Properties

Label 925.2.t.c.82.10
Level $925$
Weight $2$
Character 925.82
Analytic conductor $7.386$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(82,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.82"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([3, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.t (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(24\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 82.10
Character \(\chi\) \(=\) 925.82
Dual form 925.2.t.c.643.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.242909 - 0.420731i) q^{2} +(-2.51234 + 0.673179i) q^{3} +(0.881990 - 1.52765i) q^{4} +(0.893496 + 0.893496i) q^{6} +(1.03380 - 0.277006i) q^{7} -1.82861 q^{8} +(3.26059 - 1.88250i) q^{9} +2.08952i q^{11} +(-1.18747 + 4.43171i) q^{12} +(-1.83113 + 3.17161i) q^{13} +(-0.367665 - 0.367665i) q^{14} +(-1.31980 - 2.28595i) q^{16} +(-1.60748 + 0.928076i) q^{17} +(-1.58405 - 0.914554i) q^{18} +(-0.445873 - 1.66402i) q^{19} +(-2.41078 + 1.39187i) q^{21} +(0.879123 - 0.507562i) q^{22} +3.16775 q^{23} +(4.59408 - 1.23098i) q^{24} +1.77919 q^{26} +(-1.40697 + 1.40697i) q^{27} +(0.488634 - 1.82361i) q^{28} +(2.26804 + 2.26804i) q^{29} +(-4.45483 + 4.45483i) q^{31} +(-2.46979 + 4.27780i) q^{32} +(-1.40662 - 5.24957i) q^{33} +(0.780940 + 0.450876i) q^{34} -6.64140i q^{36} +(-5.54900 - 2.49171i) q^{37} +(-0.591798 + 0.591798i) q^{38} +(2.46536 - 9.20083i) q^{39} +(8.68470 + 5.01411i) q^{41} +(1.17120 + 0.676194i) q^{42} +5.37912 q^{43} +(3.19205 + 1.84293i) q^{44} +(-0.769476 - 1.33277i) q^{46} +(1.58980 + 1.58980i) q^{47} +(4.85462 + 4.85462i) q^{48} +(-5.07016 + 2.92726i) q^{49} +(3.41376 - 3.41376i) q^{51} +(3.23008 + 5.59466i) q^{52} +(6.77518 + 1.81540i) q^{53} +(0.933722 + 0.250190i) q^{54} +(-1.89042 + 0.506536i) q^{56} +(2.24037 + 3.88043i) q^{57} +(0.403306 - 1.50516i) q^{58} +(10.7855 + 2.88997i) q^{59} +(2.94690 + 10.9980i) q^{61} +(2.95641 + 0.792167i) q^{62} +(2.84934 - 2.84934i) q^{63} -2.87944 q^{64} +(-1.86697 + 1.86697i) q^{66} +(2.74070 + 10.2284i) q^{67} +3.27422i q^{68} +(-7.95847 + 2.13247i) q^{69} +(0.439137 - 0.760607i) q^{71} +(-5.96235 + 3.44237i) q^{72} +(4.02172 + 4.02172i) q^{73} +(0.299561 + 2.93989i) q^{74} +(-2.93530 - 0.786511i) q^{76} +(0.578809 + 2.16014i) q^{77} +(-4.46993 + 1.19771i) q^{78} +(-1.52669 - 5.69770i) q^{79} +(-3.05987 + 5.29985i) q^{81} -4.87189i q^{82} +(6.15070 + 1.64807i) q^{83} +4.91045i q^{84} +(-1.30664 - 2.26316i) q^{86} +(-7.22487 - 4.17128i) q^{87} -3.82091i q^{88} +(0.569968 - 2.12715i) q^{89} +(-1.01447 + 3.78605i) q^{91} +(2.79393 - 4.83923i) q^{92} +(8.19315 - 14.1909i) q^{93} +(0.282701 - 1.05505i) q^{94} +(3.32522 - 12.4099i) q^{96} +0.682762i q^{97} +(2.46318 + 1.42212i) q^{98} +(3.93352 + 6.81306i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q - 40 q^{4} + 32 q^{14} - 4 q^{16} + 24 q^{19} + 36 q^{21} - 52 q^{24} + 16 q^{26} - 12 q^{29} + 4 q^{31} + 60 q^{34} - 100 q^{39} - 48 q^{41} - 48 q^{44} + 24 q^{46} + 120 q^{49} - 84 q^{51} - 104 q^{54}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.242909 0.420731i −0.171763 0.297502i 0.767274 0.641320i \(-0.221613\pi\)
−0.939036 + 0.343818i \(0.888280\pi\)
\(3\) −2.51234 + 0.673179i −1.45050 + 0.388660i −0.896197 0.443656i \(-0.853681\pi\)
−0.554301 + 0.832316i \(0.687015\pi\)
\(4\) 0.881990 1.52765i 0.440995 0.763826i
\(5\) 0 0
\(6\) 0.893496 + 0.893496i 0.364768 + 0.364768i
\(7\) 1.03380 0.277006i 0.390740 0.104699i −0.0580995 0.998311i \(-0.518504\pi\)
0.448840 + 0.893612i \(0.351837\pi\)
\(8\) −1.82861 −0.646511
\(9\) 3.26059 1.88250i 1.08686 0.627501i
\(10\) 0 0
\(11\) 2.08952i 0.630013i 0.949090 + 0.315006i \(0.102007\pi\)
