.789228 1.36698i
\(178\) 0 0
\(179\) 19.9373 1.49018 0.745090 0.666964i \(-0.232406\pi\)
0.745090 + 0.666964i \(0.232406\pi\)
\(180\) 0 0
\(181\) 2.11438 + 3.66221i 0.157160 + 0.272210i 0.933844 0.357682i \(-0.116433\pi\)
−0.776683 + 0.629892i \(0.783099\pi\)
\(182\) 3.29150 0.243982
\(183\) −39.5203 −2.92142
\(184\) −1.82288 3.15731i −0.134384 0.232760i
\(185\) 0 0
\(186\) −0.468627 0.811686i −0.0343614 0.0595157i
\(187\) 0 0
\(188\) 4.82288 8.35347i 0.351744 0.609239i
\(189\) 4.35425 0.316725
\(190\) 0 0
\(191\) −14.5830 −1.05519 −0.527595 0.849496i \(-0.676906\pi\)
−0.527595 + 0.849496i \(0.676906\pi\)
\(192\) −1.32288 + 2.29129i −0.0954703 + 0.165359i
\(193\) −3.29150 + 5.70105i −0.236928 + 0.410371i −0.959831 0.280578i \(-0.909474\pi\)
0.722904 + 0.690949i \(0.242807\pi\)
\(194\) 7.14575 + 12.3768i 0.513035 + 0.888603i
\(195\) 0 0
\(196\) 2.14575 + 3.71655i 0.153268 + 0.265468i
\(197\) 2.35425 0.167733 0.0838666 0.996477i \(-0.473273\pi\)
0.0838666 + 0.996477i \(0.473273\pi\)
\(198\) −2.58301 −0.183566
\(199\) −5.93725 10.2836i −0.420881 0.728987i 0.575145 0.818051i \(-0.304946\pi\)
−0.996026 + 0.0890645i \(0.971612\pi\)
\(200\) 0 0
\(201\) 12.2915 0.866976
\(202\) 8.35425 0.587803
\(203\) 3.00000 + 5.19615i 0.210559 + 0.364698i
\(204\) 0 0
\(205\) 0 0
\(206\) 1.35425 2.34563i 0.0943550 0.163428i
\(207\) 7.29150 12.6293i 0.506794 0.877794i
\(208\) −2.00000 −0.138675
\(209\) 2.79150 + 0.361128i 0.193092 + 0.0249797i
\(210\) 0 0
\(211\) 1.35425 2.34563i 0.0932303 0.161480i −0.815638 0.578562i \(-0.803614\pi\)
0.908869 + 0.417082i \(0.136947\pi\)
\(212\) 4.29150 7.43310i 0.294742 0.510507i
\(213\) 17.5830 + 30.4547i 1.20477 + 2.08672i
\(214\) −2.35425 + 4.07768i −0.160933 + 0.278744i
\(215\) 0 0
\(216\) −2.64575 −0.180021
\(217\) −0.583005 −0.0395770
\(218\) −3.29150 5.70105i −0.222929 0.386124i
\(219\) 16.2601 + 28.1634i 1.09876 + 1.90310i
\(220\) 0 0
\(221\) 0 0
\(222\) −7.46863 12.9360i −0.501261 0.868210i
\(223\) 14.4059 24.9517i 0.964689 1.67089i 0.254241 0.967141i \(-0.418174\pi\)
0.710448 0.703750i \(-0.248492\pi\)
\(224\) 0.822876 + 1.42526i 0.0549807 + 0.0952294i
\(225\) 0 0
\(226\) −2.79150 + 4.83502i −0.185688 + 0.321621i
\(227\) 12.6458 0.839328 0.419664 0.907680i \(-0.362148\pi\)
0.419664 + 0.907680i \(0.362148\pi\)
\(228\) 11.4373 + 1.47960i 0.757451 + 0.0979890i
\(229\) 20.0000 1.32164 0.660819 0.750546i \(-0.270209\pi\)
0.660819 + 0.750546i \(0.270209\pi\)
\(230\) 0 0
\(231\) −1.40588 + 2.43506i −0.0925002 + 0.160215i
\(232\) −1.82288 3.15731i −0.119678 0.207288i
\(233\) −6.43725 + 11.1497i −0.421719 + 0.730438i −0.996108 0.0881444i \(-0.971906\pi\)
0.574389 + 0.818582i \(0.305240\pi\)
\(234\) −4.00000 6.92820i −0.261488 0.452911i
\(235\) 0 0
\(236\) 7.93725 0.516671
\(237\) 5.29150 + 9.16515i 0.343720 + 0.595341i
\(238\) 0 0
\(239\) −12.0000 −0.776215 −0.388108 0.921614i \(-0.626871\pi\)
−0.388108 + 0.921614i \(0.626871\pi\)
\(240\) 0 0
\(241\) −6.79150 11.7632i −0.437479 0.757736i 0.560015 0.828482i \(-0.310795\pi\)
−0.997494 + 0.0707462i \(0.977462\pi\)
\(242\) −5.29150 + 9.16515i −0.340151 + 0.589158i
\(243\) 10.5830 + 18.3303i 0.678900 + 1.17589i
\(244\) 7.46863 12.9360i 0.478130 0.828145i
\(245\) 0 0
\(246\) −27.2288 −1.73604
\(247\) 3.35425 + 8.04668i 0.213426 + 0.511998i
\(248\) 0.354249 0.0224948
\(249\) −10.5000 + 18.1865i −0.665410 + 1.15252i
\(250\) 0 0
\(251\) −1.38562 2.39997i −0.0874597 0.151485i 0.818977 0.573826i \(-0.194542\pi\)
−0.906437 + 0.422342i \(0.861208\pi\)
\(252\) −3.29150 + 5.70105i −0.207345 + 0.359132i
\(253\) 1.17712 + 2.03884i 0.0740052 + 0.128181i
\(254\) −2.70850 −0.169946
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 0.854249 + 1.47960i 0.0532866 + 0.0922950i 0.891438 0.453142i \(-0.149697\pi\)
−0.838152 + 0.545437i \(0.816364\pi\)
\(258\) 1.87451 0.116702
\(259\) −9.29150 −0.577346
\(260\) 0 0
\(261\) 7.29150 12.6293i 0.451333 0.781731i
\(262\) −6.96863 12.0700i −0.430523 0.745688i
\(263\) 2.46863 4.27579i 0.152222 0.263656i −0.779822 0.626001i \(-0.784690\pi\)
0.932044 + 0.362345i \(0.118024\pi\)
\(264\) 0.854249 1.47960i 0.0525754 0.0910632i
\(265\) 0 0
\(266\) 4.35425 5.70105i 0.266976 0.349554i
\(267\) 0 0
\(268\) −2.32288 + 4.02334i −0.141892 + 0.245765i
\(269\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(270\) 0 0
\(271\) −8.82288 + 15.2817i −0.535952 + 0.928295i 0.463165 + 0.886272i \(0.346714\pi\)
−0.999117 + 0.0420233i \(0.986620\pi\)
\(272\) 0 0
\(273\) −8.70850 −0.527062
\(274\) −5.58301 −0.337282
\(275\) 0 0
\(276\) 4.82288 + 8.35347i 0.290303 + 0.502820i
\(277\) −9.52026 −0.572017 −0.286008 0.958227i \(-0.592329\pi\)
−0.286008 + 0.958227i \(0.592329\pi\)
\(278\) −13.3542 −0.800935
\(279\) 0.708497 + 1.22715i 0.0424166 + 0.0734678i
\(280\) 0 0
\(281\) 13.7288 + 23.7789i 0.818989 + 1.41853i 0.906428 + 0.422361i \(0.138798\pi\)
−0.0874389 + 0.996170i \(0.527868\pi\)
\(282\) −12.7601 + 22.1012i −0.759855 + 1.31611i
