Properties

Label 925.2.y.c.532.4
Level $925$
Weight $2$
Character 925.532
Analytic conductor $7.386$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(193,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.193"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.y (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(24\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 532.4
Character \(\chi\) \(=\) 925.532
Dual form 925.2.y.c.193.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.72671 - 0.996919i) q^{2} +(-0.184391 + 0.688157i) q^{3} +(0.987696 + 1.71074i) q^{4} +(1.00443 - 1.00443i) q^{6} +(-0.823709 + 3.07412i) q^{7} +0.0490658i q^{8} +(2.15852 + 1.24622i) q^{9} -2.17335i q^{11} +(-1.35938 + 0.364245i) q^{12} +(2.46782 - 1.42480i) q^{13} +(4.48696 - 4.48696i) q^{14} +(2.02431 - 3.50620i) q^{16} +(-0.754926 + 1.30757i) q^{17} +(-2.48476 - 4.30373i) q^{18} +(0.158906 - 0.593046i) q^{19} +(-1.96360 - 1.13368i) q^{21} +(-2.16666 + 3.75276i) q^{22} +0.334904i q^{23} +(-0.0337650 - 0.00904730i) q^{24} -5.68163 q^{26} +(-2.76691 + 2.76691i) q^{27} +(-6.07260 + 1.62715i) q^{28} +(-3.60210 + 3.60210i) q^{29} +(4.53577 + 4.53577i) q^{31} +(-6.90581 + 3.98707i) q^{32} +(1.49561 + 0.400747i) q^{33} +(2.60708 - 1.50520i) q^{34} +4.92354i q^{36} +(-0.704946 + 6.04178i) q^{37} +(-0.865605 + 0.865605i) q^{38} +(0.525440 + 1.96097i) q^{39} +(1.83132 - 1.05731i) q^{41} +(2.26038 + 3.91509i) q^{42} -7.15520i q^{43} +(3.71804 - 2.14661i) q^{44} +(0.333872 - 0.578284i) q^{46} +(-5.91085 - 5.91085i) q^{47} +(2.03955 + 2.03955i) q^{48} +(-2.70957 - 1.56437i) q^{49} +(-0.760612 - 0.760612i) q^{51} +(4.87491 + 2.81453i) q^{52} +(0.159478 + 0.595178i) q^{53} +(7.53604 - 2.01928i) q^{54} +(-0.150834 - 0.0404159i) q^{56} +(0.378808 + 0.218705i) q^{57} +(9.81081 - 2.62880i) q^{58} +(-7.80951 + 2.09255i) q^{59} +(-3.57637 + 13.3472i) q^{61} +(-3.31018 - 12.3538i) q^{62} +(-5.60902 + 5.60902i) q^{63} +7.80193 q^{64} +(-2.18298 - 2.18298i) q^{66} +(-0.360748 - 0.0966621i) q^{67} -2.98255 q^{68} +(-0.230467 - 0.0617534i) q^{69} +(4.77717 + 8.27430i) q^{71} +(-0.0611467 + 0.105909i) q^{72} +(11.6826 + 11.6826i) q^{73} +(7.24040 - 9.72965i) q^{74} +(1.17150 - 0.313902i) q^{76} +(6.68116 + 1.79021i) q^{77} +(1.04764 - 3.90986i) q^{78} +(-1.12144 + 4.18528i) q^{79} +(2.34479 + 4.06129i) q^{81} -4.21622 q^{82} +(0.539908 + 2.01496i) q^{83} -4.47894i q^{84} +(-7.13316 + 12.3550i) q^{86} +(-1.81462 - 3.14301i) q^{87} +0.106637 q^{88} +(-0.0491257 - 0.183340i) q^{89} +(2.34724 + 8.76001i) q^{91} +(-0.572934 + 0.330783i) q^{92} +(-3.95768 + 2.28497i) q^{93} +(4.31371 + 16.0990i) q^{94} +(-1.47036 - 5.48747i) q^{96} +7.75205 q^{97} +(3.11910 + 5.40243i) q^{98} +(2.70847 - 4.69122i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 40 q^{4} - 32 q^{14} - 4 q^{16} - 24 q^{19} + 36 q^{21} + 52 q^{24} + 16 q^{26} + 12 q^{29} + 4 q^{31} - 60 q^{34} + 100 q^{39} - 48 q^{41} + 48 q^{44} + 24 q^{46} - 120 q^{49} - 84 q^{51} + 104 q^{54}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.72671 0.996919i −1.22097 0.704928i −0.255847 0.966717i \(-0.582354\pi\)
−0.965125 + 0.261789i \(0.915688\pi\)
\(3\) −0.184391 + 0.688157i −0.106458 + 0.397308i −0.998507 0.0546324i \(-0.982601\pi\)
0.892048 + 0.451940i \(0.149268\pi\)
\(4\) 0.987696 + 1.71074i 0.493848 + 0.855370i
\(5\) 0 0
\(6\) 1.00443 1.00443i 0.410056 0.410056i
\(7\) −0.823709 + 3.07412i −0.311333 + 1.16191i 0.616023 + 0.787728i \(0.288743\pi\)
−0.927356 + 0.374181i \(0.877924\pi\)
\(8\) 0.0490658i 0.0173474i
\(9\) 2.15852 + 1.24622i 0.719505 + 0.415407i
\(10\) 0 0
\(11\) 2.17335i 0.655290i −0.944801 0.327645i \(-0.893745\pi\)
0.944801 0.327645i \(-0.106255\pi\)
\(12\) −1.35938 + 0.364245i −0.392419 + 0.105148i
\(13\) 2.46782 1.42480i 0.684450 0.395168i −0.117079 0.993123i \(-0.537353\pi\)
0.801530 + 0.597955i \(0.204020\pi\)
\(14\) 4.48696 4.48696i 1.19919 1.19919i
\(15\) 0 0
\(16\) 2.02431 3.50620i 0.506076 0.876550i
\(17\) −0.754926 + 1.30757i −0.183096 + 0.317132i −0.942933 0.332981i \(-0.891945\pi\)
0.759837 + 0.650114i \(0.225279\pi\)
\(18\) −2.48476 4.30373i −0.585664 1.01440i
\(19\) 0.158906 0.593046i 0.0364556 0.136054i −0.945300 0.326203i \(-0.894231\pi\)
0.981755 + 0.190149i \(0.0608972\pi\)
\(20\) 0 0
\(21\) −1.96360 1.13368i −0.428492 0.247390i
\(22\) −2.16666 + 3.75276i −0.461933 + 0.800091i
\(23\) 0.334904i 0.0698323i 0.999390 + 0.0349162i \(0.0111164\pi\)
−0.999390 + 0.0349162i \(0.988884\pi\)
\(24\) −0.0337650 0.00904730i −0.00689225 0.00184677i
\(25\) 0 0
\(26\) −5.68163 −1.11426
\(27\) −2.76691 + 2.76691i −0.532491 + 0.532491i
\(28\) −6.07260 + 1.62715i −1.14761 + 0.307502i
\(29\) −3.60210 + 3.60210i −0.668894 + 0.668894i −0.957460 0.288566i \(-0.906821\pi\)
0.288566 + 0.957460i \(0.406821\pi\)
\(30\) 0 0
\(31\) 4.53577 + 4.53577i 0.814648 + 0.814648i 0.985327 0.170679i \(-0.0545960\pi\)
−0.170679 + 0.985327i \(0.554596\pi\)
\(32\) −6.90581 + 3.98707i −1.22079 + 0.704822i
\(33\) 1.49561 + 0.400747i 0.260352 + 0.0697611i
\(34\) 2.60708 1.50520i 0.447111 0.258140i
\(35\) 0 0
\(36\) 4.92354i 0.820590i
\(37\) −0.704946 + 6.04178i −0.115892 + 0.993262i
\(38\) −0.865605 + 0.865605i −0.140420 + 0.140420i
\(39\) 0.525440 + 1.96097i 0.0841378 + 0.314006i
\(40\) 0 0
\(41\) 1.83132 1.05731i 0.286004 0.165124i −0.350134 0.936699i \(-0.613864\pi\)
0.636138 + 0.771575i \(0.280531\pi\)
\(42\) 2.26038 + 3.91509i 0.348784 + 0.604112i
\(43\) 7.15520i 1.09116i −0.838059 0.545579i \(-0.816310\pi\)
0.838059 0.545579i \(-0.183690\pi\)
\(44\) 3.71804 2.14661i 0.560515 0.323614i
\(45\) 0 0
\(46\) 0.333872 0.578284i 0.0492268 0.0852633i
\(47\) −5.91085 5.91085i −0.862187 0.862187i 0.129405 0.991592i \(-0.458693\pi\)
−0.991592 + 0.129405i \(0.958693\pi\)
\(48\) 2.03955 + 2.03955i 0.294384 + 0.294384i
\(49\) −2.70957 1.56437i −0.387081 0.223481i
\(50\) 0 0
\(51\) −0.760612 0.760612i −0.106507 0.106507i
\(52\) 4.87491 + 2.81453i 0.676029 + 0.390305i
\(53\) 0.159478 + 0.595178i 0.0219059 + 0.0817540i 0.976013 0.217710i \(-0.0698588\pi\)
−0.954108 + 0.299464i \(0.903192\pi\)
\(54\) 7.53604 2.01928i 1.02552 0.274789i
\(55\) 0 0
\(56\) −0.150834 0.0404159i −0.0201561 0.00540080i
\(57\) 0.378808 + 0.218705i 0.0501744 + 0.0289682i
\(58\) 9.81081 2.62880i 1.28822 0.345178i
\(59\) −7.80951 + 2.09255i −1.01671 + 0.272427i −0.728431 0.685119i \(-0.759750\pi\)
−0.288280 + 0.957546i \(0.593083\pi\)
\(60\) 0 0
\(61\) −3.57637 + 13.3472i −0.457907 + 1.70893i 0.221492 + 0.975162i \(0.428907\pi\)
−0.679398 + 0.733770i \(0.737759\pi\)
\(62\) −3.31018 12.3538i −0.420394 1.56893i
\(63\) −5.60902 + 5.60902i −0.706670 + 0.706670i
\(64\) 7.80193 0.975242
\(65\) 0 0
\(66\) −2.18298 2.18298i −0.268706 0.268706i
\(67\) −0.360748 0.0966621i −0.0440723 0.0118092i 0.236716 0.971579i \(-0.423929\pi\)
−0.280788 + 0.959770i \(0.590596\pi\)
