Properties

Label 925.2.y.c.193.15
Level $925$
Weight $2$
Character 925.193
Analytic conductor $7.386$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(193,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.193"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.y (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(24\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 193.15
Character \(\chi\) \(=\) 925.193
Dual form 925.2.y.c.532.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.420731 - 0.242909i) q^{2} +(0.673179 + 2.51234i) q^{3} +(-0.881990 + 1.52765i) q^{4} +(0.893496 + 0.893496i) q^{6} +(0.277006 + 1.03380i) q^{7} +1.82861i q^{8} +(-3.26059 + 1.88250i) q^{9} +2.08952i q^{11} +(-4.43171 - 1.18747i) q^{12} +(3.17161 + 1.83113i) q^{13} +(0.367665 + 0.367665i) q^{14} +(-1.31980 - 2.28595i) q^{16} +(-0.928076 - 1.60748i) q^{17} +(-0.914554 + 1.58405i) q^{18} +(0.445873 + 1.66402i) q^{19} +(-2.41078 + 1.39187i) q^{21} +(0.507562 + 0.879123i) q^{22} -3.16775i q^{23} +(-4.59408 + 1.23098i) q^{24} +1.77919 q^{26} +(-1.40697 - 1.40697i) q^{27} +(-1.82361 - 0.488634i) q^{28} +(-2.26804 - 2.26804i) q^{29} +(-4.45483 + 4.45483i) q^{31} +(-4.27780 - 2.46979i) q^{32} +(-5.24957 + 1.40662i) q^{33} +(-0.780940 - 0.450876i) q^{34} -6.64140i q^{36} +(2.49171 - 5.54900i) q^{37} +(0.591798 + 0.591798i) q^{38} +(-2.46536 + 9.20083i) q^{39} +(8.68470 + 5.01411i) q^{41} +(-0.676194 + 1.17120i) q^{42} -5.37912i q^{43} +(-3.19205 - 1.84293i) q^{44} +(-0.769476 - 1.33277i) q^{46} +(-1.58980 + 1.58980i) q^{47} +(4.85462 - 4.85462i) q^{48} +(5.07016 - 2.92726i) q^{49} +(3.41376 - 3.41376i) q^{51} +(-5.59466 + 3.23008i) q^{52} +(1.81540 - 6.77518i) q^{53} +(-0.933722 - 0.250190i) q^{54} +(-1.89042 + 0.506536i) q^{56} +(-3.88043 + 2.24037i) q^{57} +(-1.50516 - 0.403306i) q^{58} +(-10.7855 - 2.88997i) q^{59} +(2.94690 + 10.9980i) q^{61} +(-0.792167 + 2.95641i) q^{62} +(-2.84934 - 2.84934i) q^{63} +2.87944 q^{64} +(-1.86697 + 1.86697i) q^{66} +(-10.2284 + 2.74070i) q^{67} +3.27422 q^{68} +(7.95847 - 2.13247i) q^{69} +(0.439137 - 0.760607i) q^{71} +(-3.44237 - 5.96235i) q^{72} +(4.02172 - 4.02172i) q^{73} +(-0.299561 - 2.93989i) q^{74} +(-2.93530 - 0.786511i) q^{76} +(-2.16014 + 0.578809i) q^{77} +(1.19771 + 4.46993i) q^{78} +(1.52669 + 5.69770i) q^{79} +(-3.05987 + 5.29985i) q^{81} +4.87189 q^{82} +(1.64807 - 6.15070i) q^{83} -4.91045i q^{84} +(-1.30664 - 2.26316i) q^{86} +(4.17128 - 7.22487i) q^{87} -3.82091 q^{88} +(-0.569968 + 2.12715i) q^{89} +(-1.01447 + 3.78605i) q^{91} +(4.83923 + 2.79393i) q^{92} +(-14.1909 - 8.19315i) q^{93} +(-0.282701 + 1.05505i) q^{94} +(3.32522 - 12.4099i) q^{96} -0.682762 q^{97} +(1.42212 - 2.46318i) q^{98} +(-3.93352 - 6.81306i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 40 q^{4} - 32 q^{14} - 4 q^{16} - 24 q^{19} + 36 q^{21} + 52 q^{24} + 16 q^{26} + 12 q^{29} + 4 q^{31} - 60 q^{34} + 100 q^{39} - 48 q^{41} + 48 q^{44} + 24 q^{46} - 120 q^{49} - 84 q^{51} + 104 q^{54}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.420731 0.242909i 0.297502 0.171763i −0.343818 0.939036i \(-0.611720\pi\)
0.641320 + 0.767274i \(0.278387\pi\)
\(3\) 0.673179 + 2.51234i 0.388660 + 1.45050i 0.832316 + 0.554301i \(0.187015\pi\)
−0.443656 + 0.896197i \(0.646319\pi\)
\(4\) −0.881990 + 1.52765i −0.440995 + 0.763826i
\(5\) 0 0
\(6\) 0.893496 + 0.893496i 0.364768 + 0.364768i
\(7\) 0.277006 + 1.03380i 0.104699 + 0.390740i 0.998311 0.0580995i \(-0.0185041\pi\)
−0.893612 + 0.448840i \(0.851837\pi\)
\(8\) 1.82861i 0.646511i
\(9\) −3.26059 + 1.88250i −1.08686 + 0.627501i
\(10\) 0 0
\(11\) 2.08952i 0.630013i 0.949090 + 0.315006i \(0.102007\pi\)
−0.949090 + 0.315006i \(0.897993\pi\)
\(12\) −4.43171 1.18747i −1.27933 0.342794i
\(13\) 3.17161 + 1.83113i 0.879646 + 0.507864i 0.870542 0.492094i \(-0.163769\pi\)
0.00910465 + 0.999959i \(0.497102\pi\)
\(14\) 0.367665 + 0.367665i 0.0982626 + 0.0982626i
\(15\) 0 0
\(16\) −1.31980 2.28595i −0.329949 0.571488i
\(17\) −0.928076 1.60748i −0.225092 0.389870i 0.731255 0.682104i \(-0.238935\pi\)
−0.956347 + 0.292234i \(0.905601\pi\)
\(18\) −0.914554 + 1.58405i −0.215563 + 0.373365i
\(19\) 0.445873 + 1.66402i 0.102290 + 0.381753i 0.998024 0.0628391i \(-0.0200155\pi\)
−0.895733 + 0.444592i \(0.853349\pi\)
\(20\) 0 0
\(21\) −2.41078 + 1.39187i −0.526076 + 0.303730i
\(22\) 0.507562 + 0.879123i 0.108213 + 0.187430i
\(23\) 3.16775i 0.660523i −0.943890 0.330261i \(-0.892863\pi\)
0.943890 0.330261i \(-0.107137\pi\)
\(24\) −4.59408 + 1.23098i −0.937764 + 0.251273i
\(25\) 0 0
\(26\) 1.77919 0.348928
\(27\) −1.40697 1.40697i −0.270772 0.270772i
\(28\) −1.82361 0.488634i −0.344629 0.0923431i
\(29\) −2.26804 2.26804i −0.421164 0.421164i 0.464440 0.885604i \(-0.346255\pi\)
−0.885604 + 0.464440i \(0.846255\pi\)
\(30\) 0 0
\(31\) −4.45483 + 4.45483i −0.800112 + 0.800112i −0.983113 0.183001i \(-0.941419\pi\)
0.183001 + 0.983113i \(0.441419\pi\)
\(32\) −4.27780 2.46979i −0.756216 0.436601i
\(33\) −5.24957 + 1.40662i −0.913832 + 0.244861i
\(34\) −0.780940 0.450876i −0.133930 0.0773246i
\(35\) 0 0
\(36\) 6.64140i 1.10690i
\(37\) 2.49171 5.54900i 0.409635 0.912249i
\(38\) 0.591798 + 0.591798i 0.0960023 + 0.0960023i
\(39\) −2.46536 + 9.20083i −0.394773 + 1.47331i
\(40\) 0 0
\(41\) 8.68470 + 5.01411i 1.35632 + 0.783073i 0.989126 0.147071i \(-0.0469845\pi\)
0.367196 + 0.930144i \(0.380318\pi\)
\(42\) −0.676194 + 1.17120i −0.104339 + 0.180720i
\(43\) 5.37912i 0.820309i −0.912016 0.410154i \(-0.865475\pi\)
0.912016 0.410154i \(-0.134525\pi\)
\(44\) −3.19205 1.84293i −0.481220 0.277832i
\(45\) 0 0
\(46\) −0.769476 1.33277i −0.113453 0.196506i
\(47\) −1.58980 + 1.58980i −0.231896 + 0.231896i −0.813484 0.581588i \(-0.802432\pi\)
0.581588 + 0.813484i \(0.302432\pi\)
\(48\) 4.85462 4.85462i 0.700705 0.700705i
\(49\) 5.07016 2.92726i 0.724309 0.418180i
\(50\) 0 0
\(51\) 3.41376 3.41376i 0.478022 0.478022i
\(52\) −5.59466 + 3.23008i −0.775840 + 0.447931i
\(53\) 1.81540 6.77518i 0.249365 0.930643i −0.721774 0.692129i \(-0.756673\pi\)
0.971139 0.238514i \(-0.0766603\pi\)
\(54\) −0.933722 0.250190i −0.127063 0.0340466i
\(55\) 0 0
\(56\) −1.89042 + 0.506536i −0.252618 + 0.0676888i
\(57\) −3.88043 + 2.24037i −0.513975 + 0.296744i
\(58\) −1.50516 0.403306i −0.197637 0.0529567i
\(59\) −10.7855 2.88997i −1.40416 0.376242i −0.524320 0.851521i \(-0.675681\pi\)
−0.879835 + 0.475279i \(0.842347\pi\)
\(60\) 0 0
\(61\) 2.94690 + 10.9980i 0.377311 + 1.40815i 0.849938 + 0.526882i \(0.176639\pi\)
−0.472627 + 0.881263i \(0.656694\pi\)
\(62\) −0.792167 + 2.95641i −0.100605 + 0.375464i
\(63\) −2.84934 2.84934i −0.358983 0.358983i
\(64\) 2.87944 0.359930
\(65\) 0 0
\(66\) −1.86697 + 1.86697i −0.229809 + 0.229809i
\(67\) −10.2284 + 2.74070i −1.24960 + 0.334830i −0.822183 0.569223i \(-0.807244\pi\)