\(283\) 12.6771 21.9574i 0.753577 1.30523i −0.192502 0.981297i \(-0.561660\pi\)
0.946079 0.323937i \(-0.105007\pi\)
\(284\) −13.2915 −0.788706
\(285\) 0 0
\(286\) 1.29150 0.0763682
\(287\) −8.46863 + 14.6681i −0.499887 + 0.865830i
\(288\) 2.00000 3.46410i 0.117851 0.204124i
\(289\) 8.50000 + 14.7224i 0.500000 + 0.866025i
\(290\) 0 0
\(291\) −18.9059 32.7459i −1.10828 1.91960i
\(292\) −12.2915 −0.719306
\(293\) −13.0627 −0.763134 −0.381567 0.924341i \(-0.624615\pi\)
−0.381567 + 0.924341i \(0.624615\pi\)
\(294\) −5.67712 9.83307i −0.331097 0.573476i
\(295\) 0 0
\(296\) 5.64575 0.328153
\(297\) 1.70850 0.0991371
\(298\) −2.46863 4.27579i −0.143004 0.247690i
\(299\) −3.64575 + 6.31463i −0.210839 + 0.365184i
\(300\) 0 0
\(301\) 0.583005 1.00979i 0.0336039 0.0582036i
\(302\) −1.46863 + 2.54374i −0.0845100 + 0.146376i
\(303\) −22.1033 −1.26980
\(304\) −2.64575 + 3.46410i −0.151744 + 0.198680i
\(305\) 0 0
\(306\) 0 0
\(307\) −2.32288 + 4.02334i −0.132574 + 0.229624i −0.924668 0.380775i \(-0.875657\pi\)
0.792094 + 0.610399i \(0.208991\pi\)
\(308\) −0.531373 0.920365i −0.0302778 0.0524427i
\(309\) −3.58301 + 6.20595i −0.203830 + 0.353044i
\(310\) 0 0
\(311\) 8.35425 0.473726 0.236863 0.971543i \(-0.423881\pi\)
0.236863 + 0.971543i \(0.423881\pi\)
\(312\) 5.29150 0.299572
\(313\) −11.4373 19.8099i −0.646472 1.11972i −0.983959 0.178392i \(-0.942910\pi\)
0.337488 0.941330i \(-0.390423\pi\)
\(314\) −5.29150 9.16515i −0.298617 0.517219i
\(315\) 0 0
\(316\) −4.00000 −0.225018
\(317\) −3.00000 5.19615i −0.168497 0.291845i 0.769395 0.638774i \(-0.220558\pi\)
−0.937892 + 0.346929i \(0.887225\pi\)
\(318\) −11.3542 + 19.6661i −0.636715 + 1.10282i
\(319\) 1.17712 + 2.03884i 0.0659063 + 0.114153i
\(320\) 0 0
\(321\) 6.22876 10.7885i 0.347655 0.602157i
\(322\) 6.00000 0.334367
\(323\) 0 0
\(324\) −5.00000 −0.277778
\(325\) 0 0
\(326\) 5.96863 10.3380i 0.330572 0.572567i
\(327\) 8.70850 + 15.0836i 0.481581 + 0.834123i
\(328\) 5.14575 8.91270i 0.284127 0.492122i
\(329\) 7.93725 + 13.7477i 0.437595 + 0.757937i
\(330\) 0 0
\(331\) −27.8118 −1.52867 −0.764336 0.644818i \(-0.776933\pi\)
−0.764336 + 0.644818i \(0.776933\pi\)
\(332\) −3.96863 6.87386i −0.217807 0.377252i
\(333\) 11.2915 + 19.5575i 0.618771 + 1.07174i
\(334\) −12.0000 −0.656611
\(335\) 0 0
\(336\) −2.17712 3.77089i −0.118772 0.205719i
\(337\) −10.1458 + 17.5730i −0.552674 + 0.957260i 0.445406 + 0.895329i \(0.353059\pi\)
−0.998080 + 0.0619313i \(0.980274\pi\)
\(338\) −4.50000 7.79423i −0.244768 0.423950i
\(339\) 7.38562 12.7923i 0.401132 0.694781i
\(340\) 0 0
\(341\) −0.228757 −0.0123879
\(342\) −17.2915 2.23695i −0.935017 0.120960i
\(343\) −18.5830 −1.00339
\(344\) −0.354249 + 0.613577i −0.0190998 + 0.0330818i
\(345\) 0 0
\(346\) 3.00000 + 5.19615i 0.161281 + 0.279347i
\(347\) 1.61438 2.79619i 0.0866644 0.150107i −0.819435 0.573172i \(-0.805713\pi\)
0.906099 + 0.423065i \(0.139046\pi\)
\(348\) 4.82288 + 8.35347i 0.258533 + 0.447793i
\(349\) −21.1660 −1.13299 −0.566495 0.824065i \(-0.691701\pi\)
−0.566495 + 0.824065i \(0.691701\pi\)
\(350\) 0 0
\(351\) 2.64575 + 4.58258i 0.141220 + 0.244600i
\(352\) 0.322876 + 0.559237i 0.0172093 + 0.0298074i
\(353\) 18.8745 1.00459 0.502294 0.864697i \(-0.332489\pi\)
0.502294 + 0.864697i \(0.332489\pi\)
\(354\) −21.0000 −1.11614
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 9.96863 17.2662i 0.526858 0.912545i
\(359\) −5.46863 + 9.47194i −0.288623 + 0.499910i −0.973481 0.228766i \(-0.926531\pi\)
0.684858 + 0.728676i \(0.259864\pi\)
\(360\) 0 0
\(361\) 18.3745 + 4.83502i 0.967079 + 0.254475i
\(362\) 4.22876 0.222259
\(363\) 14.0000 24.2487i 0.734809 1.27273i
\(364\) 1.64575 2.85052i 0.0862608 0.149408i
\(365\) 0 0
\(366\) −19.7601 + 34.2255i −1.03288 + 1.78900i
\(367\) −5.11438 8.85836i −0.266968 0.462403i 0.701109 0.713054i \(-0.252689\pi\)
−0.968077 + 0.250651i \(0.919355\pi\)
\(368\) −3.64575 −0.190048
\(369\) 41.1660 2.14302
\(370\) 0 0
\(371\) 7.06275 + 12.2330i 0.366680 + 0.635108i
\(372\) −0.937254 −0.0485944
\(373\) 4.00000 0.207112 0.103556 0.994624i \(-0.466978\pi\)
0.103556 + 0.994624i \(0.466978\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −4.82288 8.35347i −0.248721 0.430797i
\(377\) −3.64575 + 6.31463i −0.187766 + 0.325220i
\(378\) 2.17712 3.77089i 0.111979 0.193954i
\(379\) 21.2915 1.09367 0.546836 0.837240i \(-0.315832\pi\)
0.546836 + 0.837240i \(0.315832\pi\)
\(380\) 0 0
\(381\) 7.16601 0.367126
\(382\) −7.29150 + 12.6293i −0.373066 + 0.646169i
\(383\) −15.7601 + 27.2973i −0.805305 + 1.39483i 0.110780 + 0.993845i \(0.464665\pi\)
−0.916085 + 0.400984i \(0.868668\pi\)
\(384\) 1.32288 + 2.29129i 0.0675077 + 0.116927i
\(385\) 0 0
\(386\) 3.29150 + 5.70105i 0.167533 + 0.290176i
\(387\) −2.83399 −0.144060
\(388\) 14.2915 0.725541
\(389\) −6.00000 10.3923i −0.304212 0.526911i 0.672874 0.739758i \(-0.265060\pi\)
−0.977086 + 0.212847i \(0.931726\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 4.29150 0.216754
\(393\) 18.4373 + 31.9343i 0.930036 + 1.61087i