\(68\) −2.98255 −0.361687
\(69\) −0.230467 0.0617534i −0.0277449 0.00743423i
\(70\) 0 0
\(71\) 4.77717 + 8.27430i 0.566946 + 0.981979i 0.996866 + 0.0791117i \(0.0252084\pi\)
−0.429920 + 0.902867i \(0.641458\pi\)
\(72\) −0.0611467 + 0.105909i −0.00720621 + 0.0124815i
\(73\) 11.6826 + 11.6826i 1.36734 + 1.36734i 0.864213 + 0.503126i \(0.167817\pi\)
0.503126 + 0.864213i \(0.332183\pi\)
\(74\) 7.24040 9.72965i 0.841680 1.13105i
\(75\) 0 0
\(76\) 1.17150 0.313902i 0.134380 0.0360070i
\(77\) 6.68116 + 1.79021i 0.761388 + 0.204013i
\(78\) 1.04764 3.90986i 0.118622 0.442704i
\(79\) −1.12144 + 4.18528i −0.126172 + 0.470881i −0.999879 0.0155724i \(-0.995043\pi\)
0.873707 + 0.486453i \(0.161710\pi\)
\(80\) 0 0
\(81\) 2.34479 + 4.06129i 0.260532 + 0.451254i
\(82\) −4.21622 −0.465603
\(83\) 0.539908 + 2.01496i 0.0592626 + 0.221171i 0.989206 0.146532i \(-0.0468110\pi\)
−0.929943 + 0.367703i \(0.880144\pi\)
\(84\) 4.47894i 0.488692i
\(85\) 0 0
\(86\) −7.13316 + 12.3550i −0.769188 + 1.33227i
\(87\) −1.81462 3.14301i −0.194547 0.336966i
\(88\) 0.106637 0.0113676
\(89\) −0.0491257 0.183340i −0.00520732 0.0194340i 0.963273 0.268523i \(-0.0865355\pi\)
−0.968481 + 0.249089i \(0.919869\pi\)
\(90\) 0 0
\(91\) 2.34724 + 8.76001i 0.246057 + 0.918298i
\(92\) −0.572934 + 0.330783i −0.0597325 + 0.0344865i
\(93\) −3.95768 + 2.28497i −0.410392 + 0.236940i
\(94\) 4.31371 + 16.0990i 0.444926 + 1.66049i
\(95\) 0 0
\(96\) −1.47036 5.48747i −0.150068 0.560062i
\(97\) 7.75205 0.787101 0.393550 0.919303i \(-0.371247\pi\)
0.393550 + 0.919303i \(0.371247\pi\)
\(98\) 3.11910 + 5.40243i 0.315076 + 0.545728i
\(99\) 2.70847 4.69122i 0.272212 0.471485i
\(100\) 0 0
\(101\) 4.36118i 0.433954i −0.976177 0.216977i \(-0.930380\pi\)
0.976177 0.216977i \(-0.0696196\pi\)
\(102\) 0.555091 + 2.07163i 0.0549622 + 0.205122i
\(103\) 0.120499 0.0118731 0.00593655 0.999982i \(-0.498110\pi\)
0.00593655 + 0.999982i \(0.498110\pi\)
\(104\) 0.0699088 + 0.121086i 0.00685512 + 0.0118734i
\(105\) 0 0
\(106\) 0.317972 1.18669i 0.0308842 0.115261i
\(107\) 2.64415 9.86809i 0.255619 0.953985i −0.712125 0.702052i \(-0.752267\pi\)
0.967745 0.251932i \(-0.0810661\pi\)
\(108\) −7.46631 2.00059i −0.718446 0.192507i
\(109\) −11.9735 + 3.20828i −1.14685 + 0.307297i −0.781702 0.623653i \(-0.785648\pi\)
−0.365147 + 0.930950i \(0.618981\pi\)
\(110\) 0 0
\(111\) −4.02771 1.59916i −0.382293 0.151786i
\(112\) 9.11106 + 9.11106i 0.860914 + 0.860914i
\(113\) −3.03182 + 5.25127i −0.285210 + 0.493998i −0.972660 0.232233i \(-0.925397\pi\)
0.687450 + 0.726232i \(0.258730\pi\)
\(114\) −0.436062 0.755282i −0.0408410 0.0707387i
\(115\) 0 0
\(116\) −9.72004 2.60448i −0.902483 0.241820i
\(117\) 7.10244 0.656621
\(118\) 15.5709 + 4.17221i 1.43342 + 0.384083i
\(119\) −3.39779 3.39779i −0.311475 0.311475i
\(120\) 0 0
\(121\) 6.27654 0.570594
\(122\) 19.4814 19.4814i 1.76377 1.76377i
\(123\) 0.389918 + 1.45519i 0.0351577 + 0.131210i
\(124\) −3.27956 + 12.2395i −0.294513 + 1.09914i
\(125\) 0 0
\(126\) 15.2769 4.09344i 1.36098 0.364673i
\(127\) −12.7165 + 3.40738i −1.12841 + 0.302356i −0.774282 0.632841i \(-0.781889\pi\)
−0.354128 + 0.935197i \(0.615222\pi\)
\(128\) 0.339912 + 0.196248i 0.0300443 + 0.0173461i
\(129\) 4.92391 + 1.31936i 0.433526 + 0.116163i
\(130\) 0 0
\(131\) −11.0289 + 2.95518i −0.963598 + 0.258195i −0.706122 0.708090i \(-0.749557\pi\)
−0.257475 + 0.966285i \(0.582891\pi\)
\(132\) 0.791632 + 2.95441i 0.0689028 + 0.257149i
\(133\) 1.69220 + 0.976995i 0.146733 + 0.0847162i
\(134\) 0.526544 + 0.526544i 0.0454865 + 0.0454865i
\(135\) 0 0
\(136\) −0.0641569 0.0370410i −0.00550141 0.00317624i
\(137\) 14.8532 + 14.8532i 1.26899 + 1.26899i 0.946610 + 0.322380i \(0.104483\pi\)
0.322380 + 0.946610i \(0.395517\pi\)
\(138\) 0.336387 + 0.336387i 0.0286352 + 0.0286352i
\(139\) −2.76488 + 4.78891i −0.234514 + 0.406190i −0.959131 0.282961i \(-0.908683\pi\)
0.724617 + 0.689152i \(0.242017\pi\)
\(140\) 0 0
\(141\) 5.15751 2.97769i 0.434340 0.250767i
\(142\) 19.0498i 1.59862i
\(143\) −3.09659 5.36345i −0.258950 0.448514i
\(144\) 8.73899 5.04546i 0.728249 0.420455i
\(145\) 0 0
\(146\) −8.52587 31.8190i −0.705606 2.63336i
\(147\) 1.57615 1.57615i 0.129999 0.129999i
\(148\) −11.0322 + 4.76146i −0.906839 + 0.391389i
\(149\) 13.7980i 1.13038i −0.824962 0.565189i \(-0.808803\pi\)
0.824962 0.565189i \(-0.191197\pi\)
\(150\) 0 0
\(151\) 1.21576 0.701919i 0.0989370 0.0571213i −0.449715 0.893172i \(-0.648474\pi\)
0.548652 + 0.836051i \(0.315141\pi\)
\(152\) 0.0290983 + 0.00779686i 0.00236018 + 0.000632409i
\(153\) −3.25904 + 1.88161i −0.263478 + 0.152119i
\(154\) −9.75175 9.75175i −0.785819 0.785819i
\(155\) 0 0
\(156\) −2.83573 + 2.83573i −0.227040 + 0.227040i
\(157\) −7.01323 + 1.87919i −0.559716 + 0.149976i −0.527576 0.849508i \(-0.676899\pi\)
−0.0321404 + 0.999483i \(0.510232\pi\)
\(158\) 6.10880 6.10880i 0.485990 0.485990i
\(159\) −0.438983 −0.0348136
\(160\) 0 0
\(161\) −1.02954 0.275864i −0.0811389 0.0217411i
\(162\) 9.35024i 0.734625i
\(163\) −2.54539 + 4.40875i −0.199370 + 0.345320i −0.948324 0.317302i \(-0.897223\pi\)
0.748954 + 0.662622i \(0.230556\pi\)
\(164\) 3.61757 + 2.08860i 0.282485 + 0.163093i
\(165\) 0 0
\(166\) 1.07649 4.01751i 0.0835518 0.311820i
\(167\) 2.82047 + 4.88520i 0.218255 + 0.378028i 0.954274 0.298932i \(-0.0966303\pi\)
−0.736020 + 0.676960i \(0.763297\pi\)
\(168\) 0.0556250 0.0963454i 0.00429157 0.00743321i
\(169\) −2.43991 + 4.22604i −0.187685 + 0.325080i
\(170\) 0 0
\(171\) 1.08207 1.08207i 0.0827477 0.0827477i
\(172\) 12.2407 7.06716i 0.933343 0.538866i
\(173\) −1.10392 + 0.295795i −0.0839295 + 0.0224888i −0.300539 0.953769i \(-0.597167\pi\)
0.216610 + 0.976258i \(0.430500\pi\)
\(174\) 7.23611i 0.548568i
\(175\) 0 0
\(176\) −7.62021 4.39953i −0.574395 0.331627i
\(177\) 5.76002i 0.432950i
\(178\) −0.0979487 + 0.365550i −0.00734157 + 0.0273991i
\(179\) −11.6801 + 11.6801i −0.873015 + 0.873015i −0.992800 0.119785i \(-0.961779\pi\)
0.119785 + 0.992800i \(0.461779\pi\)
\(180\) 0 0
\(181\) 12.7282 + 22.0459i 0.946080 + 1.63866i 0.753573 + 0.657364i \(0.228328\pi\)
0.192507 + 0.981296i \(0.438338\pi\)
\(182\) 4.68001 17.4660i 0.346905 1.29467i
\(183\) −8.52551 4.92221i −0.630224 0.363860i
\(184\) −0.0164323 −0.00121141
\(185\) 0 0
\(186\) 9.11171 0.668103
\(187\) 2.84181 + 1.64072i 0.207814 + 0.119981i
\(188\) 4.27380 15.9501i 0.311699 1.16328i
\(189\) −6.22669 10.7849i −0.452925 0.784489i
\(190\) 0 0
\(191\) 12.6423 12.6423i 0.914764 0.914764i −0.0818786 0.996642i \(-0.526092\pi\)
0.996642 + 0.0818786i \(0.0260920\pi\)
\(192\) −1.43861 + 5.36896i −0.103823 + 0.387471i
\(193\) 19.2629i 1.38657i −0.720663 0.693285i \(-0.756163\pi\)
0.720663 0.693285i \(-0.243837\pi\)
\(194\) −13.3856 7.72816i −0.961028 0.554850i
\(195\) 0 0
\(196\) 6.18048i 0.441463i
