Properties

Label 936.2.be.a.685.11
Level $936$
Weight $2$
Character 936.685
Analytic conductor $7.474$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(685,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.685"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.be (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,1,0,-1,0,0,-2,10,0,-3,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 685.11
Character \(\chi\) \(=\) 936.685
Dual form 936.2.be.a.757.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.39150 - 0.252450i) q^{2} +(1.87254 - 0.702569i) q^{4} +4.18204i q^{5} +(0.818571 + 1.41781i) q^{7} +(2.42827 - 1.45035i) q^{8} +(1.05576 + 5.81931i) q^{10} +(-0.112523 - 0.0649654i) q^{11} +(-2.30757 + 2.77040i) q^{13} +(1.49697 + 1.76623i) q^{14} +(3.01279 - 2.63117i) q^{16} +(-1.60044 - 2.77205i) q^{17} +(-3.31858 + 1.91598i) q^{19} +(2.93817 + 7.83103i) q^{20} +(-0.172977 - 0.0619926i) q^{22} +(1.09184 - 1.89113i) q^{23} -12.4895 q^{25} +(-2.51159 + 4.43756i) q^{26} +(2.52891 + 2.07979i) q^{28} +(4.98269 + 2.87676i) q^{29} +4.16704 q^{31} +(3.52806 - 4.42186i) q^{32} +(-2.92682 - 3.45327i) q^{34} +(-5.92932 + 3.42330i) q^{35} +(-0.156315 - 0.0902485i) q^{37} +(-4.13411 + 3.50386i) q^{38} +(6.06541 + 10.1551i) q^{40} +(-2.25610 + 3.90767i) q^{41} +(5.84408 - 3.37408i) q^{43} +(-0.256347 - 0.0425947i) q^{44} +(1.04188 - 2.90714i) q^{46} +4.71041 q^{47} +(2.15988 - 3.74103i) q^{49} +(-17.3791 + 3.15297i) q^{50} +(-2.37461 + 6.80891i) q^{52} -4.75546i q^{53} +(0.271688 - 0.470577i) q^{55} +(4.04402 + 2.25560i) q^{56} +(7.65965 + 2.74512i) q^{58} +(9.37008 - 5.40982i) q^{59} +(-1.24545 + 0.719063i) q^{61} +(5.79842 - 1.05197i) q^{62} +(3.79299 - 7.04367i) q^{64} +(-11.5859 - 9.65035i) q^{65} +(11.0310 + 6.36874i) q^{67} +(-4.94445 - 4.06634i) q^{68} +(-7.38643 + 6.26037i) q^{70} +(-2.53663 - 4.39358i) q^{71} +3.28487 q^{73} +(-0.240295 - 0.0861189i) q^{74} +(-4.86805 + 5.91928i) q^{76} -0.212715i q^{77} -9.44449 q^{79} +(11.0037 + 12.5996i) q^{80} +(-2.15286 + 6.00707i) q^{82} +5.48783i q^{83} +(11.5928 - 6.69312i) q^{85} +(7.28024 - 6.17037i) q^{86} +(-0.367459 + 0.00544441i) q^{88} +(0.386337 - 0.669155i) q^{89} +(-5.81680 - 1.00392i) q^{91} +(0.715870 - 4.30830i) q^{92} +(6.55453 - 1.18915i) q^{94} +(-8.01272 - 13.8784i) q^{95} +(-5.07163 - 8.78432i) q^{97} +(2.06105 - 5.75090i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + q^{2} - q^{4} - 2 q^{7} + 10 q^{8} - 3 q^{10} - 8 q^{14} - q^{16} + 11 q^{20} - 2 q^{22} + 14 q^{23} - 12 q^{25} + 3 q^{26} - 4 q^{28} - 8 q^{31} + 21 q^{32} + 14 q^{34} - 12 q^{38} + 54 q^{40}+ \cdots + 17 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.39150 0.252450i 0.983938 0.178509i
\(3\) 0 0
\(4\) 1.87254 0.702569i 0.936269 0.351285i
\(5\) 4.18204i 1.87027i 0.354297 + 0.935133i \(0.384720\pi\)
−0.354297 + 0.935133i \(0.615280\pi\)
\(6\) 0 0
\(7\) 0.818571 + 1.41781i 0.309391 + 0.535880i 0.978229 0.207527i \(-0.0665416\pi\)
−0.668839 + 0.743408i \(0.733208\pi\)
\(8\) 2.42827 1.45035i 0.858523 0.512775i
\(9\) 0 0
\(10\) 1.05576 + 5.81931i 0.333860 + 1.84023i
\(11\) −0.112523 0.0649654i −0.0339270 0.0195878i 0.482941 0.875653i \(-0.339569\pi\)
−0.516868 + 0.856065i \(0.672902\pi\)
\(12\) 0 0
\(13\) −2.30757 + 2.77040i −0.640005 + 0.768371i
\(14\) 1.49697 + 1.76623i 0.400081 + 0.472044i
\(15\) 0 0
\(16\) 3.01279 2.63117i 0.753198 0.657793i
\(17\) −1.60044 2.77205i −0.388165 0.672321i 0.604038 0.796955i \(-0.293557\pi\)
−0.992203 + 0.124635i \(0.960224\pi\)
\(18\) 0 0
\(19\) −3.31858 + 1.91598i −0.761334 + 0.439556i −0.829775 0.558099i \(-0.811531\pi\)
0.0684404 + 0.997655i \(0.478198\pi\)
\(20\) 2.93817 + 7.83103i 0.656995 + 1.75107i
\(21\) 0 0
\(22\) −0.172977 0.0619926i −0.0368787 0.0132169i
\(23\) 1.09184 1.89113i 0.227665 0.394327i −0.729451 0.684033i \(-0.760224\pi\)
0.957116 + 0.289706i \(0.0935575\pi\)
\(24\) 0 0
\(25\) −12.4895 −2.49789
\(26\) −2.51159 + 4.43756i −0.492563 + 0.870277i
\(27\) 0 0
\(28\) 2.52891 + 2.07979i 0.477919 + 0.393044i
\(29\) 4.98269 + 2.87676i 0.925263 + 0.534201i 0.885310 0.465001i \(-0.153946\pi\)
0.0399526 + 0.999202i \(0.487279\pi\)
\(30\) 0 0
\(31\) 4.16704 0.748422 0.374211 0.927344i \(-0.377914\pi\)
0.374211 + 0.927344i \(0.377914\pi\)
\(32\) 3.52806 4.42186i 0.623678 0.781681i
\(33\) 0 0
\(34\) −2.92682 3.45327i −0.501946 0.592231i
\(35\) −5.92932 + 3.42330i −1.00224 + 0.578643i
\(36\) 0 0
\(37\) −0.156315 0.0902485i −0.0256980 0.0148368i 0.487096 0.873348i \(-0.338056\pi\)
−0.512794 + 0.858512i \(0.671390\pi\)
\(38\) −4.13411 + 3.50386i −0.670641 + 0.568402i
\(39\) 0 0
\(40\) 6.06541 + 10.1551i 0.959026 + 1.60567i
\(41\) −2.25610 + 3.90767i −0.352343 + 0.610276i −0.986660 0.162798i \(-0.947948\pi\)
0.634317 + 0.773073i \(0.281282\pi\)
\(42\) 0 0
\(43\) 5.84408 3.37408i 0.891213 0.514542i 0.0168740 0.999858i \(-0.494629\pi\)
0.874339 + 0.485315i \(0.161295\pi\)
\(44\) −0.256347 0.0425947i −0.0386457 0.00642139i
\(45\) 0 0
\(46\) 1.04188 2.90714i 0.153617 0.428634i
\(47\) 4.71041 0.687084 0.343542 0.939137i \(-0.388373\pi\)
0.343542 + 0.939137i \(0.388373\pi\)
\(48\) 0 0
\(49\) 2.15988 3.74103i 0.308555 0.534433i
\(50\) −17.3791 + 3.15297i −2.45777 + 0.445898i
\(51\) 0 0
\(52\) −2.37461 + 6.80891i −0.329299 + 0.944226i
\(53\) 4.75546i 0.653213i −0.945160 0.326606i \(-0.894095\pi\)
0.945160 0.326606i \(-0.105905\pi\)
\(54\) 0 0
\(55\) 0.271688 0.470577i 0.0366344 0.0634526i
\(56\) 4.04402 + 2.25560i 0.540405 + 0.301418i
\(57\) 0 0
\(58\) 7.65965 + 2.74512i 1.00576 + 0.360452i
\(59\) 9.37008 5.40982i 1.21988 0.704298i 0.254988 0.966944i \(-0.417929\pi\)
0.964892 + 0.262646i \(0.0845952\pi\)
\(60\) 0 0
\(61\) −1.24545 + 0.719063i −0.159464 + 0.0920666i −0.577608 0.816314i \(-0.696014\pi\)
0.418144 + 0.908381i \(0.362681\pi\)
\(62\) 5.79842 1.05197i 0.736401 0.133600i
\(63\) 0 0
\(64\) 3.79299 7.04367i 0.474123 0.880458i
\(65\) −11.5859 9.65035i −1.43706 1.19698i
\(66\) 0 0
\(67\) 11.0310 + 6.36874i 1.34765 + 0.778065i 0.987916 0.154991i \(-0.0495347\pi\)
0.359732 + 0.933056i \(0.382868\pi\)
\(68\) −4.94445 4.06634i −0.599602 0.493117i
\(69\) 0 0
\(70\) −7.38643 + 6.26037i −0.882848 + 0.748258i
