Properties

Label 925.2.t.c.82.4
Level $925$
Weight $2$
Character 925.82
Analytic conductor $7.386$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(82,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.82"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([3, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.t (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(24\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 82.4
Character \(\chi\) \(=\) 925.82
Dual form 925.2.t.c.643.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.996919 - 1.72671i) q^{2} +(-0.688157 + 0.184391i) q^{3} +(-0.987696 + 1.71074i) q^{4} +(1.00443 + 1.00443i) q^{6} +(3.07412 - 0.823709i) q^{7} -0.0490658 q^{8} +(-2.15852 + 1.24622i) q^{9} +2.17335i q^{11} +(0.364245 - 1.35938i) q^{12} +(1.42480 - 2.46782i) q^{13} +(-4.48696 - 4.48696i) q^{14} +(2.02431 + 3.50620i) q^{16} +(1.30757 - 0.754926i) q^{17} +(4.30373 + 2.48476i) q^{18} +(-0.158906 - 0.593046i) q^{19} +(-1.96360 + 1.13368i) q^{21} +(3.75276 - 2.16666i) q^{22} -0.334904 q^{23} +(0.0337650 - 0.00904730i) q^{24} -5.68163 q^{26} +(2.76691 - 2.76691i) q^{27} +(-1.62715 + 6.07260i) q^{28} +(3.60210 + 3.60210i) q^{29} +(4.53577 - 4.53577i) q^{31} +(3.98707 - 6.90581i) q^{32} +(-0.400747 - 1.49561i) q^{33} +(-2.60708 - 1.50520i) q^{34} -4.92354i q^{36} +(6.04178 - 0.704946i) q^{37} +(-0.865605 + 0.865605i) q^{38} +(-0.525440 + 1.96097i) q^{39} +(1.83132 + 1.05731i) q^{41} +(3.91509 + 2.26038i) q^{42} +7.15520 q^{43} +(-3.71804 - 2.14661i) q^{44} +(0.333872 + 0.578284i) q^{46} +(-5.91085 - 5.91085i) q^{47} +(-2.03955 - 2.03955i) q^{48} +(2.70957 - 1.56437i) q^{49} +(-0.760612 + 0.760612i) q^{51} +(2.81453 + 4.87491i) q^{52} +(-0.595178 - 0.159478i) q^{53} +(-7.53604 - 2.01928i) q^{54} +(-0.150834 + 0.0404159i) q^{56} +(0.218705 + 0.378808i) q^{57} +(2.62880 - 9.81081i) q^{58} +(7.80951 + 2.09255i) q^{59} +(-3.57637 - 13.3472i) q^{61} +(-12.3538 - 3.31018i) q^{62} +(-5.60902 + 5.60902i) q^{63} -7.80193 q^{64} +(-2.18298 + 2.18298i) q^{66} +(-0.0966621 - 0.360748i) q^{67} +2.98255i q^{68} +(0.230467 - 0.0617534i) q^{69} +(4.77717 - 8.27430i) q^{71} +(0.105909 - 0.0611467i) q^{72} +(-11.6826 - 11.6826i) q^{73} +(-7.24040 - 9.72965i) q^{74} +(1.17150 + 0.313902i) q^{76} +(1.79021 + 6.68116i) q^{77} +(3.90986 - 1.04764i) q^{78} +(1.12144 + 4.18528i) q^{79} +(2.34479 - 4.06129i) q^{81} -4.21622i q^{82} +(-2.01496 - 0.539908i) q^{83} -4.47894i q^{84} +(-7.13316 - 12.3550i) q^{86} +(-3.14301 - 1.81462i) q^{87} -0.106637i q^{88} +(0.0491257 - 0.183340i) q^{89} +(2.34724 - 8.76001i) q^{91} +(0.330783 - 0.572934i) q^{92} +(-2.28497 + 3.95768i) q^{93} +(-4.31371 + 16.0990i) q^{94} +(-1.47036 + 5.48747i) q^{96} +7.75205i q^{97} +(-5.40243 - 3.11910i) q^{98} +(-2.70847 - 4.69122i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q - 40 q^{4} + 32 q^{14} - 4 q^{16} + 24 q^{19} + 36 q^{21} - 52 q^{24} + 16 q^{26} - 12 q^{29} + 4 q^{31} + 60 q^{34} - 100 q^{39} - 48 q^{41} - 48 q^{44} + 24 q^{46} + 120 q^{49} - 84 q^{51} - 104 q^{54}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.996919 1.72671i −0.704928 1.22097i −0.966717 0.255847i \(-0.917646\pi\)
0.261789 0.965125i \(-0.415688\pi\)
\(3\) −0.688157 + 0.184391i −0.397308 + 0.106458i −0.451940 0.892048i \(-0.649268\pi\)
0.0546324 + 0.998507i \(0.482601\pi\)
\(4\) −0.987696 + 1.71074i −0.493848 + 0.855370i
\(5\) 0 0
\(6\) 1.00443 + 1.00443i 0.410056 + 0.410056i
\(7\) 3.07412 0.823709i 1.16191 0.311333i 0.374181 0.927356i \(-0.377924\pi\)
0.787728 + 0.616023i \(0.211257\pi\)
\(8\) −0.0490658 −0.0173474
\(9\) −2.15852 + 1.24622i −0.719505 + 0.415407i
\(10\) 0 0
\(11\) 2.17335i 0.655290i 0.944801 + 0.327645i \(0.106255\pi\)
−0.944801 + 0.327645i \(0.893745\pi\)
\(12\) 0.364245 1.35938i 0.105148 0.392419i
\(13\) 1.42480 2.46782i 0.395168 0.684450i −0.597955 0.801530i \(-0.704020\pi\)
0.993123 + 0.117079i \(0.0373532\pi\)
\(14\) −4.48696 4.48696i −1.19919 1.19919i
\(15\) 0 0
\(16\) 2.02431 + 3.50620i 0.506076 + 0.876550i
\(17\) 1.30757 0.754926i 0.317132 0.183096i −0.332981 0.942933i \(-0.608055\pi\)
0.650114 + 0.759837i \(0.274721\pi\)
\(18\) 4.30373 + 2.48476i 1.01440 + 0.585664i
\(19\) −0.158906 0.593046i −0.0364556 0.136054i 0.945300 0.326203i \(-0.105769\pi\)
−0.981755 + 0.190149i \(0.939103\pi\)
\(20\) 0 0
\(21\) −1.96360 + 1.13368i −0.428492 + 0.247390i
\(22\) 3.75276 2.16666i 0.800091 0.461933i
\(23\) −0.334904 −0.0698323 −0.0349162 0.999390i \(-0.511116\pi\)
−0.0349162 + 0.999390i \(0.511116\pi\)
\(24\) 0.0337650 0.00904730i 0.00689225 0.00184677i
\(25\) 0 0
\(26\) −5.68163 −1.11426
\(27\) 2.76691 2.76691i 0.532491 0.532491i
\(28\) −1.62715 + 6.07260i −0.307502 + 1.14761i
\(29\) 3.60210 + 3.60210i 0.668894 + 0.668894i 0.957460 0.288566i \(-0.0931785\pi\)
−0.288566 + 0.957460i \(0.593179\pi\)
\(30\) 0 0
\(31\) 4.53577 4.53577i 0.814648 0.814648i −0.170679 0.985327i \(-0.554596\pi\)
0.985327 + 0.170679i \(0.0545960\pi\)
\(32\) 3.98707 6.90581i 0.704822 1.22079i
\(33\) −0.400747 1.49561i −0.0697611 0.260352i
\(34\) −2.60708 1.50520i −0.447111 0.258140i
\(35\) 0 0
\(36\) 4.92354i 0.820590i
\(37\) 6.04178 0.704946i 0.993262 0.115892i
\(38\) −0.865605 + 0.865605i −0.140420 + 0.140420i
\(39\) −0.525440 + 1.96097i −0.0841378 + 0.314006i
\(40\) 0 0
\(41\) 1.83132 + 1.05731i 0.286004 + 0.165124i 0.636138 0.771575i \(-0.280531\pi\)
−0.350134 + 0.936699i \(0.613864\pi\)
\(42\) 3.91509 + 2.26038i 0.604112 + 0.348784i
\(43\) 7.15520 1.09116 0.545579 0.838059i \(-0.316310\pi\)
0.545579 + 0.838059i \(0.316310\pi\)
\(44\) −3.71804 2.14661i −0.560515 0.323614i
\(45\) 0 0
\(46\) 0.333872 + 0.578284i 0.0492268 + 0.0852633i
\(47\) −5.91085 5.91085i −0.862187 0.862187i 0.129405 0.991592i \(-0.458693\pi\)
−0.991592 + 0.129405i \(0.958693\pi\)
\(48\) −2.03955 2.03955i −0.294384 0.294384i
\(49\) 2.70957 1.56437i 0.387081 0.223481i
\(50\) 0 0
\(51\) −0.760612 + 0.760612i −0.106507 + 0.106507i
\(52\) 2.81453 + 4.87491i 0.390305 + 0.676029i
\(53\) −0.595178 0.159478i −0.0817540 0.0219059i 0.217710 0.976013i \(-0.430141\pi\)
−0.299464 + 0.954108i \(0.596808\pi\)
\(54\) −7.53604 2.01928i −1.02552 0.274789i
\(55\) 0 0
\(56\) −0.150834 + 0.0404159i −0.0201561 + 0.00540080i
\(57\) 0.218705 + 0.378808i 0.0289682 + 0.0501744i
\(58\) 2.62880 9.81081i 0.345178 1.28822i
\(59\) 7.80951 + 2.09255i 1.01671 + 0.272427i 0.728431 0.685119i \(-0.240250\pi\)
0.288280 + 0.957546i \(0.406917\pi\)
\(60\) 0 0
\(61\) −3.57637 13.3472i −0.457907 1.70893i −0.679398 0.733770i \(-0.737759\pi\)
0.221492 0.975162i \(-0.428907\pi\)
\(62\) −12.3538 3.31018i −1.56893 0.420394i
\(63\) −5.60902 + 5.60902i −0.706670 + 0.706670i
\(64\) −7.80193 −0.975242
\(65\) 0 0
\(66\) −2.18298 + 2.18298i −0.268706 + 0.268706i
\(67\) −0.0966621 0.360748i −0.0118092 0.0440723i 0.959770 0.280788i \(-0.0905957\pi\)
