Newspace parameters
Level: | \( N \) | \(=\) | \( 925 = 5^{2} \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 925.t (of order \(12\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(7.38616218697\) |
Analytic rank: | \(0\) |
Dimension: | \(96\) |
Relative dimension: | \(24\) over \(\Q(\zeta_{12})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
82.1 | −1.26558 | − | 2.19204i | −2.03116 | + | 0.544247i | −2.20337 | + | 3.81634i | 0 | 3.76360 | + | 3.76360i | −3.58267 | + | 0.959973i | 6.09181 | 1.23132 | − | 0.710902i | 0 | ||||||
82.2 | −1.25039 | − | 2.16574i | −0.129293 | + | 0.0346441i | −2.12696 | + | 3.68400i | 0 | 0.236698 | + | 0.236698i | 0.0116185 | − | 0.00311317i | 5.63657 | −2.58256 | + | 1.49104i | 0 | ||||||
82.3 | −1.09158 | − | 1.89068i | 2.60860 | − | 0.698972i | −1.38311 | + | 2.39562i | 0 | −4.16904 | − | 4.16904i | −4.16388 | + | 1.11571i | 1.67281 | 3.71815 | − | 2.14668i | 0 | ||||||
82.4 | −0.996919 | − | 1.72671i | −0.688157 | + | 0.184391i | −0.987696 | + | 1.71074i | 0 | 1.00443 | + | 1.00443i | 3.07412 | − | 0.823709i | −0.0490658 | −2.15852 | + | 1.24622i | 0 | ||||||
82.5 | −0.857546 | − | 1.48531i | −2.60553 | + | 0.698150i | −0.470771 | + | 0.815400i | 0 | 3.27133 | + | 3.27133i | 2.22512 | − | 0.596218i | −1.81535 | 3.70330 | − | 2.13810i | 0 | ||||||
82.6 | −0.841034 | − | 1.45671i | 1.29860 | − | 0.347958i | −0.414678 | + | 0.718243i | 0 | −1.59904 | − | 1.59904i | −2.06442 | + | 0.553160i | −1.96910 | −1.03280 | + | 0.596286i | 0 | ||||||
82.7 | −0.712489 | − | 1.23407i | 1.96615 | − | 0.526828i | −0.0152826 | + | 0.0264702i | 0 | −2.05100 | − | 2.05100i | 3.97336 | − | 1.06466i | −2.80640 | 0.990112 | − | 0.571641i | 0 | ||||||
82.8 | −0.606650 | − | 1.05075i | −1.53719 | + | 0.411889i | 0.263951 | − | 0.457177i | 0 | 1.36533 | + | 1.36533i | −4.47739 | + | 1.19971i | −3.06710 | −0.404773 | + | 0.233696i | 0 | ||||||
82.9 | −0.547441 | − | 0.948196i | 3.12797 | − | 0.838136i | 0.400617 | − | 0.693888i | 0 | −2.50709 | − | 2.50709i | 2.21890 | − | 0.594554i | −3.06702 | 6.48363 | − | 3.74333i | 0 | ||||||
82.10 | −0.242909 | − | 0.420731i | −2.51234 | + | 0.673179i | 0.881990 | − | 1.52765i | 0 | 0.893496 | + | 0.893496i | 1.03380 | − | 0.277006i | −1.82861 | 3.26059 | − | 1.88250i | 0 | ||||||
82.11 | −0.197235 | − | 0.341622i | 0.759377 | − | 0.203474i | 0.922196 | − | 1.59729i | 0 | −0.219287 | − | 0.219287i | −4.19733 | + | 1.12467i | −1.51650 | −2.06282 | + | 1.19097i | 0 | ||||||
82.12 | −0.0207406 | − | 0.0359237i | −0.348443 | + | 0.0933650i | 0.999140 | − | 1.73056i | 0 | 0.0105809 | + | 0.0105809i | −1.08642 | + | 0.291106i | −0.165853 | −2.48538 | + | 1.43494i | 0 | ||||||