\(71\) −2.53663 4.39358i −0.301043 0.521422i 0.675329 0.737516i \(-0.264001\pi\)
−0.976373 + 0.216094i \(0.930668\pi\)
\(72\) 0 0
\(73\) 3.28487 0.384464 0.192232 0.981349i \(-0.438427\pi\)
0.192232 + 0.981349i \(0.438427\pi\)
\(74\) −0.240295 0.0861189i −0.0279338 0.0100111i
\(75\) 0 0
\(76\) −4.86805 + 5.91928i −0.558404 + 0.678988i
\(77\) 0.212715i 0.0242411i
\(78\) 0 0
\(79\) −9.44449 −1.06259 −0.531294 0.847188i \(-0.678294\pi\)
−0.531294 + 0.847188i \(0.678294\pi\)
\(80\) 11.0037 + 12.5996i 1.23025 + 1.40868i
\(81\) 0 0
\(82\) −2.15286 + 6.00707i −0.237744 + 0.663370i
\(83\) 5.48783i 0.602368i 0.953566 + 0.301184i \(0.0973818\pi\)
−0.953566 + 0.301184i \(0.902618\pi\)
\(84\) 0 0
\(85\) 11.5928 6.69312i 1.25742 0.725971i
\(86\) 7.28024 6.17037i 0.785048 0.665368i
\(87\) 0 0
\(88\) −0.367459 + 0.00544441i −0.0391713 + 0.000580376i
\(89\) 0.386337 0.669155i 0.0409516 0.0709303i −0.844823 0.535046i \(-0.820294\pi\)
0.885775 + 0.464115i \(0.153628\pi\)
\(90\) 0 0
\(91\) −5.81680 1.00392i −0.609766 0.105239i
\(92\) 0.715870 4.30830i 0.0746346 0.449172i
\(93\) 0 0
\(94\) 6.55453 1.18915i 0.676048 0.122651i
\(95\) −8.01272 13.8784i −0.822087 1.42390i
\(96\) 0 0
\(97\) −5.07163 8.78432i −0.514946 0.891913i −0.999850 0.0173453i \(-0.994479\pi\)
0.484903 0.874568i \(-0.338855\pi\)
\(98\) 2.06105 5.75090i 0.208198 0.580929i
\(99\) 0 0
\(100\) −23.3870 + 8.77472i −2.33870 + 0.877472i
\(101\) −1.06784 0.616520i −0.106254 0.0613460i 0.445931 0.895067i \(-0.352873\pi\)
−0.552185 + 0.833721i \(0.686206\pi\)
\(102\) 0 0
\(103\) 17.8494 1.75876 0.879378 0.476124i \(-0.157959\pi\)
0.879378 + 0.476124i \(0.157959\pi\)
\(104\) −1.58536 + 10.0741i −0.155457 + 0.987843i
\(105\) 0 0
\(106\) −1.20052 6.61722i −0.116605 0.642721i
\(107\) −5.60755 3.23752i −0.542102 0.312983i 0.203828 0.979007i \(-0.434662\pi\)
−0.745930 + 0.666024i \(0.767995\pi\)
\(108\) 0 0
\(109\) 6.68786i 0.640581i −0.947319 0.320291i \(-0.896219\pi\)
0.947319 0.320291i \(-0.103781\pi\)
\(110\) 0.259256 0.723395i 0.0247191 0.0689730i
\(111\) 0 0
\(112\) 6.19668 + 2.11776i 0.585531 + 0.200109i
\(113\) 2.97574 + 5.15414i 0.279935 + 0.484861i 0.971368 0.237579i \(-0.0763539\pi\)
−0.691434 + 0.722440i \(0.743021\pi\)
\(114\) 0 0
\(115\) 7.90878 + 4.56613i 0.737497 + 0.425794i
\(116\) 11.3514 + 1.88615i 1.05395 + 0.175125i
\(117\) 0 0
\(118\) 11.6727 9.89323i 1.07456 0.910746i
\(119\) 2.62015 4.53824i 0.240189 0.416019i
\(120\) 0 0
\(121\) −5.49156 9.51166i −0.499233 0.864696i
\(122\) −1.55152 + 1.31499i −0.140468 + 0.119054i
\(123\) 0 0
\(124\) 7.80293 2.92763i 0.700724 0.262909i
\(125\) 31.3213i 2.80146i
\(126\) 0 0
\(127\) −2.12829 + 3.68631i −0.188855 + 0.327107i −0.944869 0.327449i \(-0.893811\pi\)
0.756014 + 0.654556i \(0.227144\pi\)
\(128\) 3.49976 10.7588i 0.309338 0.950952i
\(129\) 0 0
\(130\) −18.5580 10.5036i −1.62765 0.921225i
\(131\) 6.87969i 0.601082i 0.953769 + 0.300541i \(0.0971672\pi\)
−0.953769 + 0.300541i \(0.902833\pi\)
\(132\) 0 0
\(133\) −5.43298 3.13673i −0.471099 0.271989i
\(134\) 16.9574 + 6.07731i 1.46489 + 0.525000i
\(135\) 0 0
\(136\) −7.90674 4.41009i −0.677998 0.378162i
\(137\) −2.17602 3.76898i −0.185910 0.322006i 0.757973 0.652286i \(-0.226190\pi\)
−0.943883 + 0.330280i \(0.892857\pi\)
\(138\) 0 0
\(139\) −10.5694 + 6.10225i −0.896485 + 0.517586i −0.876058 0.482206i \(-0.839836\pi\)
−0.0204268 + 0.999791i \(0.506503\pi\)
\(140\) −8.69778 + 10.5760i −0.735096 + 0.893836i
\(141\) 0 0
\(142\) −4.63889 5.47329i −0.389287 0.459308i
\(143\) 0.439635 0.161823i 0.0367642 0.0135323i
\(144\) 0 0
\(145\) −12.0307 + 20.8378i −0.999097 + 1.73049i
\(146\) 4.57089 0.829266i 0.378289 0.0686305i
\(147\) 0 0
\(148\) −0.356112 0.0591716i −0.0292722 0.00486388i
\(149\) −1.30871 + 0.755584i −0.107214 + 0.0618999i −0.552648 0.833415i \(-0.686383\pi\)
0.445434 + 0.895315i \(0.353049\pi\)
\(150\) 0 0
\(151\) 18.5064 1.50603 0.753016 0.658002i \(-0.228598\pi\)
0.753016 + 0.658002i \(0.228598\pi\)
\(152\) −5.27956 + 9.46561i −0.428229 + 0.767762i
\(153\) 0 0
\(154\) −0.0537000 0.295993i −0.00432727 0.0238518i
\(155\) 17.4267i 1.39975i
\(156\) 0 0
\(157\) 12.3725i 0.987436i −0.869622 0.493718i \(-0.835638\pi\)
0.869622 0.493718i \(-0.164362\pi\)
\(158\) −13.1420 + 2.38427i −1.04552 + 0.189682i
\(159\) 0 0
\(160\) 18.4924 + 14.7545i 1.46195 + 1.16644i
\(161\) 3.57500 0.281750
\(162\) 0 0
\(163\) −16.7151 + 9.65045i −1.30922 + 0.755881i −0.981967 0.189054i \(-0.939458\pi\)
−0.327258 + 0.944935i \(0.606125\pi\)
\(164\) −1.47921 + 8.90233i −0.115507 + 0.695155i
\(165\) 0 0
\(166\) 1.38541 + 7.63631i 0.107528 + 0.592693i
\(167\) −7.37018 + 12.7655i −0.570322 + 0.987826i 0.426211 + 0.904624i \(0.359848\pi\)
−0.996533 + 0.0832023i \(0.973485\pi\)
\(168\) 0 0
\(169\) −2.35025 12.7858i −0.180788 0.983522i
\(170\) 14.4417 12.2401i 1.10763 0.938772i
\(171\) 0 0
\(172\) 8.57273 10.4240i 0.653664 0.794819i
\(173\) −17.3427 + 10.0128i −1.31854 + 0.761261i −0.983494 0.180940i \(-0.942086\pi\)
−0.335049 + 0.942201i \(0.608753\pi\)
\(174\) 0 0
\(175\) −10.2235 17.7076i −0.772825 1.33857i
\(176\) −0.509945 + 0.100341i −0.0384385 + 0.00756350i
\(177\) 0 0
\(178\) 0.368659 1.02866i 0.0276322 0.0771013i
\(179\) −18.1523 10.4802i −1.35677 0.783330i −0.367581 0.929992i \(-0.619814\pi\)
−0.989187 + 0.146662i \(0.953147\pi\)
\(180\) 0 0
\(181\) 7.45173i 0.553883i 0.960887 + 0.276941i \(0.0893208\pi\)
−0.960887 + 0.276941i \(0.910679\pi\)
\(182\) −8.34751 + 0.0715061i −0.618759 + 0.00530039i
\(183\) 0 0
\(184\) −0.0915017 6.17572i −0.00674560 0.455280i
\(185\) 0.377423 0.653716i 0.0277487 0.0480621i
\(186\) 0 0
\(187\) 0.415894i 0.0304131i
\(188\) 8.82042 3.30939i 0.643295 0.241362i
\(189\) 0 0
\(190\) −14.6533 17.2890i −1.06306 1.25428i
\(191\) −2.54530 4.40859i −0.184171 0.318994i 0.759126 0.650944i \(-0.225627\pi\)
−0.943297 + 0.331950i \(0.892293\pi\)
\(192\) 0 0
\(193\) −2.32009 + 4.01852i −0.167004 + 0.289259i −0.937365 0.348348i \(-0.886743\pi\)
0.770361 + 0.637608i \(0.220076\pi\)
\(194\) −9.27478 10.9430i −0.665890 0.785665i
\(195\) 0 0
\(196\) 1.41613 8.52269i 0.101152 0.608763i
\(197\) −8.23896 4.75677i −0.587002 0.338906i 0.176909 0.984227i \(-0.443390\pi\)
−0.763911 + 0.645322i \(0.776723\pi\)
\(198\) 0 0