−0.971579 + 0.236716i \(0.923929\pi\)
\(68\) 2.98255i 0.361687i
\(69\) 0.230467 0.0617534i 0.0277449 0.00743423i
\(70\) 0 0
\(71\) 4.77717 8.27430i 0.566946 0.981979i −0.429920 0.902867i \(-0.641458\pi\)
0.996866 0.0791117i \(-0.0252084\pi\)
\(72\) 0.105909 0.0611467i 0.0124815 0.00720621i
\(73\) −11.6826 11.6826i −1.36734 1.36734i −0.864213 0.503126i \(-0.832183\pi\)
−0.503126 0.864213i \(-0.667817\pi\)
\(74\) −7.24040 9.72965i −0.841680 1.13105i
\(75\) 0 0
\(76\) 1.17150 + 0.313902i 0.134380 + 0.0360070i
\(77\) 1.79021 + 6.68116i 0.204013 + 0.761388i
\(78\) 3.90986 1.04764i 0.442704 0.118622i
\(79\) 1.12144 + 4.18528i 0.126172 + 0.470881i 0.999879 0.0155724i \(-0.00495705\pi\)
−0.873707 + 0.486453i \(0.838290\pi\)
\(80\) 0 0
\(81\) 2.34479 4.06129i 0.260532 0.451254i
\(82\) 4.21622i 0.465603i
\(83\) −2.01496 0.539908i −0.221171 0.0592626i 0.146532 0.989206i \(-0.453189\pi\)
−0.367703 + 0.929943i \(0.619856\pi\)
\(84\) 4.47894i 0.488692i
\(85\) 0 0
\(86\) −7.13316 12.3550i −0.769188 1.33227i
\(87\) −3.14301 1.81462i −0.336966 0.194547i
\(88\) 0.106637i 0.0113676i
\(89\) 0.0491257 0.183340i 0.00520732 0.0194340i −0.963273 0.268523i \(-0.913464\pi\)
0.968481 + 0.249089i \(0.0801312\pi\)
\(90\) 0 0
\(91\) 2.34724 8.76001i 0.246057 0.918298i
\(92\) 0.330783 0.572934i 0.0344865 0.0597325i
\(93\) −2.28497 + 3.95768i −0.236940 + 0.410392i
\(94\) −4.31371 + 16.0990i −0.444926 + 1.66049i
\(95\) 0 0
\(96\) −1.47036 + 5.48747i −0.150068 + 0.560062i
\(97\) 7.75205i 0.787101i 0.919303 + 0.393550i \(0.128753\pi\)
−0.919303 + 0.393550i \(0.871247\pi\)
\(98\) −5.40243 3.11910i −0.545728 0.315076i
\(99\) −2.70847 4.69122i −0.272212 0.471485i
\(100\) 0 0
\(101\) 4.36118i 0.433954i 0.976177 + 0.216977i \(0.0696196\pi\)
−0.976177 + 0.216977i \(0.930380\pi\)
\(102\) 2.07163 + 0.555091i 0.205122 + 0.0549622i
\(103\) 0.120499i 0.0118731i −0.999982 0.00593655i \(-0.998110\pi\)
0.999982 0.00593655i \(-0.00188967\pi\)
\(104\) −0.0699088 + 0.121086i −0.00685512 + 0.0118734i
\(105\) 0 0
\(106\) 0.317972 + 1.18669i 0.0308842 + 0.115261i
\(107\) −9.86809 + 2.64415i −0.953985 + 0.255619i −0.702052 0.712125i \(-0.747733\pi\)
−0.251932 + 0.967745i \(0.581066\pi\)
\(108\) 2.00059 + 7.46631i 0.192507 + 0.718446i
\(109\) 11.9735 + 3.20828i 1.14685 + 0.307297i 0.781702 0.623653i \(-0.214352\pi\)
0.365147 + 0.930950i \(0.381019\pi\)
\(110\) 0 0
\(111\) −4.02771 + 1.59916i −0.382293 + 0.151786i
\(112\) 9.11106 + 9.11106i 0.860914 + 0.860914i
\(113\) −5.25127 + 3.03182i −0.493998 + 0.285210i −0.726232 0.687450i \(-0.758730\pi\)
0.232233 + 0.972660i \(0.425397\pi\)
\(114\) 0.436062 0.755282i 0.0408410 0.0707387i
\(115\) 0 0
\(116\) −9.72004 + 2.60448i −0.902483 + 0.241820i
\(117\) 7.10244i 0.656621i
\(118\) −4.17221 15.5709i −0.384083 1.43342i
\(119\) 3.39779 3.39779i 0.311475 0.311475i
\(120\) 0 0
\(121\) 6.27654 0.570594
\(122\) −19.4814 + 19.4814i −1.76377 + 1.76377i
\(123\) −1.45519 0.389918i −0.131210 0.0351577i
\(124\) 3.27956 + 12.2395i 0.294513 + 1.09914i
\(125\) 0 0
\(126\) 15.2769 + 4.09344i 1.36098 + 0.364673i
\(127\) 3.40738 12.7165i 0.302356 1.12841i −0.632841 0.774282i \(-0.718111\pi\)
0.935197 0.354128i \(-0.115222\pi\)
\(128\) −0.196248 0.339912i −0.0173461 0.0300443i
\(129\) −4.92391 + 1.31936i −0.433526 + 0.116163i
\(130\) 0 0
\(131\) −11.0289 2.95518i −0.963598 0.258195i −0.257475 0.966285i \(-0.582891\pi\)
−0.706122 + 0.708090i \(0.749557\pi\)
\(132\) 2.95441 + 0.791632i 0.257149 + 0.0689028i
\(133\) −0.976995 1.69220i −0.0847162 0.146733i
\(134\) −0.526544 + 0.526544i −0.0454865 + 0.0454865i
\(135\) 0 0
\(136\) −0.0641569 + 0.0370410i −0.00550141 + 0.00317624i
\(137\) 14.8532 + 14.8532i 1.26899 + 1.26899i 0.946610 + 0.322380i \(0.104483\pi\)
0.322380 + 0.946610i \(0.395517\pi\)
\(138\) −0.336387 0.336387i −0.0286352 0.0286352i
\(139\) 2.76488 + 4.78891i 0.234514 + 0.406190i 0.959131 0.282961i \(-0.0913168\pi\)
−0.724617 + 0.689152i \(0.757983\pi\)
\(140\) 0 0
\(141\) 5.15751 + 2.97769i 0.434340 + 0.250767i
\(142\) −19.0498 −1.59862
\(143\) 5.36345 + 3.09659i 0.448514 + 0.258950i
\(144\) −8.73899 5.04546i −0.728249 0.420455i
\(145\) 0 0
\(146\) −8.52587 + 31.8190i −0.705606 + 2.63336i
\(147\) −1.57615 + 1.57615i −0.129999 + 0.129999i
\(148\) −4.76146 + 11.0322i −0.391389 + 0.906839i
\(149\) 13.7980i 1.13038i −0.824962 0.565189i \(-0.808803\pi\)
0.824962 0.565189i \(-0.191197\pi\)
\(150\) 0 0
\(151\) 1.21576 + 0.701919i 0.0989370 + 0.0571213i 0.548652 0.836051i \(-0.315141\pi\)
−0.449715 + 0.893172i \(0.648474\pi\)
\(152\) 0.00779686 + 0.0290983i 0.000632409 + 0.00236018i
\(153\) −1.88161 + 3.25904i −0.152119 + 0.263478i
\(154\) 9.75175 9.75175i 0.785819 0.785819i
\(155\) 0 0
\(156\) −2.83573 2.83573i −0.227040 0.227040i
\(157\) 1.87919 7.01323i 0.149976 0.559716i −0.849508 0.527576i \(-0.823101\pi\)
0.999483 0.0321404i \(-0.0102324\pi\)
\(158\) 6.10880 6.10880i 0.485990 0.485990i
\(159\) 0.438983 0.0348136
\(160\) 0 0
\(161\) −1.02954 + 0.275864i −0.0811389 + 0.0217411i
\(162\) −9.35024 −0.734625
\(163\) −4.40875 + 2.54539i −0.345320 + 0.199370i −0.662622 0.748954i \(-0.730556\pi\)
0.317302 + 0.948324i \(0.397223\pi\)
\(164\) −3.61757 + 2.08860i −0.282485 + 0.163093i
\(165\) 0 0
\(166\) 1.07649 + 4.01751i 0.0835518 + 0.311820i
\(167\) 4.88520 + 2.82047i 0.378028 + 0.218255i 0.676960 0.736020i \(-0.263297\pi\)
−0.298932 + 0.954274i \(0.596630\pi\)
\(168\) 0.0963454 0.0556250i 0.00743321 0.00429157i
\(169\) 2.43991 + 4.22604i 0.187685 + 0.325080i
\(170\) 0 0
\(171\) 1.08207 + 1.08207i 0.0827477 + 0.0827477i
\(172\) −7.06716 + 12.2407i −0.538866 + 0.933343i
\(173\) −0.295795 + 1.10392i −0.0224888 + 0.0839295i −0.976258 0.216610i \(-0.930500\pi\)
0.953769 + 0.300539i \(0.0971667\pi\)
\(174\) 7.23611i 0.548568i
\(175\) 0 0
\(176\) −7.62021 + 4.39953i −0.574395 + 0.331627i
\(177\) −5.76002 −0.432950
\(178\) −0.365550 + 0.0979487i −0.0273991 + 0.00734157i
\(179\) 11.6801 + 11.6801i 0.873015 + 0.873015i 0.992800 0.119785i \(-0.0382206\pi\)
−0.119785 + 0.992800i \(0.538221\pi\)
\(180\) 0 0
\(181\) 12.7282 22.0459i 0.946080 1.63866i 0.192507 0.981296i \(-0.438338\pi\)
0.753573 0.657364i \(-0.228328\pi\)
\(182\) −17.4660 + 4.68001i −1.29467 + 0.346905i
\(183\) 4.92221 + 8.52551i 0.363860 + 0.630224i
\(184\) 0.0164323 0.00121141
\(185\) 0 0
\(186\) 9.11171 0.668103
\(187\) 1.64072 + 2.84181i 0.119981 + 0.207814i
\(188\) 15.9501 4.27380i 1.16328 0.311699i
\(189\) 6.22669 10.7849i 0.452925 0.784489i
\(190\) 0 0
\(191\) 12.6423 + 12.6423i 0.914764 + 0.914764i 0.996642 0.0818786i \(-0.0260920\pi\)
−0.0818786 + 0.996642i \(0.526092\pi\)
\(192\) 5.36896 1.43861i 0.387471 0.103823i
\(193\) 19.2629 1.38657 0.693285 0.720663i \(-0.256163\pi\)
0.693285 + 0.720663i \(0.256163\pi\)
\(194\) 13.3856 7.72816i 0.961028 0.554850i
\(195\) 0 0