−0.427420 + 0.904053i \(0.640577\pi\)
\(68\) 3.27422 0.397057
\(69\) 7.95847 2.13247i 0.958087 0.256719i
\(70\) 0 0
\(71\) 0.439137 0.760607i 0.0521159 0.0902674i −0.838791 0.544454i \(-0.816737\pi\)
0.890906 + 0.454187i \(0.150070\pi\)
\(72\) −3.44237 5.96235i −0.405687 0.702670i
\(73\) 4.02172 4.02172i 0.470707 0.470707i −0.431437 0.902143i \(-0.641993\pi\)
0.902143 + 0.431437i \(0.141993\pi\)
\(74\) −0.299561 2.93989i −0.0348233 0.341756i
\(75\) 0 0
\(76\) −2.93530 0.786511i −0.336702 0.0902190i
\(77\) −2.16014 + 0.578809i −0.246171 + 0.0659614i
\(78\) 1.19771 + 4.46993i 0.135614 + 0.506120i
\(79\) 1.52669 + 5.69770i 0.171766 + 0.641041i 0.997080 + 0.0763662i \(0.0243318\pi\)
−0.825313 + 0.564675i \(0.809002\pi\)
\(80\) 0 0
\(81\) −3.05987 + 5.29985i −0.339985 + 0.588872i
\(82\) 4.87189 0.538011
\(83\) 1.64807 6.15070i 0.180900 0.675127i −0.814571 0.580063i \(-0.803028\pi\)
0.995471 0.0950638i \(-0.0303055\pi\)
\(84\) 4.91045i 0.535774i
\(85\) 0 0
\(86\) −1.30664 2.26316i −0.140898 0.244043i
\(87\) 4.17128 7.22487i 0.447208 0.774587i
\(88\) −3.82091 −0.407310
\(89\) −0.569968 + 2.12715i −0.0604164 + 0.225477i −0.989532 0.144311i \(-0.953903\pi\)
0.929116 + 0.369789i \(0.120570\pi\)
\(90\) 0 0
\(91\) −1.01447 + 3.78605i −0.106345 + 0.396886i
\(92\) 4.83923 + 2.79393i 0.504524 + 0.291287i
\(93\) −14.1909 8.19315i −1.47153 0.849590i
\(94\) −0.282701 + 1.05505i −0.0291583 + 0.108820i
\(95\) 0 0
\(96\) 3.32522 12.4099i 0.339379 1.26658i
\(97\) −0.682762 −0.0693240 −0.0346620 0.999399i \(-0.511035\pi\)
−0.0346620 + 0.999399i \(0.511035\pi\)
\(98\) 1.42212 2.46318i 0.143655 0.248818i
\(99\) −3.93352 6.81306i −0.395334 0.684738i
\(100\) 0 0
\(101\) 13.2653i 1.31994i 0.751291 + 0.659972i \(0.229432\pi\)
−0.751291 + 0.659972i \(0.770568\pi\)
\(102\) 0.607041 2.26551i 0.0601060 0.224319i
\(103\) −2.82512 −0.278368 −0.139184 0.990267i \(-0.544448\pi\)
−0.139184 + 0.990267i \(0.544448\pi\)
\(104\) −3.34842 + 5.79964i −0.328340 + 0.568701i
\(105\) 0 0
\(106\) −0.881956 3.29151i −0.0856632 0.319699i
\(107\) 2.56972 + 9.59031i 0.248424 + 0.927131i 0.971632 + 0.236500i \(0.0760003\pi\)
−0.723208 + 0.690631i \(0.757333\pi\)
\(108\) 3.39030 0.908428i 0.326232 0.0874135i
\(109\) 4.78161 + 1.28123i 0.457995 + 0.122719i 0.480438 0.877029i \(-0.340478\pi\)
−0.0224428 + 0.999748i \(0.507144\pi\)
\(110\) 0 0
\(111\) 15.6183 + 2.52456i 1.48243 + 0.239620i
\(112\) 1.99763 1.99763i 0.188758 0.188758i
\(113\) 4.03041 + 6.98088i 0.379149 + 0.656706i 0.990939 0.134315i \(-0.0428833\pi\)
−0.611789 + 0.791021i \(0.709550\pi\)
\(114\) −1.08841 + 1.88518i −0.101939 + 0.176563i
\(115\) 0 0
\(116\) 5.46516 1.46439i 0.507427 0.135965i
\(117\) −13.7884 −1.27474
\(118\) −5.23980 + 1.40400i −0.482363 + 0.129249i
\(119\) 1.40473 1.40473i 0.128771 0.128771i
\(120\) 0 0
\(121\) 6.63393 0.603084
\(122\) 3.91135 + 3.91135i 0.354117 + 0.354117i
\(123\) −6.75079 + 25.1943i −0.608698 + 2.27169i
\(124\) −2.87632 10.7346i −0.258301 0.963992i
\(125\) 0 0
\(126\) −1.89094 0.506675i −0.168458 0.0451382i
\(127\) 19.7751 + 5.29873i 1.75476 + 0.470187i 0.985632 0.168907i \(-0.0540239\pi\)
0.769129 + 0.639094i \(0.220691\pi\)
\(128\) 9.76707 5.63902i 0.863296 0.498424i
\(129\) 13.5142 3.62111i 1.18986 0.318821i
\(130\) 0 0
\(131\) −9.44396 2.53050i −0.825123 0.221091i −0.178538 0.983933i \(-0.557137\pi\)
−0.646585 + 0.762842i \(0.723803\pi\)
\(132\) 2.48125 9.26013i 0.215965 0.805991i
\(133\) −1.59676 + 0.921888i −0.138456 + 0.0799379i
\(134\) −3.63768 + 3.63768i −0.314248 + 0.314248i
\(135\) 0 0
\(136\) 2.93944 1.69709i 0.252055 0.145524i
\(137\) 11.1133 11.1133i 0.949474 0.949474i −0.0493096 0.998784i \(-0.515702\pi\)
0.998784 + 0.0493096i \(0.0157021\pi\)
\(138\) 2.83038 2.83038i 0.240938 0.240938i
\(139\) 4.61807 + 7.99874i 0.391700 + 0.678444i 0.992674 0.120824i \(-0.0385538\pi\)
−0.600974 + 0.799269i \(0.705220\pi\)
\(140\) 0 0
\(141\) −5.06433 2.92389i −0.426493 0.246236i
\(142\) 0.426681i 0.0358063i
\(143\) −3.82617 + 6.62713i −0.319961 + 0.554188i
\(144\) 8.60663 + 4.96904i 0.717219 + 0.414087i
\(145\) 0 0
\(146\) 0.715149 2.66897i 0.0591862 0.220886i
\(147\) 10.7674 + 10.7674i 0.888080 + 0.888080i
\(148\) 6.27927 + 8.70063i 0.516153 + 0.715188i
\(149\) 6.04883i 0.495539i −0.968819 0.247770i \(-0.920302\pi\)
0.968819 0.247770i \(-0.0796976\pi\)
\(150\) 0 0
\(151\) 5.70690 + 3.29488i 0.464421 + 0.268134i 0.713901 0.700246i \(-0.246926\pi\)
−0.249480 + 0.968380i \(0.580260\pi\)
\(152\) −3.04284 + 0.815328i −0.246807 + 0.0661318i
\(153\) 6.05216 + 3.49421i 0.489288 + 0.282491i
\(154\) −0.768241 + 0.768241i −0.0619066 + 0.0619066i
\(155\) 0 0
\(156\) −11.8813 11.8813i −0.951262 0.951262i
\(157\) 6.65438 + 1.78303i 0.531077 + 0.142302i 0.514386 0.857559i \(-0.328020\pi\)
0.0166914 + 0.999861i \(0.494687\pi\)
\(158\) 2.02635 + 2.02635i 0.161208 + 0.161208i
\(159\) 18.2436 1.44681
\(160\) 0 0
\(161\) 3.27483 0.877488i 0.258093 0.0691557i
\(162\) 2.97308i 0.233587i
\(163\) 12.4793 + 21.6148i 0.977455 + 1.69300i 0.671585 + 0.740928i \(0.265614\pi\)
0.305870 + 0.952073i \(0.401053\pi\)
\(164\) −15.3196 + 8.84480i −1.19626 + 0.690663i
\(165\) 0 0
\(166\) −0.800665 2.98812i −0.0621436 0.231923i
\(167\) −2.59212 + 4.48968i −0.200584 + 0.347422i −0.948717 0.316127i \(-0.897617\pi\)
0.748133 + 0.663549i \(0.230951\pi\)
\(168\) −2.54518 4.40838i −0.196365 0.340114i
\(169\) 0.206075 + 0.356933i 0.0158520 + 0.0274564i
\(170\) 0 0
\(171\) −4.58634 4.58634i −0.350726 0.350726i
\(172\) 8.21743 + 4.74434i 0.626573 + 0.361752i
\(173\) 20.3446 + 5.45131i 1.54677 + 0.414455i 0.928445 0.371469i \(-0.121146\pi\)
0.618323 + 0.785924i \(0.287812\pi\)
\(174\) 4.05297i 0.307255i
\(175\) 0 0
\(176\) 4.77653 2.75773i 0.360045 0.207872i
\(177\) 29.0423i 2.18296i
\(178\) 0.276901 + 1.03341i 0.0207546 + 0.0774571i
\(179\) −14.6472 14.6472i −1.09478 1.09478i −0.995010 0.0997713i \(-0.968189\pi\)
−0.0997713 0.995010i \(-0.531811\pi\)
\(180\) 0 0
\(181\) −10.9090 + 18.8950i −0.810862 + 1.40445i 0.101400 + 0.994846i \(0.467668\pi\)
−0.912262 + 0.409608i \(0.865666\pi\)
\(182\) 0.492847 + 1.83933i 0.0365323 + 0.136340i
\(183\) −25.6468 + 14.8072i −1.89587 + 1.09458i
\(184\) 5.79259 0.427035
\(185\) 0 0
\(186\) −7.96076 −0.583711
\(187\) 3.35884 1.93923i 0.245623 0.141810i
\(188\) −1.02647 3.83084i −0.0748631 0.279393i
\(189\) 1.06479 1.84427i 0.0774520 0.134151i
\(190\) 0 0
\(191\) −17.9295 17.9295i −1.29733 1.29733i −0.930149 0.367183i \(-0.880322\pi\)
−0.367183 0.930149i \(-0.619678\pi\)
\(192\) 1.93838 + 7.23413i 0.139891 + 0.522078i
\(193\) 2.76514i 0.199039i −0.995036 0.0995196i \(-0.968269\pi\)
0.995036 0.0995196i \(-0.0317306\pi\)
\(194\) −0.287259 + 0.165849i −0.0206240 + 0.0119073i
\(195\) 0 0
\(196\) 10.3273i 0.737662i