\(394\) 1.17712 2.03884i 0.0593027 0.102715i
\(395\) 0 0
\(396\) −1.29150 + 2.23695i −0.0649004 + 0.112411i
\(397\) 18.4686 31.9886i 0.926914 1.60546i 0.138460 0.990368i \(-0.455785\pi\)
0.788454 0.615094i \(-0.210882\pi\)
\(398\) −11.8745 −0.595215
\(399\) −11.5203 + 15.0836i −0.576734 + 0.755122i
\(400\) 0 0
\(401\) −3.20850 + 5.55728i −0.160225 + 0.277517i −0.934949 0.354782i \(-0.884555\pi\)
0.774724 + 0.632299i \(0.217889\pi\)
\(402\) 6.14575 10.6448i 0.306522 0.530912i
\(403\) −0.354249 0.613577i −0.0176464 0.0305644i
\(404\) 4.17712 7.23499i 0.207820 0.359954i
\(405\) 0 0
\(406\) 6.00000 0.297775
\(407\) −3.64575 −0.180713
\(408\) 0 0
\(409\) −6.79150 11.7632i −0.335818 0.581654i 0.647823 0.761790i \(-0.275679\pi\)
−0.983642 + 0.180136i \(0.942346\pi\)
\(410\) 0 0
\(411\) 14.7712 0.728612
\(412\) −1.35425 2.34563i −0.0667190 0.115561i
\(413\) −6.53137 + 11.3127i −0.321388 + 0.556660i
\(414\) −7.29150 12.6293i −0.358358 0.620694i
\(415\) 0 0
\(416\) −1.00000 + 1.73205i −0.0490290 + 0.0849208i
\(417\) 35.3320 1.73022
\(418\) 1.70850 2.23695i 0.0835653 0.109413i
\(419\) 31.7490 1.55104 0.775520 0.631322i \(-0.217488\pi\)
0.775520 + 0.631322i \(0.217488\pi\)
\(420\) 0 0
\(421\) −11.4059 + 19.7556i −0.555889 + 0.962827i 0.441945 + 0.897042i \(0.354289\pi\)
−0.997834 + 0.0657853i \(0.979045\pi\)
\(422\) −1.35425 2.34563i −0.0659238 0.114183i
\(423\) 19.2915 33.4139i 0.937985 1.62464i
\(424\) −4.29150 7.43310i −0.208414 0.360983i
\(425\) 0 0
\(426\) 35.1660 1.70380
\(427\) 12.2915 + 21.2895i 0.594828 + 1.03027i
\(428\) 2.35425 + 4.07768i 0.113797 + 0.197102i
\(429\) −3.41699 −0.164974
\(430\) 0 0
\(431\) 1.93725 + 3.35542i 0.0933142 + 0.161625i 0.908904 0.417006i \(-0.136921\pi\)
−0.815590 + 0.578631i \(0.803587\pi\)
\(432\) −1.32288 + 2.29129i −0.0636469 + 0.110240i
\(433\) −6.93725 12.0157i −0.333383 0.577437i 0.649790 0.760114i \(-0.274857\pi\)
−0.983173 + 0.182677i \(0.941524\pi\)
\(434\) −0.291503 + 0.504897i −0.0139926 + 0.0242358i
\(435\) 0 0
\(436\) −6.58301 −0.315269
\(437\) 6.11438 + 14.6681i 0.292490 + 0.701670i
\(438\) 32.5203 1.55388
\(439\) 18.4059 31.8799i 0.878465 1.52155i 0.0254393 0.999676i \(-0.491902\pi\)
0.853025 0.521869i \(-0.174765\pi\)
\(440\) 0 0
\(441\) 8.58301 + 14.8662i 0.408715 + 0.707914i
\(442\) 0 0
\(443\) 2.67712 + 4.63692i 0.127194 + 0.220306i 0.922588 0.385786i \(-0.126070\pi\)
−0.795394 + 0.606092i \(0.792736\pi\)
\(444\) −14.9373 −0.708891
\(445\) 0 0
\(446\) −14.4059 24.9517i −0.682138 1.18150i
\(447\) 6.53137 + 11.3127i 0.308923 + 0.535071i
\(448\) 1.64575 0.0777544
\(449\) −13.7085 −0.646944 −0.323472 0.946238i \(-0.604850\pi\)
−0.323472 + 0.946238i \(0.604850\pi\)
\(450\) 0 0
\(451\) −3.32288 + 5.75539i −0.156468 + 0.271011i
\(452\) 2.79150 + 4.83502i 0.131301 + 0.227420i
\(453\) 3.88562 6.73009i 0.182562 0.316207i
\(454\) 6.32288 10.9515i 0.296747 0.513981i
\(455\) 0 0
\(456\) 7.00000 9.16515i 0.327805 0.429198i
\(457\) −1.12549 −0.0526483 −0.0263242 0.999653i \(-0.508380\pi\)
−0.0263242 + 0.999653i \(0.508380\pi\)
\(458\) 10.0000 17.3205i 0.467269 0.809334i
\(459\) 0 0
\(460\) 0 0
\(461\) 11.5830 20.0624i 0.539474 0.934397i −0.459458 0.888200i \(-0.651956\pi\)
0.998932 0.0461975i \(-0.0147103\pi\)
\(462\) 1.40588 + 2.43506i 0.0654075 + 0.113289i
\(463\) −14.4575 −0.671898 −0.335949 0.941880i \(-0.609057\pi\)
−0.335949 + 0.941880i \(0.609057\pi\)
\(464\) −3.64575 −0.169250
\(465\) 0 0
\(466\) 6.43725 + 11.1497i 0.298200 + 0.516498i
\(467\) 24.6458 1.14047 0.570235 0.821482i \(-0.306852\pi\)
0.570235 + 0.821482i \(0.306852\pi\)
\(468\) −8.00000 −0.369800
\(469\) −3.82288 6.62141i −0.176524 0.305749i
\(470\) 0 0
\(471\) 14.0000 + 24.2487i 0.645086 + 1.11732i
\(472\) 3.96863 6.87386i 0.182671 0.316395i
\(473\) 0.228757 0.396218i 0.0105182 0.0182181i
\(474\) 10.5830 0.486094
\(475\) 0 0
\(476\) 0 0
\(477\) 17.1660 29.7324i 0.785978 1.36135i
\(478\) −6.00000 + 10.3923i −0.274434 + 0.475333i
\(479\) 7.29150 + 12.6293i 0.333157 + 0.577045i 0.983129 0.182913i \(-0.0585527\pi\)
−0.649972 + 0.759958i \(0.725219\pi\)
\(480\) 0 0
\(481\) −5.64575 9.77873i −0.257424 0.445872i
\(482\) −13.5830 −0.618689
\(483\) −15.8745 −0.722315
\(484\) 5.29150 + 9.16515i 0.240523 + 0.416598i
\(485\) 0 0
\(486\) 21.1660 0.960110
\(487\) 22.2288 1.00728 0.503641 0.863913i \(-0.331994\pi\)
0.503641 + 0.863913i \(0.331994\pi\)
\(488\) −7.46863 12.9360i −0.338089 0.585587i
\(489\) −15.7915 + 27.3517i −0.714116 + 1.23689i
\(490\) 0 0
\(491\) −14.3542 + 24.8623i −0.647798 + 1.12202i 0.335849 + 0.941916i \(0.390977\pi\)
−0.983648 + 0.180104i \(0.942357\pi\)
\(492\) −13.6144 + 23.5808i −0.613784 + 1.06310i
\(493\) 0 0
\(494\) 8.64575 + 1.11847i 0.388991 + 0.0503225i
\(495\) 0 0
\(496\) 0.177124 0.306788i 0.00795312 0.0137752i
\(497\) 10.9373 18.9439i 0.490603 0.849749i
\(498\) 10.5000 + 18.1865i 0.470516 + 0.814958i
\(499\) 15.6144 27.0449i 0.698996 1.21070i −0.269819 0.962911i \(-0.586964\pi\)