\(199\) −3.19043 5.52598i −0.226163 0.391727i 0.730504 0.682908i \(-0.239285\pi\)
−0.956668 + 0.291181i \(0.905952\pi\)
\(200\) −30.3278 + 18.1141i −2.14450 + 1.28086i
\(201\) 0 0
\(202\) −1.64154 0.588309i −0.115499 0.0413933i
\(203\) 9.41932i 0.661107i
\(204\) 0 0
\(205\) −16.3420 9.43509i −1.14138 0.658975i
\(206\) 24.8375 4.50610i 1.73051 0.313955i
\(207\) 0 0
\(208\) 0.337178 + 14.4183i 0.0233791 + 0.999727i
\(209\) 0.497890 0.0344398
\(210\) 0 0
\(211\) −0.393007 0.226903i −0.0270557 0.0156206i 0.486411 0.873730i \(-0.338306\pi\)
−0.513467 + 0.858109i \(0.671639\pi\)
\(212\) −3.34104 8.90478i −0.229463 0.611582i
\(213\) 0 0
\(214\) −8.62021 3.08938i −0.589265 0.211185i
\(215\) 14.1105 + 24.4402i 0.962331 + 1.66681i
\(216\) 0 0
\(217\) 3.41101 + 5.90805i 0.231555 + 0.401064i
\(218\) −1.68835 9.30615i −0.114350 0.630292i
\(219\) 0 0
\(220\) 0.178133 1.07205i 0.0120097 0.0722778i
\(221\) 11.3728 + 1.96282i 0.765019 + 0.132034i
\(222\) 0 0
\(223\) −5.57308 + 9.65286i −0.373201 + 0.646403i −0.990056 0.140674i \(-0.955073\pi\)
0.616855 + 0.787077i \(0.288407\pi\)
\(224\) 9.15730 + 1.38250i 0.611848 + 0.0923721i
\(225\) 0 0
\(226\) 5.44191 + 6.42075i 0.361991 + 0.427102i
\(227\) 6.69076 3.86291i 0.444082 0.256391i −0.261246 0.965272i \(-0.584133\pi\)
0.705327 + 0.708882i \(0.250800\pi\)
\(228\) 0 0
\(229\) 11.1426i 0.736326i −0.929761 0.368163i \(-0.879987\pi\)
0.929761 0.368163i \(-0.120013\pi\)
\(230\) 12.1578 + 4.35720i 0.801660 + 0.287305i
\(231\) 0 0
\(232\) 16.2716 0.241086i 1.06828 0.0158281i
\(233\) 6.04221 0.395838 0.197919 0.980218i \(-0.436582\pi\)
0.197919 + 0.980218i \(0.436582\pi\)
\(234\) 0 0
\(235\) 19.6991i 1.28503i
\(236\) 13.7450 16.7132i 0.894726 1.08794i
\(237\) 0 0
\(238\) 2.50026 6.97641i 0.162068 0.452213i
\(239\) 8.18119 0.529197 0.264599 0.964359i \(-0.414761\pi\)
0.264599 + 0.964359i \(0.414761\pi\)
\(240\) 0 0
\(241\) 3.58510 + 6.20958i 0.230937 + 0.399994i 0.958084 0.286487i \(-0.0924876\pi\)
−0.727147 + 0.686481i \(0.759154\pi\)
\(242\) −10.0427 11.8491i −0.645571 0.761690i
\(243\) 0 0
\(244\) −1.82697 + 2.22149i −0.116960 + 0.142216i
\(245\) 15.6451 + 9.03273i 0.999531 + 0.577080i
\(246\) 0 0
\(247\) 2.34981 13.6151i 0.149515 0.866305i
\(248\) 10.1187 6.04365i 0.642537 0.383772i
\(249\) 0 0
\(250\) −7.90707 43.5835i −0.500087 2.75646i
\(251\) 0.0364204 0.0210273i 0.00229884 0.00132723i −0.498850 0.866688i \(-0.666244\pi\)
0.501149 + 0.865361i \(0.332911\pi\)
\(252\) 0 0
\(253\) −0.245716 + 0.141864i −0.0154480 + 0.00891891i
\(254\) −2.03090 + 5.66678i −0.127430 + 0.355565i
\(255\) 0 0
\(256\) 2.15385 15.8544i 0.134616 0.990898i
\(257\) 12.7818 22.1387i 0.797306 1.38097i −0.124059 0.992275i \(-0.539591\pi\)
0.921365 0.388699i \(-0.127075\pi\)
\(258\) 0 0
\(259\) 0.295499i 0.0183614i
\(260\) −28.4751 9.93072i −1.76595 0.615877i
\(261\) 0 0
\(262\) 1.73678 + 9.57309i 0.107299 + 0.591427i
\(263\) 11.5182 19.9501i 0.710241 1.23017i −0.254526 0.967066i \(-0.581919\pi\)
0.964767 0.263107i \(-0.0847472\pi\)
\(264\) 0 0
\(265\) 19.8875 1.22168
\(266\) −8.35186 2.99320i −0.512085 0.183525i
\(267\) 0 0
\(268\) 25.1304 + 4.17568i 1.53508 + 0.255070i
\(269\) −11.1829 + 6.45647i −0.681836 + 0.393658i −0.800546 0.599271i \(-0.795457\pi\)
0.118711 + 0.992929i \(0.462124\pi\)
\(270\) 0 0
\(271\) 9.32018 16.1430i 0.566161 0.980619i −0.430780 0.902457i \(-0.641762\pi\)
0.996941 0.0781619i \(-0.0249051\pi\)
\(272\) −12.1156 4.14057i −0.734613 0.251059i
\(273\) 0 0
\(274\) −3.97941 4.69520i −0.240405 0.283647i
\(275\) 1.40536 + 0.811383i 0.0847462 + 0.0489282i
\(276\) 0 0
\(277\) −14.4955 + 8.36900i −0.870953 + 0.502845i −0.867665 0.497150i \(-0.834380\pi\)
−0.00328797 + 0.999995i \(0.501047\pi\)
\(278\) −13.1668 + 11.1595i −0.789692 + 0.669303i
\(279\) 0 0
\(280\) −9.43303 + 16.9123i −0.563731 + 1.01070i
\(281\) −12.2103 −0.728407 −0.364203 0.931319i \(-0.618659\pi\)
−0.364203 + 0.931319i \(0.618659\pi\)
\(282\) 0 0
\(283\) −18.9020 10.9131i −1.12361 0.648717i −0.181290 0.983430i \(-0.558027\pi\)
−0.942320 + 0.334713i \(0.891361\pi\)
\(284\) −7.83674 6.44498i −0.465025 0.382439i
\(285\) 0 0
\(286\) 0.570900 0.336162i 0.0337580 0.0198777i
\(287\) −7.38710 −0.436046
\(288\) 0 0
\(289\) 3.37716 5.84941i 0.198657 0.344083i
\(290\) −11.4802 + 32.0330i −0.674142 + 1.88104i
\(291\) 0 0
\(292\) 6.15103 2.30785i 0.359962 0.135056i
\(293\) 4.85556 2.80336i 0.283665 0.163774i −0.351417 0.936219i \(-0.614300\pi\)
0.635081 + 0.772445i \(0.280967\pi\)
\(294\) 0 0
\(295\) 22.6241 + 39.1860i 1.31722 + 2.28150i
\(296\) −0.510467 + 0.00756326i −0.0296703 + 0.000439605i
\(297\) 0 0
\(298\) −1.63032 + 1.38178i −0.0944420 + 0.0800443i
\(299\) 2.71968 + 7.38875i 0.157283 + 0.427303i
\(300\) 0 0
\(301\) 9.56758 + 5.52384i 0.551466 + 0.318389i
\(302\) 25.7517 4.67196i 1.48184 0.268841i
\(303\) 0 0
\(304\) −4.95691 + 14.5042i −0.284298 + 0.831874i
\(305\) −3.00715 5.20854i −0.172189 0.298240i
\(306\) 0 0
\(307\) 10.4756i 0.597873i 0.954273 + 0.298937i \(0.0966319\pi\)
−0.954273 + 0.298937i \(0.903368\pi\)
\(308\) −0.149447 0.398317i −0.00851553 0.0226962i
\(309\) 0 0
\(310\) 4.39938 + 24.2493i 0.249868 + 1.37726i
\(311\) 8.46570 0.480046 0.240023 0.970767i \(-0.422845\pi\)
0.240023 + 0.970767i \(0.422845\pi\)
\(312\) 0 0
\(313\) −11.5873 −0.654953 −0.327477 0.944859i \(-0.606198\pi\)
−0.327477 + 0.944859i \(0.606198\pi\)
\(314\) −3.12345 17.2164i −0.176267 0.971576i
\(315\) 0 0
\(316\) −17.6852 + 6.63540i −0.994868 + 0.373271i
\(317\) 10.0772i 0.565993i −0.959121 0.282997i \(-0.908671\pi\)
0.959121 0.282997i \(-0.0913285\pi\)
\(318\) 0 0
\(319\) −0.373779 0.647405i −0.0209276 0.0362477i
\(320\) 29.4569 + 15.8624i 1.64669 + 0.886737i
\(321\) 0 0
\(322\) 4.97461 0.902511i 0.277224 0.0502950i
\(323\) 10.6224 + 6.13284i 0.591046 + 0.341240i
\(324\) 0 0
\(325\) 28.8203 34.6009i 1.59866 1.91931i
\(326\) −20.8227 + 17.6483i −1.15326 + 0.977450i
\(327\) 0 0
\(328\) 0.189072 + 12.7610i 0.0104397 + 0.704609i
\(329\) 3.85580 + 6.67845i 0.212577 + 0.368195i
\(330\) 0 0
\(331\) 22.9049 13.2242i 1.25897 0.726865i 0.286094 0.958202i \(-0.407643\pi\)
0.972874 + 0.231336i \(0.0743097\pi\)
\(332\) 3.85558 + 10.2762i 0.211602 + 0.563978i