\(197\) 13.2102 + 3.53967i 0.941189 + 0.252191i 0.696619 0.717441i \(-0.254687\pi\)
0.244570 + 0.969632i \(0.421353\pi\)
\(198\) −3.30991 1.91098i −0.235225 0.135807i
\(199\) 2.86901 + 2.86901i 0.203378 + 0.203378i 0.801446 0.598067i \(-0.204065\pi\)
−0.598067 + 0.801446i \(0.704065\pi\)
\(200\) 0 0
\(201\) −13.7711 23.8523i −0.971341 1.68241i
\(202\) 3.22225 + 5.58111i 0.226717 + 0.392685i
\(203\) 1.71644 2.97296i 0.120470 0.208661i
\(204\) 2.20413 + 8.22594i 0.154320 + 0.575931i
\(205\) 0 0
\(206\) −1.18862 + 0.686248i −0.0828148 + 0.0478132i
\(207\) 5.96331 + 10.3288i 0.414479 + 0.717898i
\(208\) 9.66687i 0.670277i
\(209\) −3.47700 + 0.931658i −0.240509 + 0.0644442i
\(210\) 0 0
\(211\) 6.57006 0.452301 0.226151 0.974092i \(-0.427386\pi\)
0.226151 + 0.974092i \(0.427386\pi\)
\(212\) 8.74895 + 8.74895i 0.600880 + 0.600880i
\(213\) 2.20652 + 0.591235i 0.151188 + 0.0405107i
\(214\) 3.41073 + 3.41073i 0.233153 + 0.233153i
\(215\) 0 0
\(216\) 2.57280 2.57280i 0.175057 0.175057i
\(217\) −5.83943 3.37140i −0.396407 0.228865i
\(218\) 2.32299 0.622444i 0.157333 0.0421572i
\(219\) 12.8113 + 7.39658i 0.865704 + 0.499815i
\(220\) 0 0
\(221\) 6.79771i 0.457264i
\(222\) 7.18435 2.73167i 0.482182 0.183338i
\(223\) −18.9226 18.9226i −1.26715 1.26715i −0.947555 0.319593i \(-0.896454\pi\)
−0.319593 0.947555i \(-0.603546\pi\)
\(224\) 1.36829 5.10655i 0.0914230 0.341195i
\(225\) 0 0
\(226\) 3.39144 + 1.95805i 0.225595 + 0.130247i
\(227\) −5.82737 + 10.0933i −0.386776 + 0.669916i −0.992014 0.126129i \(-0.959745\pi\)
0.605238 + 0.796045i \(0.293078\pi\)
\(228\) 7.90393i 0.523450i
\(229\) 14.4306 + 8.33150i 0.953600 + 0.550561i 0.894197 0.447673i \(-0.147747\pi\)
0.0594025 + 0.998234i \(0.481080\pi\)
\(230\) 0 0
\(231\) −2.90833 5.03737i −0.191354 0.331435i
\(232\) 4.14736 4.14736i 0.272287 0.272287i
\(233\) −2.60164 + 2.60164i −0.170439 + 0.170439i −0.787172 0.616733i \(-0.788456\pi\)
0.616733 + 0.787172i \(0.288456\pi\)
\(234\) −5.80122 + 3.34934i −0.379238 + 0.218953i
\(235\) 0 0
\(236\) 13.9276 13.9276i 0.906610 0.906610i
\(237\) −13.2868 + 7.67114i −0.863071 + 0.498294i
\(238\) 0.249791 0.932233i 0.0161916 0.0604277i
\(239\) 7.01240 + 1.87897i 0.453594 + 0.121540i 0.478381 0.878153i \(-0.341224\pi\)
−0.0247864 + 0.999693i \(0.507891\pi\)
\(240\) 0 0
\(241\) −24.1435 + 6.46922i −1.55522 + 0.416719i −0.931145 0.364649i \(-0.881189\pi\)
−0.624071 + 0.781368i \(0.714522\pi\)
\(242\) 2.79110 1.61144i 0.179419 0.103587i
\(243\) −21.1407 5.66464i −1.35618 0.363387i
\(244\) −19.4002 5.19827i −1.24197 0.332785i
\(245\) 0 0
\(246\) 3.27965 + 12.2398i 0.209103 + 0.780384i
\(247\) −1.63290 + 6.09408i −0.103899 + 0.387757i
\(248\) −8.14615 8.14615i −0.517281 0.517281i
\(249\) 16.5621 1.04958
\(250\) 0 0
\(251\) 3.06212 3.06212i 0.193279 0.193279i −0.603832 0.797111i \(-0.706360\pi\)
0.797111 + 0.603832i \(0.206360\pi\)
\(252\) 6.86589 1.83971i 0.432511 0.115891i
\(253\) 6.61907 0.416137
\(254\) 9.60712 2.57422i 0.602804 0.161521i
\(255\) 0 0
\(256\) −0.139904 + 0.242321i −0.00874400 + 0.0151450i
\(257\) −15.4811 26.8141i −0.965687 1.67262i −0.707757 0.706456i \(-0.750293\pi\)
−0.257931 0.966163i \(-0.583041\pi\)
\(258\) 4.80623 4.80623i 0.299223 0.299223i
\(259\) 6.42678 + 1.03883i 0.399341 + 0.0645497i
\(260\) 0 0
\(261\) 11.6647 + 3.12556i 0.722029 + 0.193467i
\(262\) −4.58805 + 1.22936i −0.283451 + 0.0759503i
\(263\) 3.28492 + 12.2595i 0.202557 + 0.755953i 0.990180 + 0.139796i \(0.0446446\pi\)
−0.787623 + 0.616157i \(0.788689\pi\)
\(264\) −2.57215 9.59941i −0.158305 0.590803i
\(265\) 0 0
\(266\) −0.447870 + 0.775734i −0.0274607 + 0.0475633i
\(267\) −5.72780 −0.350536
\(268\) 4.83455 18.0428i 0.295317 1.10214i
\(269\) 16.7531i 1.02145i −0.859744 0.510726i \(-0.829377\pi\)
0.859744 0.510726i \(-0.170623\pi\)
\(270\) 0 0
\(271\) −9.55233 16.5451i −0.580263 1.00504i −0.995448 0.0953075i \(-0.969617\pi\)
0.415185 0.909737i \(-0.363717\pi\)
\(272\) −2.44974 + 4.24308i −0.148537 + 0.257274i
\(273\) −10.1948 −0.617015
\(274\) 1.97619 7.37523i 0.119386 0.445554i
\(275\) 0 0
\(276\) −3.76163 + 14.0386i −0.226423 + 0.845024i
\(277\) −14.5711 8.41266i −0.875495 0.505468i −0.00632489 0.999980i \(-0.502013\pi\)
−0.869171 + 0.494512i \(0.835347\pi\)
\(278\) 3.88593 + 2.24354i 0.233063 + 0.134559i
\(279\) 6.13916 22.9116i 0.367542 1.37168i
\(280\) 0 0
\(281\) 5.84495 21.8136i 0.348680 1.30129i −0.539573 0.841939i \(-0.681414\pi\)
0.888253 0.459354i \(-0.151919\pi\)
\(282\) −2.84096 −0.169177
\(283\) 2.18654 3.78721i 0.129977 0.225126i −0.793691 0.608322i \(-0.791843\pi\)
0.923667 + 0.383196i \(0.125176\pi\)
\(284\) 0.774628 + 1.34170i 0.0459657 + 0.0796150i
\(285\) 0 0
\(286\) 3.71765i 0.219829i
\(287\) −2.77788 + 10.3672i −0.163973 + 0.611956i
\(288\) 18.5976 1.09587
\(289\) 6.77735 11.7387i 0.398668 0.690513i
\(290\) 0 0
\(291\) −0.459621 1.71533i −0.0269435 0.100554i
\(292\) 2.59667 + 9.69091i 0.151959 + 0.567117i
\(293\) 27.6145 7.39929i 1.61326 0.432271i 0.664247 0.747513i \(-0.268752\pi\)
0.949011 + 0.315242i \(0.102086\pi\)
\(294\) 7.14567 + 1.91468i 0.416744 + 0.111666i
\(295\) 0 0
\(296\) 10.1470 + 4.55637i 0.589780 + 0.264834i
\(297\) 2.93989 2.93989i 0.170590 0.170590i
\(298\) −1.46931 2.54493i −0.0851151 0.147424i
\(299\) 5.80057 10.0469i 0.335456 0.581026i
\(300\) 0 0
\(301\) 5.56095 1.49005i 0.320528 0.0858851i
\(302\) 3.20142 0.184221
\(303\) −33.3268 + 8.92989i −1.91458 + 0.513009i
\(304\) 3.21541 3.21541i 0.184416 0.184416i
\(305\) 0 0
\(306\) 3.39510 0.194085
\(307\) −0.859218 0.859218i −0.0490382 0.0490382i 0.682162 0.731201i \(-0.261040\pi\)
−0.731201 + 0.682162i \(0.761040\pi\)
\(308\) 1.02101 3.81045i 0.0581773 0.217121i
\(309\) −1.90181 7.09766i −0.108190 0.403772i
\(310\) 0 0
\(311\) 27.8607 + 7.46525i 1.57983 + 0.423315i 0.938875 0.344259i \(-0.111870\pi\)
0.640959 + 0.767575i \(0.278537\pi\)
\(312\) −16.8247 4.50817i −0.952513 0.255225i
\(313\) 1.16260 0.671228i 0.0657141 0.0379400i −0.466783 0.884372i \(-0.654587\pi\)
0.532497 + 0.846432i \(0.321254\pi\)
\(314\) 3.23282 0.866230i 0.182438 0.0488842i
\(315\) 0 0
\(316\) −10.0506 2.69306i −0.565392 0.151496i
\(317\) −3.82182 + 14.2632i −0.214655 + 0.801102i 0.771633 + 0.636068i \(0.219440\pi\)
−0.986288 + 0.165034i \(0.947227\pi\)
\(318\) 7.67566 4.43154i 0.430429 0.248509i
\(319\) 4.73910 4.73910i 0.265339 0.265339i
\(320\) 0 0
\(321\) −22.3642 + 12.9120i −1.24825 + 0.720677i
\(322\) 1.16467 1.16467i 0.0649046 0.0649046i
\(323\) 2.26107 2.26107i 0.125809 0.125809i
\(324\) −5.39755 9.34883i −0.299864 0.519380i
\(325\) 0 0
\(326\) 10.5009 + 6.06267i 0.581589 + 0.335780i
\(327\) 12.8755i 0.712017i
\(328\) −9.16886 + 15.8809i −0.506265 + 0.876877i
\(329\) −2.08392 1.20315i −0.114890 0.0663319i
\(330\) 0 0