\(197\) −16.2943 + 4.36604i −1.16092 + 0.311067i −0.787333 0.616528i \(-0.788539\pi\)
−0.373587 + 0.927595i \(0.621872\pi\)
\(198\) −9.35352 + 5.40026i −0.664726 + 0.383780i
\(199\) −12.5591 + 12.5591i −0.890292 + 0.890292i −0.994550 0.104259i \(-0.966753\pi\)
0.104259 + 0.994550i \(0.466753\pi\)
\(200\) 0 0
\(201\) 0.133037 0.230428i 0.00938374 0.0162531i
\(202\) −4.34774 + 7.53051i −0.305906 + 0.529845i
\(203\) −8.10623 14.0404i −0.568946 0.985443i
\(204\) 0.549956 2.05246i 0.0385046 0.143701i
\(205\) 0 0
\(206\) −0.208067 0.120128i −0.0144967 0.00836968i
\(207\) −0.417364 + 0.722896i −0.0290088 + 0.0502447i
\(208\) 11.5369i 0.799940i
\(209\) −1.28890 0.345359i −0.0891549 0.0238890i
\(210\) 0 0
\(211\) −3.50233 −0.241110 −0.120555 0.992707i \(-0.538467\pi\)
−0.120555 + 0.992707i \(0.538467\pi\)
\(212\) −0.860679 + 0.860679i −0.0591117 + 0.0591117i
\(213\) −6.57489 + 1.76174i −0.450504 + 0.120712i
\(214\) −14.4034 + 14.4034i −0.984595 + 0.984595i
\(215\) 0 0
\(216\) −0.135760 0.135760i −0.00923732 0.00923732i
\(217\) −17.6797 + 10.2074i −1.20017 + 0.692921i
\(218\) 23.8731 + 6.39678i 1.61689 + 0.433245i
\(219\) −10.1936 + 5.88528i −0.688819 + 0.397690i
\(220\) 0 0
\(221\) 4.30246i 0.289415i
\(222\) 5.36046 + 6.77660i 0.359771 + 0.454816i
\(223\) 11.7322 11.7322i 0.785647 0.785647i −0.195131 0.980777i \(-0.562513\pi\)
0.980777 + 0.195131i \(0.0625131\pi\)
\(224\) −6.56838 24.5135i −0.438868 1.63788i
\(225\) 0 0
\(226\) 10.4702 6.04497i 0.696467 0.402105i
\(227\) −9.44467 16.3587i −0.626865 1.08576i −0.988177 0.153317i \(-0.951004\pi\)
0.361312 0.932445i \(-0.382329\pi\)
\(228\) 0.864056i 0.0572235i
\(229\) 8.30226 4.79331i 0.548629 0.316751i −0.199940 0.979808i \(-0.564075\pi\)
0.748569 + 0.663057i \(0.230741\pi\)
\(230\) 0 0
\(231\) −2.46389 + 4.26759i −0.162112 + 0.280787i
\(232\) −0.176740 0.176740i −0.0116035 0.0116035i
\(233\) −16.8480 16.8480i −1.10375 1.10375i −0.993954 0.109796i \(-0.964980\pi\)
−0.109796 0.993954i \(-0.535020\pi\)
\(234\) −12.2639 7.08056i −0.801715 0.462871i
\(235\) 0 0
\(236\) −11.2932 11.2932i −0.735126 0.735126i
\(237\) −2.67335 1.54346i −0.173653 0.100258i
\(238\) 2.47969 + 9.25434i 0.160735 + 0.599870i
\(239\) 24.8308 6.65340i 1.60617 0.430373i 0.659274 0.751903i \(-0.270864\pi\)
0.946899 + 0.321530i \(0.104197\pi\)
\(240\) 0 0
\(241\) −14.6126 3.91545i −0.941283 0.252216i −0.244624 0.969618i \(-0.578664\pi\)
−0.696659 + 0.717402i \(0.745331\pi\)
\(242\) −10.8378 6.25720i −0.696680 0.402228i
\(243\) −14.5662 + 3.90299i −0.934419 + 0.250377i
\(244\) −26.3659 + 7.06472i −1.68790 + 0.452273i
\(245\) 0 0
\(246\) 0.777434 2.90142i 0.0495674 0.184988i
\(247\) −0.452818 1.68994i −0.0288121 0.107528i
\(248\) −0.222551 + 0.222551i −0.0141320 + 0.0141320i
\(249\) −1.48617 −0.0941820
\(250\) 0 0
\(251\) −11.1540 11.1540i −0.704037 0.704037i 0.261238 0.965275i \(-0.415869\pi\)
−0.965275 + 0.261238i \(0.915869\pi\)
\(252\) −15.1356 4.05557i −0.953452 0.255477i
\(253\) 0.727865 0.0457605
\(254\) 25.3547 + 6.79377i 1.59090 + 0.426279i
\(255\) 0 0
\(256\) −8.19322 14.1911i −0.512076 0.886942i
\(257\) 2.97643 5.15532i 0.185664 0.321580i −0.758136 0.652097i \(-0.773890\pi\)
0.943800 + 0.330516i \(0.107223\pi\)
\(258\) −7.18689 7.18689i −0.447436 0.447436i
\(259\) −17.9925 7.14376i −1.11800 0.443891i
\(260\) 0 0
\(261\) −12.2642 + 3.28618i −0.759135 + 0.203410i
\(262\) 21.9898 + 5.89215i 1.35853 + 0.364018i
\(263\) −1.89838 + 7.08485i −0.117059 + 0.436870i −0.999433 0.0336790i \(-0.989278\pi\)
0.882374 + 0.470549i \(0.155944\pi\)
\(264\) −0.0196630 + 0.0733832i −0.00121017 + 0.00451642i
\(265\) 0 0
\(266\) −1.94797 3.37398i −0.119438 0.206872i
\(267\) 0.135225 0.00827563
\(268\) −0.190945 0.712618i −0.0116638 0.0435301i
\(269\) 15.0921i 0.920182i 0.887872 + 0.460091i \(0.152183\pi\)
−0.887872 + 0.460091i \(0.847817\pi\)
\(270\) 0 0
\(271\) 15.1317 26.2089i 0.919186 1.59208i 0.118532 0.992950i \(-0.462181\pi\)
0.800654 0.599127i \(-0.204485\pi\)
\(272\) 3.05640 + 5.29384i 0.185322 + 0.320986i
\(273\) −6.46107 −0.391042
\(274\) −10.8398 40.4546i −0.654854 2.44395i
\(275\) 0 0
\(276\) −0.121987 0.455262i −0.00734276 0.0274036i
\(277\) −13.8484 + 7.99538i −0.832070 + 0.480396i −0.854561 0.519351i \(-0.826174\pi\)
0.0224906 + 0.999747i \(0.492840\pi\)
\(278\) 9.54832 5.51272i 0.572670 0.330631i
\(279\) 4.13796 + 15.4431i 0.247733 + 0.924553i
\(280\) 0 0
\(281\) −3.07938 11.4924i −0.183701 0.685580i −0.994905 0.100817i \(-0.967854\pi\)
0.811204 0.584763i \(-0.198812\pi\)
\(282\) −11.8741 −0.707090
\(283\) −1.16624 2.01999i −0.0693258 0.120076i 0.829279 0.558835i \(-0.188751\pi\)
−0.898605 + 0.438759i \(0.855418\pi\)
\(284\) −9.43678 + 16.3450i −0.559970 + 0.969896i
\(285\) 0 0
\(286\) 12.3482i 0.730164i
\(287\) 1.74184 + 6.50062i 0.102817 + 0.383719i
\(288\) −19.8751 −1.17115
\(289\) 7.36017 + 12.7482i 0.432951 + 0.749894i
\(290\) 0 0
\(291\) −1.42941 + 5.33463i −0.0837935 + 0.312721i
\(292\) −8.44699 + 31.5246i −0.494323 + 1.84484i
\(293\) 22.3999 + 6.00204i 1.30862 + 0.350643i 0.844702 0.535236i \(-0.179777\pi\)
0.463916 + 0.885879i \(0.346444\pi\)
\(294\) −4.29286 + 1.15027i −0.250365 + 0.0670850i
\(295\) 0 0
\(296\) −0.296444 0.0345887i −0.0172305 0.00201043i
\(297\) 6.01346 + 6.01346i 0.348936 + 0.348936i
\(298\) −13.7555 + 23.8252i −0.796835 + 1.38016i
\(299\) 0.477170 + 0.826484i 0.0275955 + 0.0477968i
\(300\) 0 0
\(301\) 21.9960 + 5.89380i 1.26783 + 0.339713i
\(302\) −2.79902 −0.161066
\(303\) 3.00118 + 0.804163i 0.172413 + 0.0461980i
\(304\) −1.75766 1.75766i −0.100809 0.100809i
\(305\) 0 0
\(306\) 7.50324 0.428932
\(307\) 20.5500 20.5500i 1.17285 1.17285i 0.191323 0.981527i \(-0.438722\pi\)
0.981527 0.191323i \(-0.0612779\pi\)
\(308\) 3.53637 + 13.1979i 0.201503 + 0.752020i
\(309\) −0.0222189 + 0.0829221i −0.00126399 + 0.00471727i
\(310\) 0 0
\(311\) 6.27405 1.68113i 0.355769 0.0953279i −0.0765080 0.997069i \(-0.524377\pi\)
0.432277 + 0.901741i \(0.357710\pi\)
\(312\) −0.0962165 + 0.0257811i −0.00544719 + 0.00145957i
\(313\) −2.16900 1.25227i −0.122599 0.0707825i 0.437446 0.899244i \(-0.355883\pi\)
−0.560045 + 0.828462i \(0.689216\pi\)
\(314\) 13.9832 + 3.74680i 0.789120 + 0.211444i
\(315\) 0 0
\(316\) −8.26757 + 2.21529i −0.465087 + 0.124620i
\(317\) −1.15635 4.31555i −0.0649470 0.242386i 0.925819 0.377967i \(-0.123377\pi\)
−0.990766 + 0.135581i \(0.956710\pi\)
\(318\) 0.757998 + 0.437630i 0.0425064 + 0.0245411i
\(319\) 7.82864 + 7.82864i 0.438320 + 0.438320i
\(320\) 0 0
\(321\) 6.30324 + 3.63918i 0.351813 + 0.203119i
\(322\) 1.50270 + 1.50270i 0.0837424 + 0.0837424i
\(323\) 0.655487 + 0.655487i 0.0364723 + 0.0364723i
\(324\) −4.63187 + 8.02263i −0.257326 + 0.445702i
\(325\) 0 0
\(326\) 8.79033 5.07510i 0.486851 0.281084i
\(327\) 8.83120i 0.488366i
\(328\) 0.0518778 + 0.0898550i 0.00286447 + 0.00496141i