\(333\) 0 0
\(334\) −7.03293 + 19.6238i −0.384825 + 1.07377i
\(335\) −26.6343 + 46.1320i −1.45519 + 2.52046i
\(336\) 0 0
\(337\) −9.74324 −0.530748 −0.265374 0.964146i \(-0.585495\pi\)
−0.265374 + 0.964146i \(0.585495\pi\)
\(338\) −6.49815 17.1981i −0.353453 0.935452i
\(339\) 0 0
\(340\) 17.0056 20.6779i 0.922259 1.12142i
\(341\) −0.468889 0.270713i −0.0253917 0.0146599i
\(342\) 0 0
\(343\) 18.5321 1.00064
\(344\) 9.29741 16.6691i 0.501283 0.898738i
\(345\) 0 0
\(346\) −21.6046 + 18.3110i −1.16147 + 0.984406i
\(347\) 26.5385 15.3220i 1.42466 0.822527i 0.427967 0.903795i \(-0.359230\pi\)
0.996692 + 0.0812673i \(0.0258967\pi\)
\(348\) 0 0
\(349\) 18.8036 + 10.8563i 1.00653 + 0.581122i 0.910175 0.414225i \(-0.135947\pi\)
0.0963582 + 0.995347i \(0.469281\pi\)
\(350\) −18.6963 22.0592i −0.999360 1.17912i
\(351\) 0 0
\(352\) −0.684256 + 0.268360i −0.0364710 + 0.0143037i
\(353\) −14.8743 + 25.7630i −0.791679 + 1.37123i 0.133248 + 0.991083i \(0.457459\pi\)
−0.924927 + 0.380145i \(0.875874\pi\)
\(354\) 0 0
\(355\) 18.3741 10.6083i 0.975198 0.563031i
\(356\) 0.253303 1.52445i 0.0134250 0.0807955i
\(357\) 0 0
\(358\) −27.9047 10.0007i −1.47481 0.528553i
\(359\) 35.4019 1.86844 0.934220 0.356697i \(-0.116097\pi\)
0.934220 + 0.356697i \(0.116097\pi\)
\(360\) 0 0
\(361\) −2.15802 + 3.73781i −0.113580 + 0.196727i
\(362\) 1.88119 + 10.3691i 0.0988733 + 0.544986i
\(363\) 0 0
\(364\) −11.5975 + 2.20683i −0.607874 + 0.115669i
\(365\) 13.7374i 0.719051i
\(366\) 0 0
\(367\) −11.1967 + 19.3933i −0.584465 + 1.01232i 0.410477 + 0.911871i \(0.365362\pi\)
−0.994942 + 0.100452i \(0.967971\pi\)
\(368\) −1.68639 8.57041i −0.0879091 0.446763i
\(369\) 0 0
\(370\) 0.360153 1.00493i 0.0187235 0.0522436i
\(371\) 6.74232 3.89268i 0.350044 0.202098i
\(372\) 0 0
\(373\) −7.02394 + 4.05527i −0.363686 + 0.209974i −0.670696 0.741732i \(-0.734005\pi\)
0.307011 + 0.951706i \(0.400671\pi\)
\(374\) 0.104993 + 0.578715i 0.00542903 + 0.0299247i
\(375\) 0 0
\(376\) 11.4381 6.83173i 0.589877 0.352320i
\(377\) −19.4677 + 7.16574i −1.00264 + 0.369054i
\(378\) 0 0
\(379\) −31.5220 18.1993i −1.61918 0.934833i −0.987133 0.159901i \(-0.948883\pi\)
−0.632045 0.774932i \(-0.717784\pi\)
\(380\) −24.7547 20.3584i −1.26989 1.04436i
\(381\) 0 0
\(382\) −4.65473 5.49198i −0.238157 0.280994i
\(383\) 6.06507 + 10.5050i 0.309911 + 0.536781i 0.978343 0.206992i \(-0.0663675\pi\)
−0.668432 + 0.743773i \(0.733034\pi\)
\(384\) 0 0
\(385\) 0.889583 0.0453373
\(386\) −2.21393 + 6.17747i −0.112686 + 0.314425i
\(387\) 0 0
\(388\) −15.6684 12.8858i −0.795443 0.654178i
\(389\) 9.92534i 0.503235i 0.967827 + 0.251617i \(0.0809624\pi\)
−0.967827 + 0.251617i \(0.919038\pi\)
\(390\) 0 0
\(391\) −6.98974 −0.353486
\(392\) −0.181009 12.2168i −0.00914232 0.617042i
\(393\) 0 0
\(394\) −12.6654 4.53911i −0.638071 0.228677i
\(395\) 39.4972i 1.98732i
\(396\) 0 0
\(397\) 6.08746 3.51459i 0.305521 0.176392i −0.339400 0.940642i \(-0.610224\pi\)
0.644920 + 0.764250i \(0.276891\pi\)
\(398\) −5.83451 6.88397i −0.292458 0.345062i
\(399\) 0 0
\(400\) −37.6282 + 32.8620i −1.88141 + 1.64310i
\(401\) −13.2273 + 22.9104i −0.660540 + 1.14409i 0.319934 + 0.947440i \(0.396339\pi\)
−0.980474 + 0.196649i \(0.936994\pi\)
\(402\) 0 0
\(403\) −9.61572 + 11.5444i −0.478993 + 0.575066i
\(404\) −2.43272 0.404222i −0.121033 0.0201108i
\(405\) 0 0
\(406\) 2.37791 + 13.1070i 0.118014 + 0.650488i
\(407\) 0.0117261 + 0.0203101i 0.000581239 + 0.00100674i
\(408\) 0 0
\(409\) −10.3029 17.8452i −0.509448 0.882389i −0.999940 0.0109437i \(-0.996516\pi\)
0.490493 0.871445i \(-0.336817\pi\)
\(410\) −25.1218 9.00335i −1.24068 0.444644i
\(411\) 0 0
\(412\) 33.4237 12.5405i 1.64667 0.617824i
\(413\) 15.3401 + 8.85663i 0.754839 + 0.435806i
\(414\) 0 0
\(415\) −22.9503 −1.12659
\(416\) 4.10908 + 19.9779i 0.201464 + 0.979496i
\(417\) 0 0
\(418\) 0.692813 0.125693i 0.0338866 0.00614782i
\(419\) 0.0293062 + 0.0169200i 0.00143170 + 0.000826594i 0.500716 0.865612i \(-0.333070\pi\)
−0.499284 + 0.866438i \(0.666404\pi\)
\(420\) 0 0
\(421\) 31.4805i 1.53427i 0.641488 + 0.767133i \(0.278317\pi\)
−0.641488 + 0.767133i \(0.721683\pi\)
\(422\) −0.604150 0.216520i −0.0294096 0.0105400i
\(423\) 0 0
\(424\) −6.89707 11.5475i −0.334951 0.560798i
\(425\) 19.9887 + 34.6214i 0.969594 + 1.67939i
\(426\) 0 0
\(427\) −2.03898 1.17721i −0.0986733 0.0569691i
\(428\) −12.7749 2.12269i −0.617499 0.102604i
\(429\) 0 0
\(430\) 25.8047 + 30.4462i 1.24441 + 1.46825i
\(431\) 8.74777 15.1516i 0.421365 0.729826i −0.574708 0.818359i \(-0.694884\pi\)
0.996073 + 0.0885325i \(0.0282177\pi\)
\(432\) 0 0
\(433\) 12.0881 + 20.9371i 0.580915 + 1.00617i 0.995371 + 0.0961049i \(0.0306384\pi\)
−0.414456 + 0.910069i \(0.636028\pi\)
\(434\) 6.23791 + 7.35993i 0.299429 + 0.353288i
\(435\) 0 0
\(436\) −4.69869 12.5233i −0.225026 0.599756i
\(437\) 8.36781i 0.400287i
\(438\) 0 0
\(439\) −5.67437 + 9.82831i −0.270823 + 0.469079i −0.969073 0.246775i \(-0.920629\pi\)
0.698250 + 0.715854i \(0.253963\pi\)
\(440\) −0.0227687 1.53673i −0.00108546 0.0732607i
\(441\) 0 0
\(442\) 16.3208 0.139806i 0.776301 0.00664992i
\(443\) 23.6211i 1.12227i −0.827723 0.561137i \(-0.810364\pi\)
0.827723 0.561137i \(-0.189636\pi\)
\(444\) 0 0
\(445\) 2.79844 + 1.61568i 0.132659 + 0.0765905i
\(446\) −5.31807 + 14.8389i −0.251818 + 0.702641i
\(447\) 0 0
\(448\) 13.0914 0.388018i 0.618510 0.0183321i
\(449\) −13.5758 23.5140i −0.640683 1.10970i −0.985281 0.170945i \(-0.945318\pi\)
0.344597 0.938751i \(-0.388015\pi\)
\(450\) 0 0
\(451\) 0.507727 0.293136i 0.0239079 0.0138032i
\(452\) 9.19333 + 7.56066i 0.432418 + 0.355623i
\(453\) 0 0
\(454\) 8.33499 7.06433i 0.391181 0.331545i
\(455\) 4.19842 24.3261i 0.196825 1.14043i
\(456\) 0 0
\(457\) −19.6700 + 34.0695i −0.920124 + 1.59370i −0.120903 + 0.992664i \(0.538579\pi\)
−0.799221 + 0.601038i \(0.794754\pi\)
\(458\) −2.81296 15.5050i −0.131441 0.724499i
\(459\) 0 0
\(460\) 18.0175 + 2.99380i 0.840071 + 0.139586i
\(461\) −30.5545 + 17.6406i −1.42306 + 0.821606i −0.996560 0.0828789i \(-0.973589\pi\)
−0.426505 + 0.904485i \(0.640255\pi\)
\(462\) 0 0
\(463\) 3.79130 0.176197 0.0880984 0.996112i \(-0.471921\pi\)
0.0880984 + 0.996112i \(0.471921\pi\)
\(464\) 22.5811 4.44325i 1.04830 0.206273i