\(331\) −4.83434 + 18.0420i −0.265719 + 0.991678i 0.696089 + 0.717955i \(0.254922\pi\)
−0.961809 + 0.273723i \(0.911745\pi\)
\(332\) 7.94254 + 7.94254i 0.435904 + 0.435904i
\(333\) 2.32155 + 22.7837i 0.127220 + 1.24854i
\(334\) 2.51860i 0.137811i
\(335\) 0 0
\(336\) 6.36348 + 3.67396i 0.347156 + 0.200431i
\(337\) −5.89849 + 1.58050i −0.321311 + 0.0860951i −0.415870 0.909424i \(-0.636523\pi\)
0.0945584 + 0.995519i \(0.469856\pi\)
\(338\) 0.173405 + 0.100115i 0.00943197 + 0.00544555i
\(339\) −14.8251 + 14.8251i −0.805191 + 0.805191i
\(340\) 0 0
\(341\) −9.30844 9.30844i −0.504081 0.504081i
\(342\) −3.04367 0.815550i −0.164583 0.0440999i
\(343\) 9.72824 + 9.72824i 0.525276 + 0.525276i
\(344\) 9.83632 0.530339
\(345\) 0 0
\(346\) 9.88376 2.64834i 0.531354 0.142376i
\(347\) 36.4201i 1.95513i −0.210632 0.977565i \(-0.567552\pi\)
0.210632 0.977565i \(-0.432448\pi\)
\(348\) 7.35806 + 12.7445i 0.394433 + 0.683179i
\(349\) −5.28579 + 3.05175i −0.282942 + 0.163357i −0.634754 0.772714i \(-0.718899\pi\)
0.351813 + 0.936070i \(0.385565\pi\)
\(350\) 0 0
\(351\) −1.88602 7.03871i −0.100668 0.375699i
\(352\) 5.16066 8.93853i 0.275064 0.476425i
\(353\) −11.6679 20.2094i −0.621021 1.07564i −0.989296 0.145923i \(-0.953385\pi\)
0.368275 0.929717i \(-0.379948\pi\)
\(354\) −7.05465 12.2190i −0.374950 0.649433i
\(355\) 0 0
\(356\) −2.74684 2.74684i −0.145582 0.145582i
\(357\) 4.47478 + 2.58352i 0.236831 + 0.136734i
\(358\) −9.72045 2.60459i −0.513742 0.137657i
\(359\) 13.7535i 0.725881i 0.931812 + 0.362941i \(0.118227\pi\)
−0.931812 + 0.362941i \(0.881773\pi\)
\(360\) 0 0
\(361\) 13.8843 8.01612i 0.730754 0.421901i
\(362\) 10.5996i 0.557103i
\(363\) 4.46582 + 16.6667i 0.234395 + 0.874773i
\(364\) −4.88902 4.88902i −0.256254 0.256254i
\(365\) 0 0
\(366\) −7.19360 + 12.4597i −0.376016 + 0.651278i
\(367\) −1.51502 5.65412i −0.0790832 0.295143i 0.915045 0.403352i \(-0.132155\pi\)
−0.994128 + 0.108209i \(0.965488\pi\)
\(368\) −7.24134 + 4.18079i −0.377481 + 0.217939i
\(369\) −37.7563 −1.96552
\(370\) 0 0
\(371\) 7.50707 0.389748
\(372\) 25.0326 14.4526i 1.29788 0.749330i
\(373\) −7.08637 26.4467i −0.366918 1.36936i −0.864802 0.502114i \(-0.832556\pi\)
0.497883 0.867244i \(-0.334111\pi\)
\(374\) 0.942113 1.63179i 0.0487155 0.0843777i
\(375\) 0 0
\(376\) −2.90712 2.90712i −0.149923 0.149923i
\(377\) −3.04026 11.3464i −0.156581 0.584369i
\(378\) 1.03459i 0.0532134i
\(379\) −14.5045 + 8.37420i −0.745048 + 0.430154i −0.823902 0.566733i \(-0.808207\pi\)
0.0788540 + 0.996886i \(0.474874\pi\)
\(380\) 0 0
\(381\) 53.2488i 2.72802i
\(382\) −11.8987 3.18825i −0.608791 0.163125i
\(383\) 27.3880 + 15.8124i 1.39946 + 0.807978i 0.994336 0.106284i \(-0.0338952\pi\)
0.405123 + 0.914262i \(0.367229\pi\)
\(384\) 20.7421 + 20.7421i 1.05849 + 1.05849i
\(385\) 0 0
\(386\) −0.671677 1.16338i −0.0341875 0.0592144i
\(387\) 10.1262 + 17.5391i 0.514745 + 0.891564i
\(388\) 0.602190 1.04302i 0.0305716 0.0529515i
\(389\) 9.26758 + 34.5871i 0.469885 + 1.75364i 0.640163 + 0.768239i \(0.278867\pi\)
−0.170278 + 0.985396i \(0.554467\pi\)
\(390\) 0 0
\(391\) −5.09209 + 2.93992i −0.257518 + 0.148678i
\(392\) 5.35282 + 9.27135i 0.270358 + 0.468274i
\(393\) 25.4299i 1.28277i
\(394\) 6.41776 1.71963i 0.323322 0.0866339i
\(395\) 0 0
\(396\) 13.8773 0.697361
\(397\) −15.6873 15.6873i −0.787325 0.787325i 0.193730 0.981055i \(-0.437941\pi\)
−0.981055 + 0.193730i \(0.937941\pi\)
\(398\) 1.90399 + 0.510172i 0.0954382 + 0.0255726i
\(399\) −3.39100 3.39100i −0.169762 0.169762i
\(400\) 0 0
\(401\) 14.8433 14.8433i 0.741241 0.741241i −0.231576 0.972817i \(-0.574388\pi\)
0.972817 + 0.231576i \(0.0743882\pi\)
\(402\) −11.5879 6.69027i −0.577951 0.333680i
\(403\) −22.2864 + 5.97162i −1.11016 + 0.297468i
\(404\) −20.2647 11.6998i −1.00821 0.582089i
\(405\) 0 0
\(406\) 1.66776i 0.0827693i
\(407\) 11.5947 + 5.20647i 0.574729 + 0.258075i
\(408\) 6.24243 + 6.24243i 0.309046 + 0.309046i
\(409\) −9.15489 + 34.1665i −0.452680 + 1.68943i 0.242139 + 0.970242i \(0.422151\pi\)
−0.694819 + 0.719185i \(0.744516\pi\)
\(410\) 0 0
\(411\) 35.4016 + 20.4391i 1.74623 + 1.00819i
\(412\) 2.49173 4.31581i 0.122759 0.212625i
\(413\) 11.9506i 0.588052i
\(414\) 5.01790 + 2.89708i 0.246616 + 0.142384i
\(415\) 0 0
\(416\) −9.04501 15.6664i −0.443468 0.768110i
\(417\) −16.9867 + 16.9867i −0.831844 + 0.831844i
\(418\) −1.23657 + 1.23657i −0.0604827 + 0.0604827i
\(419\) −12.8247 + 7.40437i −0.626530 + 0.361727i −0.779407 0.626518i \(-0.784479\pi\)
0.152877 + 0.988245i \(0.451146\pi\)
\(420\) 0 0
\(421\) −13.0213 + 13.0213i −0.634620 + 0.634620i −0.949223 0.314603i \(-0.898129\pi\)
0.314603 + 0.949223i \(0.398129\pi\)
\(422\) 2.76423 1.59593i 0.134560 0.0776885i
\(423\) 2.19088 8.17648i 0.106524 0.397554i
\(424\) 12.3892 + 3.31967i 0.601671 + 0.161217i
\(425\) 0 0
\(426\) 1.07197 0.287233i 0.0519369 0.0139165i
\(427\) −10.5534 + 6.09301i −0.510715 + 0.294861i
\(428\) −16.9171 4.53293i −0.817720 0.219107i
\(429\) −19.2253 5.15140i −0.928205 0.248712i
\(430\) 0 0
\(431\) −9.92884 37.0549i −0.478255 1.78487i −0.608681 0.793415i \(-0.708301\pi\)
0.130425 0.991458i \(-0.458366\pi\)
\(432\) −1.35936 + 5.07318i −0.0654020 + 0.244084i
\(433\) 10.7074 + 10.7074i 0.514566 + 0.514566i 0.915922 0.401356i \(-0.131461\pi\)
−0.401356 + 0.915922i \(0.631461\pi\)
\(434\) −3.27577 −0.157242
\(435\) 0 0
\(436\) −6.17461 + 6.17461i −0.295710 + 0.295710i
\(437\) 5.27121 1.41242i 0.252156 0.0675650i
\(438\) 7.18678 0.343398
\(439\) 5.94424 1.59276i 0.283703 0.0760181i −0.114161 0.993462i \(-0.536418\pi\)
0.397865 + 0.917444i \(0.369751\pi\)
\(440\) 0 0
\(441\) −11.0212 + 19.0892i −0.524817 + 0.909010i
\(442\) −1.65123 2.86001i −0.0785408 0.136037i
\(443\) 2.15090 2.15090i 0.102192 0.102192i −0.654162 0.756354i \(-0.726979\pi\)
0.756354 + 0.654162i \(0.226979\pi\)
\(444\) −17.6319 + 21.6327i −0.836771 + 1.02664i
\(445\) 0 0
\(446\) −12.5578 3.36484i −0.594627 0.159330i
\(447\) 15.1967 4.07194i 0.718779 0.192596i
\(448\) 0.797624 + 2.97677i 0.0376842 + 0.140639i
\(449\) −5.83410 21.7731i −0.275328 1.02754i −0.955621 0.294598i \(-0.904814\pi\)
0.680293 0.732940i \(-0.261852\pi\)
\(450\) 0 0
\(451\) −10.4771 + 18.1468i −0.493346 + 0.854500i
\(452\) −14.2191 −0.668812
\(453\) −4.43609 + 16.5557i −0.208426 + 0.777855i
\(454\) 5.66208i 0.265735i
\(455\) 0 0
\(456\) −4.09676 7.09579i −0.191848 0.332291i
\(457\) 2.92148 5.06014i 0.136661 0.236704i −0.789570 0.613661i \(-0.789696\pi\)
0.926231 + 0.376957i \(0.123030\pi\)
\(458\) 8.09519 0.378263
\(459\) −0.955895 + 3.56745i −0.0446173 + 0.166514i
\(460\) 0 0
\(461\) 2.21024 8.24872i 0.102941 0.384181i −0.895162 0.445740i \(-0.852941\pi\)
0.998103 + 0.0615588i \(0.0196072\pi\)
\(462\) −2.44724 1.41292i −0.113856 0.0657349i
\(463\) −4.45024 2.56935i −0.206820 0.119408i 0.393012 0.919533i \(-0.371433\pi\)