\(329\) 23.0395 13.3019i 1.27021 0.733356i
\(330\) 0 0
\(331\) −4.17606 15.5853i −0.229537 0.856645i −0.980536 0.196341i \(-0.937094\pi\)
0.750999 0.660304i \(-0.229573\pi\)
\(332\) −2.91381 + 2.91381i −0.159916 + 0.159916i
\(333\) −9.05101 + 12.1627i −0.495993 + 0.666515i
\(334\) 11.2471i 0.615416i
\(335\) 0 0
\(336\) −7.94984 + 4.58984i −0.433699 + 0.250396i
\(337\) 33.6031 + 9.00391i 1.83048 + 0.490474i 0.997978 0.0635550i \(-0.0202438\pi\)
0.832497 + 0.554029i \(0.186911\pi\)
\(338\) 8.42604 4.86478i 0.458316 0.264609i
\(339\) −3.05466 3.05466i −0.165906 0.165906i
\(340\) 0 0
\(341\) 9.85782 9.85782i 0.533831 0.533831i
\(342\) −2.94715 + 0.789688i −0.159364 + 0.0427014i
\(343\) −8.71195 + 8.71195i −0.470401 + 0.470401i
\(344\) 0.351075 0.0189287
\(345\) 0 0
\(346\) 2.20104 + 0.589767i 0.118329 + 0.0317061i
\(347\) 36.0284i 1.93411i 0.254572 + 0.967054i \(0.418066\pi\)
−0.254572 + 0.967054i \(0.581934\pi\)
\(348\) 3.58458 6.20868i 0.192154 0.332820i
\(349\) −17.5896 10.1554i −0.941550 0.543604i −0.0511041 0.998693i \(-0.516274\pi\)
−0.890446 + 0.455089i \(0.849607\pi\)
\(350\) 0 0
\(351\) −2.88595 + 10.7705i −0.154041 + 0.574887i
\(352\) 8.66531 + 15.0088i 0.461863 + 0.799970i
\(353\) 8.93186 15.4704i 0.475395 0.823408i −0.524208 0.851590i \(-0.675639\pi\)
0.999603 + 0.0281823i \(0.00897190\pi\)
\(354\) −5.74227 + 9.94591i −0.305198 + 0.528619i
\(355\) 0 0
\(356\) 0.265125 0.265125i 0.0140516 0.0140516i
\(357\) 2.96474 1.71169i 0.156911 0.0905924i
\(358\) 31.8124 8.52411i 1.68134 0.450513i
\(359\) 21.4882i 1.13410i −0.823682 0.567051i \(-0.808084\pi\)
0.823682 0.567051i \(-0.191916\pi\)
\(360\) 0 0
\(361\) 16.1280 + 9.31152i 0.848844 + 0.490080i
\(362\) 50.7560i 2.66768i
\(363\) −1.15734 + 4.31925i −0.0607445 + 0.226702i
\(364\) −12.6677 + 12.6677i −0.663970 + 0.663970i
\(365\) 0 0
\(366\) 9.81409 + 16.9985i 0.512991 + 0.888526i
\(367\) 7.85591 29.3187i 0.410075 1.53042i −0.384424 0.923156i \(-0.625600\pi\)
0.794500 0.607265i \(-0.207733\pi\)
\(368\) 1.17424 + 0.677948i 0.0612115 + 0.0353405i
\(369\) 5.27057 0.274375
\(370\) 0 0
\(371\) −1.96101 −0.101811
\(372\) −7.81796 4.51370i −0.405343 0.234025i
\(373\) −6.74904 + 25.1878i −0.349452 + 1.30417i 0.537872 + 0.843027i \(0.319228\pi\)
−0.887324 + 0.461146i \(0.847438\pi\)
\(374\) −3.27133 5.66611i −0.169156 0.292988i
\(375\) 0 0
\(376\) 0.290021 0.290021i 0.0149567 0.0149567i
\(377\) −3.75708 + 14.0216i −0.193499 + 0.722150i
\(378\) 24.8300i 1.27712i
\(379\) 24.1459 + 13.9406i 1.24029 + 0.716082i 0.969153 0.246459i \(-0.0792670\pi\)
0.271137 + 0.962541i \(0.412600\pi\)
\(380\) 0 0
\(381\) 9.37927i 0.480514i
\(382\) −34.4330 + 9.22628i −1.76174 + 0.472058i
\(383\) −20.1610 + 11.6400i −1.03018 + 0.594775i −0.917036 0.398804i \(-0.869425\pi\)
−0.113144 + 0.993579i \(0.536092\pi\)
\(384\) −0.197726 + 0.197726i −0.0100902 + 0.0100902i
\(385\) 0 0
\(386\) −19.2035 + 33.2615i −0.977433 + 1.69296i
\(387\) 8.91695 15.4446i 0.453274 0.785094i
\(388\) 7.65666 + 13.2617i 0.388708 + 0.673262i
\(389\) 6.39722 23.8748i 0.324352 1.21050i −0.590610 0.806957i \(-0.701113\pi\)
0.914962 0.403541i \(-0.132221\pi\)
\(390\) 0 0
\(391\) −0.437911 0.252828i −0.0221461 0.0127861i
\(392\) 0.0767569 0.132947i 0.00387681 0.00671483i
\(393\) 8.13451i 0.410332i
\(394\) 32.4882 + 8.70518i 1.63673 + 0.438561i
\(395\) 0 0
\(396\) 10.7006 0.537725
\(397\) 1.14631 1.14631i 0.0575316 0.0575316i −0.677756 0.735287i \(-0.737047\pi\)
0.735287 + 0.677756i \(0.237047\pi\)
\(398\) 34.2064 9.16558i 1.71461 0.459429i
\(399\) −0.984354 + 0.984354i −0.0492793 + 0.0492793i
\(400\) 0 0
\(401\) −5.12856 5.12856i −0.256108 0.256108i 0.567361 0.823469i \(-0.307964\pi\)
−0.823469 + 0.567361i \(0.807964\pi\)
\(402\) −0.459435 + 0.265255i −0.0229146 + 0.0132297i
\(403\) 17.6560 + 4.73091i 0.879509 + 0.235664i
\(404\) 7.46084 4.30752i 0.371191 0.214307i
\(405\) 0 0
\(406\) 32.3250i 1.60426i
\(407\) 13.1309 + 1.53210i 0.650875 + 0.0759431i
\(408\) 0.0373200 0.0373200i 0.00184762 0.00184762i
\(409\) 1.06786 + 3.98532i 0.0528024 + 0.197061i 0.987289 0.158938i \(-0.0508071\pi\)
−0.934486 + 0.356000i \(0.884140\pi\)
\(410\) 0 0
\(411\) −12.9601 + 7.48252i −0.639275 + 0.369085i
\(412\) 0.119016 + 0.206142i 0.00586350 + 0.0101559i
\(413\) 25.7310i 1.26614i
\(414\) 1.44134 0.832157i 0.0708379 0.0408983i
\(415\) 0 0
\(416\) −11.3615 + 19.6788i −0.557045 + 0.964831i
\(417\) −2.78571 2.78571i −0.136417 0.136417i
\(418\) 1.88126 + 1.88126i 0.0920156 + 0.0920156i
\(419\) 17.3507 + 10.0174i 0.847638 + 0.489384i 0.859853 0.510541i \(-0.170555\pi\)
−0.0122153 + 0.999925i \(0.503888\pi\)
\(420\) 0 0
\(421\) 3.69196 + 3.69196i 0.179935 + 0.179935i 0.791328 0.611392i \(-0.209390\pi\)
−0.611392 + 0.791328i \(0.709390\pi\)
\(422\) 6.04753 + 3.49154i 0.294389 + 0.169966i
\(423\) −5.39245 20.1249i −0.262190 0.978506i
\(424\) −0.0292029 + 0.00782489i −0.00141822 + 0.000380010i
\(425\) 0 0
\(426\) 13.1093 + 3.51262i 0.635146 + 0.170187i
\(427\) −38.0850 21.9884i −1.84306 1.06409i
\(428\) 19.4933 5.22323i 0.942246 0.252474i
\(429\) 4.26188 1.14197i 0.205765 0.0551347i
\(430\) 0 0
\(431\) −4.73118 + 17.6570i −0.227893 + 0.850509i 0.753332 + 0.657641i \(0.228446\pi\)
−0.981225 + 0.192868i \(0.938221\pi\)
\(432\) 4.10026 + 15.3024i 0.197274 + 0.736237i
\(433\) 4.75230 4.75230i 0.228381 0.228381i −0.583635 0.812016i \(-0.698370\pi\)
0.812016 + 0.583635i \(0.198370\pi\)
\(434\) 40.7037 1.95384
\(435\) 0 0
\(436\) −17.3146 17.3146i −0.829221 0.829221i
\(437\) 0.198614 + 0.0532183i 0.00950098 + 0.00254578i
\(438\) 23.4686 1.12137
\(439\) 33.2323 + 8.90457i 1.58609 + 0.424992i 0.940805 0.338948i \(-0.110071\pi\)
0.645287 + 0.763940i \(0.276738\pi\)
\(440\) 0 0
\(441\) −3.89909 6.75343i −0.185671 0.321592i
\(442\) 4.28921 7.42913i 0.204017 0.353368i
\(443\) −2.82400 2.82400i −0.134172 0.134172i 0.636831 0.771003i \(-0.280245\pi\)
−0.771003 + 0.636831i \(0.780245\pi\)
\(444\) −1.24240 8.46984i −0.0589615 0.401961i
\(445\) 0 0
\(446\) −31.9542 + 8.56211i −1.51308 + 0.405428i
\(447\) 9.49521 + 2.54423i 0.449108 + 0.120338i
\(448\) −6.42652 + 23.9841i −0.303625 + 1.13314i
\(449\) 7.10809 26.5277i 0.335451 1.25192i −0.567928 0.823078i \(-0.692255\pi\)
0.903379 0.428843i \(-0.141079\pi\)
\(450\) 0 0
\(451\) −2.29791 3.98010i −0.108204 0.187416i
\(452\) −11.9781 −0.563402
\(453\) 0.258855 + 0.966061i 0.0121621 + 0.0453895i
\(454\) 37.6623i 1.76758i
\(455\) 0 0
\(456\) −0.0107309 + 0.0185865i −0.000502522 + 0.000870393i
\(457\) −3.39116 5.87366i −0.158632 0.274758i 0.775744 0.631048i \(-0.217375\pi\)
−0.934375 + 0.356290i \(0.884042\pi\)
\(458\) −19.1142 −0.893147
\(459\) −1.52911 5.70673i −0.0713729 0.266367i
\(460\) 0 0
\(461\) 10.7605 + 40.1588i 0.501168 + 1.87038i 0.492304 + 0.870423i \(0.336155\pi\)
0.00886370 + 0.999961i \(0.497179\pi\)
