L(s) = 1 | + (0.782 + 1.17i)2-s + (−0.774 + 1.84i)4-s + 2.59i·5-s + (−0.300 + 0.520i)7-s + (−2.77 + 0.530i)8-s + (−3.06 + 2.03i)10-s + (−2.40 + 1.39i)11-s + (−3.60 + 0.0531i)13-s + (−0.848 + 0.0534i)14-s + (−2.79 − 2.85i)16-s + (1.29 − 2.24i)17-s + (4.38 + 2.52i)19-s + (−4.79 − 2.01i)20-s + (−3.52 − 1.74i)22-s + (−2.94 − 5.09i)23-s + ⋯ |
L(s) = 1 | + (0.553 + 0.832i)2-s + (−0.387 + 0.921i)4-s + 1.16i·5-s + (−0.113 + 0.196i)7-s + (−0.982 + 0.187i)8-s + (−0.968 + 0.643i)10-s + (−0.726 + 0.419i)11-s + (−0.999 + 0.0147i)13-s + (−0.226 + 0.0142i)14-s + (−0.699 − 0.714i)16-s + (0.313 − 0.543i)17-s + (1.00 + 0.580i)19-s + (−1.07 − 0.450i)20-s + (−0.751 − 0.372i)22-s + (−0.613 − 1.06i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.890 + 0.454i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.890 + 0.454i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.290548 - 1.20908i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.290548 - 1.20908i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.782 - 1.17i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (3.60 - 0.0531i)T \) |
good | 5 | \( 1 - 2.59iT - 5T^{2} \) |
| 7 | \( 1 + (0.300 - 0.520i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (2.40 - 1.39i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-1.29 + 2.24i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-4.38 - 2.52i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (2.94 + 5.09i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (1.54 - 0.889i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 5.09T + 31T^{2} \) |
| 37 | \( 1 + (8.82 - 5.09i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-5.26 - 9.11i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (8.44 + 4.87i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 2.13T + 47T^{2} \) |
| 53 | \( 1 - 6.01iT - 53T^{2} \) |
| 59 | \( 1 + (-9.44 - 5.45i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.84 - 1.06i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.39 + 1.95i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (0.230 - 0.399i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 14.8T + 73T^{2} \) |
| 79 | \( 1 + 7.83T + 79T^{2} \) |
| 83 | \( 1 - 0.930iT - 83T^{2} \) |
| 89 | \( 1 + (1.17 + 2.04i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-5.91 + 10.2i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.26803194584505683831571378188, −9.881642207076944185157306269263, −8.632860761787229457927405117170, −7.66839313003302912302795823845, −7.15938034733210075887983257859, −6.34475604688626121805613815019, −5.37632281300394036367763205679, −4.54143951662233273071127086208, −3.20070655272286313890199062107, −2.56134626206803386765210035627,
0.46668969336645259835736756221, 1.83741795979186527437394573727, 3.13086849993547534174687956982, 4.15960282582045478209977033907, 5.26595825136387408552474803689, 5.48663785842827454468993325298, 6.98575817588523826030094619981, 8.084770912488636432540306005294, 8.935750786446224320152773933875, 9.781399486796132184227161639125