\(465\) 0 0
\(466\) 8.40773 1.52536i 0.389481 0.0706609i
\(467\) 5.84443i 0.270448i 0.990815 + 0.135224i \(0.0431754\pi\)
−0.990815 + 0.135224i \(0.956825\pi\)
\(468\) 0 0
\(469\) 20.8530i 0.962904i
\(470\) 4.97306 + 27.4113i 0.229390 + 1.26439i
\(471\) 0 0
\(472\) 14.9070 26.7264i 0.686148 1.23018i
\(473\) −0.876793 −0.0403150
\(474\) 0 0
\(475\) 41.4473 23.9296i 1.90173 1.09797i
\(476\) 1.71791 10.3389i 0.0787402 0.473881i
\(477\) 0 0
\(478\) 11.3841 2.06535i 0.520697 0.0944667i
\(479\) 3.67249 6.36093i 0.167800 0.290638i −0.769846 0.638230i \(-0.779667\pi\)
0.937646 + 0.347591i \(0.113000\pi\)
\(480\) 0 0
\(481\) 0.610732 0.224801i 0.0278470 0.0102500i
\(482\) 6.55628 + 7.73556i 0.298630 + 0.352345i
\(483\) 0 0
\(484\) −16.9657 13.9527i −0.771170 0.634215i
\(485\) 36.7364 21.2098i 1.66811 0.963086i
\(486\) 0 0
\(487\) −9.78062 16.9405i −0.443202 0.767649i 0.554723 0.832035i \(-0.312824\pi\)
−0.997925 + 0.0643866i \(0.979491\pi\)
\(488\) −1.98141 + 3.55242i −0.0896941 + 0.160810i
\(489\) 0 0
\(490\) 24.0505 + 8.61940i 1.08649 + 0.389385i
\(491\) −23.1454 13.3630i −1.04454 0.603065i −0.123424 0.992354i \(-0.539387\pi\)
−0.921116 + 0.389289i \(0.872721\pi\)
\(492\) 0 0
\(493\) 18.4164i 0.829431i
\(494\) −0.167370 19.5385i −0.00753035 0.879081i
\(495\) 0 0
\(496\) 12.5544 10.9642i 0.563710 0.492307i
\(497\) 4.15283 7.19291i 0.186280 0.322646i
\(498\) 0 0
\(499\) 22.3087i 0.998674i −0.866408 0.499337i \(-0.833577\pi\)
0.866408 0.499337i \(-0.166423\pi\)
\(500\) −22.0054 58.6503i −0.984110 2.62292i
\(501\) 0 0
\(502\) 0.0453706 0.0384539i 0.00202499 0.00171628i
\(503\) 21.2109 + 36.7383i 0.945746 + 1.63808i 0.754250 + 0.656587i \(0.228001\pi\)
0.191496 + 0.981493i \(0.438666\pi\)
\(504\) 0 0
\(505\) 2.57831 4.46576i 0.114733 0.198724i
\(506\) −0.306099 + 0.259435i −0.0136078 + 0.0115333i
\(507\) 0 0
\(508\) −1.39542 + 8.39802i −0.0619117 + 0.372602i
\(509\) −32.8492 18.9655i −1.45602 0.840631i −0.457204 0.889362i \(-0.651149\pi\)
−0.998812 + 0.0487309i \(0.984482\pi\)
\(510\) 0 0
\(511\) 2.68889 + 4.65730i 0.118950 + 0.206027i
\(512\) −1.00536 22.6051i −0.0444312 0.999012i
\(513\) 0 0
\(514\) 12.1969 34.0327i 0.537983 1.50112i
\(515\) 74.6471i 3.28934i
\(516\) 0 0
\(517\) −0.530031 0.306013i −0.0233107 0.0134585i
\(518\) −0.0745989 0.411187i −0.00327769 0.0180665i
\(519\) 0 0
\(520\) −42.1301 6.63003i −1.84753 0.290746i
\(521\) 31.2115 1.36740 0.683699 0.729764i \(-0.260370\pi\)
0.683699 + 0.729764i \(0.260370\pi\)
\(522\) 0 0
\(523\) 17.2006 + 9.93079i 0.752131 + 0.434243i 0.826463 0.562990i \(-0.190349\pi\)
−0.0743322 + 0.997234i \(0.523683\pi\)
\(524\) 4.83346 + 12.8825i 0.211151 + 0.562774i
\(525\) 0 0
\(526\) 10.9911 30.6682i 0.479235 1.33720i
\(527\) −6.66910 11.5512i −0.290511 0.503179i
\(528\) 0 0
\(529\) 9.11576 + 15.7890i 0.396337 + 0.686476i
\(530\) 27.6735 5.02062i 1.20206 0.218082i
\(531\) 0 0
\(532\) −12.3772 2.05661i −0.536621 0.0891652i
\(533\) −5.61972 15.2675i −0.243417 0.661310i
\(534\) 0 0
\(535\) 13.5394 23.4510i 0.585361 1.01388i
\(536\) 36.0231 0.533731i 1.55596 0.0230537i
\(537\) 0 0
\(538\) −13.9311 + 11.8073i −0.600613 + 0.509049i
\(539\) −0.486075 + 0.280635i −0.0209367 + 0.0120878i
\(540\) 0 0
\(541\) 19.0860i 0.820573i 0.911957 + 0.410286i \(0.134571\pi\)
−0.911957 + 0.410286i \(0.865429\pi\)
\(542\) 8.89370 24.8159i 0.382017 1.06593i
\(543\) 0 0
\(544\) −17.9041 2.70302i −0.767630 0.115891i
\(545\) 27.9689 1.19806
\(546\) 0 0
\(547\) 34.9201i 1.49307i 0.665343 + 0.746537i \(0.268285\pi\)
−0.665343 + 0.746537i \(0.731715\pi\)
\(548\) −6.72265 5.52875i −0.287178 0.236177i
\(549\) 0 0
\(550\) 2.16039 + 0.774255i 0.0921192 + 0.0330144i
\(551\) −22.0473 −0.939245
\(552\) 0 0
\(553\) −7.73098 13.3905i −0.328755 0.569420i
\(554\) −18.0578 + 15.3049i −0.767201 + 0.650241i
\(555\) 0 0
\(556\) −15.5044 + 18.8524i −0.657531 + 0.799521i
\(557\) 23.7593 + 13.7174i 1.00671 + 0.581225i 0.910227 0.414109i \(-0.135907\pi\)
0.0964847 + 0.995334i \(0.469240\pi\)
\(558\) 0 0
\(559\) −4.13806 + 23.9764i −0.175021 + 1.01409i
\(560\) −8.85654 + 25.9148i −0.374257 + 1.09510i
\(561\) 0 0
\(562\) −16.9906 + 3.08250i −0.716707 + 0.130027i
\(563\) 18.8753 10.8976i 0.795498 0.459281i −0.0463964 0.998923i \(-0.514774\pi\)
0.841895 + 0.539642i \(0.181440\pi\)
\(564\) 0 0
\(565\) −21.5548 + 12.4447i −0.906819 + 0.523552i
\(566\) −29.0572 10.4137i −1.22136 0.437722i
\(567\) 0 0
\(568\) −12.5318 6.98980i −0.525825 0.293285i
\(569\) 4.13482 7.16172i 0.173341 0.300235i −0.766245 0.642548i \(-0.777877\pi\)
0.939586 + 0.342314i \(0.111210\pi\)
\(570\) 0 0
\(571\) 23.8709i 0.998967i 0.866323 + 0.499484i \(0.166477\pi\)
−0.866323 + 0.499484i \(0.833523\pi\)
\(572\) 0.709542 0.611893i 0.0296674 0.0255845i
\(573\) 0 0
\(574\) −10.2791 + 1.86488i −0.429043 + 0.0778384i
\(575\) −13.6365 + 23.6192i −0.568683 + 0.984988i
\(576\) 0 0
\(577\) −11.0017 −0.458005 −0.229003 0.973426i \(-0.573546\pi\)
−0.229003 + 0.973426i \(0.573546\pi\)
\(578\) 3.22263 8.99202i 0.134044 0.374019i
\(579\) 0 0
\(580\) −7.88797 + 47.4720i −0.327530 + 1.97117i
\(581\) −7.78068 + 4.49218i −0.322797 + 0.186367i
\(582\) 0 0
\(583\) −0.308940 + 0.535100i −0.0127950 + 0.0221616i
\(584\) 7.97654 4.76420i 0.330072 0.197144i
\(585\) 0 0
\(586\) 6.04879 5.12666i 0.249873 0.211780i
\(587\) −23.7398 13.7062i −0.979846 0.565714i −0.0776224 0.996983i \(-0.524733\pi\)
−0.902224 + 0.431268i \(0.858066\pi\)
\(588\) 0 0
\(589\) −13.8286 + 7.98396i −0.569799 + 0.328974i
\(590\) 41.3739 + 48.8159i 1.70334 + 2.00972i
\(591\) 0 0
\(592\) −0.708404 + 0.139392i −0.0291152 + 0.00572897i
\(593\) −27.9342 −1.14712 −0.573560 0.819163i \(-0.694438\pi\)
−0.573560 + 0.819163i \(0.694438\pi\)
\(594\) 0 0
\(595\) 18.9791 + 10.9576i 0.778067 + 0.449217i
\(596\) −1.91976 + 2.33432i −0.0786364 + 0.0956174i
\(597\) 0 0
\(598\) 5.64973 + 9.59486i 0.231034 + 0.392363i
\(599\) −28.5235 −1.16544 −0.582720 0.812673i \(-0.698011\pi\)
−0.582720 + 0.812673i \(0.698011\pi\)
\(600\) 0 0
\(601\) 14.9335 25.8655i 0.609149 1.05508i −0.382232 0.924066i \(-0.624845\pi\)
0.991381 0.131010i \(-0.0418221\pi\)
\(602\) 14.7078 + 5.27108i 0.599444 + 0.214833i
\(603\) 0 0
\(604\) 34.6540 13.0021i 1.41005 0.529046i