0.968815 0.247785i \(-0.0797026\pi\)
\(500\) 0 0
\(501\) 31.7490 1.41844
\(502\) −2.77124 −0.123687
\(503\) −12.5314 21.7050i −0.558746 0.967777i −0.997601 0.0692192i \(-0.977949\pi\)
0.438855 0.898558i \(-0.355384\pi\)
\(504\) 3.29150 + 5.70105i 0.146615 + 0.253945i
\(505\) 0 0
\(506\) 2.35425 0.104659
\(507\) 11.9059 + 20.6216i 0.528759 + 0.915837i
\(508\) −1.35425 + 2.34563i −0.0600851 + 0.104070i
\(509\) −15.8745 27.4955i −0.703625 1.21871i −0.967185 0.254072i \(-0.918230\pi\)
0.263560 0.964643i \(-0.415103\pi\)
\(510\) 0 0
\(511\) 10.1144 17.5186i 0.447434 0.774978i
\(512\) −1.00000 −0.0441942
\(513\) 11.4373 + 1.47960i 0.504967 + 0.0653260i
\(514\) 1.70850 0.0753586
\(515\) 0 0
\(516\) 0.937254 1.62337i 0.0412603 0.0714649i
\(517\) 3.11438 + 5.39426i 0.136970 + 0.237239i
\(518\) −4.64575 + 8.04668i −0.204123 + 0.353551i
\(519\) −7.93725 13.7477i −0.348407 0.603458i
\(520\) 0 0
\(521\) −22.2915 −0.976608 −0.488304 0.872673i \(-0.662384\pi\)
−0.488304 + 0.872673i \(0.662384\pi\)
\(522\) −7.29150 12.6293i −0.319140 0.552767i
\(523\) 14.9373 + 25.8721i 0.653161 + 1.13131i 0.982352 + 0.187044i \(0.0598906\pi\)
−0.329191 + 0.944263i \(0.606776\pi\)
\(524\) −13.9373 −0.608852
\(525\) 0 0
\(526\) −2.46863 4.27579i −0.107637 0.186433i
\(527\) 0 0
\(528\) −0.854249 1.47960i −0.0371764 0.0643914i
\(529\) 4.85425 8.40781i 0.211054 0.365557i
\(530\) 0 0
\(531\) 31.7490 1.37779
\(532\) −2.76013 6.62141i −0.119667 0.287075i
\(533\) −20.5830 −0.891549
\(534\) 0 0
\(535\) 0 0
\(536\) 2.32288 + 4.02334i 0.100333 + 0.173782i
\(537\) −26.3745 + 45.6820i −1.13814 + 1.97132i
\(538\) 0 0
\(539\) −2.77124 −0.119366
\(540\) 0 0
\(541\) −4.00000 6.92820i −0.171973 0.297867i 0.767136 0.641484i \(-0.221681\pi\)
−0.939110 + 0.343617i \(0.888348\pi\)
\(542\) 8.82288 + 15.2817i 0.378975 + 0.656404i
\(543\) −11.1882 −0.480133
\(544\) 0 0
\(545\) 0 0
\(546\) −4.35425 + 7.54178i −0.186345 + 0.322758i
\(547\) 0.354249 + 0.613577i 0.0151466 + 0.0262346i 0.873499 0.486825i \(-0.161845\pi\)
−0.858353 + 0.513060i \(0.828512\pi\)
\(548\) −2.79150 + 4.83502i −0.119247 + 0.206542i
\(549\) 29.8745 51.7442i 1.27501 2.20839i
\(550\) 0 0
\(551\) 6.11438 + 14.6681i 0.260481 + 0.624882i
\(552\) 9.64575 0.410550
\(553\) 3.29150 5.70105i 0.139969 0.242433i
\(554\) −4.76013 + 8.24479i −0.202239 + 0.350287i
\(555\) 0 0
\(556\) −6.67712 + 11.5651i −0.283173 + 0.490470i
\(557\) −13.2915 23.0216i −0.563179 0.975455i −0.997217 0.0745599i \(-0.976245\pi\)
0.434037 0.900895i \(-0.357089\pi\)
\(558\) 1.41699 0.0599862
\(559\) 1.41699 0.0599325
\(560\) 0 0
\(561\) 0 0
\(562\) 27.4575 1.15823
\(563\) −25.9373 −1.09312 −0.546562 0.837418i \(-0.684064\pi\)
−0.546562 + 0.837418i \(0.684064\pi\)
\(564\) 12.7601 + 22.1012i 0.537298 + 0.930628i
\(565\) 0 0
\(566\) −12.6771 21.9574i −0.532859 0.922939i
\(567\) 4.11438 7.12631i 0.172788 0.299277i
\(568\) −6.64575 + 11.5108i −0.278850 + 0.482982i
\(569\) −14.5830 −0.611351 −0.305676 0.952136i \(-0.598882\pi\)
−0.305676 + 0.952136i \(0.598882\pi\)
\(570\) 0 0
\(571\) −39.8118 −1.66607 −0.833035 0.553220i \(-0.813399\pi\)
−0.833035 + 0.553220i \(0.813399\pi\)
\(572\) 0.645751 1.11847i 0.0270002 0.0467658i
\(573\) 19.2915 33.4139i 0.805914 1.39588i
\(574\) 8.46863 + 14.6681i 0.353474 + 0.612234i
\(575\) 0 0
\(576\) −2.00000 3.46410i −0.0833333 0.144338i
\(577\) −11.0000 −0.457936 −0.228968 0.973434i \(-0.573535\pi\)
−0.228968 + 0.973434i \(0.573535\pi\)
\(578\) 17.0000 0.707107
\(579\) −8.70850 15.0836i −0.361913 0.626851i
\(580\) 0 0
\(581\) 13.0627 0.541934
\(582\) −37.8118 −1.56735
\(583\) 2.77124 + 4.79993i 0.114773 + 0.198793i
\(584\) −6.14575 + 10.6448i −0.254313 + 0.440483i
\(585\) 0 0
\(586\) −6.53137 + 11.3127i −0.269809 + 0.467322i
\(587\) −22.9373 + 39.7285i −0.946722 + 1.63977i −0.194455 + 0.980911i \(0.562294\pi\)
−0.752267 + 0.658859i \(0.771039\pi\)
\(588\) −11.3542 −0.468241
\(589\) −1.53137 0.198109i −0.0630991 0.00816294i
\(590\) 0 0
\(591\) −3.11438 + 5.39426i −0.128108 + 0.221890i
\(592\) 2.82288 4.88936i 0.116019 0.200952i
\(593\) 20.1458 + 34.8935i 0.827287 + 1.43290i 0.900159 + 0.435562i \(0.143450\pi\)
−0.0728721 + 0.997341i \(0.523216\pi\)
\(594\) 0.854249 1.47960i 0.0350502 0.0607088i
\(595\) 0 0
\(596\) −4.93725 −0.202238
\(597\) 31.4170 1.28581
\(598\) 3.64575 + 6.31463i 0.149086 + 0.258224i
\(599\) 0.531373 + 0.920365i 0.0217113 + 0.0376051i 0.876677 0.481080i \(-0.159755\pi\)
−0.854966 + 0.518685i \(0.826422\pi\)
\(600\) 0 0
\(601\) 31.5830 1.28830 0.644149 0.764900i \(-0.277212\pi\)
0.644149 + 0.764900i \(0.277212\pi\)
\(602\) −0.583005 1.00979i −0.0237615 0.0411562i
\(603\) −9.29150 + 16.0934i −0.378379 + 0.655372i
\(604\) 1.46863 + 2.54374i 0.0597576 + 0.103503i
\(605\) 0 0
\(606\) −11.0516 + 19.1420i −0.448942 + 0.777590i
\(607\) 8.93725 0.362752 0.181376 0.983414i \(-0.441945\pi\)
0.181376 + 0.983414i \(0.441945\pi\)
\(608\) 1.67712 + 4.02334i 0.0680164 + 0.163168i
\(609\) −15.8745 −0.643268
\(610\) 0 0