\(462\) 8.50888 4.91260i 0.395869 0.228555i
\(463\) −16.8228 + 9.71266i −0.781822 + 0.451385i −0.837076 0.547087i \(-0.815737\pi\)
0.0552533 + 0.998472i \(0.482403\pi\)
\(464\) 5.33794 + 19.9215i 0.247808 + 0.924830i
\(465\) 0 0
\(466\) 12.2956 + 45.8878i 0.569583 + 2.12571i
\(467\) 19.7318 0.913077 0.456538 0.889704i \(-0.349089\pi\)
0.456538 + 0.889704i \(0.349089\pi\)
\(468\) 7.01505 + 12.1504i 0.324271 + 0.561653i
\(469\) 0.594302 1.02936i 0.0274423 0.0475315i
\(470\) 0 0
\(471\) 5.17271i 0.238346i
\(472\) −0.102673 0.383180i −0.00472589 0.0176373i
\(473\) −15.5508 −0.715025
\(474\) 3.07741 + 5.33022i 0.141350 + 0.244825i
\(475\) 0 0
\(476\) 2.45675 9.16872i 0.112605 0.420248i
\(477\) −0.397488 + 1.48345i −0.0181997 + 0.0679223i
\(478\) −49.5087 13.2658i −2.26447 0.606764i
\(479\) −36.6479 + 9.81978i −1.67449 + 0.448677i −0.966315 0.257364i \(-0.917146\pi\)
−0.708171 + 0.706041i \(0.750480\pi\)
\(480\) 0 0
\(481\) 6.86863 + 15.9144i 0.313182 + 0.725635i
\(482\) 21.3285 + 21.3285i 0.971486 + 0.971486i
\(483\) 0.379675 0.657617i 0.0172758 0.0299226i
\(484\) 6.19931 + 10.7375i 0.281787 + 0.488069i
\(485\) 0 0
\(486\) 29.0426 + 7.78193i 1.31740 + 0.352995i
\(487\) 29.1168 1.31941 0.659703 0.751526i \(-0.270682\pi\)
0.659703 + 0.751526i \(0.270682\pi\)
\(488\) −0.654890 0.175477i −0.0296455 0.00794348i
\(489\) −2.56456 2.56456i −0.115974 0.115974i
\(490\) 0 0
\(491\) −32.9750 −1.48814 −0.744070 0.668102i \(-0.767107\pi\)
−0.744070 + 0.668102i \(0.767107\pi\)
\(492\) −2.10434 + 2.10434i −0.0948709 + 0.0948709i
\(493\) −1.99068 7.42932i −0.0896558 0.334600i
\(494\) −0.902846 + 3.36947i −0.0406210 + 0.151600i
\(495\) 0 0
\(496\) 25.0851 6.72153i 1.12635 0.301806i
\(497\) −29.3712 + 7.86999i −1.31748 + 0.353017i
\(498\) 2.56619 + 1.48159i 0.114994 + 0.0663916i
\(499\) −4.27129 1.14449i −0.191209 0.0512344i 0.161944 0.986800i \(-0.448224\pi\)
−0.353153 + 0.935566i \(0.614890\pi\)
\(500\) 0 0
\(501\) −3.88186 + 1.04014i −0.173429 + 0.0464701i
\(502\) 8.14017 + 30.3795i 0.363314 + 1.35590i
\(503\) 25.4710 + 14.7057i 1.13570 + 0.655694i 0.945361 0.326025i \(-0.105709\pi\)
0.190335 + 0.981719i \(0.439043\pi\)
\(504\) −0.275211 0.275211i −0.0122589 0.0122589i
\(505\) 0 0
\(506\) −1.25681 0.725622i −0.0558722 0.0322578i
\(507\) −2.45828 2.45828i −0.109176 0.109176i
\(508\) −18.3892 18.3892i −0.815889 0.815889i
\(509\) 21.2253 36.7633i 0.940794 1.62950i 0.176832 0.984241i \(-0.443415\pi\)
0.763962 0.645261i \(-0.223252\pi\)
\(510\) 0 0
\(511\) −45.5366 + 26.2906i −2.01442 + 1.16303i
\(512\) 31.8869i 1.40922i
\(513\) 1.20122 + 2.08058i 0.0530353 + 0.0918599i
\(514\) −10.2789 + 5.93451i −0.453382 + 0.261760i
\(515\) 0 0
\(516\) 2.60625 + 9.72664i 0.114734 + 0.428191i
\(517\) −12.8464 + 12.8464i −0.564983 + 0.564983i
\(518\) 23.9462 + 30.2723i 1.05213 + 1.33009i
\(519\) 0.814213i 0.0357400i
\(520\) 0 0
\(521\) 9.27032 5.35222i 0.406140 0.234485i −0.282990 0.959123i \(-0.591326\pi\)
0.689130 + 0.724638i \(0.257993\pi\)
\(522\) 24.4528 + 6.55212i 1.07027 + 0.286779i
\(523\) 1.60873 0.928801i 0.0703449 0.0406137i −0.464415 0.885618i \(-0.653735\pi\)
0.534760 + 0.845004i \(0.320402\pi\)
\(524\) −15.9487 15.9487i −0.696723 0.696723i
\(525\) 0 0
\(526\) 10.3410 10.3410i 0.450888 0.450888i
\(527\) −9.35500 + 2.50667i −0.407510 + 0.109192i
\(528\) 4.43267 4.43267i 0.192907 0.192907i
\(529\) 22.8878 0.995123
\(530\) 0 0
\(531\) −19.4647 5.21556i −0.844697 0.226336i
\(532\) 3.85989i 0.167348i
\(533\) 3.01291 5.21851i 0.130504 0.226039i
\(534\) −0.233495 0.134808i −0.0101043 0.00583373i
\(535\) 0 0
\(536\) 0.00474280 0.0177004i 0.000204858 0.000764539i
\(537\) −5.88406 10.1915i −0.253916 0.439795i
\(538\) 15.0456 26.0598i 0.648662 1.12352i
\(539\) −3.39992 + 5.88884i −0.146445 + 0.253650i
\(540\) 0 0
\(541\) 18.3486 18.3486i 0.788870 0.788870i −0.192439 0.981309i \(-0.561640\pi\)
0.981309 + 0.192439i \(0.0616399\pi\)
\(542\) −52.2563 + 30.1702i −2.24460 + 1.29592i
\(543\) −17.5180 + 4.69394i −0.751770 + 0.201436i
\(544\) 12.0398i 0.516201i
\(545\) 0 0
\(546\) 11.1564 + 6.44117i 0.477451 + 0.275657i
\(547\) 38.0204i 1.62563i −0.582518 0.812817i \(-0.697933\pi\)
0.582518 0.812817i \(-0.302067\pi\)
\(548\) −10.7395 + 40.0803i −0.458768 + 1.71214i
\(549\) −24.3532 + 24.3532i −1.03937 + 1.03937i
\(550\) 0 0
\(551\) 1.56382 + 2.70861i 0.0666208 + 0.115391i
\(552\) 0.00302998 0.0113080i 0.000128964 0.000481302i
\(553\) −11.9423 6.89491i −0.507840 0.293201i
\(554\) 31.8830 1.35458
\(555\) 0 0
\(556\) −10.9234 −0.463257
\(557\) 25.0451 + 14.4598i 1.06119 + 0.612681i 0.925762 0.378106i \(-0.123425\pi\)
0.135432 + 0.990787i \(0.456758\pi\)
\(558\) 8.25043 30.7910i 0.349269 1.30349i
\(559\) −10.1947 17.6578i −0.431190 0.746844i
\(560\) 0 0
\(561\) −1.65308 + 1.65308i −0.0697930 + 0.0697930i
\(562\) −6.13979 + 22.9140i −0.258992 + 0.966570i
\(563\) 21.7412i 0.916284i 0.888879 + 0.458142i \(0.151485\pi\)
−0.888879 + 0.458142i \(0.848515\pi\)
\(564\) 10.1881 + 5.88210i 0.428996 + 0.247681i
\(565\) 0 0
\(566\) 4.65059i 0.195479i
\(567\) −14.4163 + 3.86284i −0.605429 + 0.162224i
\(568\) −0.405985 + 0.234395i −0.0170347 + 0.00983502i
\(569\) 17.8811 17.8811i 0.749613 0.749613i −0.224793 0.974406i \(-0.572171\pi\)
0.974406 + 0.224793i \(0.0721707\pi\)
\(570\) 0 0
\(571\) −1.01988 + 1.76649i −0.0426808 + 0.0739253i −0.886577 0.462582i \(-0.846923\pi\)
0.843896 + 0.536507i \(0.180257\pi\)
\(572\) 6.11697 10.5949i 0.255763 0.442995i
\(573\) 6.36876 + 11.0310i 0.266059 + 0.460827i
\(574\) 3.47294 12.9612i 0.144958 0.540989i
\(575\) 0 0
\(576\) 16.8406 + 9.72292i 0.701692 + 0.405122i
\(577\) 11.1072 19.2382i 0.462398 0.800897i −0.536682 0.843785i \(-0.680323\pi\)
0.999080 + 0.0428880i \(0.0136559\pi\)
\(578\) 29.3500i 1.22080i
\(579\) 13.2559 + 3.55190i 0.550896 + 0.147612i
\(580\) 0 0
\(581\) −6.63898 −0.275431
\(582\) 7.78637 7.78637i 0.322756 0.322756i
\(583\) 1.29353 0.346601i 0.0535726 0.0143547i
\(584\) −0.573213 + 0.573213i −0.0237197 + 0.0237197i
\(585\) 0 0
\(586\) −32.6947 32.6947i −1.35061 1.35061i
\(587\) −16.5092 + 9.53161i −0.681409 + 0.393412i −0.800386 0.599485i \(-0.795372\pi\)
0.118977 + 0.992897i \(0.462039\pi\)
\(588\) 4.25314 + 1.13963i 0.175397 + 0.0469974i
\(589\) 3.41068 1.96916i 0.140535 0.0811377i
\(590\) 0 0
\(591\) 12.0181i 0.494358i
\(592\) 19.7567 + 14.7021i 0.811993 + 0.604252i
\(593\) 13.1075 13.1075i 0.538261 0.538261i −0.384757 0.923018i \(-0.625715\pi\)
0.923018 + 0.384757i \(0.125715\pi\)
\(594\) −4.38860 16.3785i −0.180066 0.672017i
\(595\) 0 0
\(596\) 23.6048 13.6282i 0.966890 0.558234i
\(597\) −6.32686 10.9584i −0.258941 0.448499i
\(598\) 1.90280i 0.0778113i
\(599\) −10.4679 + 6.04367i −0.427709 + 0.246938i −0.698370 0.715737i \(-0.746091\pi\)
0.270661 + 0.962675i \(0.412758\pi\)
\(600\) 0 0
\(601\) 0.320993 0.555976i 0.0130936 0.0226787i −0.859404 0.511297i \(-0.829165\pi\)
