L(s) = 1 | + (1.39 − 0.252i)2-s + (1.87 − 0.702i)4-s + 4.18i·5-s + (0.818 + 1.41i)7-s + (2.42 − 1.45i)8-s + (1.05 + 5.81i)10-s + (−0.112 − 0.0649i)11-s + (−2.30 + 2.77i)13-s + (1.49 + 1.76i)14-s + (3.01 − 2.63i)16-s + (−1.60 − 2.77i)17-s + (−3.31 + 1.91i)19-s + (2.93 + 7.83i)20-s + (−0.172 − 0.0619i)22-s + (1.09 − 1.89i)23-s + ⋯ |
L(s) = 1 | + (0.983 − 0.178i)2-s + (0.936 − 0.351i)4-s + 1.87i·5-s + (0.309 + 0.535i)7-s + (0.858 − 0.512i)8-s + (0.333 + 1.84i)10-s + (−0.0339 − 0.0195i)11-s + (−0.640 + 0.768i)13-s + (0.400 + 0.472i)14-s + (0.753 − 0.657i)16-s + (−0.388 − 0.672i)17-s + (−0.761 + 0.439i)19-s + (0.656 + 1.75i)20-s + (−0.0368 − 0.0132i)22-s + (0.227 − 0.394i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.411 - 0.911i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.411 - 0.911i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.44726 + 1.57985i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.44726 + 1.57985i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.39 + 0.252i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (2.30 - 2.77i)T \) |
good | 5 | \( 1 - 4.18iT - 5T^{2} \) |
| 7 | \( 1 + (-0.818 - 1.41i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (0.112 + 0.0649i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (1.60 + 2.77i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (3.31 - 1.91i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.09 + 1.89i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.98 - 2.87i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 4.16T + 31T^{2} \) |
| 37 | \( 1 + (0.156 + 0.0902i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (2.25 - 3.90i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-5.84 + 3.37i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 4.71T + 47T^{2} \) |
| 53 | \( 1 + 4.75iT - 53T^{2} \) |
| 59 | \( 1 + (-9.37 + 5.40i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (1.24 - 0.719i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-11.0 - 6.36i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (2.53 + 4.39i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 3.28T + 73T^{2} \) |
| 79 | \( 1 + 9.44T + 79T^{2} \) |
| 83 | \( 1 - 5.48iT - 83T^{2} \) |
| 89 | \( 1 + (-0.386 + 0.669i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (5.07 + 8.78i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.40715988749989923084258829070, −9.777714460968612808850470311608, −8.396773506793470274076921505071, −7.19129094974930404829576791989, −6.77456894424260866715052396901, −5.98721676042407838656046698256, −4.86795830312065607915445282471, −3.84091806903815409661487960206, −2.72031028511197739526964961144, −2.18998918951649578021351316928,
1.02705861240088552559774818618, 2.39911582239761337309953106863, 4.00625338715234938445857032184, 4.59618328397103338579248191833, 5.31543119157183941340818857442, 6.20128374247053429575422980584, 7.42408155729702438559230863212, 8.160411706399299592315118562579, 8.834716892349648884825063333902, 10.00855496443452203936785724719