−0.599833 + 0.800125i \(0.704766\pi\)
\(464\) −2.19128 + 8.17797i −0.101728 + 0.379653i
\(465\) 0 0
\(466\) −0.462628 + 1.72655i −0.0214308 + 0.0799810i
\(467\) −10.8145 −0.500436 −0.250218 0.968189i \(-0.580502\pi\)
−0.250218 + 0.968189i \(0.580502\pi\)
\(468\) 12.1613 21.0639i 0.562155 0.973681i
\(469\) −5.66669 9.81499i −0.261663 0.453214i
\(470\) 0 0
\(471\) 17.9183i 0.825633i
\(472\) 5.28463 19.7225i 0.243245 0.907802i
\(473\) 11.2398 0.516805
\(474\) −3.72678 + 6.45497i −0.171177 + 0.296487i
\(475\) 0 0
\(476\) 0.906979 + 3.38489i 0.0415713 + 0.155146i
\(477\) 6.83501 + 25.5086i 0.312954 + 1.16796i
\(478\) 3.40675 0.912836i 0.155821 0.0417521i
\(479\) 3.94037 + 1.05582i 0.180040 + 0.0482416i 0.347713 0.937601i \(-0.386958\pi\)
−0.167673 + 0.985843i \(0.553625\pi\)
\(480\) 0 0
\(481\) 18.0637 13.0366i 0.823633 0.594418i
\(482\) −8.58646 + 8.58646i −0.391103 + 0.391103i
\(483\) 4.40909 + 7.63677i 0.200621 + 0.347485i
\(484\) −5.85106 + 10.1343i −0.265957 + 0.460651i
\(485\) 0 0
\(486\) −10.2705 + 2.75198i −0.465881 + 0.124833i
\(487\) −10.4321 −0.472725 −0.236363 0.971665i \(-0.575955\pi\)
−0.236363 + 0.971665i \(0.575955\pi\)
\(488\) −20.1110 + 5.38872i −0.910382 + 0.243936i
\(489\) −45.9028 + 45.9028i −2.07580 + 2.07580i
\(490\) 0 0
\(491\) −7.43200 −0.335401 −0.167701 0.985838i \(-0.553634\pi\)
−0.167701 + 0.985838i \(0.553634\pi\)
\(492\) −32.5340 32.5340i −1.46674 1.46674i
\(493\) −1.54090 + 5.75073i −0.0693987 + 0.259000i
\(494\) 0.793294 + 2.96061i 0.0356920 + 0.133204i
\(495\) 0 0
\(496\) 16.0630 + 4.30407i 0.721250 + 0.193258i
\(497\) 0.907960 + 0.243287i 0.0407276 + 0.0109129i
\(498\) 6.96818 4.02308i 0.312251 0.180278i
\(499\) −24.1425 + 6.46895i −1.08077 + 0.289590i −0.754909 0.655829i \(-0.772319\pi\)
−0.325856 + 0.945419i \(0.605652\pi\)
\(500\) 0 0
\(501\) −13.0246 3.48992i −0.581894 0.155918i
\(502\) 0.544511 2.03214i 0.0243027 0.0906990i
\(503\) 18.0415 10.4163i 0.804431 0.464438i −0.0405874 0.999176i \(-0.512923\pi\)
0.845018 + 0.534738i \(0.179590\pi\)
\(504\) 5.21033 5.21033i 0.232087 0.232087i
\(505\) 0 0
\(506\) 2.78485 1.60783i 0.123802 0.0714769i
\(507\) −0.758011 + 0.758011i −0.0336645 + 0.0336645i
\(508\) −25.5361 + 25.5361i −1.13298 + 1.13298i
\(509\) −8.54631 14.8026i −0.378808 0.656115i 0.612081 0.790795i \(-0.290333\pi\)
−0.990889 + 0.134680i \(0.956999\pi\)
\(510\) 0 0
\(511\) 5.27170 + 3.04362i 0.233206 + 0.134642i
\(512\) 22.6920i 1.00286i
\(513\) 1.71390 2.96856i 0.0756705 0.131065i
\(514\) −13.0268 7.52102i −0.574587 0.331738i
\(515\) 0 0
\(516\) −6.38757 + 23.8387i −0.281197 + 1.04944i
\(517\) −3.32191 3.32191i −0.146097 0.146097i
\(518\) 2.95629 1.12406i 0.129892 0.0493882i
\(519\) 54.7821i 2.40467i
\(520\) 0 0
\(521\) 29.6690 + 17.1294i 1.29982 + 0.750453i 0.980373 0.197150i \(-0.0631686\pi\)
0.319450 + 0.947603i \(0.396502\pi\)
\(522\) 5.66694 1.51845i 0.248035 0.0664608i
\(523\) 11.7635 + 6.79166i 0.514382 + 0.296979i 0.734633 0.678465i \(-0.237354\pi\)
−0.220251 + 0.975443i \(0.570688\pi\)
\(524\) 12.1952 12.1952i 0.532750 0.532750i
\(525\) 0 0
\(526\) 4.36001 + 4.36001i 0.190105 + 0.190105i
\(527\) 11.2955 + 3.02661i 0.492038 + 0.131841i
\(528\) 10.1438 + 10.1438i 0.441453 + 0.441453i
\(529\) 12.9653 0.563710
\(530\) 0 0
\(531\) 40.6076 10.8808i 1.76222 0.472185i
\(532\) 3.25239i 0.141009i
\(533\) 18.3630 + 31.8056i 0.795389 + 1.37765i
\(534\) −2.40986 + 1.39134i −0.104285 + 0.0602090i
\(535\) 0 0
\(536\) −5.01168 18.7038i −0.216471 0.807882i
\(537\) 26.9385 46.6588i 1.16248 2.01348i
\(538\) −4.06947 7.04853i −0.175447 0.303883i
\(539\) 6.11656 + 10.5942i 0.263459 + 0.456324i
\(540\) 0 0
\(541\) −14.8341 14.8341i −0.637767 0.637767i 0.312237 0.950004i \(-0.398922\pi\)
−0.950004 + 0.312237i \(0.898922\pi\)
\(542\) −8.03792 4.64069i −0.345258 0.199335i
\(543\) −54.8143 14.6874i −2.35231 0.630299i
\(544\) 9.16861i 0.393101i
\(545\) 0 0
\(546\) −4.28925 + 2.47640i −0.183563 + 0.105980i
\(547\) 23.4215i 1.00143i 0.865612 + 0.500715i \(0.166930\pi\)
−0.865612 + 0.500715i \(0.833070\pi\)
\(548\) 7.17544 + 26.7791i 0.306520 + 1.14395i
\(549\) −30.3123 30.3123i −1.29370 1.29370i
\(550\) 0 0
\(551\) 2.76280 4.78532i 0.117699 0.203861i
\(552\) 3.89945 + 14.5529i 0.165971 + 0.619414i
\(553\) −5.46739 + 3.15660i −0.232497 + 0.134232i
\(554\) −8.17404 −0.347282
\(555\) 0 0
\(556\) −16.2924 −0.690951
\(557\) 10.6258 6.13483i 0.450231 0.259941i −0.257697 0.966226i \(-0.582964\pi\)
0.707928 + 0.706285i \(0.249630\pi\)
\(558\) −2.98251 11.1309i −0.126260 0.471208i
\(559\) 9.84988 17.0605i 0.416605 0.721582i
\(560\) 0 0
\(561\) 7.13310 + 7.13310i 0.301160 + 0.301160i
\(562\) −2.83958 10.5975i −0.119780 0.447027i
\(563\) 2.53059i 0.106652i −0.998577 0.0533258i \(-0.983018\pi\)
0.998577 0.0533258i \(-0.0169822\pi\)
\(564\) 8.93337 5.15769i 0.376163 0.217178i
\(565\) 0 0
\(566\) 2.12453i 0.0893005i
\(567\) −6.32660 1.69521i −0.265692 0.0711920i
\(568\) 1.39085 + 0.803009i 0.0583589 + 0.0336935i
\(569\) −24.7731 24.7731i −1.03854 1.03854i −0.999227 0.0393138i \(-0.987483\pi\)
−0.0393138 0.999227i \(-0.512517\pi\)
\(570\) 0 0
\(571\) −20.6850 35.8275i −0.865642 1.49934i −0.866408 0.499336i \(-0.833577\pi\)
0.000766004 1.00000i \(-0.499756\pi\)
\(572\) −6.74930 11.6901i −0.282202 0.488789i
\(573\) 32.9752 57.1146i 1.37756 2.38600i
\(574\) 1.34954 + 5.03657i 0.0563289 + 0.210222i
\(575\) 0 0
\(576\) −9.38869 + 5.42056i −0.391195 + 0.225857i
\(577\) −16.4321 28.4613i −0.684078 1.18486i −0.973725 0.227725i \(-0.926871\pi\)
0.289647 0.957134i \(-0.406462\pi\)
\(578\) 6.58512i 0.273905i
\(579\) 6.94696 1.86143i 0.288706 0.0773585i
\(580\) 0 0
\(581\) 6.81513 0.282739
\(582\) −0.610046 0.610046i −0.0252872 0.0252872i
\(583\) 14.1568 + 3.79331i 0.586317 + 0.157103i
\(584\) 7.35416 + 7.35416i 0.304317 + 0.304317i
\(585\) 0 0
\(586\) 9.82093 9.82093i 0.405699 0.405699i
\(587\) 17.8170 + 10.2866i 0.735385 + 0.424574i 0.820389 0.571806i \(-0.193757\pi\)
−0.0850042 + 0.996381i \(0.527090\pi\)
\(588\) −25.9456 + 6.95209i −1.06998 + 0.286700i
\(589\) −9.39923 5.42665i −0.387288 0.223601i
\(590\) 0 0
\(591\) 35.5714i 1.46321i
\(592\) −15.9733 + 1.62760i −0.656498 + 0.0668941i
\(593\) −14.5325 14.5325i −0.596779 0.596779i 0.342675 0.939454i \(-0.388667\pi\)
−0.939454 + 0.342675i \(0.888667\pi\)
\(594\) 0.522776 1.95103i 0.0214498 0.0800516i
\(595\) 0 0
\(596\) 9.24050 + 5.33501i 0.378506 + 0.218530i
\(597\) −5.27656 + 9.13926i −0.215955 + 0.374045i
\(598\) 5.63604i 0.230475i
\(599\) 18.6453 + 10.7649i 0.761827 + 0.439841i 0.829951 0.557836i \(-0.188368\pi\)
−0.0681245 + 0.997677i \(0.521701\pi\)
\(600\) 0 0
\(601\) −6.57451 11.3874i −0.268180 0.464501i 0.700212 0.713935i \(-0.253089\pi\)
−0.968392 + 0.249434i \(0.919755\pi\)