\(605\) 39.7782 22.9659i 1.61721 0.933698i
\(606\) 0 0
\(607\) −1.42147 2.46206i −0.0576958 0.0999320i 0.835735 0.549133i \(-0.185042\pi\)
−0.893431 + 0.449201i \(0.851709\pi\)
\(608\) −3.23594 + 21.4340i −0.131235 + 0.869262i
\(609\) 0 0
\(610\) −5.49934 6.48852i −0.222662 0.262712i
\(611\) −10.8696 + 13.0497i −0.439737 + 0.527936i
\(612\) 0 0
\(613\) −29.0756 16.7868i −1.17435 0.678012i −0.219650 0.975579i \(-0.570491\pi\)
−0.954701 + 0.297567i \(0.903825\pi\)
\(614\) 2.64457 + 14.5768i 0.106726 + 0.588270i
\(615\) 0 0
\(616\) −0.308510 0.516529i −0.0124302 0.0208116i
\(617\) 20.6348 + 35.7406i 0.830728 + 1.43886i 0.897462 + 0.441092i \(0.145409\pi\)
−0.0667344 + 0.997771i \(0.521258\pi\)
\(618\) 0 0
\(619\) 15.5402i 0.624612i −0.949981 0.312306i \(-0.898899\pi\)
0.949981 0.312306i \(-0.101101\pi\)
\(620\) 12.2435 + 32.6322i 0.491710 + 1.31054i
\(621\) 0 0
\(622\) 11.7800 2.13717i 0.472335 0.0856927i
\(623\) 1.26498 0.0506802
\(624\) 0 0
\(625\) 68.5395 2.74158
\(626\) −16.1237 + 2.92522i −0.644434 + 0.116915i
\(627\) 0 0
\(628\) −8.69256 23.1680i −0.346871 0.924505i
\(629\) 0.577751i 0.0230364i
\(630\) 0 0
\(631\) 7.60667 + 13.1751i 0.302817 + 0.524494i 0.976773 0.214277i \(-0.0687396\pi\)
−0.673956 + 0.738771i \(0.735406\pi\)
\(632\) −22.9338 + 13.6978i −0.912256 + 0.544869i
\(633\) 0 0
\(634\) −2.54400 14.0224i −0.101035 0.556902i
\(635\) −15.4163 8.90060i −0.611777 0.353209i
\(636\) 0 0
\(637\) 5.38007 + 14.6164i 0.213166 + 0.579124i
\(638\) −0.683551 0.806502i −0.0270620 0.0319297i
\(639\) 0 0
\(640\) 44.9937 + 14.6361i 1.77853 + 0.578544i
\(641\) −6.58777 11.4104i −0.260201 0.450682i 0.706094 0.708118i \(-0.250456\pi\)
−0.966295 + 0.257436i \(0.917122\pi\)
\(642\) 0 0
\(643\) −15.6244 + 9.02073i −0.616165 + 0.355743i −0.775374 0.631502i \(-0.782439\pi\)
0.159209 + 0.987245i \(0.449105\pi\)
\(644\) 6.69433 2.51169i 0.263794 0.0989743i
\(645\) 0 0
\(646\) 16.3293 + 5.85221i 0.642467 + 0.230252i
\(647\) −13.2156 + 22.8901i −0.519560 + 0.899904i 0.480181 + 0.877169i \(0.340571\pi\)
−0.999742 + 0.0227353i \(0.992763\pi\)
\(648\) 0 0
\(649\) −1.40580 −0.0551826
\(650\) 31.3684 55.4227i 1.23037 2.17386i
\(651\) 0 0
\(652\) −24.5195 + 29.8143i −0.960257 + 1.16762i
\(653\) −0.343032 0.198049i −0.0134239 0.00775027i 0.493273 0.869875i \(-0.335800\pi\)
−0.506697 + 0.862124i \(0.669134\pi\)
\(654\) 0 0
\(655\) −28.7712 −1.12418
\(656\) 3.48461 + 17.7092i 0.136051 + 0.691428i
\(657\) 0 0
\(658\) 7.05132 + 8.31965i 0.274889 + 0.324334i
\(659\) −10.9574 + 6.32627i −0.426841 + 0.246437i −0.698000 0.716098i \(-0.745926\pi\)
0.271159 + 0.962535i \(0.412593\pi\)
\(660\) 0 0
\(661\) −12.6635 7.31128i −0.492554 0.284376i 0.233080 0.972458i \(-0.425120\pi\)
−0.725633 + 0.688082i \(0.758453\pi\)
\(662\) 28.5337 24.1838i 1.10899 0.939928i
\(663\) 0 0
\(664\) 7.95926 + 13.3259i 0.308879 + 0.517147i
\(665\) 13.1179 22.7210i 0.508692 0.881081i
\(666\) 0 0
\(667\) 10.8806 6.28194i 0.421300 0.243238i
\(668\) −4.83228 + 29.0820i −0.186966 + 1.12522i
\(669\) 0 0
\(670\) −25.4156 + 70.9165i −0.981890 + 2.73974i
\(671\) 0.186857 0.00721352
\(672\) 0 0
\(673\) −5.72681 + 9.91913i −0.220752 + 0.382354i −0.955037 0.296488i \(-0.904185\pi\)
0.734284 + 0.678842i \(0.237518\pi\)
\(674\) −13.5577 + 2.45968i −0.522223 + 0.0947435i
\(675\) 0 0
\(676\) −13.3838 22.2907i −0.514763 0.857333i
\(677\) 32.2006i 1.23757i 0.785561 + 0.618784i \(0.212375\pi\)
−0.785561 + 0.618784i \(0.787625\pi\)
\(678\) 0 0
\(679\) 8.30298 14.3812i 0.318639 0.551899i
\(680\) 18.4432 33.0663i 0.707263 1.26804i
\(681\) 0 0
\(682\) −0.720799 0.258326i −0.0276008 0.00989180i
\(683\) 10.2725 5.93085i 0.393067 0.226938i −0.290421 0.956899i \(-0.593795\pi\)
0.683488 + 0.729961i \(0.260462\pi\)
\(684\) 0 0
\(685\) 15.7620 9.10022i 0.602237 0.347701i
\(686\) 25.7873 4.67843i 0.984565 0.178623i
\(687\) 0 0
\(688\) 8.72921 25.5422i 0.332798 0.973786i
\(689\) 13.1745 + 10.9736i 0.501910 + 0.418059i
\(690\) 0 0
\(691\) −6.81210 3.93297i −0.259145 0.149617i 0.364800 0.931086i \(-0.381137\pi\)
−0.623944 + 0.781469i \(0.714471\pi\)
\(692\) −25.4402 + 30.9339i −0.967091 + 1.17593i
\(693\) 0 0
\(694\) 33.0602 28.0202i 1.25495 1.06363i
\(695\) −25.5199 44.2017i −0.968023 1.67667i
\(696\) 0 0
\(697\) 14.4430 0.547068
\(698\) 28.9058 + 10.3595i 1.09410 + 0.392113i
\(699\) 0 0
\(700\) −31.5848 25.9755i −1.19379 0.981782i
\(701\) 25.2255i 0.952752i 0.879242 + 0.476376i \(0.158050\pi\)
−0.879242 + 0.476376i \(0.841950\pi\)
\(702\) 0 0
\(703\) 0.691658 0.0260864
\(704\) −0.884394 + 0.546164i −0.0333318 + 0.0205843i
\(705\) 0 0
\(706\) −14.1937 + 39.6043i −0.534186 + 1.49053i
\(707\) 2.01866i 0.0759195i
\(708\) 0 0
\(709\) 3.83979 2.21690i 0.144206 0.0832576i −0.426161 0.904647i \(-0.640134\pi\)
0.570367 + 0.821390i \(0.306801\pi\)
\(710\) 22.8895 19.4000i 0.859028 0.728069i
\(711\) 0 0
\(712\) −0.0323769 2.18521i −0.00121338 0.0818943i
\(713\) 4.54975 7.88040i 0.170389 0.295123i
\(714\) 0 0
\(715\) 0.676749 + 1.83857i 0.0253090 + 0.0687587i
\(716\) −41.3540 6.87139i −1.54547 0.256796i
\(717\) 0 0
\(718\) 49.2617 8.93722i 1.83843 0.333534i
\(719\) −14.9536 25.9004i −0.557675 0.965922i −0.997690 0.0679313i \(-0.978360\pi\)
0.440015 0.897991i \(-0.354973\pi\)
\(720\) 0 0
\(721\) 14.6110 + 25.3070i 0.544143 + 0.942483i
\(722\) −2.05928 + 5.74595i −0.0766384 + 0.213842i
\(723\) 0 0
\(724\) 5.23536 + 13.9536i 0.194570 + 0.518583i
\(725\) −62.2312 35.9292i −2.31121 1.33438i
\(726\) 0 0
\(727\) −3.63561 −0.134837 −0.0674186 0.997725i \(-0.521476\pi\)
−0.0674186 + 0.997725i \(0.521476\pi\)
\(728\) −15.5808 + 5.99860i −0.577462 + 0.222323i
\(729\) 0 0
\(730\) 3.46802 + 19.1156i 0.128357 + 0.707502i
\(731\) −18.7062 10.8000i −0.691875 0.399454i
\(732\) 0 0
\(733\) 19.1009i 0.705507i 0.935716 + 0.352753i \(0.114754\pi\)
−0.935716 + 0.352753i \(0.885246\pi\)
\(734\) −10.6844 + 29.8124i −0.394368 + 1.10040i
\(735\) 0 0
\(736\) −4.51021 11.5000i −0.166249 0.423895i
\(737\) −0.827494 1.43326i −0.0304811 0.0527949i
\(738\) 0 0
\(739\) −19.9646 11.5266i −0.734410 0.424012i 0.0856233 0.996328i \(-0.472712\pi\)
−0.820033 + 0.572316i \(0.806045\pi\)
\(740\) 0.247458 1.48927i 0.00909675 0.0547468i