\(196\) 6.18048i 0.441463i
\(197\) 4.36604 16.2943i 0.311067 1.16092i −0.616528 0.787333i \(-0.711461\pi\)
0.927595 0.373587i \(-0.121872\pi\)
\(198\) −5.40026 + 9.35352i −0.383780 + 0.664726i
\(199\) 12.5591 + 12.5591i 0.890292 + 0.890292i 0.994550 0.104259i \(-0.0332469\pi\)
−0.104259 + 0.994550i \(0.533247\pi\)
\(200\) 0 0
\(201\) 0.133037 + 0.230428i 0.00938374 + 0.0162531i
\(202\) 7.53051 4.34774i 0.529845 0.305906i
\(203\) 14.0404 + 8.10623i 0.985443 + 0.568946i
\(204\) −0.549956 2.05246i −0.0385046 0.143701i
\(205\) 0 0
\(206\) −0.208067 + 0.120128i −0.0144967 + 0.00836968i
\(207\) 0.722896 0.417364i 0.0502447 0.0290088i
\(208\) 11.5369 0.799940
\(209\) 1.28890 0.345359i 0.0891549 0.0238890i
\(210\) 0 0
\(211\) −3.50233 −0.241110 −0.120555 0.992707i \(-0.538467\pi\)
−0.120555 + 0.992707i \(0.538467\pi\)
\(212\) 0.860679 0.860679i 0.0591117 0.0591117i
\(213\) −1.76174 + 6.57489i −0.120712 + 0.450504i
\(214\) 14.4034 + 14.4034i 0.984595 + 0.984595i
\(215\) 0 0
\(216\) −0.135760 + 0.135760i −0.00923732 + 0.00923732i
\(217\) 10.2074 17.6797i 0.692921 1.20017i
\(218\) −6.39678 23.8731i −0.433245 1.61689i
\(219\) 10.1936 + 5.88528i 0.688819 + 0.397690i
\(220\) 0 0
\(221\) 4.30246i 0.289415i
\(222\) 6.77660 + 5.36046i 0.454816 + 0.359771i
\(223\) 11.7322 11.7322i 0.785647 0.785647i −0.195131 0.980777i \(-0.562513\pi\)
0.980777 + 0.195131i \(0.0625131\pi\)
\(224\) 6.56838 24.5135i 0.438868 1.63788i
\(225\) 0 0
\(226\) 10.4702 + 6.04497i 0.696467 + 0.402105i
\(227\) −16.3587 9.44467i −1.08576 0.626865i −0.153317 0.988177i \(-0.548996\pi\)
−0.932445 + 0.361312i \(0.882329\pi\)
\(228\) −0.864056 −0.0572235
\(229\) −8.30226 4.79331i −0.548629 0.316751i 0.199940 0.979808i \(-0.435925\pi\)
−0.748569 + 0.663057i \(0.769259\pi\)
\(230\) 0 0
\(231\) −2.46389 4.26759i −0.162112 0.280787i
\(232\) −0.176740 0.176740i −0.0116035 0.0116035i
\(233\) 16.8480 + 16.8480i 1.10375 + 1.10375i 0.993954 + 0.109796i \(0.0350197\pi\)
0.109796 + 0.993954i \(0.464980\pi\)
\(234\) 12.2639 7.08056i 0.801715 0.462871i
\(235\) 0 0
\(236\) −11.2932 + 11.2932i −0.735126 + 0.735126i
\(237\) −1.54346 2.67335i −0.100258 0.173653i
\(238\) −9.25434 2.47969i −0.599870 0.160735i
\(239\) −24.8308 6.65340i −1.60617 0.430373i −0.659274 0.751903i \(-0.729136\pi\)
−0.946899 + 0.321530i \(0.895803\pi\)
\(240\) 0 0
\(241\) −14.6126 + 3.91545i −0.941283 + 0.252216i −0.696659 0.717402i \(-0.745331\pi\)
−0.244624 + 0.969618i \(0.578664\pi\)
\(242\) −6.25720 10.8378i −0.402228 0.696680i
\(243\) −3.90299 + 14.5662i −0.250377 + 0.934419i
\(244\) 26.3659 + 7.06472i 1.68790 + 0.452273i
\(245\) 0 0
\(246\) 0.777434 + 2.90142i 0.0495674 + 0.184988i
\(247\) −1.68994 0.452818i −0.107528 0.0288121i
\(248\) −0.222551 + 0.222551i −0.0141320 + 0.0141320i
\(249\) 1.48617 0.0941820
\(250\) 0 0
\(251\) −11.1540 + 11.1540i −0.704037 + 0.704037i −0.965275 0.261238i \(-0.915869\pi\)
0.261238 + 0.965275i \(0.415869\pi\)
\(252\) −4.05557 15.1356i −0.255477 0.953452i
\(253\) 0.727865i 0.0457605i
\(254\) −25.3547 + 6.79377i −1.59090 + 0.426279i
\(255\) 0 0
\(256\) −8.19322 + 14.1911i −0.512076 + 0.886942i
\(257\) −5.15532 + 2.97643i −0.321580 + 0.185664i −0.652097 0.758136i \(-0.726110\pi\)
0.330516 + 0.943800i \(0.392777\pi\)
\(258\) 7.18689 + 7.18689i 0.447436 + 0.447436i
\(259\) 17.9925 7.14376i 1.11800 0.443891i
\(260\) 0 0
\(261\) −12.2642 3.28618i −0.759135 0.203410i
\(262\) 5.89215 + 21.9898i 0.364018 + 1.35853i
\(263\) −7.08485 + 1.89838i −0.436870 + 0.117059i −0.470549 0.882374i \(-0.655944\pi\)
0.0336790 + 0.999433i \(0.489278\pi\)
\(264\) 0.0196630 + 0.0733832i 0.00121017 + 0.00451642i
\(265\) 0 0
\(266\) −1.94797 + 3.37398i −0.119438 + 0.206872i
\(267\) 0.135225i 0.00827563i
\(268\) 0.712618 + 0.190945i 0.0435301 + 0.0116638i
\(269\) 15.0921i 0.920182i 0.887872 + 0.460091i \(0.152183\pi\)
−0.887872 + 0.460091i \(0.847817\pi\)
\(270\) 0 0
\(271\) 15.1317 + 26.2089i 0.919186 + 1.59208i 0.800654 + 0.599127i \(0.204485\pi\)
0.118532 + 0.992950i \(0.462181\pi\)
\(272\) 5.29384 + 3.05640i 0.320986 + 0.185322i
\(273\) 6.46107i 0.391042i
\(274\) 10.8398 40.4546i 0.654854 2.44395i
\(275\) 0 0
\(276\) −0.121987 + 0.455262i −0.00734276 + 0.0274036i
\(277\) 7.99538 13.8484i 0.480396 0.832070i −0.519351 0.854561i \(-0.673826\pi\)
0.999747 + 0.0224906i \(0.00715959\pi\)
\(278\) 5.51272 9.54832i 0.330631 0.572670i
\(279\) −4.13796 + 15.4431i −0.247733 + 0.924553i
\(280\) 0 0
\(281\) −3.07938 + 11.4924i −0.183701 + 0.685580i 0.811204 + 0.584763i \(0.198812\pi\)
−0.994905 + 0.100817i \(0.967854\pi\)
\(282\) 11.8741i 0.707090i
\(283\) 2.01999 + 1.16624i 0.120076 + 0.0693258i 0.558835 0.829279i \(-0.311249\pi\)
−0.438759 + 0.898605i \(0.644582\pi\)
\(284\) 9.43678 + 16.3450i 0.559970 + 0.969896i
\(285\) 0 0
\(286\) 12.3482i 0.730164i
\(287\) 6.50062 + 1.74184i 0.383719 + 0.102817i
\(288\) 19.8751i 1.17115i
\(289\) −7.36017 + 12.7482i −0.432951 + 0.749894i
\(290\) 0 0
\(291\) −1.42941 5.33463i −0.0837935 0.312721i
\(292\) 31.5246 8.44699i 1.84484 0.494323i
\(293\) −6.00204 22.3999i −0.350643 1.30862i −0.885879 0.463916i \(-0.846444\pi\)
0.535236 0.844702i \(-0.320223\pi\)
\(294\) 4.29286 + 1.15027i 0.250365 + 0.0670850i
\(295\) 0 0
\(296\) −0.296444 + 0.0345887i −0.0172305 + 0.00201043i
\(297\) 6.01346 + 6.01346i 0.348936 + 0.348936i
\(298\) −23.8252 + 13.7555i −1.38016 + 0.796835i
\(299\) −0.477170 + 0.826484i −0.0275955 + 0.0477968i
\(300\) 0 0
\(301\) 21.9960 5.89380i 1.26783 0.339713i
\(302\) 2.79902i 0.161066i
\(303\) −0.804163 3.00118i −0.0461980 0.172413i
\(304\) 1.75766 1.75766i 0.100809 0.100809i
\(305\) 0 0
\(306\) 7.50324 0.428932
\(307\) −20.5500 + 20.5500i −1.17285 + 1.17285i −0.191323 + 0.981527i \(0.561278\pi\)
−0.981527 + 0.191323i \(0.938722\pi\)
\(308\) −13.1979 3.53637i −0.752020 0.201503i
\(309\) 0.0222189 + 0.0829221i 0.00126399 + 0.00471727i
\(310\) 0 0
\(311\) 6.27405 + 1.68113i 0.355769 + 0.0953279i 0.432277 0.901741i \(-0.357710\pi\)
−0.0765080 + 0.997069i \(0.524377\pi\)
\(312\) 0.0257811 0.0962165i 0.00145957 0.00544719i
\(313\) 1.25227 + 2.16900i 0.0707825 + 0.122599i 0.899244 0.437446i \(-0.144117\pi\)
−0.828462 + 0.560045i \(0.810784\pi\)
\(314\) −13.9832 + 3.74680i −0.789120 + 0.211444i
\(315\) 0 0
\(316\) −8.26757 2.21529i −0.465087 0.124620i
\(317\) −4.31555 1.15635i −0.242386 0.0649470i 0.135581 0.990766i \(-0.456710\pi\)
−0.377967 + 0.925819i \(0.623377\pi\)
\(318\) −0.437630 0.757998i −0.0245411 0.0425064i
\(319\) −7.82864 + 7.82864i −0.438320 + 0.438320i
\(320\) 0 0
\(321\) 6.30324 3.63918i 0.351813 0.203119i
\(322\) 1.50270 + 1.50270i 0.0837424 + 0.0837424i
\(323\) −0.655487 0.655487i −0.0364723 0.0364723i
\(324\) 4.63187 + 8.02263i 0.257326 + 0.445702i
\(325\) 0 0
\(326\) 8.79033 + 5.07510i 0.486851 + 0.281084i
\(327\) −8.83120 −0.488366