0.872498 + 0.488618i \(0.162499\pi\)
\(602\) −32.1051 32.1051i −1.30851 1.30851i
\(603\) −0.658217 0.658217i −0.0268047 0.0268047i
\(604\) 2.40160 + 1.38656i 0.0977197 + 0.0564185i
\(605\) 0 0
\(606\) −4.38049 4.38049i −0.177945 0.177945i
\(607\) −32.3865 18.6984i −1.31453 0.758943i −0.331685 0.943390i \(-0.607617\pi\)
−0.982842 + 0.184447i \(0.940950\pi\)
\(608\) 1.26714 + 4.72904i 0.0513894 + 0.191788i
\(609\) 11.1567 2.98944i 0.452093 0.121138i
\(610\) 0 0
\(611\) −23.0087 6.16516i −0.930832 0.249416i
\(612\) −6.43788 3.71691i −0.260236 0.150247i
\(613\) 32.2173 8.63260i 1.30125 0.348668i 0.459324 0.888269i \(-0.348092\pi\)
0.841921 + 0.539601i \(0.181425\pi\)
\(614\) −55.9707 + 14.9973i −2.25879 + 0.605242i
\(615\) 0 0
\(616\) −0.0878380 + 0.327816i −0.00353910 + 0.0132081i
\(617\) 2.29488 + 8.56459i 0.0923882 + 0.344798i 0.996611 0.0822645i \(-0.0262152\pi\)
−0.904222 + 0.427062i \(0.859549\pi\)
\(618\) 0.121032 0.121032i 0.00486864 0.00486864i
\(619\) 16.0269 0.644174 0.322087 0.946710i \(-0.395616\pi\)
0.322087 + 0.946710i \(0.395616\pi\)
\(620\) 0 0
\(621\) −0.926648 0.926648i −0.0371851 0.0371851i
\(622\) −12.5094 3.35189i −0.501583 0.134399i
\(623\) 0.604074 0.0242017
\(624\) 7.93921 + 2.12730i 0.317823 + 0.0851603i
\(625\) 0 0
\(626\) 2.49682 + 4.32463i 0.0997932 + 0.172847i
\(627\) 0.475323 0.823284i 0.0189826 0.0328788i
\(628\) −10.1417 10.1417i −0.404699 0.404699i
\(629\) −7.36786 5.48286i −0.293776 0.218616i
\(630\) 0 0
\(631\) 23.2525 6.23050i 0.925669 0.248032i 0.235662 0.971835i \(-0.424274\pi\)
0.690007 + 0.723803i \(0.257607\pi\)
\(632\) −0.205354 0.0550244i −0.00816854 0.00218875i
\(633\) 0.645799 2.41016i 0.0256682 0.0957951i
\(634\) −2.30557 + 8.60452i −0.0915660 + 0.341729i
\(635\) 0 0
\(636\) −0.433581 0.750985i −0.0171926 0.0297785i
\(637\) −8.91563 −0.353250
\(638\) −5.71331 21.3224i −0.226192 0.844160i
\(639\) 23.8136i 0.942052i
\(640\) 0 0
\(641\) 9.86299 17.0832i 0.389565 0.674746i −0.602826 0.797872i \(-0.705959\pi\)
0.992391 + 0.123127i \(0.0392922\pi\)
\(642\) −7.25594 12.5677i −0.286369 0.496006i
\(643\) −2.09981 −0.0828085 −0.0414043 0.999142i \(-0.513183\pi\)
−0.0414043 + 0.999142i \(0.513183\pi\)
\(644\) −0.544939 2.03374i −0.0214736 0.0801405i
\(645\) 0 0
\(646\) −0.478371 1.78531i −0.0188213 0.0702419i
\(647\) 16.8964 9.75517i 0.664268 0.383515i −0.129633 0.991562i \(-0.541380\pi\)
0.793901 + 0.608047i \(0.208047\pi\)
\(648\) −0.199270 + 0.115049i −0.00782807 + 0.00451954i
\(649\) 4.54785 + 16.9728i 0.178519 + 0.666241i
\(650\) 0 0
\(651\) −3.76430 14.0485i −0.147534 0.550606i
\(652\) −10.0563 −0.393835
\(653\) −2.65715 4.60233i −0.103983 0.180103i 0.809340 0.587341i \(-0.199825\pi\)
−0.913322 + 0.407238i \(0.866492\pi\)
\(654\) −8.80399 + 15.2490i −0.344263 + 0.596281i
\(655\) 0 0
\(656\) 8.56129i 0.334262i
\(657\) 10.6579 + 39.7760i 0.415806 + 1.55181i
\(658\) −53.0436 −2.06785
\(659\) −1.89214 3.27728i −0.0737073 0.127665i 0.826816 0.562472i \(-0.190150\pi\)
−0.900523 + 0.434808i \(0.856816\pi\)
\(660\) 0 0
\(661\) 5.01853 18.7294i 0.195198 0.728490i −0.797017 0.603957i \(-0.793590\pi\)
0.992215 0.124533i \(-0.0397433\pi\)
\(662\) −8.32640 + 31.0745i −0.323615 + 1.20775i
\(663\) −2.96077 0.793337i −0.114987 0.0308106i
\(664\) −0.0988658 + 0.0264910i −0.00383674 + 0.00102805i
\(665\) 0 0
\(666\) 27.7538 11.9785i 1.07544 0.464156i
\(667\) −1.20636 1.20636i −0.0467104 0.0467104i
\(668\) −5.57154 + 9.65018i −0.215569 + 0.373377i
\(669\) 5.91029 + 10.2369i 0.228505 + 0.395782i
\(670\) 0 0
\(671\) 29.0081 + 7.77271i 1.11985 + 0.300062i
\(672\) 18.0803 0.697463
\(673\) 1.05454 + 0.282562i 0.0406494 + 0.0108920i 0.279086 0.960266i \(-0.409968\pi\)
−0.238437 + 0.971158i \(0.576635\pi\)
\(674\) −49.0467 49.0467i −1.88921 1.88921i
\(675\) 0 0
\(676\) −9.63954 −0.370751
\(677\) −2.41626 + 2.41626i −0.0928643 + 0.0928643i −0.752013 0.659149i \(-0.770917\pi\)
0.659149 + 0.752013i \(0.270917\pi\)
\(678\) 2.22928 + 8.31978i 0.0856149 + 0.319519i
\(679\) −6.38543 + 23.8307i −0.245050 + 0.914540i
\(680\) 0 0
\(681\) 12.9988 3.48303i 0.498117 0.133470i
\(682\) −26.8491 + 7.19419i −1.02811 + 0.275480i
\(683\) 19.8205 + 11.4434i 0.758411 + 0.437869i 0.828725 0.559656i \(-0.189067\pi\)
−0.0703137 + 0.997525i \(0.522400\pi\)
\(684\) 2.91989 + 0.782381i 0.111645 + 0.0299151i
\(685\) 0 0
\(686\) 23.7282 6.35794i 0.905945 0.242747i
\(687\) 1.76769 + 6.59711i 0.0674416 + 0.251695i
\(688\) −25.0876 14.4843i −0.956455 0.552209i
\(689\) 1.24157 + 1.24157i 0.0473001 + 0.0473001i
\(690\) 0 0
\(691\) 15.4346 + 8.91116i 0.587159 + 0.338996i 0.763973 0.645248i \(-0.223246\pi\)
−0.176814 + 0.984244i \(0.556579\pi\)
\(692\) −1.59636 1.59636i −0.0606847 0.0606847i
\(693\) 12.1904 + 12.1904i 0.463074 + 0.463074i
\(694\) 35.9174 62.2108i 1.36341 2.36149i
\(695\) 0 0
\(696\) 0.154214 0.0890356i 0.00584548 0.00337489i
\(697\) 3.19277i 0.120935i
\(698\) 20.2482 + 35.0708i 0.766404 + 1.32745i
\(699\) 14.7007 8.48746i 0.556032 0.321025i
\(700\) 0 0
\(701\) −6.42467 23.9772i −0.242656 0.905606i −0.974547 0.224184i \(-0.928028\pi\)
0.731890 0.681422i \(-0.238638\pi\)
\(702\) 15.7205 15.7205i 0.593333 0.593333i
\(703\) 3.47103 + 1.37814i 0.130912 + 0.0519776i
\(704\) 16.9564i 0.639067i
\(705\) 0 0
\(706\) −30.8455 + 17.8087i −1.16089 + 0.670239i
\(707\) 13.4068 + 3.59234i 0.504215 + 0.135104i
\(708\) 9.85389 5.68915i 0.370332 0.213811i
\(709\) −27.9093 27.9093i −1.04815 1.04815i −0.998780 0.0493742i \(-0.984277\pi\)
−0.0493742 0.998780i \(-0.515723\pi\)
\(710\) 0 0
\(711\) −7.63643 + 7.63643i −0.286388 + 0.286388i
\(712\) 0.00899570 0.00241039i 0.000337128 9.03332e-5i
\(713\) −1.51905 + 1.51905i −0.0568888 + 0.0568888i
\(714\) −6.82568 −0.255445
\(715\) 0 0
\(716\) −31.5181 8.44525i −1.17789 0.315614i
\(717\) 18.3144i 0.683962i
\(718\) −21.4220 + 37.1040i −0.799461 + 1.38471i
\(719\) 3.76115 + 2.17150i 0.140267 + 0.0809833i 0.568491 0.822689i \(-0.307527\pi\)
−0.428224 + 0.903673i \(0.640861\pi\)
\(720\) 0 0
\(721\) −0.0992559 + 0.370428i −0.00369648 + 0.0137955i
\(722\) −18.5657 32.1567i −0.690943 1.19675i
\(723\) 5.38889 9.33382i 0.200415 0.347129i
\(724\) −25.1432 + 43.5493i −0.934440 + 1.61850i
\(725\) 0 0
\(726\) 6.30433 6.30433i 0.233976 0.233976i
\(727\) −10.1029 + 5.83294i −0.374698 + 0.216332i −0.675509 0.737352i \(-0.736076\pi\)
0.300811 + 0.953684i \(0.402743\pi\)
\(728\) −0.429817 + 0.115169i −0.0159301 + 0.00426845i
\(729\) 3.32523i 0.123157i
\(730\) 0 0
\(731\) 9.35593 + 5.40165i 0.346041 + 0.199787i
\(732\) 19.4466i 0.718766i
\(733\) 2.57743 9.61910i 0.0951996 0.355290i −0.901850 0.432049i \(-0.857791\pi\)
0.997050 + 0.0767595i \(0.0244574\pi\)
\(734\) −42.7932 + 42.7932i −1.57953 + 1.57953i
\(735\) 0 0
\(736\) −1.33529 2.31279i −0.0492193 0.0852504i