82.13 | 0.0207406 | + | 0.0359237i | 0.348443 | − | 0.0933650i | 0.999140 | − | 1.73056i | 0 | 0.0105809 | + | 0.0105809i | 1.08642 | − | 0.291106i | 0.165853 | −2.48538 | + | 1.43494i | 0 | ||||||
82.14 | 0.197235 | + | 0.341622i | −0.759377 | + | 0.203474i | 0.922196 | − | 1.59729i | 0 | −0.219287 | − | 0.219287i | 4.19733 | − | 1.12467i | 1.51650 | −2.06282 | + | 1.19097i | 0 | ||||||
82.15 | 0.242909 | + | 0.420731i | 2.51234 | − | 0.673179i | 0.881990 | − | 1.52765i | 0 | 0.893496 | + | 0.893496i | −1.03380 | + | 0.277006i | 1.82861 | 3.26059 | − | 1.88250i | 0 | ||||||
82.16 | 0.547441 | + | 0.948196i | −3.12797 | + | 0.838136i | 0.400617 | − | 0.693888i | 0 | −2.50709 | − | 2.50709i | −2.21890 | + | 0.594554i | 3.06702 | 6.48363 | − | 3.74333i | 0 | ||||||
82.17 | 0.606650 | + | 1.05075i | 1.53719 | − | 0.411889i | 0.263951 | − | 0.457177i | 0 | 1.36533 | + | 1.36533i | 4.47739 | − | 1.19971i | 3.06710 | −0.404773 | + | 0.233696i | 0 | ||||||
82.18 | 0.712489 | + | 1.23407i | −1.96615 | + | 0.526828i | −0.0152826 | + | 0.0264702i | 0 | −2.05100 | − | 2.05100i | −3.97336 | + | 1.06466i | 2.80640 | 0.990112 | − | 0.571641i | 0 | ||||||
82.19 | 0.841034 | + | 1.45671i | −1.29860 | + | 0.347958i | −0.414678 | + | 0.718243i | 0 | −1.59904 | − | 1.59904i | 2.06442 | − | 0.553160i | 1.96910 | −1.03280 | + | 0.596286i | 0 | ||||||
82.20 | 0.857546 | + | 1.48531i | 2.60553 | − | 0.698150i | −0.470771 | + | 0.815400i | 0 | 3.27133 | + | 3.27133i | −2.22512 | + | 0.596218i | 1.81535 | 3.70330 | − | 2.13810i | 0 | ||||||
See all 96 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
185.p | even | 12 | 1 | inner |
185.u | even | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 925.2.t.c | ✓ | 96 |
5.b | even | 2 | 1 | inner | 925.2.t.c | ✓ | 96 |
5.c | odd | 4 | 2 | 925.2.y.c | yes | 96 | |
37.g | odd | 12 | 1 | 925.2.y.c | yes | 96 | |
185.p | even | 12 | 1 | inner | 925.2.t.c | ✓ | 96 |
185.q | odd | 12 | 1 | 925.2.y.c | yes | 96 | |
185.u | even | 12 | 1 | inner | 925.2.t.c | ✓ | 96 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
925.2.t.c | ✓ | 96 | 1.a | even | 1 | 1 | trivial |
925.2.t.c | ✓ | 96 | 5.b | even | 2 | 1 | inner |
925.2.t.c | ✓ | 96 | 185.p | even | 12 | 1 | inner |
925.2.t.c | ✓ | 96 | 185.u | even | 12 | 1 | inner |
925.2.y.c | yes | 96 | 5.c | odd | 4 | 2 | |
925.2.y.c | yes | 96 | 37.g | odd | 12 | 1 | |
925.2.y.c | yes | 96 | 185.q | odd | 12 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{96} + 68 T_{2}^{94} + 2469 T_{2}^{92} + 61956 T_{2}^{90} + 1192136 T_{2}^{88} + 18582652 T_{2}^{86} + \cdots + 14641 \)
acting on \(S_{2}^{\mathrm{new}}(925, [\chi])\).