\(328\) −0.0898550 0.0518778i −0.00496141 0.00286447i
\(329\) −23.0395 13.3019i −1.27021 0.733356i
\(330\) 0 0
\(331\) −4.17606 + 15.5853i −0.229537 + 0.856645i 0.750999 + 0.660304i \(0.229573\pi\)
−0.980536 + 0.196341i \(0.937094\pi\)
\(332\) 2.91381 2.91381i 0.159916 0.159916i
\(333\) −12.1627 + 9.05101i −0.666515 + 0.495993i
\(334\) 11.2471i 0.615416i
\(335\) 0 0
\(336\) −7.94984 4.58984i −0.433699 0.250396i
\(337\) 9.00391 + 33.6031i 0.490474 + 1.83048i 0.554029 + 0.832497i \(0.313089\pi\)
−0.0635550 + 0.997978i \(0.520244\pi\)
\(338\) 4.86478 8.42604i 0.264609 0.458316i
\(339\) 3.05466 3.05466i 0.165906 0.165906i
\(340\) 0 0
\(341\) 9.85782 + 9.85782i 0.533831 + 0.533831i
\(342\) 0.789688 2.94715i 0.0427014 0.159364i
\(343\) −8.71195 + 8.71195i −0.470401 + 0.470401i
\(344\) −0.351075 −0.0189287
\(345\) 0 0
\(346\) 2.20104 0.589767i 0.118329 0.0317061i
\(347\) 36.0284 1.93411 0.967054 0.254572i \(-0.0819345\pi\)
0.967054 + 0.254572i \(0.0819345\pi\)
\(348\) 6.20868 3.58458i 0.332820 0.192154i
\(349\) 17.5896 10.1554i 0.941550 0.543604i 0.0511041 0.998693i \(-0.483726\pi\)
0.890446 + 0.455089i \(0.150393\pi\)
\(350\) 0 0
\(351\) −2.88595 10.7705i −0.154041 0.574887i
\(352\) 15.0088 + 8.66531i 0.799970 + 0.461863i
\(353\) 15.4704 8.93186i 0.823408 0.475395i −0.0281823 0.999603i \(-0.508972\pi\)
0.851590 + 0.524208i \(0.175639\pi\)
\(354\) 5.74227 + 9.94591i 0.305198 + 0.528619i
\(355\) 0 0
\(356\) 0.265125 + 0.265125i 0.0140516 + 0.0140516i
\(357\) −1.71169 + 2.96474i −0.0905924 + 0.156911i
\(358\) 8.52411 31.8124i 0.450513 1.68134i
\(359\) 21.4882i 1.13410i −0.823682 0.567051i \(-0.808084\pi\)
0.823682 0.567051i \(-0.191916\pi\)
\(360\) 0 0
\(361\) 16.1280 9.31152i 0.848844 0.490080i
\(362\) −50.7560 −2.66768
\(363\) −4.31925 + 1.15734i −0.226702 + 0.0607445i
\(364\) 12.6677 + 12.6677i 0.663970 + 0.663970i
\(365\) 0 0
\(366\) 9.81409 16.9985i 0.512991 0.888526i
\(367\) −29.3187 + 7.85591i −1.53042 + 0.410075i −0.923156 0.384424i \(-0.874400\pi\)
−0.607265 + 0.794500i \(0.707733\pi\)
\(368\) −0.677948 1.17424i −0.0353405 0.0612115i
\(369\) −5.27057 −0.274375
\(370\) 0 0
\(371\) −1.96101 −0.101811
\(372\) −4.51370 7.81796i −0.234025 0.405343i
\(373\) −25.1878 + 6.74904i −1.30417 + 0.349452i −0.843027 0.537872i \(-0.819228\pi\)
−0.461146 + 0.887324i \(0.652562\pi\)
\(374\) 3.27133 5.66611i 0.169156 0.292988i
\(375\) 0 0
\(376\) 0.290021 + 0.290021i 0.0149567 + 0.0149567i
\(377\) 14.0216 3.75708i 0.722150 0.193499i
\(378\) −24.8300 −1.27712
\(379\) −24.1459 + 13.9406i −1.24029 + 0.716082i −0.969153 0.246459i \(-0.920733\pi\)
−0.271137 + 0.962541i \(0.587400\pi\)
\(380\) 0 0
\(381\) 9.37927i 0.480514i
\(382\) 9.22628 34.4330i 0.472058 1.76174i
\(383\) −11.6400 + 20.1610i −0.594775 + 1.03018i 0.398804 + 0.917036i \(0.369425\pi\)
−0.993579 + 0.113144i \(0.963908\pi\)
\(384\) 0.197726 + 0.197726i 0.0100902 + 0.0100902i
\(385\) 0 0
\(386\) −19.2035 33.2615i −0.977433 1.69296i
\(387\) −15.4446 + 8.91695i −0.785094 + 0.453274i
\(388\) −13.2617 7.65666i −0.673262 0.388708i
\(389\) −6.39722 23.8748i −0.324352 1.21050i −0.914962 0.403541i \(-0.867779\pi\)
0.590610 0.806957i \(-0.298887\pi\)
\(390\) 0 0
\(391\) −0.437911 + 0.252828i −0.0221461 + 0.0127861i
\(392\) −0.132947 + 0.0767569i −0.00671483 + 0.00387681i
\(393\) 8.13451 0.410332
\(394\) −32.4882 + 8.70518i −1.63673 + 0.438561i
\(395\) 0 0
\(396\) 10.7006 0.537725
\(397\) −1.14631 + 1.14631i −0.0575316 + 0.0575316i −0.735287 0.677756i \(-0.762953\pi\)
0.677756 + 0.735287i \(0.262953\pi\)
\(398\) 9.16558 34.2064i 0.459429 1.71461i
\(399\) 0.984354 + 0.984354i 0.0492793 + 0.0492793i
\(400\) 0 0
\(401\) −5.12856 + 5.12856i −0.256108 + 0.256108i −0.823469 0.567361i \(-0.807964\pi\)
0.567361 + 0.823469i \(0.307964\pi\)
\(402\) 0.265255 0.459435i 0.0132297 0.0229146i
\(403\) −4.73091 17.6560i −0.235664 0.879509i
\(404\) −7.46084 4.30752i −0.371191 0.214307i
\(405\) 0 0
\(406\) 32.3250i 1.60426i
\(407\) 1.53210 + 13.1309i 0.0759431 + 0.650875i
\(408\) 0.0373200 0.0373200i 0.00184762 0.00184762i
\(409\) −1.06786 + 3.98532i −0.0528024 + 0.197061i −0.987289 0.158938i \(-0.949193\pi\)
0.934486 + 0.356000i \(0.115860\pi\)
\(410\) 0 0
\(411\) −12.9601 7.48252i −0.639275 0.369085i
\(412\) 0.206142 + 0.119016i 0.0101559 + 0.00586350i
\(413\) 25.7310 1.26614
\(414\) −1.44134 0.832157i −0.0708379 0.0408983i
\(415\) 0 0
\(416\) −11.3615 19.6788i −0.557045 0.964831i
\(417\) −2.78571 2.78571i −0.136417 0.136417i
\(418\) −1.88126 1.88126i −0.0920156 0.0920156i
\(419\) −17.3507 + 10.0174i −0.847638 + 0.489384i −0.859853 0.510541i \(-0.829445\pi\)
0.0122153 + 0.999925i \(0.496112\pi\)
\(420\) 0 0
\(421\) 3.69196 3.69196i 0.179935 0.179935i −0.611392 0.791328i \(-0.709390\pi\)
0.791328 + 0.611392i \(0.209390\pi\)
\(422\) 3.49154 + 6.04753i 0.169966 + 0.294389i
\(423\) 20.1249 + 5.39245i 0.978506 + 0.262190i
\(424\) 0.0292029 + 0.00782489i 0.00141822 + 0.000380010i
\(425\) 0 0
\(426\) 13.1093 3.51262i 0.635146 0.170187i
\(427\) −21.9884 38.0850i −1.06409 1.84306i
\(428\) 5.22323 19.4933i 0.252474 0.942246i
\(429\) −4.26188 1.14197i −0.205765 0.0551347i
\(430\) 0 0
\(431\) −4.73118 17.6570i −0.227893 0.850509i −0.981225 0.192868i \(-0.938221\pi\)
0.753332 0.657641i \(-0.228446\pi\)
\(432\) 15.3024 + 4.10026i 0.736237 + 0.197274i
\(433\) 4.75230 4.75230i 0.228381 0.228381i −0.583635 0.812016i \(-0.698370\pi\)
0.812016 + 0.583635i \(0.198370\pi\)
\(434\) −40.7037 −1.95384
\(435\) 0 0
\(436\) −17.3146 + 17.3146i −0.829221 + 0.829221i
\(437\) 0.0532183 + 0.198614i 0.00254578 + 0.00950098i
\(438\) 23.4686i 1.12137i
\(439\) −33.2323 + 8.90457i −1.58609 + 0.424992i −0.940805 0.338948i \(-0.889929\pi\)
−0.645287 + 0.763940i \(0.723262\pi\)
\(440\) 0 0
\(441\) −3.89909 + 6.75343i −0.185671 + 0.321592i
\(442\) −7.42913 + 4.28921i −0.353368 + 0.204017i
\(443\) 2.82400 + 2.82400i 0.134172 + 0.134172i 0.771003 0.636831i \(-0.219755\pi\)
−0.636831 + 0.771003i \(0.719755\pi\)
\(444\) 1.24240 8.46984i 0.0589615 0.401961i
\(445\) 0 0
\(446\) −31.9542 8.56211i −1.51308 0.405428i
\(447\) 2.54423 + 9.49521i 0.120338 + 0.449108i
\(448\) −23.9841 + 6.42652i −1.13314 + 0.303625i
\(449\) −7.10809 26.5277i −0.335451 1.25192i −0.903379 0.428843i \(-0.858921\pi\)
0.567928 0.823078i \(-0.307745\pi\)
\(450\) 0 0
\(451\) −2.29791 + 3.98010i −0.108204 + 0.187416i
\(452\) 11.9781i 0.563402i
\(453\) −0.966061 0.258855i −0.0453895 0.0121621i
\(454\) 37.6623i 1.76758i
\(455\) 0 0
\(456\) −0.0107309 0.0185865i −0.000502522 0.000870393i
\(457\) −5.87366 3.39116i −0.274758 0.158632i 0.356290 0.934375i \(-0.384042\pi\)
−0.631048 + 0.775744i \(0.717375\pi\)
\(458\) 19.1142i 0.893147i
\(459\) 1.52911 5.70673i 0.0713729 0.266367i
\(460\) 0 0
\(461\) 10.7605 40.1588i 0.501168 1.87038i 0.00886370 0.999961i \(-0.497179\pi\)
0.492304 0.870423i \(-0.336155\pi\)
