L(s) = 1 | + (0.628 − 1.26i)2-s + (−1.20 − 1.59i)4-s + 2.59i·5-s + (−0.300 − 0.520i)7-s + (−2.77 + 0.530i)8-s + (3.29 + 1.63i)10-s + (2.40 + 1.39i)11-s + (3.60 + 0.0531i)13-s + (−0.848 + 0.0534i)14-s + (−1.07 + 3.85i)16-s + (1.29 + 2.24i)17-s + (−4.38 + 2.52i)19-s + (4.14 − 3.14i)20-s + (3.27 − 2.17i)22-s + (−2.94 + 5.09i)23-s + ⋯ |
L(s) = 1 | + (0.444 − 0.895i)2-s + (−0.604 − 0.796i)4-s + 1.16i·5-s + (−0.113 − 0.196i)7-s + (−0.982 + 0.187i)8-s + (1.04 + 0.516i)10-s + (0.726 + 0.419i)11-s + (0.999 + 0.0147i)13-s + (−0.226 + 0.0142i)14-s + (−0.268 + 0.963i)16-s + (0.313 + 0.543i)17-s + (−1.00 + 0.580i)19-s + (0.926 − 0.703i)20-s + (0.698 − 0.464i)22-s + (−0.613 + 1.06i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.995 + 0.0941i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.995 + 0.0941i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.81705 - 0.0857083i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.81705 - 0.0857083i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.628 + 1.26i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (-3.60 - 0.0531i)T \) |
good | 5 | \( 1 - 2.59iT - 5T^{2} \) |
| 7 | \( 1 + (0.300 + 0.520i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-2.40 - 1.39i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-1.29 - 2.24i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (4.38 - 2.52i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (2.94 - 5.09i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.54 - 0.889i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 5.09T + 31T^{2} \) |
| 37 | \( 1 + (-8.82 - 5.09i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-5.26 + 9.11i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-8.44 + 4.87i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 2.13T + 47T^{2} \) |
| 53 | \( 1 - 6.01iT - 53T^{2} \) |
| 59 | \( 1 + (9.44 - 5.45i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (1.84 - 1.06i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (3.39 + 1.95i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (0.230 + 0.399i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 14.8T + 73T^{2} \) |
| 79 | \( 1 + 7.83T + 79T^{2} \) |
| 83 | \( 1 - 0.930iT - 83T^{2} \) |
| 89 | \( 1 + (1.17 - 2.04i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-5.91 - 10.2i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.44019163398918517029373444594, −9.470532285285436690358712544711, −8.575959490159329953636854032327, −7.43473346838308902416032351327, −6.29722435589832709199114610878, −5.90672763024424866288896945072, −4.28181032834463655515227898483, −3.71553732978424948853609024460, −2.65002970507609884959871464752, −1.42852694593554879625841520246,
0.844736280312837531619281149321, 2.84583817945500304273158544632, 4.26074524832247325627903238134, 4.62601700046206293948992628309, 6.05636605161639819349609072729, 6.23359876615362524783767091024, 7.61761530350447837441770086114, 8.477831031304357912135314619616, 8.906222417807237284751304950464, 9.689091213991153261002063095009