\(611\) −9.64575 + 16.7069i −0.390225 + 0.675890i
\(612\) 0 0
\(613\) 14.2915 24.7536i 0.577228 0.999789i −0.418567 0.908186i \(-0.637468\pi\)
0.995796 0.0916030i \(-0.0291991\pi\)
\(614\) 2.32288 + 4.02334i 0.0937436 + 0.162369i
\(615\) 0 0
\(616\) −1.06275 −0.0428193
\(617\) 0.437254 + 0.757346i 0.0176032 + 0.0304896i 0.874693 0.484678i \(-0.161063\pi\)
−0.857090 + 0.515167i \(0.827730\pi\)
\(618\) 3.58301 + 6.20595i 0.144130 + 0.249640i
\(619\) 44.4575 1.78690 0.893449 0.449164i \(-0.148278\pi\)
0.893449 + 0.449164i \(0.148278\pi\)
\(620\) 0 0
\(621\) 4.82288 + 8.35347i 0.193535 + 0.335213i
\(622\) 4.17712 7.23499i 0.167487 0.290097i
\(623\) 0 0
\(624\) 2.64575 4.58258i 0.105915 0.183450i
\(625\) 0 0
\(626\) −22.8745 −0.914249
\(627\) −4.52026 + 5.91841i −0.180522 + 0.236358i
\(628\) −10.5830 −0.422308
\(629\) 0 0
\(630\) 0 0
\(631\) −11.4059 19.7556i −0.454061 0.786457i 0.544573 0.838714i \(-0.316692\pi\)
−0.998634 + 0.0522570i \(0.983359\pi\)
\(632\) −2.00000 + 3.46410i −0.0795557 + 0.137795i
\(633\) 3.58301 + 6.20595i 0.142412 + 0.246664i
\(634\) −6.00000 −0.238290
\(635\) 0 0
\(636\) 11.3542 + 19.6661i 0.450225 + 0.779813i
\(637\) −4.29150 7.43310i −0.170036 0.294510i
\(638\) 2.35425 0.0932056
\(639\) −53.1660 −2.10321
\(640\) 0 0
\(641\) 9.43725 16.3458i 0.372749 0.645620i −0.617238 0.786776i \(-0.711749\pi\)
0.989987 + 0.141156i \(0.0450819\pi\)
\(642\) −6.22876 10.7885i −0.245829 0.425789i
\(643\) 15.2601 26.4313i 0.601801 1.04235i −0.390748 0.920498i \(-0.627783\pi\)
0.992548 0.121852i \(-0.0388832\pi\)
\(644\) 3.00000 5.19615i 0.118217 0.204757i
\(645\) 0 0
\(646\) 0 0
\(647\) −30.4575 −1.19741 −0.598704 0.800970i \(-0.704317\pi\)
−0.598704 + 0.800970i \(0.704317\pi\)
\(648\) −2.50000 + 4.33013i −0.0982093 + 0.170103i
\(649\) −2.56275 + 4.43881i −0.100597 + 0.174238i
\(650\) 0 0
\(651\) 0.771243 1.33583i 0.0302274 0.0523554i
\(652\) −5.96863 10.3380i −0.233749 0.404866i
\(653\) −24.0000 −0.939193 −0.469596 0.882881i \(-0.655601\pi\)
−0.469596 + 0.882881i \(0.655601\pi\)
\(654\) 17.4170 0.681058
\(655\) 0 0
\(656\) −5.14575 8.91270i −0.200908 0.347983i
\(657\) −49.1660 −1.91815
\(658\) 15.8745 0.618853
\(659\) −1.29150 2.23695i −0.0503098 0.0871391i 0.839774 0.542936i \(-0.182688\pi\)
−0.890084 + 0.455797i \(0.849354\pi\)
\(660\) 0 0
\(661\) 5.11438 + 8.85836i 0.198926 + 0.344550i 0.948181 0.317732i \(-0.102921\pi\)
−0.749254 + 0.662282i \(0.769588\pi\)
\(662\) −13.9059 + 24.0857i −0.540467 + 0.936117i
\(663\) 0 0
\(664\) −7.93725 −0.308025
\(665\) 0 0
\(666\) 22.5830 0.875074
\(667\) −6.64575 + 11.5108i −0.257325 + 0.445699i
\(668\) −6.00000 + 10.3923i −0.232147 + 0.402090i
\(669\) 38.1144 + 66.0160i 1.47359 + 2.55233i
\(670\) 0 0
\(671\) 4.82288 + 8.35347i 0.186185 + 0.322482i
\(672\) −4.35425 −0.167969
\(673\) −17.8745 −0.689012 −0.344506 0.938784i \(-0.611954\pi\)
−0.344506 + 0.938784i \(0.611954\pi\)
\(674\) 10.1458 + 17.5730i 0.390800 + 0.676885i
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) 32.5830 1.25227 0.626133 0.779716i \(-0.284637\pi\)
0.626133 + 0.779716i \(0.284637\pi\)
\(678\) −7.38562 12.7923i −0.283643 0.491284i
\(679\) −11.7601 + 20.3691i −0.451312 + 0.781696i
\(680\) 0 0
\(681\) −16.7288 + 28.9751i −0.641047 + 1.11033i
\(682\) −0.114378 + 0.198109i −0.00437977 + 0.00758599i
\(683\) 26.5830 1.01717 0.508585 0.861012i \(-0.330169\pi\)
0.508585 + 0.861012i \(0.330169\pi\)
\(684\) −10.5830 + 13.8564i −0.404651 + 0.529813i
\(685\) 0 0
\(686\) −9.29150 + 16.0934i −0.354751 + 0.614447i
\(687\) −26.4575 + 45.8258i −1.00942 + 1.74836i
\(688\) 0.354249 + 0.613577i 0.0135056 + 0.0233924i
\(689\) −8.58301 + 14.8662i −0.326986 + 0.566357i
\(690\) 0 0
\(691\) −18.5830 −0.706931 −0.353465 0.935448i \(-0.614997\pi\)
−0.353465 + 0.935448i \(0.614997\pi\)
\(692\) 6.00000 0.228086
\(693\) −2.12549 3.68146i −0.0807408 0.139847i
\(694\) −1.61438 2.79619i −0.0612810 0.106142i
\(695\) 0 0
\(696\) 9.64575 0.365621
\(697\) 0 0
\(698\) −10.5830 + 18.3303i −0.400573 + 0.693812i
\(699\) −17.0314 29.4992i −0.644186 1.11576i
\(700\) 0 0
\(701\) −7.82288 + 13.5496i −0.295466 + 0.511762i −0.975093 0.221796i \(-0.928808\pi\)
0.679627 + 0.733558i \(0.262142\pi\)
\(702\) 5.29150 0.199715
\(703\) −24.4059 3.15731i −0.920485 0.119080i
\(704\) 0.645751 0.0243377
\(705\) 0 0
\(706\) 9.43725 16.3458i 0.355176 0.615182i
\(707\) 6.87451 + 11.9070i 0.258542 + 0.447809i
\(708\) −10.5000 + 18.1865i −0.394614 + 0.683492i
\(709\) 0.822876 + 1.42526i 0.0309037 + 0.0535269i 0.881064 0.472998i \(-0.156828\pi\)
−0.850160 + 0.526525i \(0.823495\pi\)
\(710\) 0 0
\(711\) −16.0000 −0.600047
\(712\) 0 0
\(713\) −0.645751 1.11847i −0.0241836 0.0418872i
\(714\) 0 0
\(715\) 0 0
\(716\) −9.96863 17.2662i −0.372545 0.645267i
\(717\) 15.8745 27.4955i 0.592844 1.02684i
\(718\) 5.46863 + 9.47194i 0.204087 + 0.353490i
\(719\) −6.64575 + 11.5108i −0.247845 + 0.429280i −0.962928 0.269760i \(-0.913056\pi\)
0.715083 + 0.699040i \(0.246389\pi\)