\(462\) −4.91260 + 8.50888i −0.228555 + 0.395869i
\(463\) −9.71266 + 16.8228i −0.451385 + 0.781822i −0.998472 0.0552533i \(-0.982403\pi\)
0.547087 + 0.837076i \(0.315737\pi\)
\(464\) −5.33794 + 19.9215i −0.247808 + 0.924830i
\(465\) 0 0
\(466\) 12.2956 45.8878i 0.569583 2.12571i
\(467\) 19.7318i 0.913077i 0.889704 + 0.456538i \(0.150911\pi\)
−0.889704 + 0.456538i \(0.849089\pi\)
\(468\) −12.1504 7.01505i −0.561653 0.324271i
\(469\) −0.594302 1.02936i −0.0274423 0.0475315i
\(470\) 0 0
\(471\) 5.17271i 0.238346i
\(472\) −0.383180 0.102673i −0.0176373 0.00472589i
\(473\) 15.5508i 0.715025i
\(474\) −3.07741 + 5.33022i −0.141350 + 0.244825i
\(475\) 0 0
\(476\) 2.45675 + 9.16872i 0.112605 + 0.420248i
\(477\) 1.48345 0.397488i 0.0679223 0.0181997i
\(478\) 13.2658 + 49.5087i 0.606764 + 2.26447i
\(479\) 36.6479 + 9.81978i 1.67449 + 0.448677i 0.966315 0.257364i \(-0.0828538\pi\)
0.708171 + 0.706041i \(0.249520\pi\)
\(480\) 0 0
\(481\) 6.86863 15.9144i 0.313182 0.725635i
\(482\) 21.3285 + 21.3285i 0.971486 + 0.971486i
\(483\) 0.657617 0.379675i 0.0299226 0.0172758i
\(484\) −6.19931 + 10.7375i −0.281787 + 0.488069i
\(485\) 0 0
\(486\) 29.0426 7.78193i 1.31740 0.352995i
\(487\) 29.1168i 1.31941i 0.751526 + 0.659703i \(0.229318\pi\)
−0.751526 + 0.659703i \(0.770682\pi\)
\(488\) 0.175477 + 0.654890i 0.00794348 + 0.0296455i
\(489\) 2.56456 2.56456i 0.115974 0.115974i
\(490\) 0 0
\(491\) −32.9750 −1.48814 −0.744070 0.668102i \(-0.767107\pi\)
−0.744070 + 0.668102i \(0.767107\pi\)
\(492\) 2.10434 2.10434i 0.0948709 0.0948709i
\(493\) 7.42932 + 1.99068i 0.334600 + 0.0896558i
\(494\) 0.902846 + 3.36947i 0.0406210 + 0.151600i
\(495\) 0 0
\(496\) 25.0851 + 6.72153i 1.12635 + 0.301806i
\(497\) 7.86999 29.3712i 0.353017 1.31748i
\(498\) −1.48159 2.56619i −0.0663916 0.114994i
\(499\) 4.27129 1.14449i 0.191209 0.0512344i −0.161944 0.986800i \(-0.551776\pi\)
0.353153 + 0.935566i \(0.385110\pi\)
\(500\) 0 0
\(501\) −3.88186 1.04014i −0.173429 0.0464701i
\(502\) 30.3795 + 8.14017i 1.35590 + 0.363314i
\(503\) −14.7057 25.4710i −0.655694 1.13570i −0.981719 0.190335i \(-0.939043\pi\)
0.326025 0.945361i \(-0.394291\pi\)
\(504\) 0.275211 0.275211i 0.0122589 0.0122589i
\(505\) 0 0
\(506\) −1.25681 + 0.725622i −0.0558722 + 0.0322578i
\(507\) −2.45828 2.45828i −0.109176 0.109176i
\(508\) 18.3892 + 18.3892i 0.815889 + 0.815889i
\(509\) −21.2253 36.7633i −0.940794 1.62950i −0.763962 0.645261i \(-0.776748\pi\)
−0.176832 0.984241i \(-0.556585\pi\)
\(510\) 0 0
\(511\) −45.5366 26.2906i −2.01442 1.16303i
\(512\) 31.8869 1.40922
\(513\) −2.08058 1.20122i −0.0918599 0.0530353i
\(514\) 10.2789 + 5.93451i 0.453382 + 0.261760i
\(515\) 0 0
\(516\) 2.60625 9.72664i 0.114734 0.428191i
\(517\) 12.8464 12.8464i 0.564983 0.564983i
\(518\) −30.2723 23.9462i −1.33009 1.05213i
\(519\) 0.814213i 0.0357400i
\(520\) 0 0
\(521\) 9.27032 + 5.35222i 0.406140 + 0.234485i 0.689130 0.724638i \(-0.257993\pi\)
−0.282990 + 0.959123i \(0.591326\pi\)
\(522\) 6.55212 + 24.4528i 0.286779 + 1.07027i
\(523\) 0.928801 1.60873i 0.0406137 0.0703449i −0.845004 0.534760i \(-0.820402\pi\)
0.885618 + 0.464415i \(0.153735\pi\)
\(524\) 15.9487 15.9487i 0.696723 0.696723i
\(525\) 0 0
\(526\) 10.3410 + 10.3410i 0.450888 + 0.450888i
\(527\) 2.50667 9.35500i 0.109192 0.407510i
\(528\) 4.43267 4.43267i 0.192907 0.192907i
\(529\) −22.8878 −0.995123
\(530\) 0 0
\(531\) −19.4647 + 5.21556i −0.844697 + 0.226336i
\(532\) 3.85989 0.167348
\(533\) 5.21851 3.01291i 0.226039 0.130504i
\(534\) 0.233495 0.134808i 0.0101043 0.00583373i
\(535\) 0 0
\(536\) 0.00474280 + 0.0177004i 0.000204858 + 0.000764539i
\(537\) −10.1915 5.88406i −0.439795 0.253916i
\(538\) 26.0598 15.0456i 1.12352 0.648662i
\(539\) 3.39992 + 5.88884i 0.146445 + 0.253650i
\(540\) 0 0
\(541\) 18.3486 + 18.3486i 0.788870 + 0.788870i 0.981309 0.192439i \(-0.0616399\pi\)
−0.192439 + 0.981309i \(0.561640\pi\)
\(542\) 30.1702 52.2563i 1.29592 2.24460i
\(543\) −4.69394 + 17.5180i −0.201436 + 0.751770i
\(544\) 12.0398i 0.516201i
\(545\) 0 0
\(546\) 11.1564 6.44117i 0.477451 0.275657i
\(547\) −38.0204 −1.62563 −0.812817 0.582518i \(-0.802067\pi\)
−0.812817 + 0.582518i \(0.802067\pi\)
\(548\) −40.0803 + 10.7395i −1.71214 + 0.458768i
\(549\) 24.3532 + 24.3532i 1.03937 + 1.03937i
\(550\) 0 0
\(551\) 1.56382 2.70861i 0.0666208 0.115391i
\(552\) −0.0113080 + 0.00302998i −0.000481302 + 0.000128964i
\(553\) 6.89491 + 11.9423i 0.293201 + 0.507840i
\(554\) −31.8830 −1.35458
\(555\) 0 0
\(556\) −10.9234 −0.463257
\(557\) 14.4598 + 25.0451i 0.612681 + 1.06119i 0.990787 + 0.135432i \(0.0432421\pi\)
−0.378106 + 0.925762i \(0.623425\pi\)
\(558\) 30.7910 8.25043i 1.30349 0.349269i
\(559\) 10.1947 17.6578i 0.431190 0.746844i
\(560\) 0 0
\(561\) −1.65308 1.65308i −0.0697930 0.0697930i
\(562\) 22.9140 6.13979i 0.966570 0.258992i
\(563\) −21.7412 −0.916284 −0.458142 0.888879i \(-0.651485\pi\)
−0.458142 + 0.888879i \(0.651485\pi\)
\(564\) −10.1881 + 5.88210i −0.428996 + 0.247681i
\(565\) 0 0
\(566\) 4.65059i 0.195479i
\(567\) 3.86284 14.4163i 0.162224 0.605429i
\(568\) −0.234395 + 0.405985i −0.00983502 + 0.0170347i
\(569\) −17.8811 17.8811i −0.749613 0.749613i 0.224793 0.974406i \(-0.427829\pi\)
−0.974406 + 0.224793i \(0.927829\pi\)
\(570\) 0 0
\(571\) −1.01988 1.76649i −0.0426808 0.0739253i 0.843896 0.536507i \(-0.180257\pi\)
−0.886577 + 0.462582i \(0.846923\pi\)
\(572\) −10.5949 + 6.11697i −0.442995 + 0.255763i
\(573\) −11.0310 6.36876i −0.460827 0.266059i
\(574\) −3.47294 12.9612i −0.144958 0.540989i
\(575\) 0 0
\(576\) 16.8406 9.72292i 0.701692 0.405122i
\(577\) −19.2382 + 11.1072i −0.800897 + 0.462398i −0.843785 0.536682i \(-0.819677\pi\)
0.0428880 + 0.999080i \(0.486344\pi\)
\(578\) 29.3500 1.22080
\(579\) −13.2559 + 3.55190i −0.550896 + 0.147612i
\(580\) 0 0
\(581\) −6.63898 −0.275431
\(582\) −7.78637 + 7.78637i −0.322756 + 0.322756i
\(583\) 0.346601 1.29353i 0.0143547 0.0535726i
\(584\) 0.573213 + 0.573213i 0.0237197 + 0.0237197i
\(585\) 0 0
\(586\) −32.6947 + 32.6947i −1.35061 + 1.35061i
\(587\) 9.53161 16.5092i 0.393412 0.681409i −0.599485 0.800386i \(-0.704628\pi\)
0.992897 + 0.118977i \(0.0379614\pi\)
\(588\) −1.13963 4.25314i −0.0469974 0.175397i
\(589\) −3.41068 1.96916i −0.140535 0.0811377i
\(590\) 0 0
\(591\) 12.0181i 0.494358i
\(592\) 14.7021 + 19.7567i 0.604252 + 0.811993i
\(593\) 13.1075 13.1075i 0.538261 0.538261i −0.384757 0.923018i \(-0.625715\pi\)
0.923018 + 0.384757i \(0.125715\pi\)
\(594\) 4.38860 16.3785i 0.180066 0.672017i
\(595\) 0 0
\(596\) 23.6048 + 13.6282i 0.966890 + 0.558234i
\(597\) −10.9584 6.32686i −0.448499 0.258941i
\(598\) 1.90280 0.0778113
\(599\) 10.4679 + 6.04367i 0.427709 + 0.246938i 0.698370 0.715737i \(-0.253909\pi\)
−0.270661 + 0.962675i \(0.587242\pi\)
\(600\) 0 0
\(601\) 0.320993 + 0.555976i 0.0130936 + 0.0226787i 0.872498 0.488618i \(-0.162499\pi\)