\(602\) 1.97771 1.97771i 0.0806056 0.0806056i
\(603\) 28.1914 28.1914i 1.14804 1.14804i
\(604\) −10.0669 + 5.81211i −0.409615 + 0.236491i
\(605\) 0 0
\(606\) −11.8525 + 11.8525i −0.481474 + 0.481474i
\(607\) −1.41563 + 0.817317i −0.0574588 + 0.0331739i −0.528454 0.848962i \(-0.677228\pi\)
0.470995 + 0.882136i \(0.343895\pi\)
\(608\) 2.20243 8.21956i 0.0893201 0.333347i
\(609\) 8.62455 + 2.31094i 0.349484 + 0.0936441i
\(610\) 0 0
\(611\) −7.95335 + 2.13109i −0.321758 + 0.0862148i
\(612\) −10.6759 + 6.16373i −0.431547 + 0.249154i
\(613\) −32.2668 8.64586i −1.30324 0.349203i −0.460568 0.887625i \(-0.652354\pi\)
−0.842676 + 0.538422i \(0.819021\pi\)
\(614\) −0.570211 0.152788i −0.0230119 0.00616601i
\(615\) 0 0
\(616\) −1.05842 3.95006i −0.0426448 0.159152i
\(617\) −2.14484 + 8.00465i −0.0863480 + 0.322255i −0.995566 0.0940651i \(-0.970014\pi\)
0.909218 + 0.416320i \(0.136680\pi\)
\(618\) −2.52424 2.52424i −0.101540 0.101540i
\(619\) 35.3283 1.41997 0.709983 0.704219i \(-0.248703\pi\)
0.709983 + 0.704219i \(0.248703\pi\)
\(620\) 0 0
\(621\) −4.45694 + 4.45694i −0.178851 + 0.178851i
\(622\) 13.5352 3.62675i 0.542713 0.145419i
\(623\) −2.35693 −0.0944286
\(624\) 24.2864 6.50753i 0.972235 0.260510i
\(625\) 0 0
\(626\) 0.326095 0.564812i 0.0130334 0.0225744i
\(627\) −4.68128 8.10821i −0.186952 0.323811i
\(628\) −8.59295 + 8.59295i −0.342896 + 0.342896i
\(629\) −11.2324 + 1.14453i −0.447864 + 0.0456352i
\(630\) 0 0
\(631\) 16.9880 + 4.55192i 0.676281 + 0.181209i 0.580583 0.814201i \(-0.302825\pi\)
0.0956987 + 0.995410i \(0.469491\pi\)
\(632\) −10.4189 + 2.79173i −0.414440 + 0.111049i
\(633\) 4.42282 + 16.5062i 0.175791 + 0.656062i
\(634\) 1.85671 + 6.92933i 0.0737393 + 0.275199i
\(635\) 0 0
\(636\) −16.0907 + 27.8699i −0.638038 + 1.10511i
\(637\) 21.4408 0.849515
\(638\) 0.842715 3.14505i 0.0333634 0.124514i
\(639\) 3.30671i 0.130811i
\(640\) 0 0
\(641\) −1.89712 3.28591i −0.0749317 0.129785i 0.826125 0.563487i \(-0.190541\pi\)
−0.901057 + 0.433702i \(0.857207\pi\)
\(642\) −6.27288 + 10.8649i −0.247571 + 0.428805i
\(643\) 12.8924 0.508428 0.254214 0.967148i \(-0.418183\pi\)
0.254214 + 0.967148i \(0.418183\pi\)
\(644\) −1.54787 + 5.77674i −0.0609947 + 0.227635i
\(645\) 0 0
\(646\) 0.402067 1.50053i 0.0158191 0.0590377i
\(647\) −3.72562 2.15099i −0.146469 0.0845640i 0.424974 0.905205i \(-0.360283\pi\)
−0.571444 + 0.820641i \(0.693616\pi\)
\(648\) −9.69136 5.59531i −0.380712 0.219804i
\(649\) 6.03864 22.5365i 0.237037 0.884636i
\(650\) 0 0
\(651\) 4.53911 16.9402i 0.177902 0.663938i
\(652\) −44.0265 −1.72421
\(653\) 1.00320 1.73760i 0.0392584 0.0679976i −0.845729 0.533613i \(-0.820834\pi\)
0.884987 + 0.465616i \(0.154167\pi\)
\(654\) 3.12758 + 5.41712i 0.122298 + 0.211826i
\(655\) 0 0
\(656\) 26.4704i 1.03350i
\(657\) −5.54229 + 20.6841i −0.216225 + 0.806963i
\(658\) −1.16903 −0.0455733
\(659\) 20.0335 34.6990i 0.780394 1.35168i −0.151319 0.988485i \(-0.548352\pi\)
0.931713 0.363197i \(-0.118315\pi\)
\(660\) 0 0
\(661\) 8.62310 + 32.1818i 0.335400 + 1.25173i 0.903435 + 0.428725i \(0.141037\pi\)
−0.568036 + 0.823004i \(0.692296\pi\)
\(662\) 2.34861 + 8.76513i 0.0912813 + 0.340666i
\(663\) 17.0781 4.57608i 0.663260 0.177720i
\(664\) 11.2472 + 3.01369i 0.436477 + 0.116954i
\(665\) 0 0
\(666\) 6.51111 + 9.02187i 0.252300 + 0.349590i
\(667\) −7.18459 + 7.18459i −0.278188 + 0.278188i
\(668\) −4.57245 7.91971i −0.176913 0.306423i
\(669\) 34.8016 60.2781i 1.34551 2.33049i
\(670\) 0 0
\(671\) −22.9804 + 6.15758i −0.887149 + 0.237711i
\(672\) 13.7505 0.530436
\(673\) −39.3491 + 10.5436i −1.51680 + 0.406424i −0.918686 0.394989i \(-0.870748\pi\)
−0.598111 + 0.801414i \(0.704082\pi\)
\(674\) −2.09776 + 2.09776i −0.0808027 + 0.0808027i
\(675\) 0 0
\(676\) −0.727026 −0.0279626
\(677\) −11.1292 11.1292i −0.427732 0.427732i 0.460123 0.887855i \(-0.347805\pi\)
−0.887855 + 0.460123i \(0.847805\pi\)
\(678\) −2.63623 + 9.83855i −0.101244 + 0.377847i
\(679\) −0.189129 0.705841i −0.00725812 0.0270877i
\(680\) 0 0
\(681\) −29.2806 7.84572i −1.12204 0.300649i
\(682\) −6.17745 1.65524i −0.236547 0.0633826i
\(683\) 20.3675 11.7592i 0.779340 0.449952i −0.0568564 0.998382i \(-0.518108\pi\)
0.836196 + 0.548430i \(0.184774\pi\)
\(684\) 11.0514 2.96122i 0.422562 0.113225i
\(685\) 0 0
\(686\) 6.45605 + 1.72989i 0.246493 + 0.0660476i
\(687\) −11.2172 + 41.8631i −0.427962 + 1.59718i
\(688\) −12.2964 + 7.09934i −0.468797 + 0.270660i
\(689\) 18.1640 18.1640i 0.691993 0.691993i
\(690\) 0 0
\(691\) 34.9969 20.2055i 1.33135 0.768653i 0.345840 0.938294i \(-0.387594\pi\)
0.985506 + 0.169641i \(0.0542607\pi\)
\(692\) −26.2714 + 26.2714i −0.998689 + 0.998689i
\(693\) 5.95374 5.95374i 0.226164 0.226164i
\(694\) −8.84676 15.3230i −0.335818 0.581655i
\(695\) 0 0
\(696\) 13.2115 + 7.62764i 0.500779 + 0.289125i
\(697\) 18.6139i 0.705052i
\(698\) −1.48260 + 2.56793i −0.0561171 + 0.0971977i
\(699\) −8.28757 4.78483i −0.313465 0.180979i
\(700\) 0 0
\(701\) −1.40325 + 5.23699i −0.0529999 + 0.197798i −0.987349 0.158560i \(-0.949315\pi\)
0.934350 + 0.356358i \(0.115982\pi\)
\(702\) −2.50327 2.50327i −0.0944799 0.0944799i
\(703\) 10.3446 + 1.67211i 0.390155 + 0.0630649i
\(704\) 6.01664i 0.226761i
\(705\) 0 0
\(706\) −9.81811 5.66849i −0.369509 0.213336i
\(707\) −13.7137 + 3.67456i −0.515755 + 0.138196i
\(708\) 44.3666 + 25.6151i 1.66740 + 0.962673i
\(709\) −27.6470 + 27.6470i −1.03830 + 1.03830i −0.0390675 + 0.999237i \(0.512439\pi\)
−0.999237 + 0.0390675i \(0.987561\pi\)
\(710\) 0 0
\(711\) −15.7039 15.7039i −0.588941 0.588941i
\(712\) −3.88972 1.04225i −0.145774 0.0390599i
\(713\) 14.1118 + 14.1118i 0.528492 + 0.528492i
\(714\) 2.51024 0.0939433
\(715\) 0 0
\(716\) 35.2945 9.45712i 1.31902 0.353429i
\(717\) 18.8824i 0.705176i
\(718\) 3.34085 + 5.78652i 0.124679 + 0.215951i
\(719\) −17.5989 + 10.1607i −0.656328 + 0.378931i −0.790877 0.611976i \(-0.790375\pi\)
0.134548 + 0.990907i \(0.457042\pi\)
\(720\) 0 0
\(721\) −0.782577 2.92062i −0.0291447 0.108769i
\(722\) 3.89437 6.74525i 0.144934 0.251032i
\(723\) −32.5057 56.3016i −1.20890 2.09388i
\(724\) −19.2433 33.3304i −0.715172 1.23871i
\(725\) 0 0
\(726\) 5.92739 + 5.92739i 0.219986 + 0.219986i
\(727\) 29.5637 + 17.0686i 1.09646 + 0.633039i 0.935288 0.353888i \(-0.115140\pi\)
0.161168 + 0.986927i \(0.448474\pi\)
\(728\) −6.92321 1.85507i −0.256591 0.0687534i
\(729\) 38.5667i 1.42840i
\(730\) 0 0
\(731\) −8.64681 + 4.99224i −0.319814 + 0.184645i
\(732\) 52.2392i 1.93082i
\(733\) 5.30156 + 19.7857i 0.195818 + 0.730802i 0.992054 + 0.125815i \(0.0401547\pi\)
−0.796236 + 0.604986i \(0.793179\pi\)
\(734\) −2.01085 2.01085i −0.0742218 0.0742218i
\(735\) 0 0
\(736\) −7.82369 + 13.5510i −0.288385 + 0.499497i
\(737\) −5.72674 21.3725i −0.210947 0.787266i
\(738\) −15.8853 + 9.17136i −0.584744 + 0.337602i