\(720\) 0 0
\(721\) 4.45751 0.166006
\(722\) 13.3745 13.4953i 0.497748 0.502242i
\(723\) 35.9373 1.33652
\(724\) 2.11438 3.66221i 0.0785802 0.136105i
\(725\) 0 0
\(726\) −14.0000 24.2487i −0.519589 0.899954i
\(727\) 11.2915 19.5575i 0.418779 0.725346i −0.577038 0.816717i \(-0.695792\pi\)
0.995817 + 0.0913712i \(0.0291250\pi\)
\(728\) −1.64575 2.85052i −0.0609956 0.105647i
\(729\) −41.0000 −1.51852
\(730\) 0 0
\(731\) 0 0
\(732\) 19.7601 + 34.2255i 0.730355 + 1.26501i
\(733\) −42.1033 −1.55512 −0.777560 0.628809i \(-0.783543\pi\)
−0.777560 + 0.628809i \(0.783543\pi\)
\(734\) −10.2288 −0.377550
\(735\) 0 0
\(736\) −1.82288 + 3.15731i −0.0671921 + 0.116380i
\(737\) −1.50000 2.59808i −0.0552532 0.0957014i
\(738\) 20.5830 35.6508i 0.757671 1.31232i
\(739\) −6.90588 + 11.9613i −0.254037 + 0.440005i −0.964633 0.263595i \(-0.915092\pi\)
0.710597 + 0.703600i \(0.248425\pi\)
\(740\) 0 0
\(741\) −22.8745 2.95920i −0.840316 0.108709i
\(742\) 14.1255 0.518563
\(743\) −5.23987 + 9.07572i −0.192232 + 0.332956i −0.945990 0.324197i \(-0.894906\pi\)
0.753757 + 0.657153i \(0.228239\pi\)
\(744\) −0.468627 + 0.811686i −0.0171807 + 0.0297578i
\(745\) 0 0
\(746\) 2.00000 3.46410i 0.0732252 0.126830i
\(747\) −15.8745 27.4955i −0.580818 1.00601i
\(748\) 0 0
\(749\) −7.74902 −0.283143
\(750\) 0 0
\(751\) −11.9373 20.6759i −0.435597 0.754475i 0.561748 0.827309i \(-0.310129\pi\)
−0.997344 + 0.0728333i \(0.976796\pi\)
\(752\) −9.64575 −0.351744
\(753\) 7.33202 0.267194
\(754\) 3.64575 + 6.31463i 0.132770 + 0.229965i
\(755\) 0 0
\(756\) −2.17712 3.77089i −0.0791812 0.137146i
\(757\) 8.29150 14.3613i 0.301360 0.521970i −0.675084 0.737740i \(-0.735893\pi\)
0.976444 + 0.215770i \(0.0692261\pi\)
\(758\) 10.6458 18.4390i 0.386671 0.669734i
\(759\) −6.22876 −0.226090
\(760\) 0 0
\(761\) 11.1255 0.403299 0.201649 0.979458i \(-0.435370\pi\)
0.201649 + 0.979458i \(0.435370\pi\)
\(762\) 3.58301 6.20595i 0.129799 0.224818i
\(763\) 5.41699 9.38251i 0.196108 0.339670i
\(764\) 7.29150 + 12.6293i 0.263797 + 0.456910i
\(765\) 0 0
\(766\) 15.7601 + 27.2973i 0.569437 + 0.986293i
\(767\) −15.8745 −0.573195
\(768\) 2.64575 0.0954703
\(769\) −12.3542 21.3982i −0.445506 0.771638i 0.552582 0.833459i \(-0.313643\pi\)
−0.998087 + 0.0618204i \(0.980309\pi\)
\(770\) 0 0
\(771\) −4.52026 −0.162793
\(772\) 6.58301 0.236928
\(773\) 5.46863 + 9.47194i 0.196693 + 0.340682i 0.947454 0.319892i \(-0.103646\pi\)
−0.750761 + 0.660574i \(0.770313\pi\)
\(774\) −1.41699 + 2.45431i −0.0509328 + 0.0882182i
\(775\) 0 0
\(776\) 7.14575 12.3768i 0.256518 0.444301i
\(777\) 12.2915 21.2895i 0.440955 0.763757i
\(778\) −12.0000 −0.430221
\(779\) −27.2288 + 35.6508i −0.975571 + 1.27732i
\(780\) 0 0
\(781\) 4.29150 7.43310i 0.153562 0.265977i
\(782\) 0 0
\(783\) 4.82288 + 8.35347i 0.172356 + 0.298529i
\(784\) 2.14575 3.71655i 0.0766340 0.132734i
\(785\) 0 0
\(786\) 36.8745 1.31527
\(787\) 5.47974 0.195332 0.0976658 0.995219i \(-0.468862\pi\)
0.0976658 + 0.995219i \(0.468862\pi\)
\(788\) −1.17712 2.03884i −0.0419333 0.0726306i
\(789\) 6.53137 + 11.3127i 0.232523 + 0.402742i
\(790\) 0 0
\(791\) −9.18824 −0.326696
\(792\) 1.29150 + 2.23695i 0.0458915 + 0.0794865i
\(793\) −14.9373 + 25.8721i −0.530437 + 0.918745i
\(794\) −18.4686 31.9886i −0.655427 1.13523i
\(795\) 0 0
\(796\) −5.93725 + 10.2836i −0.210440 + 0.364493i
\(797\) −2.81176 −0.0995977 −0.0497989 0.998759i \(-0.515858\pi\)
−0.0497989 + 0.998759i \(0.515858\pi\)
\(798\) 7.30262 + 17.5186i 0.258510 + 0.620152i
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 3.20850 + 5.55728i 0.113296 + 0.196234i
\(803\) 3.96863 6.87386i 0.140050 0.242573i
\(804\) −6.14575 10.6448i −0.216744 0.375412i
\(805\) 0 0
\(806\) −0.708497 −0.0249558
\(807\) 0 0
\(808\) −4.17712 7.23499i −0.146951 0.254526i
\(809\) −9.00000 −0.316423 −0.158212 0.987405i \(-0.550573\pi\)
−0.158212 + 0.987405i \(0.550573\pi\)
\(810\) 0 0
\(811\) 10.3542 + 17.9341i 0.363587 + 0.629751i 0.988548 0.150905i \(-0.0482187\pi\)
−0.624961 + 0.780656i \(0.714885\pi\)
\(812\) 3.00000 5.19615i 0.105279 0.182349i
\(813\) −23.3431 40.4315i −0.818679 1.41799i
\(814\) −1.82288 + 3.15731i −0.0638918 + 0.110664i
\(815\) 0 0
\(816\) 0 0
\(817\) 1.87451 2.45431i 0.0655807 0.0858653i
\(818\) −13.5830 −0.474919
\(819\) 6.58301 11.4021i 0.230029 0.398422i
\(820\) 0 0
\(821\) 3.00000 + 5.19615i 0.104701 + 0.181347i 0.913616 0.406578i \(-0.133278\pi\)
−0.808915 + 0.587925i \(0.799945\pi\)
\(822\) 7.38562 12.7923i 0.257603 0.446182i
\(823\) −0.0627461 0.108679i −0.00218719 0.00378832i 0.864930 0.501893i \(-0.167363\pi\)
−0.867117 + 0.498105i \(0.834030\pi\)
\(824\) −2.70850 −0.0943550
\(825\) 0 0
\(826\) 6.53137 + 11.3127i 0.227256 + 0.393618i
\(827\) −23.6771 41.0100i −0.823334 1.42606i −0.903186 0.429250i \(-0.858778\pi\)
0.0798514 0.996807i \(-0.474555\pi\)
\(828\) −14.5830 −0.506794
\(829\) 25.1660 0.874052 0.437026 0.899449i \(-0.356032\pi\)
0.437026 + 0.899449i \(0.356032\pi\)
\(830\) 0 0