\(737\) −0.210081 + 0.784032i −0.00773842 + 0.0288802i
\(738\) −9.10077 5.25433i −0.335004 0.193415i
\(739\) −24.0193 −0.883563 −0.441782 0.897123i \(-0.645653\pi\)
−0.441782 + 0.897123i \(0.645653\pi\)
\(740\) 0 0
\(741\) 1.24644 0.0457892
\(742\) 3.38611 + 1.95497i 0.124308 + 0.0717693i
\(743\) −9.04359 + 33.7511i −0.331777 + 1.23821i 0.575544 + 0.817771i \(0.304790\pi\)
−0.907321 + 0.420438i \(0.861876\pi\)
\(744\) −0.112114 0.194187i −0.00411029 0.00711922i
\(745\) 0 0
\(746\) 36.7638 36.7638i 1.34602 1.34602i
\(747\) −1.34569 + 5.02218i −0.0492362 + 0.183752i
\(748\) 6.48213i 0.237010i
\(749\) 28.1577 + 16.2569i 1.02886 + 0.594013i
\(750\) 0 0
\(751\) 49.1968i 1.79522i −0.440793 0.897609i \(-0.645303\pi\)
0.440793 0.897609i \(-0.354697\pi\)
\(752\) −32.6900 + 8.75926i −1.19208 + 0.319417i
\(753\) 9.73245 5.61903i 0.354670 0.204769i
\(754\) 20.4658 20.4658i 0.745321 0.745321i
\(755\) 0 0
\(756\) 12.3001 21.3045i 0.447352 0.774836i
\(757\) 1.11912 1.93838i 0.0406752 0.0704516i −0.844971 0.534812i \(-0.820382\pi\)
0.885646 + 0.464360i \(0.153716\pi\)
\(758\) −27.7954 48.1430i −1.00957 1.74863i
\(759\) −0.134212 + 0.500886i −0.00487158 + 0.0181810i
\(760\) 0 0
\(761\) −35.8171 20.6790i −1.29837 0.749614i −0.318247 0.948008i \(-0.603094\pi\)
−0.980122 + 0.198394i \(0.936427\pi\)
\(762\) −9.35037 + 16.1953i −0.338728 + 0.586695i
\(763\) 39.4506i 1.42821i
\(764\) 34.1144 + 9.14092i 1.23422 + 0.330707i
\(765\) 0 0
\(766\) 46.4164 1.67709
\(767\) −16.2910 + 16.2910i −0.588234 + 0.588234i
\(768\) 11.2765 3.02152i 0.406904 0.109030i
\(769\) 0.953352 0.953352i 0.0343788 0.0343788i −0.689708 0.724087i \(-0.742261\pi\)
0.724087 + 0.689708i \(0.242261\pi\)
\(770\) 0 0
\(771\) 2.99885 + 2.99885i 0.108001 + 0.108001i
\(772\) 32.9537 19.0258i 1.18603 0.684755i
\(773\) 29.3068 + 7.85273i 1.05409 + 0.282443i 0.743942 0.668244i \(-0.232954\pi\)
0.310150 + 0.950688i \(0.399621\pi\)
\(774\) −30.7941 + 17.7790i −1.10687 + 0.639052i
\(775\) 0 0
\(776\) 0.380360i 0.0136541i
\(777\) 8.23369 11.0644i 0.295382 0.396934i
\(778\) −34.8474 + 34.8474i −1.24934 + 1.24934i
\(779\) −0.336027 1.25407i −0.0120394 0.0449317i
\(780\) 0 0
\(781\) 17.9830 10.3825i 0.643481 0.371514i
\(782\) 0.504098 + 0.873123i 0.0180265 + 0.0312228i
\(783\) 19.9334i 0.712360i
\(784\) −10.9700 + 6.33352i −0.391785 + 0.226197i
\(785\) 0 0
\(786\) −8.10945 + 14.0460i −0.289255 + 0.501004i
\(787\) −29.1860 29.1860i −1.04037 1.04037i −0.999150 0.0412185i \(-0.986876\pi\)
−0.0412185 0.999150i \(-0.513124\pi\)
\(788\) −23.5629 23.5629i −0.839395 0.839395i
\(789\) −4.52545 2.61277i −0.161110 0.0930170i
\(790\) 0 0
\(791\) −13.6457 13.6457i −0.485186 0.485186i
\(792\) 0.230178 + 0.132893i 0.00817902 + 0.00472216i
\(793\) 10.1912 + 38.0341i 0.361900 + 1.35063i
\(794\) −3.12212 + 0.836570i −0.110800 + 0.0296888i
\(795\) 0 0
\(796\) −33.8899 9.08078i −1.20120 0.321860i
\(797\) 37.5737 + 21.6932i 1.33093 + 0.768412i 0.985442 0.170012i \(-0.0543808\pi\)
0.345486 + 0.938424i \(0.387714\pi\)
\(798\) 2.68102 0.718377i 0.0949071 0.0254303i
\(799\) 12.1911 3.26660i 0.431290 0.115564i
\(800\) 0 0
\(801\) 0.122443 0.456963i 0.00432631 0.0161460i
\(802\) 3.74280 + 13.9683i 0.132163 + 0.493239i
\(803\) 25.3903 25.3903i 0.896004 0.896004i
\(804\) 0.525602 0.0185366
\(805\) 0 0
\(806\) −25.7706 25.7706i −0.907729 0.907729i
\(807\) −10.3857 2.78285i −0.365595 0.0979610i
\(808\) 0.213985 0.00752795
\(809\) −31.3117 8.38994i −1.10086 0.294975i −0.337745 0.941238i \(-0.609664\pi\)
−0.763115 + 0.646263i \(0.776331\pi\)
\(810\) 0 0
\(811\) −8.19451 14.1933i −0.287748 0.498394i 0.685524 0.728050i \(-0.259573\pi\)
−0.973272 + 0.229656i \(0.926240\pi\)
\(812\) 16.0130 27.7353i 0.561945 0.973318i
\(813\) 15.2457 + 15.2457i 0.534690 + 0.534690i
\(814\) −21.1460 15.7359i −0.741165 0.551545i
\(815\) 0 0
\(816\) −4.20657 + 1.12715i −0.147259 + 0.0394581i
\(817\) −4.24336 1.13701i −0.148456 0.0397788i
\(818\) 2.12914 7.94607i 0.0744438 0.277828i
\(819\) −5.85034 + 21.8338i −0.204428 + 0.762934i
\(820\) 0 0
\(821\) 1.40290 + 2.42990i 0.0489617 + 0.0848042i 0.889468 0.456998i \(-0.151075\pi\)
−0.840506 + 0.541802i \(0.817742\pi\)
\(822\) 29.8379 1.04071
\(823\) 0.771469 + 2.87916i 0.0268917 + 0.100361i 0.978067 0.208289i \(-0.0667894\pi\)
−0.951176 + 0.308650i \(0.900123\pi\)
\(824\) 0.00591236i 0.000205967i
\(825\) 0 0
\(826\) −25.6518 + 44.4302i −0.892539 + 1.54592i
\(827\) 3.15115 + 5.45795i 0.109576 + 0.189792i 0.915599 0.402093i \(-0.131717\pi\)
−0.806022 + 0.591885i \(0.798384\pi\)
\(828\) −1.64891 −0.0573037
\(829\) −6.63332 24.7559i −0.230385 0.859808i −0.980175 0.198132i \(-0.936512\pi\)
0.749790 0.661675i \(-0.230154\pi\)
\(830\) 0 0
\(831\) −2.94856 11.0042i −0.102284 0.381730i
\(832\) 19.2538 11.1162i 0.667505 0.385384i
\(833\) 4.09104 2.36196i 0.141746 0.0818372i
\(834\) 2.03300 + 7.58725i 0.0703969 + 0.262725i
\(835\) 0 0
\(836\) −0.682220 2.54608i −0.0235951 0.0880579i
\(837\) −25.1001 −0.867586
\(838\) −19.9732 34.5945i −0.689961 1.19505i
\(839\) −13.2861 + 23.0123i −0.458688 + 0.794472i −0.998892 0.0470627i \(-0.985014\pi\)
0.540203 + 0.841534i \(0.318347\pi\)
\(840\) 0 0
\(841\) 3.04970i 0.105162i
\(842\) −2.69438 10.0556i −0.0928544 0.346537i
\(843\) 8.47640 0.291943
\(844\) −3.45924 5.99158i −0.119072 0.206239i
\(845\) 0 0
\(846\) −10.7517 + 40.1258i −0.369650 + 1.37955i
\(847\) −5.17004 + 19.2949i −0.177645 + 0.662979i
\(848\) 2.40965 + 0.645663i 0.0827476 + 0.0221721i
\(849\) 1.60511 0.430089i 0.0550874 0.0147606i
\(850\) 0 0
\(851\) −2.02342 0.236089i −0.0693618 0.00809303i
\(852\) −9.50786 9.50786i −0.325734 0.325734i
\(853\) −3.18415 + 5.51510i −0.109023 + 0.188833i −0.915375 0.402603i \(-0.868106\pi\)
0.806352 + 0.591436i \(0.201439\pi\)
\(854\) 43.8413 + 75.9354i 1.50022 + 2.59845i
\(855\) 0 0
\(856\) 0.484186 + 0.129737i 0.0165491 + 0.00443432i
\(857\) 56.2325 1.92086 0.960432 0.278515i \(-0.0898421\pi\)
0.960432 + 0.278515i \(0.0898421\pi\)
\(858\) −8.49750 2.27690i −0.290100 0.0777320i
\(859\) −27.5622 27.5622i −0.940410 0.940410i 0.0579119 0.998322i \(-0.481556\pi\)
−0.998322 + 0.0579119i \(0.981556\pi\)
\(860\) 0 0
\(861\) −4.79463 −0.163400
\(862\) 25.7720 25.7720i 0.877799 0.877799i
\(863\) 9.29932 + 34.7055i 0.316552 + 1.18139i 0.922535 + 0.385912i \(0.126113\pi\)
−0.605983 + 0.795478i \(0.707220\pi\)
\(864\) 8.07588 30.1396i 0.274747 1.02537i
\(865\) 0 0
\(866\) −12.9435 + 3.46820i −0.439839 + 0.117854i
\(867\) −10.1299 + 2.71430i −0.344030 + 0.0921826i
\(868\) −34.9243 20.1635i −1.18541 0.684395i
\(869\) 9.09609 + 2.43729i 0.308564 + 0.0826794i
\(870\) 0 0
\(871\) −1.02798 + 0.275448i −0.0348319 + 0.00933319i
\(872\) −0.157417 0.587487i −0.00533080 0.0198948i
\(873\) 16.7329 + 9.66075i 0.566323 + 0.326967i
\(874\) −0.289895 0.289895i −0.00980583 0.00980583i
\(875\) 0 0
