Newspace parameters
Level: | \( N \) | \(=\) | \( 925 = 5^{2} \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 925.y (of order \(12\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(7.38616218697\) |
Analytic rank: | \(0\) |
Dimension: | \(96\) |
Relative dimension: | \(24\) over \(\Q(\zeta_{12})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
193.1 | −2.19204 | + | 1.26558i | −0.544247 | − | 2.03116i | 2.20337 | − | 3.81634i | 0 | 3.76360 | + | 3.76360i | 0.959973 | + | 3.58267i | 6.09181i | −1.23132 | + | 0.710902i | 0 | ||||||
193.2 | −2.16574 | + | 1.25039i | −0.0346441 | − | 0.129293i | 2.12696 | − | 3.68400i | 0 | 0.236698 | + | 0.236698i | −0.00311317 | − | 0.0116185i | 5.63657i | 2.58256 | − | 1.49104i | 0 | ||||||
193.3 | −1.89068 | + | 1.09158i | 0.698972 | + | 2.60860i | 1.38311 | − | 2.39562i | 0 | −4.16904 | − | 4.16904i | 1.11571 | + | 4.16388i | 1.67281i | −3.71815 | + | 2.14668i | 0 | ||||||
193.4 | −1.72671 | + | 0.996919i | −0.184391 | − | 0.688157i | 0.987696 | − | 1.71074i | 0 | 1.00443 | + | 1.00443i | −0.823709 | − | 3.07412i | − | 0.0490658i | 2.15852 | − | 1.24622i | 0 | |||||
193.5 | −1.48531 | + | 0.857546i | −0.698150 | − | 2.60553i | 0.470771 | − | 0.815400i | 0 | 3.27133 | + | 3.27133i | −0.596218 | − | 2.22512i | − | 1.81535i | −3.70330 | + | 2.13810i | 0 | |||||
193.6 | −1.45671 | + | 0.841034i | 0.347958 | + | 1.29860i | 0.414678 | − | 0.718243i | 0 | −1.59904 | − | 1.59904i | 0.553160 | + | 2.06442i | − | 1.96910i | 1.03280 | − | 0.596286i | 0 | |||||
193.7 | −1.23407 | + | 0.712489i | 0.526828 | + | 1.96615i | 0.0152826 | − | 0.0264702i | 0 | −2.05100 | − | 2.05100i | −1.06466 | − | 3.97336i | − | 2.80640i | −0.990112 | + | 0.571641i | 0 | |||||
193.8 | −1.05075 | + | 0.606650i | −0.411889 | − | 1.53719i | −0.263951 | + | 0.457177i | 0 | 1.36533 | + | 1.36533i | 1.19971 | + | 4.47739i | − | 3.06710i | 0.404773 | − | 0.233696i | 0 | |||||
193.9 | −0.948196 | + | 0.547441i | 0.838136 | + | 3.12797i | −0.400617 | + | 0.693888i | 0 | −2.50709 | − | 2.50709i | −0.594554 | − | 2.21890i | − | 3.06702i | −6.48363 | + | 3.74333i | 0 | |||||
193.10 | −0.420731 | + | 0.242909i | −0.673179 | − | 2.51234i | −0.881990 | + | 1.52765i | 0 | 0.893496 | + | 0.893496i | −0.277006 | − | 1.03380i | − | 1.82861i | −3.26059 | + | 1.88250i | 0 | |||||
193.11 | −0.341622 | + | 0.197235i | 0.203474 | + | 0.759377i | −0.922196 | + | 1.59729i | 0 | −0.219287 | − | 0.219287i | 1.12467 | + | 4.19733i | − | 1.51650i | 2.06282 | − | 1.19097i | 0 | |||||
193.12 | −0.0359237 | + | 0.0207406i | −0.0933650 | − | 0.348443i | −0.999140 | + | 1.73056i | 0 | 0.0105809 | + | 0.0105809i | 0.291106 | + | 1.08642i | − | 0.165853i | 2.48538 | − | 1.43494i | 0 | |||||
