Newspace parameters
Level: | \( N \) | \(=\) | \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 936.be (of order \(6\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(7.47399762919\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{6})\) |
Twist minimal: | no (minimal twist has level 104) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
685.1 | −1.33456 | + | 0.467912i | 0 | 1.56212 | − | 1.24892i | 0.497079i | 0 | −0.845740 | − | 1.46486i | −1.50036 | + | 2.39769i | 0 | −0.232589 | − | 0.663383i | ||||||||
685.2 | −1.24938 | − | 0.662601i | 0 | 1.12192 | + | 1.65569i | 1.78237i | 0 | 1.65832 | + | 2.87229i | −0.304647 | − | 2.81197i | 0 | 1.18100 | − | 2.22687i | ||||||||
685.3 | −1.02392 | + | 0.975496i | 0 | 0.0968157 | − | 1.99766i | − | 2.24007i | 0 | 0.471952 | + | 0.817445i | 1.84957 | + | 2.13988i | 0 | 2.18518 | + | 2.29365i | |||||||
685.4 | −0.758596 | − | 1.19354i | 0 | −0.849063 | + | 1.81083i | 0.556100i | 0 | −2.30251 | − | 3.98807i | 2.80539 | − | 0.360297i | 0 | 0.663726 | − | 0.421855i | ||||||||
685.5 | −0.477121 | − | 1.33130i | 0 | −1.54471 | + | 1.27038i | − | 4.18204i | 0 | 0.818571 | + | 1.41781i | 2.42827 | + | 1.45035i | 0 | −5.56755 | + | 1.99534i | |||||||
685.6 | −0.332845 | + | 1.37449i | 0 | −1.77843 | − | 0.914983i | 2.24007i | 0 | 0.471952 | + | 0.817445i | 1.84957 | − | 2.13988i | 0 | −3.07895 | − | 0.745597i | ||||||||
685.7 | 0.262058 | + | 1.38972i | 0 | −1.86265 | + | 0.728375i | − | 0.497079i | 0 | −0.845740 | − | 1.46486i | −1.50036 | − | 2.39769i | 0 | 0.690801 | − | 0.130263i | |||||||
685.8 | 0.628723 | − | 1.26677i | 0 | −1.20941 | − | 1.59290i | 2.59989i | 0 | −0.300588 | − | 0.520633i | −2.77822 | + | 0.530559i | 0 | 3.29346 | + | 1.63461i | ||||||||
685.9 | 0.782694 | − | 1.17788i | 0 | −0.774781 | − | 1.84383i | − | 2.59989i | 0 | −0.300588 | − | 0.520633i | −2.77822 | − | 0.530559i | 0 | −3.06235 | − | 2.03492i | |||||||
685.10 | 1.19852 | + | 0.750697i | 0 | 0.872907 | + | 1.79945i | − | 1.78237i | 0 | 1.65832 | + | 2.87229i | −0.304647 | + | 2.81197i | 0 | 1.33802 | − | 2.13621i | |||||||
685.11 | 1.39150 | − | 0.252450i | 0 | 1.87254 | − | 0.702569i | 4.18204i | 0 | 0.818571 | + | 1.41781i | 2.42827 | − | 1.45035i | 0 | 1.05576 | + | 5.81931i | ||||||||
685.12 | 1.41293 | + | 0.0601950i | 0 | 1.99275 | + | 0.170103i | − | 0.556100i | 0 | −2.30251 | − | 3.98807i | 2.80539 | + | 0.360297i | 0 | 0.0334744 | − | 0.785731i | |||||||
757.1 | −1.33456 | − | 0.467912i | 0 | 1.56212 | + | 1.24892i | − | 0.497079i | 0 | −0.845740 | + | 1.46486i | −1.50036 | − | 2.39769i | 0 | −0.232589 | + | 0.663383i | |||||||