\(831\) 12.5941 21.8137i 0.436885 0.756707i
\(832\) 1.00000 + 1.73205i 0.0346688 + 0.0600481i
\(833\) 0 0
\(834\) 17.6660 30.5984i 0.611724 1.05954i
\(835\) 0 0
\(836\) −1.08301 2.59808i −0.0374565 0.0898563i
\(837\) −0.937254 −0.0323962
\(838\) 15.8745 27.4955i 0.548376 0.949815i
\(839\) 2.23987 3.87957i 0.0773289 0.133938i −0.824768 0.565472i \(-0.808694\pi\)
0.902097 + 0.431534i \(0.142028\pi\)
\(840\) 0 0
\(841\) 7.85425 13.6040i 0.270836 0.469102i
\(842\) 11.4059 + 19.7556i 0.393073 + 0.680822i
\(843\) −72.6458 −2.50205
\(844\) −2.70850 −0.0932303
\(845\) 0 0
\(846\) −19.2915 33.4139i −0.663256 1.14879i
\(847\) −17.4170 −0.598455
\(848\) −8.58301 −0.294742
\(849\) 33.5405 + 58.0939i 1.15111 + 1.99378i
\(850\) 0 0
\(851\) −10.2915 17.8254i −0.352788 0.611047i
\(852\) 17.5830 30.4547i 0.602384 1.04336i
\(853\) −6.29150 + 10.8972i −0.215417 + 0.373113i −0.953401 0.301705i \(-0.902444\pi\)
0.737985 + 0.674818i \(0.235778\pi\)
\(854\) 24.5830 0.841213
\(855\) 0 0
\(856\) 4.70850 0.160933
\(857\) 10.5000 18.1865i 0.358673 0.621240i −0.629066 0.777352i \(-0.716563\pi\)
0.987739 + 0.156112i \(0.0498959\pi\)
\(858\) −1.70850 + 2.95920i −0.0583271 + 0.101026i
\(859\) 6.61438 + 11.4564i 0.225680 + 0.390889i 0.956523 0.291656i \(-0.0942064\pi\)
−0.730843 + 0.682545i \(0.760873\pi\)
\(860\) 0 0
\(861\) −22.4059 38.8081i −0.763590 1.32258i
\(862\) 3.87451 0.131966
\(863\) 46.9373 1.59776 0.798881 0.601489i \(-0.205425\pi\)
0.798881 + 0.601489i \(0.205425\pi\)
\(864\) 1.32288 + 2.29129i 0.0450051 + 0.0779512i
\(865\) 0 0
\(866\) −13.8745 −0.471475
\(867\) −44.9778 −1.52753
\(868\) 0.291503 + 0.504897i 0.00989424 + 0.0171373i
\(869\) 1.29150 2.23695i 0.0438112 0.0758833i
\(870\) 0 0
\(871\) 4.64575 8.04668i 0.157415 0.272651i
\(872\) −3.29150 + 5.70105i −0.111464 + 0.193062i
\(873\) 57.1660 1.93478
\(874\) 15.7601 + 2.03884i 0.533094 + 0.0689648i
\(875\) 0 0
\(876\) 16.2601 28.1634i 0.549379 0.951552i
\(877\) −18.1771 + 31.4837i −0.613798 + 1.06313i 0.376796 + 0.926296i \(0.377026\pi\)
−0.990594 + 0.136833i \(0.956308\pi\)
\(878\) −18.4059 31.8799i −0.621168 1.07590i
\(879\) 17.2804 29.9305i 0.582853 1.00953i
\(880\) 0 0
\(881\) −5.12549 −0.172682 −0.0863411 0.996266i \(-0.527517\pi\)
−0.0863411 + 0.996266i \(0.527517\pi\)
\(882\) 17.1660 0.578010
\(883\) 20.1974 + 34.9829i 0.679696 + 1.17727i 0.975072 + 0.221887i \(0.0712217\pi\)
−0.295376 + 0.955381i \(0.595445\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 5.35425 0.179880
\(887\) −19.2915 33.4139i −0.647745 1.12193i −0.983660 0.180035i \(-0.942379\pi\)
0.335915 0.941892i \(-0.390955\pi\)
\(888\) −7.46863 + 12.9360i −0.250631 + 0.434105i
\(889\) −2.22876 3.86032i −0.0747501 0.129471i
\(890\) 0 0
\(891\) 1.61438 2.79619i 0.0540837 0.0936757i
\(892\) −28.8118 −0.964689
\(893\) 16.1771 + 38.8081i 0.541347 + 1.29866i
\(894\) 13.0627 0.436884
\(895\) 0 0
\(896\) 0.822876 1.42526i 0.0274903 0.0476147i
\(897\) −9.64575 16.7069i −0.322062 0.557828i
\(898\) −6.85425 + 11.8719i −0.228729 + 0.396171i
\(899\) −0.645751 1.11847i −0.0215370 0.0373032i
\(900\) 0 0
\(901\) 0 0
\(902\) 3.32288 + 5.75539i 0.110640 + 0.191634i
\(903\) 1.54249 + 2.67167i 0.0513307 + 0.0889075i
\(904\) 5.58301 0.185688
\(905\) 0 0
\(906\) −3.88562 6.73009i −0.129091 0.223592i
\(907\) 12.0314 20.8389i 0.399495 0.691946i −0.594168 0.804341i \(-0.702519\pi\)
0.993664 + 0.112395i \(0.0358521\pi\)
\(908\) −6.32288 10.9515i −0.209832 0.363440i
\(909\) 16.7085 28.9400i 0.554186 0.959878i
\(910\) 0 0
\(911\) 1.06275 0.0352103 0.0176052 0.999845i \(-0.494396\pi\)
0.0176052 + 0.999845i \(0.494396\pi\)
\(912\) −4.43725 10.6448i −0.146932 0.352483i
\(913\) 5.12549 0.169629
\(914\) −0.562746 + 0.974705i −0.0186140 + 0.0322404i
\(915\) 0 0
\(916\) −10.0000 17.3205i −0.330409 0.572286i
\(917\) 11.4686 19.8642i 0.378727 0.655975i
\(918\) 0 0
\(919\) 11.8745 0.391704 0.195852 0.980633i \(-0.437253\pi\)
0.195852 + 0.980633i \(0.437253\pi\)
\(920\) 0 0
\(921\) −6.14575 10.6448i −0.202509 0.350757i
\(922\) −11.5830 20.0624i −0.381466 0.660718i
\(923\) 26.5830 0.874990
\(924\) 2.81176 0.0925002
\(925\) 0 0
\(926\) −7.22876 + 12.5206i −0.237552 + 0.411452i
\(927\) −5.41699 9.38251i −0.177917 0.308162i
\(928\) −1.82288 + 3.15731i −0.0598388 + 0.103644i
\(929\) −5.79150 + 10.0312i −0.190013 + 0.329112i −0.945254 0.326335i \(-0.894186\pi\)
0.755241 + 0.655447i \(0.227520\pi\)
\(930\) 0 0
\(931\) −18.5516 2.39997i −0.608005 0.0786557i
\(932\) 12.8745 0.421719
\(933\) −11.0516 + 19.1420i −0.361814 + 0.626681i
\(934\) 12.3229 21.3438i 0.403217 0.698392i
\(935\) 0 0
\(936\) −4.00000 + 6.92820i −0.130744 + 0.226455i
\(937\) 19.4373 + 33.6663i 0.634987 + 1.09983i 0.986518 + 0.163654i \(0.0523281\pi\)
−0.351530 + 0.936176i \(0.614339\pi\)
\(938\) −7.64575 −0.249643
\(939\) 60.5203 1.97500
\(940\) 0 0
\(941\) −29.5830 51.2393i −0.964378 1.67035i −0.711276 0.702913i \(-0.751882\pi\)
−0.253103 0.967439i \(-0.581451\pi\)
\(942\) 28.0000 0.912289