\(741\) 0 0
\(742\) 8.39922 7.11876i 0.308345 0.261338i
\(743\) 0.368260 0.637844i 0.0135101 0.0234002i −0.859191 0.511654i \(-0.829033\pi\)
0.872701 + 0.488254i \(0.162366\pi\)
\(744\) 0 0
\(745\) −3.15988 5.47308i −0.115769 0.200518i
\(746\) −8.75004 + 7.41610i −0.320362 + 0.271523i
\(747\) 0 0
\(748\) 0.292194 + 0.778776i 0.0106837 + 0.0284749i
\(749\) 10.6006i 0.387336i
\(750\) 0 0
\(751\) −19.4794 + 33.7394i −0.710815 + 1.23117i 0.253737 + 0.967273i \(0.418340\pi\)
−0.964552 + 0.263894i \(0.914993\pi\)
\(752\) 14.1915 12.3939i 0.517511 0.451959i
\(753\) 0 0
\(754\) −25.2803 + 14.8857i −0.920653 + 0.542107i
\(755\) 77.3947i 2.81668i
\(756\) 0 0
\(757\) 43.5113 + 25.1213i 1.58144 + 0.913047i 0.994649 + 0.103312i \(0.0329441\pi\)
0.586796 + 0.809735i \(0.300389\pi\)
\(758\) −48.4573 17.3665i −1.76005 0.630779i
\(759\) 0 0
\(760\) −39.5856 22.0794i −1.43592 0.800903i
\(761\) 13.3039 + 23.0431i 0.482268 + 0.835312i 0.999793 0.0203558i \(-0.00647990\pi\)
−0.517525 + 0.855668i \(0.673147\pi\)
\(762\) 0 0
\(763\) 9.48209 5.47449i 0.343275 0.198190i
\(764\) −7.86350 6.46699i −0.284491 0.233968i
\(765\) 0 0
\(766\) 11.0915 + 13.0866i 0.400753 + 0.472837i
\(767\) −6.63474 + 38.4424i −0.239566 + 1.38807i
\(768\) 0 0
\(769\) 24.9857 43.2765i 0.901006 1.56059i 0.0748162 0.997197i \(-0.476163\pi\)
0.826190 0.563391i \(-0.190504\pi\)
\(770\) 1.23785 0.224576i 0.0446091 0.00809314i
\(771\) 0 0
\(772\) −1.52117 + 9.15485i −0.0547482 + 0.329490i
\(773\) 25.4987 14.7217i 0.917124 0.529502i 0.0344079 0.999408i \(-0.489045\pi\)
0.882717 + 0.469906i \(0.155712\pi\)
\(774\) 0 0
\(775\) −52.0441 −1.86948
\(776\) −25.0556 13.9751i −0.899444 0.501676i
\(777\) 0 0
\(778\) 2.50566 + 13.8111i 0.0898321 + 0.495152i
\(779\) 17.2906i 0.619499i
\(780\) 0 0
\(781\) 0.659173i 0.0235871i
\(782\) −9.72621 + 1.76456i −0.347808 + 0.0631006i
\(783\) 0 0
\(784\) −3.33601 16.9540i −0.119143 0.605499i
\(785\) 51.7424 1.84677
\(786\) 0 0
\(787\) 25.2518 14.5791i 0.900129 0.519689i 0.0228866 0.999738i \(-0.492714\pi\)
0.877242 + 0.480049i \(0.159381\pi\)
\(788\) −18.7697 3.11879i −0.668644 0.111102i
\(789\) 0 0
\(790\) −9.97110 54.9604i −0.354756 1.95540i
\(791\) −4.87171 + 8.43806i −0.173218 + 0.300023i
\(792\) 0 0
\(793\) 0.881877 5.10969i 0.0313164 0.181451i
\(794\) 7.58343 6.42733i 0.269126 0.228098i
\(795\) 0 0
\(796\) −9.85658 8.10611i −0.349357 0.287314i
\(797\) −12.9474 + 7.47521i −0.458622 + 0.264786i −0.711465 0.702722i \(-0.751968\pi\)
0.252843 + 0.967507i \(0.418634\pi\)
\(798\) 0 0
\(799\) −7.53875 13.0575i −0.266702 0.461941i
\(800\) −44.0636 + 55.2266i −1.55788 + 1.95256i
\(801\) 0 0
\(802\) −12.6220 + 35.2190i −0.445700 + 1.24363i
\(803\) −0.369624 0.213402i −0.0130437 0.00753081i
\(804\) 0 0
\(805\) 14.9508i 0.526947i
\(806\) −10.4659 + 18.4915i −0.368645 + 0.651334i
\(807\) 0 0
\(808\) −3.48718 + 0.0516673i −0.122679 + 0.00181765i
\(809\) 15.1416 26.2260i 0.532350 0.922057i −0.466936 0.884291i \(-0.654642\pi\)
0.999287 0.0377666i \(-0.0120243\pi\)
\(810\) 0 0
\(811\) 26.0266i 0.913917i −0.889488 0.456959i \(-0.848939\pi\)
0.889488 0.456959i \(-0.151061\pi\)
\(812\) 6.61772 + 17.6380i 0.232237 + 0.618974i
\(813\) 0 0
\(814\) 0.0214441 + 0.0253013i 0.000751615 + 0.000886809i
\(815\) −40.3586 69.9031i −1.41370 2.44860i
\(816\) 0 0
\(817\) −12.9293 + 22.3943i −0.452341 + 0.783477i
\(818\) −18.8416 22.2306i −0.658780 0.777275i
\(819\) 0 0
\(820\) −37.2299 6.18614i −1.30012 0.216029i
\(821\) 9.80725 + 5.66222i 0.342275 + 0.197613i 0.661278 0.750141i \(-0.270014\pi\)
−0.319002 + 0.947754i \(0.603348\pi\)
\(822\) 0 0
\(823\) 4.84592 + 8.39339i 0.168918 + 0.292575i 0.938040 0.346527i \(-0.112639\pi\)
−0.769122 + 0.639103i \(0.779306\pi\)
\(824\) 43.3432 25.8879i 1.50993 0.901847i
\(825\) 0 0
\(826\) 23.5816 + 8.45137i 0.820510 + 0.294061i
\(827\) 25.1340i 0.873995i −0.899463 0.436998i \(-0.856042\pi\)
0.899463 0.436998i \(-0.143958\pi\)
\(828\) 0 0
\(829\) −23.6743 13.6684i −0.822243 0.474722i 0.0289466 0.999581i \(-0.490785\pi\)
−0.851189 + 0.524859i \(0.824118\pi\)
\(830\) −31.9354 + 5.79382i −1.10849 + 0.201107i
\(831\) 0 0
\(832\) 10.7612 + 26.7618i 0.373078 + 0.927800i
\(833\) −13.8271 −0.479080
\(834\) 0 0
\(835\) −53.3860 30.8224i −1.84750 1.06665i
\(836\) 0.932317 0.349802i 0.0322449 0.0120982i
\(837\) 0 0
\(838\) 0.0450510 + 0.0161457i 0.00155626 + 0.000557745i
\(839\) −20.2439 35.0635i −0.698898 1.21053i −0.968849 0.247652i \(-0.920341\pi\)
0.269951 0.962874i \(-0.412992\pi\)
\(840\) 0 0
\(841\) 2.05148 + 3.55327i 0.0707408 + 0.122527i
\(842\) 7.94727 + 43.8051i 0.273881 + 1.50962i
\(843\) 0 0
\(844\) −0.895335 0.148769i −0.0308187 0.00512085i
\(845\) 53.4707 9.82884i 1.83945 0.338122i
\(846\) 0 0
\(847\) 8.99046 15.5719i 0.308916 0.535058i
\(848\) −12.5124 14.3272i −0.429679 0.491999i
\(849\) 0 0
\(850\) 36.5544 + 43.1295i 1.25381 + 1.47933i
\(851\) −0.341343 + 0.197074i −0.0117011 + 0.00675563i
\(852\) 0 0
\(853\) 19.3717i 0.663274i −0.943407 0.331637i \(-0.892399\pi\)
0.943407 0.331637i \(-0.107601\pi\)
\(854\) −3.13443 1.12334i −0.107258 0.0384399i
\(855\) 0 0
\(856\) −18.3122 + 0.271320i −0.625897 + 0.00927351i
\(857\) −42.7949 −1.46185 −0.730923 0.682459i \(-0.760910\pi\)
−0.730923 + 0.682459i \(0.760910\pi\)
\(858\) 0 0
\(859\) 13.5425i 0.462062i −0.972946 0.231031i \(-0.925790\pi\)
0.972946 0.231031i \(-0.0742100\pi\)
\(860\) 43.5934 + 35.8515i 1.48652 + 1.22253i
\(861\) 0 0
\(862\) 8.34749 23.2918i 0.284317 0.793321i
\(863\) 31.5933 1.07545 0.537724 0.843121i \(-0.319284\pi\)
0.537724 + 0.843121i \(0.319284\pi\)
\(864\) 0 0
\(865\) −41.8741 72.5280i −1.42376 2.46603i
\(866\) 22.1061 + 26.0824i 0.751196 + 0.886314i
\(867\) 0 0
\(868\) 10.5381 + 8.66657i 0.357685 + 0.294162i
\(869\) 1.06272 + 0.613564i 0.0360505 + 0.0208137i
\(870\) 0 0
\(871\) −43.0987 + 15.8639i −1.46034 + 0.537529i
\(872\) −9.69972 16.2399i −0.328474 0.549954i
\(873\) 0 0
\(874\) 2.11246 + 11.6438i 0.0714549 + 0.393857i
\(875\) 44.4075 25.6387i 1.50125 0.866746i
\(876\) 0 0
\(877\) 14.3595 8.29048i 0.484887 0.279950i −0.237564 0.971372i \(-0.576349\pi\)
0.722451 + 0.691422i \(0.243016\pi\)
\(878\) −5.41472 + 15.1086i −0.182738 + 0.509890i
\(879\) 0 0
