Properties

Label 936.2.be
Level $936$
Weight $2$
Character orbit 936.be
Rep. character $\chi_{936}(685,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $136$
Newform subspaces $3$
Sturm bound $336$
Trace bound $14$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.be (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 104 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 3 \)
Sturm bound: \(336\)
Trace bound: \(14\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(936, [\chi])\).

Total New Old
Modular forms 352 144 208
Cusp forms 320 136 184
Eisenstein series 32 8 24

Trace form

\( 136 q + q^{2} - q^{4} - 2 q^{7} + 10 q^{8} + 5 q^{10} + 8 q^{14} + 7 q^{16} + 4 q^{17} - 17 q^{20} + 2 q^{22} + 14 q^{23} - 124 q^{25} - 5 q^{26} + 8 q^{28} - 8 q^{31} - 19 q^{32} + 38 q^{34} - 12 q^{38}+ \cdots - 47 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(936, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
936.2.be.a 936.be 104.r $24$ $7.474$ None 104.2.r.a \(1\) \(0\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{6}]$
936.2.be.b 936.be 104.r $56$ $7.474$ None 936.2.be.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$
936.2.be.c 936.be 104.r $56$ $7.474$ None 312.2.bb.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{2}^{\mathrm{old}}(936, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(936, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(312, [\chi])\)\(^{\oplus 2}\)