\(739\) 36.2323 1.33283 0.666414 0.745582i \(-0.267828\pi\)
0.666414 + 0.745582i \(0.267828\pi\)
\(740\) 0 0
\(741\) −16.4096 −0.602822
\(742\) 3.15846 1.82354i 0.115951 0.0669441i
\(743\) −8.68941 32.4293i −0.318784 1.18972i −0.920415 0.390943i \(-0.872149\pi\)
0.601631 0.798774i \(-0.294518\pi\)
\(744\) 14.9821 25.9497i 0.549269 0.951362i
\(745\) 0 0
\(746\) −9.40559 9.40559i −0.344363 0.344363i
\(747\) 6.20502 + 23.1574i 0.227030 + 0.847286i
\(748\) 6.84153i 0.250151i
\(749\) −9.20265 + 5.31315i −0.336258 + 0.194138i
\(750\) 0 0
\(751\) 33.4106i 1.21917i 0.792721 + 0.609585i \(0.208664\pi\)
−0.792721 + 0.609585i \(0.791336\pi\)
\(752\) 5.73241 + 1.53599i 0.209039 + 0.0560119i
\(753\) 9.75443 + 5.63172i 0.355471 + 0.205231i
\(754\) −4.03527 4.03527i −0.146956 0.146956i
\(755\) 0 0
\(756\) 1.87827 + 3.25325i 0.0683119 + 0.118320i
\(757\) 7.24176 + 12.5431i 0.263206 + 0.455886i 0.967092 0.254427i \(-0.0818867\pi\)
−0.703886 + 0.710313i \(0.748553\pi\)
\(758\) −4.06834 + 7.04656i −0.147769 + 0.255943i
\(759\) 4.45582 + 16.6293i 0.161736 + 0.603607i
\(760\) 0 0
\(761\) 18.3530 10.5961i 0.665296 0.384109i −0.128996 0.991645i \(-0.541175\pi\)
0.794292 + 0.607536i \(0.207842\pi\)
\(762\) 12.9346 + 22.4034i 0.468572 + 0.811590i
\(763\) 5.29814i 0.191806i
\(764\) 43.2036 11.5764i 1.56305 0.418819i
\(765\) 0 0
\(766\) 15.3639 0.555122
\(767\) −28.9156 28.9156i −1.04408 1.04408i
\(768\) −0.702972 0.188361i −0.0253663 0.00679688i
\(769\) 27.0019 + 27.0019i 0.973712 + 0.973712i 0.999663 0.0259516i \(-0.00826157\pi\)
−0.0259516 + 0.999663i \(0.508262\pi\)
\(770\) 0 0
\(771\) 56.9446 56.9446i 2.05081 2.05081i
\(772\) 4.22417 + 2.43883i 0.152031 + 0.0877753i
\(773\) −8.85179 + 2.37183i −0.318377 + 0.0853088i −0.414468 0.910064i \(-0.636032\pi\)
0.0960916 + 0.995372i \(0.469366\pi\)
\(774\) 8.52083 + 4.91950i 0.306275 + 0.176828i
\(775\) 0 0
\(776\) 1.24851i 0.0448187i
\(777\) 1.71648 + 16.8456i 0.0615785 + 0.604331i
\(778\) 12.3007 + 12.3007i 0.441001 + 0.441001i
\(779\) −4.47131 + 16.6872i −0.160201 + 0.597880i
\(780\) 0 0
\(781\) 1.58930 + 0.917582i 0.0568696 + 0.0328337i
\(782\) −1.42827 + 2.47383i −0.0510747 + 0.0884639i
\(783\) 6.38213i 0.228079i
\(784\) −13.3832 7.72677i −0.477970 0.275956i
\(785\) 0 0
\(786\) −6.17715 10.6991i −0.220332 0.381626i
\(787\) 2.37899 2.37899i 0.0848017 0.0848017i −0.663434 0.748235i \(-0.730901\pi\)
0.748235 + 0.663434i \(0.230901\pi\)
\(788\) −17.0587 + 17.0587i −0.607690 + 0.607690i
\(789\) −28.5886 + 16.5057i −1.01778 + 0.587617i
\(790\) 0 0
\(791\) −6.10040 + 6.10040i −0.216905 + 0.216905i
\(792\) 12.4584 7.19287i 0.442691 0.255588i
\(793\) −10.7923 + 40.2774i −0.383246 + 1.43029i
\(794\) −10.4107 2.78955i −0.369463 0.0989974i
\(795\) 0 0
\(796\) −6.91328 + 1.85241i −0.245035 + 0.0656568i
\(797\) 47.5375 27.4458i 1.68386 0.972179i 0.724811 0.688947i \(-0.241927\pi\)
0.959052 0.283231i \(-0.0914065\pi\)
\(798\) −2.25040 0.602993i −0.0796633 0.0213457i
\(799\) 4.03101 + 1.08011i 0.142607 + 0.0382114i
\(800\) 0 0
\(801\) −2.14593 8.00873i −0.0758228 0.282975i
\(802\) 2.63947 9.85063i 0.0932028 0.347838i
\(803\) 8.40344 + 8.40344i 0.296551 + 0.296551i
\(804\) 48.5841 1.71343
\(805\) 0 0
\(806\) −7.92601 + 7.92601i −0.279182 + 0.279182i
\(807\) 42.0893 11.2778i 1.48161 0.396997i
\(808\) −24.2570 −0.853358
\(809\) −1.18348 + 0.317113i −0.0416090 + 0.0111491i −0.279563 0.960127i \(-0.590190\pi\)
0.237955 + 0.971276i \(0.423523\pi\)
\(810\) 0 0
\(811\) 16.2208 28.0952i 0.569588 0.986556i −0.427018 0.904243i \(-0.640436\pi\)
0.996607 0.0823128i \(-0.0262307\pi\)
\(812\) 3.02777 + 5.24425i 0.106254 + 0.184037i
\(813\) 35.1365 35.1365i 1.23229 1.23229i
\(814\) 6.14295 0.625938i 0.215310 0.0219391i
\(815\) 0 0
\(816\) −12.3091 3.29823i −0.430906 0.115461i
\(817\) 8.95097 2.39841i 0.313155 0.0839096i
\(818\) 4.44761 + 16.5987i 0.155507 + 0.580361i
\(819\) −3.81948 14.2545i −0.133464 0.498093i
\(820\) 0 0
\(821\) −15.4623 + 26.7814i −0.539637 + 0.934678i 0.459287 + 0.888288i \(0.348105\pi\)
−0.998923 + 0.0463901i \(0.985228\pi\)
\(822\) 19.8594 0.692676
\(823\) 5.46402 20.3920i 0.190464 0.710820i −0.802931 0.596072i \(-0.796727\pi\)
0.993395 0.114748i \(-0.0366061\pi\)
\(824\) 5.16605i 0.179968i
\(825\) 0 0
\(826\) −2.90292 5.02800i −0.101005 0.174946i
\(827\) 4.82781 8.36201i 0.167879 0.290776i −0.769795 0.638292i \(-0.779641\pi\)
0.937674 + 0.347516i \(0.112975\pi\)
\(828\) −21.0383 −0.731133
\(829\) 3.28514 12.2603i 0.114097 0.425818i −0.885120 0.465362i \(-0.845924\pi\)
0.999218 + 0.0395446i \(0.0125907\pi\)
\(830\) 0 0
\(831\) 11.3264 42.2709i 0.392910 1.46636i
\(832\) 9.13247 + 5.27263i 0.316611 + 0.182796i
\(833\) −9.41100 5.43344i −0.326072 0.188258i
\(834\) −3.02061 + 11.2731i −0.104595 + 0.390355i
\(835\) 0 0
\(836\) 1.64343 6.13335i 0.0568391 0.212127i
\(837\) 12.5356 0.433295
\(838\) −3.59718 + 6.23049i −0.124262 + 0.215229i
\(839\) −9.34812 16.1914i −0.322733 0.558990i 0.658318 0.752740i \(-0.271268\pi\)
−0.981051 + 0.193750i \(0.937935\pi\)
\(840\) 0 0
\(841\) 18.7120i 0.645242i
\(842\) −2.31547 + 8.64147i −0.0797965 + 0.297805i
\(843\) 58.7379 2.02304
\(844\) −5.79473 + 10.0368i −0.199463 + 0.345480i
\(845\) 0 0
\(846\) −1.06437 3.97228i −0.0365938 0.136570i
\(847\) 1.83764 + 6.85816i 0.0631420 + 0.235649i
\(848\) −17.8837 + 4.79192i −0.614129 + 0.164555i
\(849\) 10.9867 + 2.94387i 0.377062 + 0.101033i
\(850\) 0 0
\(851\) −17.5779 7.89313i −0.602561 0.270573i
\(852\) −2.84933 + 2.84933i −0.0976164 + 0.0976164i
\(853\) −4.08446 7.07448i −0.139849 0.242226i 0.787590 0.616199i \(-0.211328\pi\)
−0.927439 + 0.373974i \(0.877995\pi\)
\(854\) −2.96009 + 5.12703i −0.101292 + 0.175444i
\(855\) 0 0
\(856\) −17.5369 + 4.69901i −0.599400 + 0.160609i
\(857\) −1.03295 −0.0352847 −0.0176424 0.999844i \(-0.505616\pi\)
−0.0176424 + 0.999844i \(0.505616\pi\)
\(858\) −9.33999 + 2.50264i −0.318862 + 0.0854388i
\(859\) −20.1427 + 20.1427i −0.687259 + 0.687259i −0.961625 0.274367i \(-0.911532\pi\)
0.274367 + 0.961625i \(0.411532\pi\)
\(860\) 0 0
\(861\) −27.9159 −0.951371
\(862\) −13.1783 13.1783i −0.448856 0.448856i
\(863\) −6.82233 + 25.4613i −0.232235 + 0.866712i 0.747141 + 0.664665i \(0.231426\pi\)
−0.979376 + 0.202046i \(0.935241\pi\)
\(864\) 2.54382 + 9.49367i 0.0865425 + 0.322981i
\(865\) 0 0
\(866\) 7.10587 + 1.90401i 0.241467 + 0.0647010i
\(867\) 34.0540 + 9.12473i 1.15653 + 0.309892i
\(868\) 10.3006 5.94708i 0.349627 0.201857i
\(869\) −11.9054 + 3.19005i −0.403864 + 0.108215i
\(870\) 0 0
\(871\) −37.4592 10.0372i −1.26926 0.340096i
\(872\) −2.34287 + 8.74370i −0.0793395 + 0.296099i
\(873\) 2.22621 1.28530i 0.0753458 0.0435009i
\(874\) 1.87467 1.87467i 0.0634117 0.0634117i
\(875\) 0 0
\(876\) −22.5988 + 13.0474i −0.763543 + 0.440832i