−0.859404 + 0.511297i \(0.829165\pi\)
\(602\) −32.1051 32.1051i −1.30851 1.30851i
\(603\) 0.658217 + 0.658217i 0.0268047 + 0.0268047i
\(604\) −2.40160 + 1.38656i −0.0977197 + 0.0564185i
\(605\) 0 0
\(606\) −4.38049 + 4.38049i −0.177945 + 0.177945i
\(607\) −18.6984 32.3865i −0.758943 1.31453i −0.943390 0.331685i \(-0.892383\pi\)
0.184447 0.982842i \(-0.440950\pi\)
\(608\) −4.72904 1.26714i −0.191788 0.0513894i
\(609\) −11.1567 2.98944i −0.452093 0.121138i
\(610\) 0 0
\(611\) −23.0087 + 6.16516i −0.930832 + 0.249416i
\(612\) −3.71691 6.43788i −0.150247 0.260236i
\(613\) 8.63260 32.2173i 0.348668 1.30125i −0.539601 0.841921i \(-0.681425\pi\)
0.888269 0.459324i \(-0.151908\pi\)
\(614\) 55.9707 + 14.9973i 2.25879 + 0.605242i
\(615\) 0 0
\(616\) −0.0878380 0.327816i −0.00353910 0.0132081i
\(617\) 8.56459 + 2.29488i 0.344798 + 0.0923882i 0.427062 0.904222i \(-0.359549\pi\)
−0.0822645 + 0.996611i \(0.526215\pi\)
\(618\) 0.121032 0.121032i 0.00486864 0.00486864i
\(619\) −16.0269 −0.644174 −0.322087 0.946710i \(-0.604384\pi\)
−0.322087 + 0.946710i \(0.604384\pi\)
\(620\) 0 0
\(621\) −0.926648 + 0.926648i −0.0371851 + 0.0371851i
\(622\) −3.35189 12.5094i −0.134399 0.501583i
\(623\) 0.604074i 0.0242017i
\(624\) −7.93921 + 2.12730i −0.317823 + 0.0851603i
\(625\) 0 0
\(626\) 2.49682 4.32463i 0.0997932 0.172847i
\(627\) −0.823284 + 0.475323i −0.0328788 + 0.0189826i
\(628\) 10.1417 + 10.1417i 0.404699 + 0.404699i
\(629\) 7.36786 5.48286i 0.293776 0.218616i
\(630\) 0 0
\(631\) 23.2525 + 6.23050i 0.925669 + 0.248032i 0.690007 0.723803i \(-0.257607\pi\)
0.235662 + 0.971835i \(0.424274\pi\)
\(632\) −0.0550244 0.205354i −0.00218875 0.00816854i
\(633\) 2.41016 0.645799i 0.0957951 0.0256682i
\(634\) 2.30557 + 8.60452i 0.0915660 + 0.341729i
\(635\) 0 0
\(636\) −0.433581 + 0.750985i −0.0171926 + 0.0297785i
\(637\) 8.91563i 0.353250i
\(638\) 21.3224 + 5.71331i 0.844160 + 0.226192i
\(639\) 23.8136i 0.942052i
\(640\) 0 0
\(641\) 9.86299 + 17.0832i 0.389565 + 0.674746i 0.992391 0.123127i \(-0.0392922\pi\)
−0.602826 + 0.797872i \(0.705959\pi\)
\(642\) −12.5677 7.25594i −0.496006 0.286369i
\(643\) 2.09981i 0.0828085i 0.999142 + 0.0414043i \(0.0131832\pi\)
−0.999142 + 0.0414043i \(0.986817\pi\)
\(644\) 0.544939 2.03374i 0.0214736 0.0801405i
\(645\) 0 0
\(646\) −0.478371 + 1.78531i −0.0188213 + 0.0702419i
\(647\) −9.75517 + 16.8964i −0.383515 + 0.664268i −0.991562 0.129633i \(-0.958620\pi\)
0.608047 + 0.793901i \(0.291953\pi\)
\(648\) −0.115049 + 0.199270i −0.00451954 + 0.00782807i
\(649\) −4.54785 + 16.9728i −0.178519 + 0.666241i
\(650\) 0 0
\(651\) −3.76430 + 14.0485i −0.147534 + 0.550606i
\(652\) 10.0563i 0.393835i
\(653\) 4.60233 + 2.65715i 0.180103 + 0.103983i 0.587341 0.809340i \(-0.300175\pi\)
−0.407238 + 0.913322i \(0.633508\pi\)
\(654\) 8.80399 + 15.2490i 0.344263 + 0.596281i
\(655\) 0 0
\(656\) 8.56129i 0.334262i
\(657\) 39.7760 + 10.6579i 1.55181 + 0.415806i
\(658\) 53.0436i 2.06785i
\(659\) 1.89214 3.27728i 0.0737073 0.127665i −0.826816 0.562472i \(-0.809850\pi\)
0.900523 + 0.434808i \(0.143184\pi\)
\(660\) 0 0
\(661\) 5.01853 + 18.7294i 0.195198 + 0.728490i 0.992215 + 0.124533i \(0.0397433\pi\)
−0.797017 + 0.603957i \(0.793590\pi\)
\(662\) 31.0745 8.32640i 1.20775 0.323615i
\(663\) 0.793337 + 2.96077i 0.0308106 + 0.114987i
\(664\) 0.0988658 + 0.0264910i 0.00383674 + 0.00102805i
\(665\) 0 0
\(666\) 27.7538 + 11.9785i 1.07544 + 0.464156i
\(667\) −1.20636 1.20636i −0.0467104 0.0467104i
\(668\) −9.65018 + 5.57154i −0.373377 + 0.215569i
\(669\) −5.91029 + 10.2369i −0.228505 + 0.395782i
\(670\) 0 0
\(671\) 29.0081 7.77271i 1.11985 0.300062i
\(672\) 18.0803i 0.697463i
\(673\) −0.282562 1.05454i −0.0108920 0.0406494i 0.960266 0.279086i \(-0.0900316\pi\)
−0.971158 + 0.238437i \(0.923365\pi\)
\(674\) 49.0467 49.0467i 1.88921 1.88921i
\(675\) 0 0
\(676\) −9.63954 −0.370751
\(677\) 2.41626 2.41626i 0.0928643 0.0928643i −0.659149 0.752013i \(-0.729083\pi\)
0.752013 + 0.659149i \(0.229083\pi\)
\(678\) −8.31978 2.22928i −0.319519 0.0856149i
\(679\) 6.38543 + 23.8307i 0.245050 + 0.914540i
\(680\) 0 0
\(681\) 12.9988 + 3.48303i 0.498117 + 0.133470i
\(682\) 7.19419 26.8491i 0.275480 1.02811i
\(683\) −11.4434 19.8205i −0.437869 0.758411i 0.559656 0.828725i \(-0.310933\pi\)
−0.997525 + 0.0703137i \(0.977600\pi\)
\(684\) −2.91989 + 0.782381i −0.111645 + 0.0299151i
\(685\) 0 0
\(686\) 23.7282 + 6.35794i 0.905945 + 0.242747i
\(687\) 6.59711 + 1.76769i 0.251695 + 0.0674416i
\(688\) 14.4843 + 25.0876i 0.552209 + 0.956455i
\(689\) −1.24157 + 1.24157i −0.0473001 + 0.0473001i
\(690\) 0 0
\(691\) 15.4346 8.91116i 0.587159 0.338996i −0.176814 0.984244i \(-0.556579\pi\)
0.763973 + 0.645248i \(0.223246\pi\)
\(692\) −1.59636 1.59636i −0.0606847 0.0606847i
\(693\) −12.1904 12.1904i −0.463074 0.463074i
\(694\) −35.9174 62.2108i −1.36341 2.36149i
\(695\) 0 0
\(696\) 0.154214 + 0.0890356i 0.00584548 + 0.00337489i
\(697\) 3.19277 0.120935
\(698\) −35.0708 20.2482i −1.32745 0.766404i
\(699\) −14.7007 8.48746i −0.556032 0.321025i
\(700\) 0 0
\(701\) −6.42467 + 23.9772i −0.242656 + 0.905606i 0.731890 + 0.681422i \(0.238638\pi\)
−0.974547 + 0.224184i \(0.928028\pi\)
\(702\) −15.7205 + 15.7205i −0.593333 + 0.593333i
\(703\) −1.37814 3.47103i −0.0519776 0.130912i
\(704\) 16.9564i 0.639067i
\(705\) 0 0
\(706\) −30.8455 17.8087i −1.16089 0.670239i
\(707\) 3.59234 + 13.4068i 0.135104 + 0.504215i
\(708\) 5.68915 9.85389i 0.213811 0.370332i
\(709\) 27.9093 27.9093i 1.04815 1.04815i 0.0493742 0.998780i \(-0.484277\pi\)
0.998780 0.0493742i \(-0.0157227\pi\)
\(710\) 0 0
\(711\) −7.63643 7.63643i −0.286388 0.286388i
\(712\) −0.00241039 + 0.00899570i −9.03332e−5 + 0.000337128i
\(713\) −1.51905 + 1.51905i −0.0568888 + 0.0568888i
\(714\) 6.82568 0.255445
\(715\) 0 0
\(716\) −31.5181 + 8.44525i −1.17789 + 0.315614i
\(717\) 18.3144 0.683962
\(718\) −37.1040 + 21.4220i −1.38471 + 0.799461i
\(719\) −3.76115 + 2.17150i −0.140267 + 0.0809833i −0.568491 0.822689i \(-0.692473\pi\)
0.428224 + 0.903673i \(0.359139\pi\)
\(720\) 0 0
\(721\) −0.0992559 0.370428i −0.00369648 0.0137955i
\(722\) −32.1567 18.5657i −1.19675 0.690943i
\(723\) 9.33382 5.38889i 0.347129 0.200415i
\(724\) 25.1432 + 43.5493i 0.934440 + 1.61850i
\(725\) 0 0
\(726\) 6.30433 + 6.30433i 0.233976 + 0.233976i
\(727\) 5.83294 10.1029i 0.216332 0.374698i −0.737352 0.675509i \(-0.763924\pi\)
0.953684 + 0.300811i \(0.0972574\pi\)
\(728\) −0.115169 + 0.429817i −0.00426845 + 0.0159301i
\(729\) 3.32523i 0.123157i
\(730\) 0 0
\(731\) 9.35593 5.40165i 0.346041 0.199787i
\(732\) −19.4466 −0.718766
\(733\) 9.61910 2.57743i 0.355290 0.0951996i −0.0767595 0.997050i \(-0.524457\pi\)
0.432049 + 0.901850i \(0.357791\pi\)
\(734\) 42.7932 + 42.7932i 1.57953 + 1.57953i
\(735\) 0 0
\(736\) −1.33529 + 2.31279i −0.0492193 + 0.0852504i