193.13 | 0.0359237 | − | 0.0207406i | 0.0933650 | + | 0.348443i | −0.999140 | + | 1.73056i | 0 | 0.0105809 | + | 0.0105809i | −0.291106 | − | 1.08642i | 0.165853i | 2.48538 | − | 1.43494i | 0 | ||||||
193.14 | 0.341622 | − | 0.197235i | −0.203474 | − | 0.759377i | −0.922196 | + | 1.59729i | 0 | −0.219287 | − | 0.219287i | −1.12467 | − | 4.19733i | 1.51650i | 2.06282 | − | 1.19097i | 0 | ||||||
193.15 | 0.420731 | − | 0.242909i | 0.673179 | + | 2.51234i | −0.881990 | + | 1.52765i | 0 | 0.893496 | + | 0.893496i | 0.277006 | + | 1.03380i | 1.82861i | −3.26059 | + | 1.88250i | 0 | ||||||
193.16 | 0.948196 | − | 0.547441i | −0.838136 | − | 3.12797i | −0.400617 | + | 0.693888i | 0 | −2.50709 | − | 2.50709i | 0.594554 | + | 2.21890i | 3.06702i | −6.48363 | + | 3.74333i | 0 | ||||||
193.17 | 1.05075 | − | 0.606650i | 0.411889 | + | 1.53719i | −0.263951 | + | 0.457177i | 0 | 1.36533 | + | 1.36533i | −1.19971 | − | 4.47739i | 3.06710i | 0.404773 | − | 0.233696i | 0 | ||||||
193.18 | 1.23407 | − | 0.712489i | −0.526828 | − | 1.96615i | 0.0152826 | − | 0.0264702i | 0 | −2.05100 | − | 2.05100i | 1.06466 | + | 3.97336i | 2.80640i | −0.990112 | + | 0.571641i | 0 | ||||||
193.19 | 1.45671 | − | 0.841034i | −0.347958 | − | 1.29860i | 0.414678 | − | 0.718243i | 0 | −1.59904 | − | 1.59904i | −0.553160 | − | 2.06442i | 1.96910i | 1.03280 | − | 0.596286i | 0 | ||||||
193.20 | 1.48531 | − | 0.857546i | 0.698150 | + | 2.60553i | 0.470771 | − | 0.815400i | 0 | 3.27133 | + | 3.27133i | 0.596218 | + | 2.22512i | 1.81535i | −3.70330 | + | 2.13810i | 0 | ||||||
See all 96 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
185.p | even | 12 | 1 | inner |
185.u | even | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 925.2.y.c | yes | 96 |
5.b | even | 2 | 1 | inner | 925.2.y.c | yes | 96 |
5.c | odd | 4 | 2 | 925.2.t.c | ✓ | 96 | |
37.g | odd | 12 | 1 | 925.2.t.c | ✓ | 96 | |
185.p | even | 12 | 1 | inner | 925.2.y.c | yes | 96 |
185.q | odd | 12 | 1 | 925.2.t.c | ✓ | 96 | |
185.u | even | 12 | 1 | inner | 925.2.y.c | yes | 96 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
925.2.t.c | ✓ | 96 | 5.c | odd | 4 | 2 | |
925.2.t.c | ✓ | 96 | 37.g | odd | 12 | 1 | |
925.2.t.c | ✓ | 96 | 185.q | odd | 12 | 1 | |
925.2.y.c | yes | 96 | 1.a | even | 1 | 1 | trivial |
925.2.y.c | yes | 96 | 5.b | even | 2 | 1 | inner |
925.2.y.c | yes | 96 | 185.p | even | 12 | 1 | inner |
925.2.y.c | yes | 96 | 185.u | even | 12 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{96} - 68 T_{2}^{94} + 2469 T_{2}^{92} - 61956 T_{2}^{90} + 1192136 T_{2}^{88} - 18582652 T_{2}^{86} + \cdots + 14641 \)
acting on \(S_{2}^{\mathrm{new}}(925, [\chi])\).