\(943\) −37.5203 −1.22183
\(944\) −3.96863 6.87386i −0.129168 0.223725i
\(945\) 0 0
\(946\) −0.228757 0.396218i −0.00743752 0.0128822i
\(947\) 27.8745 48.2801i 0.905800 1.56889i 0.0859598 0.996299i \(-0.472604\pi\)
0.819840 0.572593i \(-0.194062\pi\)
\(948\) 5.29150 9.16515i 0.171860 0.297670i
\(949\) 24.5830 0.797998
\(950\) 0 0
\(951\) 15.8745 0.514766
\(952\) 0 0
\(953\) 19.7288 34.1712i 0.639077 1.10691i −0.346559 0.938028i \(-0.612650\pi\)
0.985636 0.168886i \(-0.0540169\pi\)
\(954\) −17.1660 29.7324i −0.555770 0.962622i
\(955\) 0 0
\(956\) 6.00000 + 10.3923i 0.194054 + 0.336111i
\(957\) −6.22876 −0.201347
\(958\) 14.5830 0.471156
\(959\) −4.59412 7.95725i −0.148352 0.256953i
\(960\) 0 0
\(961\) −30.8745 −0.995952
\(962\) −11.2915 −0.364053
\(963\) 9.41699 + 16.3107i 0.303458 + 0.525605i
\(964\) −6.79150 + 11.7632i −0.218740 + 0.378868i
\(965\) 0 0
\(966\) −7.93725 + 13.7477i −0.255377 + 0.442326i
\(967\) −1.35425 + 2.34563i −0.0435497 + 0.0754303i −0.886979 0.461810i \(-0.847200\pi\)
0.843429 + 0.537241i \(0.180533\pi\)
\(968\) 10.5830 0.340151
\(969\) 0 0
\(970\) 0 0
\(971\) −7.19738 + 12.4662i −0.230975 + 0.400060i −0.958095 0.286450i \(-0.907525\pi\)
0.727120 + 0.686510i \(0.240858\pi\)
\(972\) 10.5830 18.3303i 0.339450 0.587945i
\(973\) −10.9889 19.0333i −0.352288 0.610180i
\(974\) 11.1144 19.2507i 0.356128 0.616831i
\(975\) 0 0
\(976\) −14.9373 −0.478130
\(977\) −45.4575 −1.45431 −0.727157 0.686471i \(-0.759159\pi\)
−0.727157 + 0.686471i \(0.759159\pi\)
\(978\) 15.7915 + 27.3517i 0.504957 + 0.874610i
\(979\) 0 0
\(980\) 0 0
\(981\) −26.3320 −0.840717
\(982\) 14.3542 + 24.8623i 0.458062 + 0.793387i
\(983\) −15.8745 + 27.4955i −0.506318 + 0.876969i 0.493655 + 0.869658i \(0.335661\pi\)
−0.999973 + 0.00731102i \(0.997673\pi\)
\(984\) 13.6144 + 23.5808i 0.434011 + 0.751728i
\(985\) 0 0
\(986\) 0 0
\(987\) −42.0000 −1.33687
\(988\) 5.29150 6.92820i 0.168345 0.220416i
\(989\) 2.58301 0.0821348
\(990\) 0 0
\(991\) 22.5830 39.1149i 0.717373 1.24253i −0.244664 0.969608i \(-0.578678\pi\)
0.962037 0.272918i \(-0.0879889\pi\)
\(992\) −0.177124 0.306788i −0.00562370 0.00974054i
\(993\) 36.7915 63.7248i 1.16754 2.02224i
\(994\) −10.9373 18.9439i −0.346909 0.600863i
\(995\) 0 0
\(996\) 21.0000 0.665410
\(997\) −5.11438 8.85836i −0.161974 0.280547i 0.773603 0.633671i \(-0.218453\pi\)
−0.935577 + 0.353124i \(0.885119\pi\)
\(998\) −15.6144 27.0449i −0.494265 0.856091i
\(999\) −14.9373 −0.472594
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 950.2.e.k.201.1 4
5.2 odd 4 950.2.j.g.49.4 8
5.3 odd 4 950.2.j.g.49.1 8
5.4 even 2 38.2.c.b.11.2 yes 4
15.14 odd 2 342.2.g.f.163.2 4
19.7 even 3 inner 950.2.e.k.501.1 4
20.19 odd 2 304.2.i.e.49.1 4
40.19 odd 2 1216.2.i.k.961.2 4
40.29 even 2 1216.2.i.l.961.1 4
60.59 even 2 2736.2.s.v.1873.2 4
95.4 even 18 722.2.e.n.423.1 12
95.7 odd 12 950.2.j.g.349.1 8
95.9 even 18 722.2.e.n.245.1 12
95.14 odd 18 722.2.e.o.389.2 12
95.24 even 18 722.2.e.n.389.1 12
95.29 odd 18 722.2.e.o.245.2 12
95.34 odd 18 722.2.e.o.423.2 12
95.44 even 18 722.2.e.n.415.2 12
95.49 even 6 722.2.a.j.1.1 2
95.54 even 18 722.2.e.n.99.1 12
95.59 odd 18 722.2.e.o.595.1 12
95.64 even 6 38.2.c.b.7.2 4
95.69 odd 6 722.2.c.j.653.1 4
95.74 even 18 722.2.e.n.595.2 12
95.79 odd 18 722.2.e.o.99.2 12
95.83 odd 12 950.2.j.g.349.4 8
95.84 odd 6 722.2.a.g.1.2 2
95.89 odd 18 722.2.e.o.415.1 12
95.94 odd 2 722.2.c.j.429.1 4
285.179 even 6 6498.2.a.bg.1.1 2
285.239 odd 6 6498.2.a.ba.1.1 2
285.254 odd 6 342.2.g.f.235.2 4
380.159 odd 6 304.2.i.e.273.1 4
380.179 even 6 5776.2.a.z.1.1 2
380.239 odd 6 5776.2.a.ba.1.2 2
760.349 even 6 1216.2.i.l.577.1 4
760.539 odd 6 1216.2.i.k.577.2 4
1140.539 even 6 2736.2.s.v.577.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
38.2.c.b.7.2 4 95.64 even 6
38.2.c.b.11.2 yes 4 5.4 even 2
304.2.i.e.49.1 4 20.19 odd 2
304.2.i.e.273.1 4 380.159 odd 6
342.2.g.f.163.2 4 15.14 odd 2
342.2.g.f.235.2 4 285.254 odd 6
722.2.a.g.1.2 2 95.84 odd 6
722.2.a.j.1.1 2 95.49 even 6
722.2.c.j.429.1 4 95.94 odd 2
722.2.c.j.653.1 4 95.69 odd 6
722.2.e.n.99.1 12 95.54 even 18
722.2.e.n.245.1 12 95.9 even 18
722.2.e.n.389.1 12 95.24 even 18
722.2.e.n.415.2 12 95.44 even 18
722.2.e.n.423.1 12 95.4 even 18
722.2.e.n.595.2 12 95.74 even 18
722.2.e.o.99.2 12 95.79 odd 18
722.2.e.o.245.2 12 95.29 odd 18
722.2.e.o.389.2 12 95.14 odd 18
722.2.e.o.415.1 12 95.89 odd 18
722.2.e.o.423.2 12 95.34 odd 18
722.2.e.o.595.1 12 95.59 odd 18
950.2.e.k.201.1 4 1.1 even 1 trivial
950.2.e.k.501.1 4 19.7 even 3 inner
950.2.j.g.49.1 8 5.3 odd 4
950.2.j.g.49.4 8 5.2 odd 4
950.2.j.g.349.1 8 95.7 odd 12
950.2.j.g.349.4 8 95.83 odd 12
1216.2.i.k.577.2 4 760.539 odd 6
1216.2.i.k.961.2 4 40.19 odd 2
1216.2.i.l.577.1 4 760.349 even 6
1216.2.i.l.961.1 4 40.29 even 2
2736.2.s.v.577.2 4 1140.539 even 6
2736.2.s.v.1873.2 4 60.59 even 2
5776.2.a.z.1.1 2 380.179 even 6
5776.2.a.ba.1.2 2 380.239 odd 6
6498.2.a.ba.1.1 2 285.239 odd 6
6498.2.a.bg.1.1 2 285.179 even 6