\(737\) 0.784032 0.210081i 0.0288802 0.00773842i
\(738\) 5.25433 + 9.10077i 0.193415 + 0.335004i
\(739\) 24.0193 0.883563 0.441782 0.897123i \(-0.354347\pi\)
0.441782 + 0.897123i \(0.354347\pi\)
\(740\) 0 0
\(741\) 1.24644 0.0457892
\(742\) 1.95497 + 3.38611i 0.0717693 + 0.124308i
\(743\) −33.7511 + 9.04359i −1.23821 + 0.331777i −0.817771 0.575544i \(-0.804790\pi\)
−0.420438 + 0.907321i \(0.638124\pi\)
\(744\) 0.112114 0.194187i 0.00411029 0.00711922i
\(745\) 0 0
\(746\) 36.7638 + 36.7638i 1.34602 + 1.34602i
\(747\) 5.02218 1.34569i 0.183752 0.0492362i
\(748\) −6.48213 −0.237010
\(749\) −28.1577 + 16.2569i −1.02886 + 0.594013i
\(750\) 0 0
\(751\) 49.1968i 1.79522i 0.440793 + 0.897609i \(0.354697\pi\)
−0.440793 + 0.897609i \(0.645303\pi\)
\(752\) 8.75926 32.6900i 0.319417 1.19208i
\(753\) 5.61903 9.73245i 0.204769 0.354670i
\(754\) −20.4658 20.4658i −0.745321 0.745321i
\(755\) 0 0
\(756\) 12.3001 + 21.3045i 0.447352 + 0.774836i
\(757\) −1.93838 + 1.11912i −0.0704516 + 0.0406752i −0.534812 0.844971i \(-0.679618\pi\)
0.464360 + 0.885646i \(0.346284\pi\)
\(758\) 48.1430 + 27.7954i 1.74863 + 1.00957i
\(759\) 0.134212 + 0.500886i 0.00487158 + 0.0181810i
\(760\) 0 0
\(761\) −35.8171 + 20.6790i −1.29837 + 0.749614i −0.980122 0.198394i \(-0.936427\pi\)
−0.318247 + 0.948008i \(0.603094\pi\)
\(762\) 16.1953 9.35037i 0.586695 0.338728i
\(763\) 39.4506 1.42821
\(764\) −34.1144 + 9.14092i −1.23422 + 0.330707i
\(765\) 0 0
\(766\) 46.4164 1.67709
\(767\) 16.2910 16.2910i 0.588234 0.588234i
\(768\) 3.02152 11.2765i 0.109030 0.406904i
\(769\) −0.953352 0.953352i −0.0343788 0.0343788i 0.689708 0.724087i \(-0.257739\pi\)
−0.724087 + 0.689708i \(0.757739\pi\)
\(770\) 0 0
\(771\) 2.99885 2.99885i 0.108001 0.108001i
\(772\) −19.0258 + 32.9537i −0.684755 + 1.18603i
\(773\) −7.85273 29.3068i −0.282443 1.05409i −0.950688 0.310150i \(-0.899621\pi\)
0.668244 0.743942i \(-0.267046\pi\)
\(774\) 30.7941 + 17.7790i 1.10687 + 0.639052i
\(775\) 0 0
\(776\) 0.380360i 0.0136541i
\(777\) −11.0644 + 8.23369i −0.396934 + 0.295382i
\(778\) −34.8474 + 34.8474i −1.24934 + 1.24934i
\(779\) 0.336027 1.25407i 0.0120394 0.0449317i
\(780\) 0 0
\(781\) 17.9830 + 10.3825i 0.643481 + 0.371514i
\(782\) 0.873123 + 0.504098i 0.0312228 + 0.0180265i
\(783\) 19.9334 0.712360
\(784\) 10.9700 + 6.33352i 0.391785 + 0.226197i
\(785\) 0 0
\(786\) −8.10945 14.0460i −0.289255 0.501004i
\(787\) −29.1860 29.1860i −1.04037 1.04037i −0.999150 0.0412185i \(-0.986876\pi\)
−0.0412185 0.999150i \(-0.513124\pi\)
\(788\) 23.5629 + 23.5629i 0.839395 + 0.839395i
\(789\) 4.52545 2.61277i 0.161110 0.0930170i
\(790\) 0 0
\(791\) −13.6457 + 13.6457i −0.485186 + 0.485186i
\(792\) 0.132893 + 0.230178i 0.00472216 + 0.00817902i
\(793\) −38.0341 10.1912i −1.35063 0.361900i
\(794\) 3.12212 + 0.836570i 0.110800 + 0.0296888i
\(795\) 0 0
\(796\) −33.8899 + 9.08078i −1.20120 + 0.321860i
\(797\) 21.6932 + 37.5737i 0.768412 + 1.33093i 0.938424 + 0.345486i \(0.112286\pi\)
−0.170012 + 0.985442i \(0.554381\pi\)
\(798\) 0.718377 2.68102i 0.0254303 0.0949071i
\(799\) −12.1911 3.26660i −0.431290 0.115564i
\(800\) 0 0
\(801\) 0.122443 + 0.456963i 0.00432631 + 0.0161460i
\(802\) 13.9683 + 3.74280i 0.493239 + 0.132163i
\(803\) 25.3903 25.3903i 0.896004 0.896004i
\(804\) −0.525602 −0.0185366
\(805\) 0 0
\(806\) −25.7706 + 25.7706i −0.907729 + 0.907729i
\(807\) −2.78285 10.3857i −0.0979610 0.365595i
\(808\) 0.213985i 0.00752795i
\(809\) 31.3117 8.38994i 1.10086 0.294975i 0.337745 0.941238i \(-0.390336\pi\)
0.763115 + 0.646263i \(0.223669\pi\)
\(810\) 0 0
\(811\) −8.19451 + 14.1933i −0.287748 + 0.498394i −0.973272 0.229656i \(-0.926240\pi\)
0.685524 + 0.728050i \(0.259573\pi\)
\(812\) −27.7353 + 16.0130i −0.973318 + 0.561945i
\(813\) −15.2457 15.2457i −0.534690 0.534690i
\(814\) 21.1460 15.7359i 0.741165 0.551545i
\(815\) 0 0
\(816\) −4.20657 1.12715i −0.147259 0.0394581i
\(817\) −1.13701 4.24336i −0.0397788 0.148456i
\(818\) 7.94607 2.12914i 0.277828 0.0744438i
\(819\) 5.85034 + 21.8338i 0.204428 + 0.762934i
\(820\) 0 0
\(821\) 1.40290 2.42990i 0.0489617 0.0848042i −0.840506 0.541802i \(-0.817742\pi\)
0.889468 + 0.456998i \(0.151075\pi\)
\(822\) 29.8379i 1.04071i
\(823\) −2.87916 0.771469i −0.100361 0.0268917i 0.208289 0.978067i \(-0.433211\pi\)
−0.308650 + 0.951176i \(0.599877\pi\)
\(824\) 0.00591236i 0.000205967i
\(825\) 0 0
\(826\) −25.6518 44.4302i −0.892539 1.54592i
\(827\) 5.45795 + 3.15115i 0.189792 + 0.109576i 0.591885 0.806022i \(-0.298384\pi\)
−0.402093 + 0.915599i \(0.631717\pi\)
\(828\) 1.64891i 0.0573037i
\(829\) 6.63332 24.7559i 0.230385 0.859808i −0.749790 0.661675i \(-0.769846\pi\)
0.980175 0.198132i \(-0.0634876\pi\)
\(830\) 0 0
\(831\) −2.94856 + 11.0042i −0.102284 + 0.381730i
\(832\) −11.1162 + 19.2538i −0.385384 + 0.667505i
\(833\) 2.36196 4.09104i 0.0818372 0.141746i
\(834\) −2.03300 + 7.58725i −0.0703969 + 0.262725i
\(835\) 0 0
\(836\) −0.682220 + 2.54608i −0.0235951 + 0.0880579i
\(837\) 25.1001i 0.867586i
\(838\) 34.5945 + 19.9732i 1.19505 + 0.689961i
\(839\) 13.2861 + 23.0123i 0.458688 + 0.794472i 0.998892 0.0470627i \(-0.0149861\pi\)
−0.540203 + 0.841534i \(0.681653\pi\)
\(840\) 0 0
\(841\) 3.04970i 0.105162i
\(842\) −10.0556 2.69438i −0.346537 0.0928544i
\(843\) 8.47640i 0.291943i
\(844\) 3.45924 5.99158i 0.119072 0.206239i
\(845\) 0 0
\(846\) −10.7517 40.1258i −0.369650 1.37955i
\(847\) 19.2949 5.17004i 0.662979 0.177645i
\(848\) −0.645663 2.40965i −0.0221721 0.0827476i
\(849\) −1.60511 0.430089i −0.0550874 0.0147606i
\(850\) 0 0
\(851\) −2.02342 + 0.236089i −0.0693618 + 0.00809303i
\(852\) −9.50786 9.50786i −0.325734 0.325734i
\(853\) −5.51510 + 3.18415i −0.188833 + 0.109023i −0.591436 0.806352i \(-0.701439\pi\)
0.402603 + 0.915375i \(0.368106\pi\)
\(854\) −43.8413 + 75.9354i −1.50022 + 2.59845i
\(855\) 0 0
\(856\) 0.484186 0.129737i 0.0165491 0.00443432i
\(857\) 56.2325i 1.92086i 0.278515 + 0.960432i \(0.410158\pi\)
−0.278515 + 0.960432i \(0.589842\pi\)
\(858\) 2.27690 + 8.49750i 0.0777320 + 0.290100i
\(859\) 27.5622 27.5622i 0.940410 0.940410i −0.0579119 0.998322i \(-0.518444\pi\)
0.998322 + 0.0579119i \(0.0184443\pi\)
\(860\) 0 0
\(861\) −4.79463 −0.163400
\(862\) −25.7720 + 25.7720i −0.877799 + 0.877799i
\(863\) −34.7055 9.29932i −1.18139 0.316552i −0.385912 0.922535i \(-0.626113\pi\)
−0.795478 + 0.605983i \(0.792780\pi\)
\(864\) −8.07588 30.1396i −0.274747 1.02537i
\(865\) 0 0
\(866\) −12.9435 3.46820i −0.439839 0.117854i
\(867\) 2.71430 10.1299i 0.0921826 0.344030i
\(868\) 20.1635 + 34.9243i 0.684395 + 1.18541i
\(869\) −9.09609 + 2.43729i −0.308564 + 0.0826794i
\(870\) 0 0
\(871\) −1.02798 0.275448i −0.0348319 0.00933319i
\(872\) −0.587487 0.157417i −0.0198948 0.00533080i
\(873\) −9.66075 16.7329i −0.326967 0.566323i
\(874\) 0.289895 0.289895i 0.00980583 0.00980583i
\(875\) 0 0