\(880\) −0.419631 2.13261i −0.0141458 0.0718902i
\(881\) 5.68180 9.84117i 0.191425 0.331557i −0.754298 0.656532i \(-0.772023\pi\)
0.945723 + 0.324975i \(0.105356\pi\)
\(882\) 0 0
\(883\) 27.3539i 0.920531i −0.887781 0.460266i \(-0.847754\pi\)
0.887781 0.460266i \(-0.152246\pi\)
\(884\) 22.6751 4.31473i 0.762645 0.145120i
\(885\) 0 0
\(886\) −5.96316 32.8688i −0.200336 1.10425i
\(887\) 11.3696 19.6927i 0.381754 0.661217i −0.609559 0.792741i \(-0.708654\pi\)
0.991313 + 0.131523i \(0.0419868\pi\)
\(888\) 0 0
\(889\) −6.96862 −0.233720
\(890\) 4.30190 + 1.54175i 0.144200 + 0.0516795i
\(891\) 0 0
\(892\) −3.65400 + 21.9908i −0.122345 + 0.736307i
\(893\) −15.6319 + 9.02506i −0.523100 + 0.302012i
\(894\) 0 0
\(895\) 43.8288 75.9137i 1.46504 2.53752i
\(896\) 18.1187 3.84485i 0.605303 0.128448i
\(897\) 0 0
\(898\) −24.8269 29.2925i −0.828484 0.977504i
\(899\) 20.7631 + 11.9876i 0.692487 + 0.399807i
\(900\) 0 0
\(901\) −13.1824 + 7.61084i −0.439168 + 0.253554i
\(902\) 0.632499 0.536074i 0.0210599 0.0178493i
\(903\) 0 0
\(904\) 14.7012 + 8.19978i 0.488955 + 0.272721i
\(905\) −31.1635 −1.03591
\(906\) 0 0
\(907\) −8.59306 4.96121i −0.285328 0.164734i 0.350505 0.936561i \(-0.386010\pi\)
−0.635833 + 0.771827i \(0.719343\pi\)
\(908\) 9.81474 11.9342i 0.325714 0.396049i
\(909\) 0 0
\(910\) −0.299042 34.9096i −0.00991313 1.15724i
\(911\) 44.1121 1.46150 0.730749 0.682646i \(-0.239171\pi\)
0.730749 + 0.682646i \(0.239171\pi\)
\(912\) 0 0
\(913\) 0.356519 0.617509i 0.0117991 0.0204366i
\(914\) −18.7699 + 52.3733i −0.620855 + 1.73236i
\(915\) 0 0
\(916\) −7.82847 20.8650i −0.258660 0.689399i
\(917\) −9.75407 + 5.63152i −0.322108 + 0.185969i
\(918\) 0 0
\(919\) −14.9559 25.9044i −0.493351 0.854509i 0.506620 0.862169i \(-0.330895\pi\)
−0.999971 + 0.00766098i \(0.997561\pi\)
\(920\) 25.8271 0.382664i 0.851495 0.0126161i
\(921\) 0 0
\(922\) −38.0631 + 32.2604i −1.25354 + 1.06244i
\(923\) 18.0254 + 3.11099i 0.593315 + 0.102400i
\(924\) 0 0
\(925\) 1.95229 + 1.12716i 0.0641910 + 0.0370607i
\(926\) 5.27559 0.957116i 0.173367 0.0314528i
\(927\) 0 0
\(928\) 30.2998 11.8834i 0.994641 0.390091i
\(929\) −21.2926 36.8800i −0.698589 1.20999i −0.968956 0.247234i \(-0.920478\pi\)
0.270367 0.962757i \(-0.412855\pi\)
\(930\) 0 0
\(931\) 16.5532i 0.542509i
\(932\) 11.3143 4.24507i 0.370611 0.139052i
\(933\) 0 0
\(934\) 1.47543 + 8.13251i 0.0482775 + 0.266104i
\(935\) −1.73928 −0.0568807
\(936\) 0 0
\(937\) 48.8727 1.59660 0.798301 0.602259i \(-0.205733\pi\)
0.798301 + 0.602259i \(0.205733\pi\)
\(938\) 5.26436 + 29.0170i 0.171887 + 0.947438i
\(939\) 0 0
\(940\) 13.8400 + 36.8874i 0.451411 + 1.20313i
\(941\) 0.373985i 0.0121916i 0.999981 + 0.00609579i \(0.00194036\pi\)
−0.999981 + 0.00609579i \(0.998060\pi\)
\(942\) 0 0
\(943\) 4.92661 + 8.53313i 0.160432 + 0.277877i
\(944\) 13.9959 40.9530i 0.455529 1.33291i
\(945\) 0 0
\(946\) −1.22006 + 0.221347i −0.0396674 + 0.00719660i
\(947\) −32.8305 18.9547i −1.06685 0.615945i −0.139529 0.990218i \(-0.544559\pi\)
−0.927318 + 0.374273i \(0.877892\pi\)
\(948\) 0 0
\(949\) −7.58006 + 9.10040i −0.246059 + 0.295411i
\(950\) 51.6328 43.7614i 1.67519 1.41981i
\(951\) 0 0
\(952\) −0.219581 14.8202i −0.00711667 0.480325i
\(953\) 6.10919 + 10.5814i 0.197896 + 0.342766i 0.947846 0.318728i \(-0.103256\pi\)
−0.749950 + 0.661495i \(0.769922\pi\)
\(954\) 0 0
\(955\) 18.4369 10.6445i 0.596604 0.344449i
\(956\) 15.3196 5.74785i 0.495471 0.185899i
\(957\) 0 0
\(958\) 3.50444 9.77835i 0.113223 0.315924i
\(959\) 3.56246 6.17036i 0.115038 0.199251i
\(960\) 0 0
\(961\) −13.6358 −0.439865
\(962\) 0.793082 0.466989i 0.0255700 0.0150563i
\(963\) 0 0
\(964\) 11.0759 + 9.10889i 0.356731 + 0.293378i
\(965\) −16.8056 9.70272i −0.540992 0.312342i
\(966\) 0 0
\(967\) −21.0836 −0.678003 −0.339002 0.940786i \(-0.610089\pi\)
−0.339002 + 0.940786i \(0.610089\pi\)
\(968\) −27.1302 15.1322i −0.871997 0.486368i
\(969\) 0 0
\(970\) 45.7643 38.7875i 1.46940 1.24539i
\(971\) −18.0110 + 10.3987i −0.578002 + 0.333710i −0.760339 0.649526i \(-0.774967\pi\)
0.182337 + 0.983236i \(0.441634\pi\)
\(972\) 0 0
\(973\) −17.3036 9.99024i −0.554728 0.320272i
\(974\) −17.8864 21.1036i −0.573116 0.676203i
\(975\) 0 0
\(976\) −1.86031 + 5.44339i −0.0595472 + 0.174239i
\(977\) 2.19054 3.79413i 0.0700817 0.121385i −0.828855 0.559463i \(-0.811007\pi\)
0.898937 + 0.438078i \(0.144341\pi\)
\(978\) 0 0
\(979\) −0.0869438 + 0.0501970i −0.00277874 + 0.00160430i
\(980\) 35.6422 + 5.92233i 1.13855 + 0.189182i
\(981\) 0 0
\(982\) −35.5804 12.7516i −1.13542 0.406919i
\(983\) −11.6609 −0.371925 −0.185962 0.982557i \(-0.559540\pi\)
−0.185962 + 0.982557i \(0.559540\pi\)
\(984\) 0 0
\(985\) 19.8930 34.4557i 0.633844 1.09785i
\(986\) −4.64922 25.6263i −0.148061 0.816109i
\(987\) 0 0
\(988\) −5.16541 27.1456i −0.164334 0.863617i
\(989\) 14.7359i 0.468573i
\(990\) 0 0
\(991\) 6.53708 11.3226i 0.207657 0.359673i −0.743319 0.668937i \(-0.766749\pi\)
0.950976 + 0.309264i \(0.100083\pi\)
\(992\) 14.7015 18.4260i 0.466774 0.585027i
\(993\) 0 0
\(994\) 3.96280 11.0573i 0.125692 0.350717i
\(995\) 23.1099 13.3425i 0.732633 0.422986i
\(996\) 0 0
\(997\) 28.2743 16.3242i 0.895456 0.516992i 0.0197330 0.999805i \(-0.493718\pi\)
0.875723 + 0.482813i \(0.160385\pi\)
\(998\) −5.63184 31.0425i −0.178273 0.982633i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.be.a.685.11 24
3.2 odd 2 104.2.r.a.61.2 yes 24
8.5 even 2 inner 936.2.be.a.685.5 24
12.11 even 2 416.2.z.a.113.2 24
13.3 even 3 inner 936.2.be.a.757.5 24
24.5 odd 2 104.2.r.a.61.8 yes 24
24.11 even 2 416.2.z.a.113.11 24
39.29 odd 6 104.2.r.a.29.8 yes 24
104.29 even 6 inner 936.2.be.a.757.11 24
156.107 even 6 416.2.z.a.81.11 24
312.29 odd 6 104.2.r.a.29.2 24
312.107 even 6 416.2.z.a.81.2 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.2.r.a.29.2 24 312.29 odd 6
104.2.r.a.29.8 yes 24 39.29 odd 6
104.2.r.a.61.2 yes 24 3.2 odd 2
104.2.r.a.61.8 yes 24 24.5 odd 2
416.2.z.a.81.2 24 312.107 even 6
416.2.z.a.81.11 24 156.107 even 6
416.2.z.a.113.2 24 12.11 even 2
416.2.z.a.113.11 24 24.11 even 2
936.2.be.a.685.5 24 8.5 even 2 inner
936.2.be.a.685.11 24 1.1 even 1 trivial
936.2.be.a.757.5 24 13.3 even 3 inner
936.2.be.a.757.11 24 104.29 even 6 inner