\(877\) −34.9927 + 34.9927i −1.18162 + 1.18162i −0.202294 + 0.979325i \(0.564840\pi\)
−0.979325 + 0.202294i \(0.935160\pi\)
\(878\) 2.11403 2.11403i 0.0713451 0.0713451i
\(879\) 37.1790 + 64.3960i 1.25402 + 2.17202i
\(880\) 0 0
\(881\) 17.4478 + 10.0735i 0.587831 + 0.339384i 0.764239 0.644933i \(-0.223115\pi\)
−0.176408 + 0.984317i \(0.556448\pi\)
\(882\) 10.7086i 0.360576i
\(883\) 11.3483 19.6558i 0.381901 0.661471i −0.609433 0.792837i \(-0.708603\pi\)
0.991334 + 0.131366i \(0.0419363\pi\)
\(884\) 10.3845 + 5.99552i 0.349270 + 0.201651i
\(885\) 0 0
\(886\) 0.382476 1.42742i 0.0128495 0.0479552i
\(887\) −11.4898 11.4898i −0.385791 0.385791i 0.487392 0.873183i \(-0.337948\pi\)
−0.873183 + 0.487392i \(0.837948\pi\)
\(888\) −4.61643 + 28.5598i −0.154917 + 0.958405i
\(889\) 21.9114i 0.734883i
\(890\) 0 0
\(891\) −11.0741 6.39364i −0.370997 0.214195i
\(892\) 45.5966 12.2176i 1.52669 0.409074i
\(893\) −3.35430 1.93661i −0.112247 0.0648061i
\(894\) 5.40460 5.40460i 0.180757 0.180757i
\(895\) 0 0
\(896\) 8.53517 + 8.53517i 0.285140 + 0.285140i
\(897\) 29.1460 + 7.80964i 0.973156 + 0.260756i
\(898\) −7.74348 7.74348i −0.258403 0.258403i
\(899\) 20.2075 0.673957
\(900\) 0 0
\(901\) −12.5758 + 3.36967i −0.418960 + 0.112260i
\(902\) 10.1799i 0.338953i
\(903\) 7.48702 + 12.9679i 0.249153 + 0.431545i
\(904\) −12.7653 + 7.37005i −0.424568 + 0.245124i
\(905\) 0 0
\(906\) 2.15513 + 8.04306i 0.0715994 + 0.267213i
\(907\) 9.73301 16.8581i 0.323179 0.559763i −0.657963 0.753050i \(-0.728582\pi\)
0.981142 + 0.193287i \(0.0619150\pi\)
\(908\) −10.2794 17.8044i −0.341133 0.590859i
\(909\) −24.9719 43.2526i −0.828266 1.43460i
\(910\) 0 0
\(911\) −10.7957 10.7957i −0.357678 0.357678i 0.505279 0.862956i \(-0.331390\pi\)
−0.862956 + 0.505279i \(0.831390\pi\)
\(912\) 10.2427 + 5.91365i 0.339171 + 0.195820i
\(913\) 12.8520 + 3.44368i 0.425338 + 0.113969i
\(914\) 2.83861i 0.0938929i
\(915\) 0 0
\(916\) −25.4553 + 14.6966i −0.841066 + 0.485590i
\(917\) 10.4642i 0.345557i
\(918\) 0.464391 + 1.73313i 0.0153272 + 0.0572018i
\(919\) 0.633274 + 0.633274i 0.0208898 + 0.0208898i 0.717475 0.696585i \(-0.245298\pi\)
−0.696585 + 0.717475i \(0.745298\pi\)
\(920\) 0 0
\(921\) 1.58024 2.73705i 0.0520706 0.0901890i
\(922\) −1.07377 4.00738i −0.0353629 0.131976i
\(923\) 2.78554 1.60823i 0.0916872 0.0529356i
\(924\) 10.2605 0.337544
\(925\) 0 0
\(926\) −2.49647 −0.0820392
\(927\) 9.21158 5.31831i 0.302548 0.174676i
\(928\) 4.10064 + 15.3038i 0.134610 + 0.502372i
\(929\) −23.7899 + 41.2053i −0.780521 + 1.35190i 0.151118 + 0.988516i \(0.451713\pi\)
−0.931639 + 0.363386i \(0.881621\pi\)
\(930\) 0 0
\(931\) 7.13167 + 7.13167i 0.233731 + 0.233731i
\(932\) −1.67978 6.26903i −0.0550230 0.205349i
\(933\) 75.0209i 2.45607i
\(934\) −4.55000 + 2.62694i −0.148881 + 0.0859563i
\(935\) 0 0
\(936\) 25.2137i 0.824135i
\(937\) 45.9687 + 12.3173i 1.50173 + 0.402388i 0.913680 0.406435i \(-0.133228\pi\)
0.588052 + 0.808823i \(0.299895\pi\)
\(938\) −4.76830 2.75298i −0.155690 0.0898879i
\(939\) 2.46899 + 2.46899i 0.0805724 + 0.0805724i
\(940\) 0 0
\(941\) −16.4063 28.4165i −0.534829 0.926351i −0.999172 0.0406953i \(-0.987043\pi\)
0.464343 0.885656i \(-0.346291\pi\)
\(942\) 4.35253 + 7.53880i 0.141813 + 0.245627i
\(943\) 15.8835 27.5110i 0.517237 0.895881i
\(944\) 7.62834 + 28.4694i 0.248281 + 0.926599i
\(945\) 0 0
\(946\) 4.72891 2.73024i 0.153750 0.0887677i
\(947\) 2.20312 + 3.81592i 0.0715918 + 0.124001i 0.899599 0.436717i \(-0.143859\pi\)
−0.828007 + 0.560717i \(0.810525\pi\)
\(948\) 27.0635i 0.878981i
\(949\) 20.1196 5.39104i 0.653111 0.175000i
\(950\) 0 0
\(951\) −38.4068 −1.24543
\(952\) 2.56870 + 2.56870i 0.0832520 + 0.0832520i
\(953\) 18.1686 + 4.86825i 0.588538 + 0.157698i 0.540785 0.841161i \(-0.318127\pi\)
0.0477530 + 0.998859i \(0.484794\pi\)
\(954\) 9.07197 + 9.07197i 0.293716 + 0.293716i
\(955\) 0 0
\(956\) −9.05527 + 9.05527i −0.292868 + 0.292868i
\(957\) 15.0965 + 8.71595i 0.488000 + 0.281747i
\(958\) 1.91430 0.512936i 0.0618483 0.0165722i
\(959\) 14.5674 + 8.41050i 0.470406 + 0.271589i
\(960\) 0 0
\(961\) 8.69111i 0.280358i
\(962\) 4.43324 9.87273i 0.142933 0.318310i
\(963\) −26.4326 26.4326i −0.851779 0.851779i
\(964\) 11.4116 42.5886i 0.367542 1.37169i
\(965\) 0 0
\(966\) 3.71008 + 2.14202i 0.119370 + 0.0689182i
\(967\) −13.8632 + 24.0118i −0.445811 + 0.772167i −0.998108 0.0614801i \(-0.980418\pi\)
0.552297 + 0.833647i \(0.313751\pi\)
\(968\) 12.1309i 0.389901i
\(969\) 7.20267 + 4.15846i 0.231383 + 0.133589i
\(970\) 0 0
\(971\) −17.5325 30.3673i −0.562646 0.974532i −0.997264 0.0739171i \(-0.976450\pi\)
0.434618 0.900615i \(-0.356883\pi\)
\(972\) 27.2995 27.2995i 0.875632 0.875632i
\(973\) −6.98987 + 6.98987i −0.224085 + 0.224085i
\(974\) −4.38912 + 2.53406i −0.140637 + 0.0811965i
\(975\) 0 0
\(976\) 21.2515 21.2515i 0.680245 0.680245i
\(977\) 10.7827 6.22537i 0.344968 0.199167i −0.317499 0.948259i \(-0.602843\pi\)
0.662467 + 0.749091i \(0.269510\pi\)
\(978\) −8.16252 + 30.4630i −0.261009 + 0.974098i
\(979\) −4.44471 1.19096i −0.142053 0.0380631i
\(980\) 0 0
\(981\) −18.0028 + 4.82384i −0.574785 + 0.154013i
\(982\) −3.12687 + 1.80530i −0.0997825 + 0.0576094i
\(983\) −19.2867 5.16785i −0.615150 0.164829i −0.0622280 0.998062i \(-0.519821\pi\)
−0.552922 + 0.833233i \(0.686487\pi\)
\(984\) −46.0705 12.3446i −1.46867 0.393530i
\(985\) 0 0
\(986\) 0.748598 + 2.79381i 0.0238402 + 0.0889729i
\(987\) 1.61987 6.04544i 0.0515611 0.192429i
\(988\) −7.86942 7.86942i −0.250360 0.250360i
\(989\) −17.0397 −0.541832
\(990\) 0 0
\(991\) 0.0857771 0.0857771i 0.00272480 0.00272480i −0.705743 0.708468i \(-0.749387\pi\)
0.708468 + 0.705743i \(0.249387\pi\)
\(992\) 30.0594 8.05439i 0.954387 0.255727i
\(993\) −48.5820 −1.54170
\(994\) 0.441103 0.118193i 0.0139910 0.00374886i
\(995\) 0 0
\(996\) −14.6076 + 25.3011i −0.462859 + 0.801696i
\(997\) 14.4932 + 25.1030i 0.459006 + 0.795021i 0.998909 0.0467059i \(-0.0148724\pi\)
−0.539903 + 0.841727i \(0.681539\pi\)
\(998\) −8.58611 + 8.58611i −0.271789 + 0.271789i
\(999\) −11.3130 + 4.30151i −0.357929 + 0.136094i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.y.c.193.15 yes 96
5.2 odd 4 925.2.t.c.82.15 yes 96
5.3 odd 4 925.2.t.c.82.10 96
5.4 even 2 inner 925.2.y.c.193.10 yes 96
37.14 odd 12 925.2.t.c.643.15 yes 96
185.14 odd 12 925.2.t.c.643.10 yes 96
185.88 even 12 inner 925.2.y.c.532.10 yes 96
185.162 even 12 inner 925.2.y.c.532.15 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
925.2.t.c.82.10 96 5.3 odd 4
925.2.t.c.82.15 yes 96 5.2 odd 4
925.2.t.c.643.10 yes 96 185.14 odd 12
925.2.t.c.643.15 yes 96 37.14 odd 12
925.2.y.c.193.10 yes 96 5.4 even 2 inner
925.2.y.c.193.15 yes 96 1.1 even 1 trivial
925.2.y.c.532.10 yes 96 185.88 even 12 inner
925.2.y.c.532.15 yes 96 185.162 even 12 inner