\(876\) −20.1363 11.6257i −0.680344 0.392797i
\(877\) 14.8201 + 14.8201i 0.500441 + 0.500441i 0.911575 0.411134i \(-0.134867\pi\)
−0.411134 + 0.911575i \(0.634867\pi\)
\(878\) −48.5056 48.5056i −1.63698 1.63698i
\(879\) −8.26070 + 14.3080i −0.278627 + 0.482595i
\(880\) 0 0
\(881\) −21.8096 + 12.5918i −0.734783 + 0.424227i −0.820169 0.572121i \(-0.806121\pi\)
0.0853866 + 0.996348i \(0.472787\pi\)
\(882\) 15.5483i 0.523539i
\(883\) −24.6204 42.6439i −0.828544 1.43508i −0.899181 0.437578i \(-0.855836\pi\)
0.0706369 0.997502i \(-0.477497\pi\)
\(884\) −7.36039 + 4.24953i −0.247557 + 0.142927i
\(885\) 0 0
\(886\) 2.06094 + 7.69155i 0.0692388 + 0.258403i
\(887\) 10.7898 10.7898i 0.362286 0.362286i −0.502368 0.864654i \(-0.667538\pi\)
0.864654 + 0.502368i \(0.167538\pi\)
\(888\) 0.0784642 0.197623i 0.00263309 0.00663178i
\(889\) 41.8989i 1.40524i
\(890\) 0 0
\(891\) 8.82661 5.09604i 0.295702 0.170724i
\(892\) 31.6586 + 8.48290i 1.06001 + 0.284028i
\(893\) −4.44468 + 2.56614i −0.148736 + 0.0858725i
\(894\) −13.8591 13.8591i −0.463518 0.463518i
\(895\) 0 0
\(896\) −0.883280 + 0.883280i −0.0295083 + 0.0295083i
\(897\) −0.656737 + 0.175972i −0.0219278 + 0.00587554i
\(898\) −38.7196 + 38.7196i −1.29209 + 1.29209i
\(899\) −32.6766 −1.08983
\(900\) 0 0
\(901\) −0.898631 0.240787i −0.0299377 0.00802179i
\(902\) 9.16333i 0.305105i
\(903\) −8.11173 + 14.0499i −0.269942 + 0.467552i
\(904\) −0.257658 0.148759i −0.00856957 0.00494765i
\(905\) 0 0
\(906\) 0.516116 1.92617i 0.0171468 0.0639927i
\(907\) −4.74550 8.21945i −0.157572 0.272923i 0.776421 0.630215i \(-0.217033\pi\)
−0.933993 + 0.357292i \(0.883700\pi\)
\(908\) 18.6569 32.3147i 0.619152 1.07240i
\(909\) 5.43499 9.41367i 0.180267 0.312232i
\(910\) 0 0
\(911\) −10.6794 + 10.6794i −0.353825 + 0.353825i −0.861531 0.507706i \(-0.830494\pi\)
0.507706 + 0.861531i \(0.330494\pi\)
\(912\) 1.53365 0.885452i 0.0507841 0.0293202i
\(913\) 4.37923 1.17341i 0.144931 0.0388342i
\(914\) 13.5228i 0.447296i
\(915\) 0 0
\(916\) 16.4002 + 9.46867i 0.541879 + 0.312854i
\(917\) 36.3384i 1.20000i
\(918\) −3.04881 + 11.3783i −0.100626 + 0.375540i
\(919\) −2.76311 + 2.76311i −0.0911467 + 0.0911467i −0.751210 0.660063i \(-0.770529\pi\)
0.660063 + 0.751210i \(0.270529\pi\)
\(920\) 0 0
\(921\) 10.3524 + 17.9309i 0.341123 + 0.590842i
\(922\) 21.4548 80.0702i 0.706575 2.63697i
\(923\) 23.5784 + 13.6130i 0.776092 + 0.448077i
\(924\) −9.73431 −0.320235
\(925\) 0 0
\(926\) 38.7309 1.27278
\(927\) 0.260098 + 0.150168i 0.00854275 + 0.00493216i
\(928\) 10.5136 39.2373i 0.345126 1.28803i
\(929\) −19.5842 33.9209i −0.642538 1.11291i −0.984864 0.173328i \(-0.944548\pi\)
0.342326 0.939581i \(-0.388785\pi\)
\(930\) 0 0
\(931\) −1.35831 + 1.35831i −0.0445168 + 0.0445168i
\(932\) 12.1818 45.4633i 0.399030 1.48920i
\(933\) 4.62752i 0.151498i
\(934\) −34.0711 19.6710i −1.11484 0.643654i
\(935\) 0 0
\(936\) 0.348487i 0.0113906i
\(937\) 6.09129 1.63216i 0.198994 0.0533202i −0.157945 0.987448i \(-0.550487\pi\)
0.356939 + 0.934128i \(0.383820\pi\)
\(938\) −2.05238 + 1.18494i −0.0670126 + 0.0386898i
\(939\) 1.26170 1.26170i 0.0411741 0.0411741i
\(940\) 0 0
\(941\) −22.4635 + 38.9080i −0.732290 + 1.26836i 0.223612 + 0.974678i \(0.428215\pi\)
−0.955902 + 0.293686i \(0.905118\pi\)
\(942\) −5.15677 + 8.93180i −0.168017 + 0.291014i
\(943\) 0.354098 + 0.613316i 0.0115310 + 0.0199723i
\(944\) −8.47193 + 31.6177i −0.275738 + 1.02907i
\(945\) 0 0
\(946\) 26.8517 + 15.5029i 0.873026 + 0.504042i
\(947\) 16.9042 29.2790i 0.549313 0.951439i −0.449008 0.893528i \(-0.648223\pi\)
0.998322 0.0579110i \(-0.0184440\pi\)
\(948\) 6.09787i 0.198050i
\(949\) 45.4757 + 12.1852i 1.47620 + 0.395548i
\(950\) 0 0
\(951\) 3.18300 0.103216
\(952\) 0.166715 0.166715i 0.00540328 0.00540328i
\(953\) −30.1099 + 8.06792i −0.975354 + 0.261345i −0.711087 0.703104i \(-0.751797\pi\)
−0.264267 + 0.964449i \(0.585130\pi\)
\(954\) 2.16522 2.16522i 0.0701017 0.0701017i
\(955\) 0 0
\(956\) 35.9075 + 35.9075i 1.16133 + 1.16133i
\(957\) −6.83087 + 3.94381i −0.220811 + 0.127485i
\(958\) 73.0700 + 19.5791i 2.36079 + 0.632570i
\(959\) −57.8951 + 33.4258i −1.86953 + 1.07937i
\(960\) 0 0
\(961\) 10.1464i 0.327302i
\(962\) 4.00524 34.3271i 0.129134 1.10675i
\(963\) 18.0052 18.0052i 0.580211 0.580211i
\(964\) −7.73454 28.8657i −0.249113 0.929701i
\(965\) 0 0
\(966\) −1.31118 + 0.757011i −0.0421866 + 0.0243564i
\(967\) −3.75420 6.50246i −0.120727 0.209105i 0.799328 0.600895i \(-0.205189\pi\)
−0.920054 + 0.391790i \(0.871856\pi\)
\(968\) 0.307963i 0.00989831i
\(969\) −0.571944 + 0.330212i −0.0183735 + 0.0106079i
\(970\) 0 0
\(971\) 10.7517 18.6225i 0.345038 0.597623i −0.640323 0.768106i \(-0.721199\pi\)
0.985361 + 0.170483i \(0.0545328\pi\)
\(972\) −21.0639 21.0639i −0.675626 0.675626i
\(973\) −12.4443 12.4443i −0.398945 0.398945i
\(974\) −50.2763 29.0271i −1.61096 0.930087i
\(975\) 0 0
\(976\) 39.5582 + 39.5582i 1.26623 + 1.26623i
\(977\) 39.1789 + 22.6200i 1.25344 + 0.723677i 0.971792 0.235840i \(-0.0757841\pi\)
0.281653 + 0.959516i \(0.409117\pi\)
\(978\) 1.87161 + 6.98493i 0.0598474 + 0.223354i
\(979\) −0.398462 + 0.106768i −0.0127349 + 0.00341230i
\(980\) 0 0
\(981\) −29.8431 7.99643i −0.952817 0.255306i
\(982\) 56.9384 + 32.8734i 1.81698 + 1.04903i
\(983\) 44.8074 12.0061i 1.42913 0.382936i 0.540420 0.841396i \(-0.318265\pi\)
0.888715 + 0.458460i \(0.151599\pi\)
\(984\) −0.0714002 + 0.0191316i −0.00227616 + 0.000609894i
\(985\) 0 0
\(986\) −3.96910 + 14.8129i −0.126402 + 0.471738i
\(987\) 4.90550 + 18.3076i 0.156144 + 0.582736i
\(988\) 2.44380 2.44380i 0.0777477 0.0777477i
\(989\) 2.39631 0.0761981
\(990\) 0 0
\(991\) 4.97517 + 4.97517i 0.158042 + 0.158042i 0.781698 0.623657i \(-0.214354\pi\)
−0.623657 + 0.781698i \(0.714354\pi\)
\(992\) −49.4076 13.2387i −1.56869 0.420330i
\(993\) 11.4952 0.364788
\(994\) 58.5615 + 15.6915i 1.85746 + 0.497704i
\(995\) 0 0
\(996\) −1.46788 2.54244i −0.0465116 0.0805604i
\(997\) 20.3564 35.2584i 0.644694 1.11664i −0.339678 0.940542i \(-0.610318\pi\)
0.984372 0.176101i \(-0.0563487\pi\)
\(998\) 6.23434 + 6.23434i 0.197345 + 0.197345i
\(999\) −14.7665 18.6675i −0.467192 0.590615i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.y.c.532.4 yes 96
5.2 odd 4 925.2.t.c.643.21 yes 96
5.3 odd 4 925.2.t.c.643.4 yes 96
5.4 even 2 inner 925.2.y.c.532.21 yes 96
37.8 odd 12 925.2.t.c.82.4 96
185.8 even 12 inner 925.2.y.c.193.4 yes 96
185.82 even 12 inner 925.2.y.c.193.21 yes 96
185.119 odd 12 925.2.t.c.82.21 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
925.2.t.c.82.4 96 37.8 odd 12
925.2.t.c.82.21 yes 96 185.119 odd 12
925.2.t.c.643.4 yes 96 5.3 odd 4
925.2.t.c.643.21 yes 96 5.2 odd 4
925.2.y.c.193.4 yes 96 185.8 even 12 inner
925.2.y.c.193.21 yes 96 185.82 even 12 inner
925.2.y.c.532.4 yes 96 1.1 even 1 trivial
925.2.y.c.532.21 yes 96 5.4 even 2 inner