\(876\) −20.1363 + 11.6257i −0.680344 + 0.392797i
\(877\) 14.8201 + 14.8201i 0.500441 + 0.500441i 0.911575 0.411134i \(-0.134867\pi\)
−0.411134 + 0.911575i \(0.634867\pi\)
\(878\) 48.5056 + 48.5056i 1.63698 + 1.63698i
\(879\) 8.26070 + 14.3080i 0.278627 + 0.482595i
\(880\) 0 0
\(881\) −21.8096 12.5918i −0.734783 0.424227i 0.0853866 0.996348i \(-0.472787\pi\)
−0.820169 + 0.572121i \(0.806121\pi\)
\(882\) 15.5483 0.523539
\(883\) 42.6439 + 24.6204i 1.43508 + 0.828544i 0.997502 0.0706369i \(-0.0225032\pi\)
0.437578 + 0.899181i \(0.355836\pi\)
\(884\) 7.36039 + 4.24953i 0.247557 + 0.142927i
\(885\) 0 0
\(886\) 2.06094 7.69155i 0.0692388 0.258403i
\(887\) −10.7898 + 10.7898i −0.362286 + 0.362286i −0.864654 0.502368i \(-0.832462\pi\)
0.502368 + 0.864654i \(0.332462\pi\)
\(888\) 0.197623 0.0784642i 0.00663178 0.00263309i
\(889\) 41.8989i 1.40524i
\(890\) 0 0
\(891\) 8.82661 + 5.09604i 0.295702 + 0.170724i
\(892\) 8.48290 + 31.6586i 0.284028 + 1.06001i
\(893\) −2.56614 + 4.44468i −0.0858725 + 0.148736i
\(894\) 13.8591 13.8591i 0.463518 0.463518i
\(895\) 0 0
\(896\) −0.883280 0.883280i −0.0295083 0.0295083i
\(897\) 0.175972 0.656737i 0.00587554 0.0219278i
\(898\) −38.7196 + 38.7196i −1.29209 + 1.29209i
\(899\) 32.6766 1.08983
\(900\) 0 0
\(901\) −0.898631 + 0.240787i −0.0299377 + 0.00802179i
\(902\) 9.16333 0.305105
\(903\) −14.0499 + 8.11173i −0.467552 + 0.269942i
\(904\) 0.257658 0.148759i 0.00856957 0.00494765i
\(905\) 0 0
\(906\) 0.516116 + 1.92617i 0.0171468 + 0.0639927i
\(907\) −8.21945 4.74550i −0.272923 0.157572i 0.357292 0.933993i \(-0.383700\pi\)
−0.630215 + 0.776421i \(0.717033\pi\)
\(908\) 32.3147 18.6569i 1.07240 0.619152i
\(909\) −5.43499 9.41367i −0.180267 0.312232i
\(910\) 0 0
\(911\) −10.6794 10.6794i −0.353825 0.353825i 0.507706 0.861531i \(-0.330494\pi\)
−0.861531 + 0.507706i \(0.830494\pi\)
\(912\) −0.885452 + 1.53365i −0.0293202 + 0.0507841i
\(913\) 1.17341 4.37923i 0.0388342 0.144931i
\(914\) 13.5228i 0.447296i
\(915\) 0 0
\(916\) 16.4002 9.46867i 0.541879 0.312854i
\(917\) −36.3384 −1.20000
\(918\) −11.3783 + 3.04881i −0.375540 + 0.100626i
\(919\) 2.76311 + 2.76311i 0.0911467 + 0.0911467i 0.751210 0.660063i \(-0.229471\pi\)
−0.660063 + 0.751210i \(0.729471\pi\)
\(920\) 0 0
\(921\) 10.3524 17.9309i 0.341123 0.590842i
\(922\) −80.0702 + 21.4548i −2.63697 + 0.706575i
\(923\) −13.6130 23.5784i −0.448077 0.776092i
\(924\) 9.73431 0.320235
\(925\) 0 0
\(926\) 38.7309 1.27278
\(927\) 0.150168 + 0.260098i 0.00493216 + 0.00854275i
\(928\) 39.2373 10.5136i 1.28803 0.345126i
\(929\) 19.5842 33.9209i 0.642538 1.11291i −0.342326 0.939581i \(-0.611215\pi\)
0.984864 0.173328i \(-0.0554520\pi\)
\(930\) 0 0
\(931\) −1.35831 1.35831i −0.0445168 0.0445168i
\(932\) −45.4633 + 12.1818i −1.48920 + 0.399030i
\(933\) −4.62752 −0.151498
\(934\) 34.0711 19.6710i 1.11484 0.643654i
\(935\) 0 0
\(936\) 0.348487i 0.0113906i
\(937\) −1.63216 + 6.09129i −0.0533202 + 0.198994i −0.987448 0.157945i \(-0.949513\pi\)
0.934128 + 0.356939i \(0.116180\pi\)
\(938\) −1.18494 + 2.05238i −0.0386898 + 0.0670126i
\(939\) −1.26170 1.26170i −0.0411741 0.0411741i
\(940\) 0 0
\(941\) −22.4635 38.9080i −0.732290 1.26836i −0.955902 0.293686i \(-0.905118\pi\)
0.223612 0.974678i \(-0.428215\pi\)
\(942\) 8.93180 5.15677i 0.291014 0.168017i
\(943\) −0.613316 0.354098i −0.0199723 0.0115310i
\(944\) 8.47193 + 31.6177i 0.275738 + 1.02907i
\(945\) 0 0
\(946\) 26.8517 15.5029i 0.873026 0.504042i
\(947\) −29.2790 + 16.9042i −0.951439 + 0.549313i −0.893528 0.449008i \(-0.851777\pi\)
−0.0579110 + 0.998322i \(0.518444\pi\)
\(948\) 6.09787 0.198050
\(949\) −45.4757 + 12.1852i −1.47620 + 0.395548i
\(950\) 0 0
\(951\) 3.18300 0.103216
\(952\) −0.166715 + 0.166715i −0.00540328 + 0.00540328i
\(953\) −8.06792 + 30.1099i −0.261345 + 0.975354i 0.703104 + 0.711087i \(0.251797\pi\)
−0.964449 + 0.264267i \(0.914870\pi\)
\(954\) −2.16522 2.16522i −0.0701017 0.0701017i
\(955\) 0 0
\(956\) 35.9075 35.9075i 1.16133 1.16133i
\(957\) 3.94381 6.83087i 0.127485 0.220811i
\(958\) −19.5791 73.0700i −0.632570 2.36079i
\(959\) 57.8951 + 33.4258i 1.86953 + 1.07937i
\(960\) 0 0
\(961\) 10.1464i 0.327302i
\(962\) −34.3271 + 4.00524i −1.10675 + 0.129134i
\(963\) 18.0052 18.0052i 0.580211 0.580211i
\(964\) 7.73454 28.8657i 0.249113 0.929701i
\(965\) 0 0
\(966\) −1.31118 0.757011i −0.0421866 0.0243564i
\(967\) −6.50246 3.75420i −0.209105 0.120727i 0.391790 0.920054i \(-0.371856\pi\)
−0.600895 + 0.799328i \(0.705189\pi\)
\(968\) −0.307963 −0.00989831
\(969\) 0.571944 + 0.330212i 0.0183735 + 0.0106079i
\(970\) 0 0
\(971\) 10.7517 + 18.6225i 0.345038 + 0.597623i 0.985361 0.170483i \(-0.0545328\pi\)
−0.640323 + 0.768106i \(0.721199\pi\)
\(972\) −21.0639 21.0639i −0.675626 0.675626i
\(973\) 12.4443 + 12.4443i 0.398945 + 0.398945i
\(974\) 50.2763 29.0271i 1.61096 0.930087i
\(975\) 0 0
\(976\) 39.5582 39.5582i 1.26623 1.26623i
\(977\) 22.6200 + 39.1789i 0.723677 + 1.25344i 0.959516 + 0.281653i \(0.0908826\pi\)
−0.235840 + 0.971792i \(0.575784\pi\)
\(978\) −6.98493 1.87161i −0.223354 0.0598474i
\(979\) 0.398462 + 0.106768i 0.0127349 + 0.00341230i
\(980\) 0 0
\(981\) −29.8431 + 7.99643i −0.952817 + 0.255306i
\(982\) 32.8734 + 56.9384i 1.04903 + 1.81698i
\(983\) 12.0061 44.8074i 0.382936 1.42913i −0.458460 0.888715i \(-0.651599\pi\)
0.841396 0.540420i \(-0.181735\pi\)
\(984\) 0.0714002 + 0.0191316i 0.00227616 + 0.000609894i
\(985\) 0 0
\(986\) −3.96910 14.8129i −0.126402 0.471738i
\(987\) 18.3076 + 4.90550i 0.582736 + 0.156144i
\(988\) 2.44380 2.44380i 0.0777477 0.0777477i
\(989\) −2.39631 −0.0761981
\(990\) 0 0
\(991\) 4.97517 4.97517i 0.158042 0.158042i −0.623657 0.781698i \(-0.714354\pi\)
0.781698 + 0.623657i \(0.214354\pi\)
\(992\) −13.2387 49.4076i −0.420330 1.56869i
\(993\) 11.4952i 0.364788i
\(994\) −58.5615 + 15.6915i −1.85746 + 0.497704i
\(995\) 0 0
\(996\) −1.46788 + 2.54244i −0.0465116 + 0.0805604i
\(997\) −35.2584 + 20.3564i −1.11664 + 0.644694i −0.940542 0.339678i \(-0.889682\pi\)
−0.176101 + 0.984372i \(0.556349\pi\)
\(998\) −6.23434 6.23434i −0.197345 0.197345i
\(999\) 14.7665 18.6675i 0.467192 0.590615i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.t.c.82.4 96
5.2 odd 4 925.2.y.c.193.21 yes 96
5.3 odd 4 925.2.y.c.193.4 yes 96
5.4 even 2 inner 925.2.t.c.82.21 yes 96
37.14 odd 12 925.2.y.c.532.4 yes 96
185.14 odd 12 925.2.y.c.532.21 yes 96
185.88 even 12 inner 925.2.t.c.643.4 yes 96
185.162 even 12 inner 925.2.t.c.643.21 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
925.2.t.c.82.4 96 1.1 even 1 trivial
925.2.t.c.82.21 yes 96 5.4 even 2 inner
925.2.t.c.643.4 yes 96 185.88 even 12 inner
925.2.t.c.643.21 yes 96 185.162 even 12 inner
925.2.y.c.193.4 yes 96 5.3 odd 4
925.2.y.c.193.21 yes 96 5.2 odd 4
925.2.y.c.532.4 yes 96 37.14 odd 12
925.2.y.c.532.21 yes 96 185.14 odd 12