757.2 | −1.24938 | + | 0.662601i | 0 | 1.12192 | − | 1.65569i | − | 1.78237i | 0 | 1.65832 | − | 2.87229i | −0.304647 | + | 2.81197i | 0 | 1.18100 | + | 2.22687i | |||||||
757.3 | −1.02392 | − | 0.975496i | 0 | 0.0968157 | + | 1.99766i | 2.24007i | 0 | 0.471952 | − | 0.817445i | 1.84957 | − | 2.13988i | 0 | 2.18518 | − | 2.29365i | ||||||||
757.4 | −0.758596 | + | 1.19354i | 0 | −0.849063 | − | 1.81083i | − | 0.556100i | 0 | −2.30251 | + | 3.98807i | 2.80539 | + | 0.360297i | 0 | 0.663726 | + | 0.421855i | |||||||
757.5 | −0.477121 | + | 1.33130i | 0 | −1.54471 | − | 1.27038i | 4.18204i | 0 | 0.818571 | − | 1.41781i | 2.42827 | − | 1.45035i | 0 | −5.56755 | − | 1.99534i | ||||||||
757.6 | −0.332845 | − | 1.37449i | 0 | −1.77843 | + | 0.914983i | − | 2.24007i | 0 | 0.471952 | − | 0.817445i | 1.84957 | + | 2.13988i | 0 | −3.07895 | + | 0.745597i | |||||||
757.7 | 0.262058 | − | 1.38972i | 0 | −1.86265 | − | 0.728375i | 0.497079i | 0 | −0.845740 | + | 1.46486i | −1.50036 | + | 2.39769i | 0 | 0.690801 | + | 0.130263i | ||||||||
757.8 | 0.628723 | + | 1.26677i | 0 | −1.20941 | + | 1.59290i | − | 2.59989i | 0 | −0.300588 | + | 0.520633i | −2.77822 | − | 0.530559i | 0 | 3.29346 | − | 1.63461i | |||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.b | even | 2 | 1 | inner |
13.c | even | 3 | 1 | inner |
104.r | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 936.2.be.a | 24 | |
3.b | odd | 2 | 1 | 104.2.r.a | ✓ | 24 | |
8.b | even | 2 | 1 | inner | 936.2.be.a | 24 | |
12.b | even | 2 | 1 | 416.2.z.a | 24 | ||
13.c | even | 3 | 1 | inner | 936.2.be.a | 24 | |
24.f | even | 2 | 1 | 416.2.z.a | 24 | ||
24.h | odd | 2 | 1 | 104.2.r.a | ✓ | 24 | |
39.i | odd | 6 | 1 | 104.2.r.a | ✓ | 24 | |
104.r | even | 6 | 1 | inner | 936.2.be.a | 24 | |
156.p | even | 6 | 1 | 416.2.z.a | 24 | ||
312.bh | odd | 6 | 1 | 104.2.r.a | ✓ | 24 | |
312.bn | even | 6 | 1 | 416.2.z.a | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
104.2.r.a | ✓ | 24 | 3.b | odd | 2 | 1 | |
104.2.r.a | ✓ | 24 | 24.h | odd | 2 | 1 | |
104.2.r.a | ✓ | 24 | 39.i | odd | 6 | 1 | |
104.2.r.a | ✓ | 24 | 312.bh | odd | 6 | 1 | |
416.2.z.a | 24 | 12.b | even | 2 | 1 | ||
416.2.z.a | 24 | 24.f | even | 2 | 1 | ||
416.2.z.a | 24 | 156.p | even | 6 | 1 | ||
416.2.z.a | 24 | 312.bn | even | 6 | 1 | ||
936.2.be.a | 24 | 1.a | even | 1 | 1 | trivial | |
936.2.be.a | 24 | 8.b | even | 2 | 1 | inner | |
936.2.be.a | 24 | 13.c | even | 3 | 1 | inner | |
936.2.be.a | 24 | 104.r | even | 6 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{12} + 33T_{5}^{10} + 351T_{5}^{8} + 1543T_{5}^{6} + 2664T_{5}^{4} + 1152T_{5}^{2} + 144 \)
acting on \(S_{2}^{\mathrm{new}}(936, [\chi])\).