−0.949090 + 0.315006i \(0.897993\pi\)
\(12\) −1.18747 + 4.43171i −0.342794 + 1.27933i
\(13\) −1.83113 + 3.17161i −0.507864 + 0.879646i 0.492094 + 0.870542i \(0.336231\pi\)
−0.999959 + 0.00910465i \(0.997102\pi\)
\(14\) −0.367665 0.367665i −0.0982626 0.0982626i
\(15\) 0 0
\(16\) −1.31980 2.28595i −0.329949 0.571488i
\(17\) −1.60748 + 0.928076i −0.389870 + 0.225092i −0.682104 0.731255i \(-0.738935\pi\)
0.292234 + 0.956347i \(0.405601\pi\)
\(18\) −1.58405 0.914554i −0.373365 0.215563i
\(19\) −0.445873 1.66402i −0.102290 0.381753i 0.895733 0.444592i \(-0.146651\pi\)
−0.998024 + 0.0628391i \(0.979985\pi\)
\(20\) 0 0
\(21\) −2.41078 + 1.39187i −0.526076 + 0.303730i
\(22\) 0.879123 0.507562i 0.187430 0.108213i
\(23\) 3.16775 0.660523 0.330261 0.943890i \(-0.392863\pi\)
0.330261 + 0.943890i \(0.392863\pi\)
\(24\) 4.59408 1.23098i 0.937764 0.251273i
\(25\) 0 0
\(26\) 1.77919 0.348928
\(27\) −1.40697 + 1.40697i −0.270772 + 0.270772i
\(28\) 0.488634 1.82361i 0.0923431 0.344629i
\(29\) 2.26804 + 2.26804i 0.421164 + 0.421164i 0.885604 0.464440i \(-0.153745\pi\)
−0.464440 + 0.885604i \(0.653745\pi\)
\(30\) 0 0
\(31\) −4.45483 + 4.45483i −0.800112 + 0.800112i −0.983113 0.183001i \(-0.941419\pi\)
0.183001 + 0.983113i \(0.441419\pi\)
\(32\) −2.46979 + 4.27780i −0.436601 + 0.756216i
\(33\) −1.40662 5.24957i −0.244861 0.913832i
\(34\) 0.780940 + 0.450876i 0.133930 + 0.0773246i
\(35\) 0 0
\(36\) 6.64140i 1.10690i
\(37\) −5.54900 2.49171i −0.912249 0.409635i
\(38\) −0.591798 + 0.591798i −0.0960023 + 0.0960023i
\(39\) 2.46536 9.20083i 0.394773 1.47331i
\(40\) 0 0
\(41\) 8.68470 + 5.01411i 1.35632 + 0.783073i 0.989126 0.147071i \(-0.0469845\pi\)
0.367196 + 0.930144i \(0.380318\pi\)
\(42\) 1.17120 + 0.676194i 0.180720 + 0.104339i
\(43\) 5.37912 0.820309 0.410154 0.912016i \(-0.365475\pi\)
0.410154 + 0.912016i \(0.365475\pi\)
\(44\) 3.19205 + 1.84293i 0.481220 + 0.277832i
\(45\) 0 0
\(46\) −0.769476 1.33277i −0.113453 0.196506i
\(47\) 1.58980 + 1.58980i 0.231896 + 0.231896i 0.813484 0.581588i \(-0.197568\pi\)
−0.581588 + 0.813484i \(0.697568\pi\)
\(48\) 4.85462 + 4.85462i 0.700705 + 0.700705i
\(49\) −5.07016 + 2.92726i −0.724309 + 0.418180i
\(50\) 0 0
\(51\) 3.41376 3.41376i 0.478022 0.478022i
\(52\) 3.23008 + 5.59466i 0.447931 + 0.775840i
\(53\) 6.77518 + 1.81540i 0.930643 + 0.249365i 0.692129 0.721774i \(-0.256673\pi\)
0.238514 + 0.971139i \(0.423340\pi\)
\(54\) 0.933722 + 0.250190i 0.127063 + 0.0340466i
\(55\) 0 0
\(56\) −1.89042 + 0.506536i −0.252618 + 0.0676888i
\(57\) 2.24037 + 3.88043i 0.296744 + 0.513975i
\(58\) 0.403306 1.50516i 0.0529567 0.197637i
\(59\) 10.7855 + 2.88997i 1.40416 + 0.376242i 0.879835 0.475279i \(-0.157653\pi\)
0.524320 + 0.851521i \(0.324319\pi\)
\(60\) 0 0
\(61\) 2.94690 + 10.9980i 0.377311 + 1.40815i 0.849938 + 0.526882i \(0.176639\pi\)
−0.472627 + 0.881263i \(0.656694\pi\)
\(62\) 2.95641 + 0.792167i 0.375464 + 0.100605i
\(63\) 2.84934 2.84934i 0.358983 0.358983i
\(64\) −2.87944 −0.359930
\(65\) 0 0
\(66\) −1.86697 + 1.86697i −0.229809 + 0.229809i
\(67\) 2.74070 + 10.2284i 0.334830 + 1.24960i 0.904053 + 0.427420i \(0.140577\pi\)
−0.569223 + 0.822183i \(0.692756\pi\)
\(68\) 3.27422i 0.397057i
\(69\) −7.95847 + 2.13247i −0.958087 + 0.256719i
\(70\) 0 0
\(71\) 0.439137 0.760607i 0.0521159 0.0902674i −0.838791 0.544454i \(-0.816737\pi\)
0.890906 + 0.454187i \(0.150070\pi\)
\(72\) −5.96235 + 3.44237i −0.702670 + 0.405687i
\(73\) 4.02172 + 4.02172i 0.470707 + 0.470707i 0.902143 0.431437i \(-0.141993\pi\)
−0.431437 + 0.902143i \(0.641993\pi\)
\(74\) 0.299561 + 2.93989i 0.0348233 + 0.341756i
\(75\) 0 0
\(76\) −2.93530 0.786511i −0.336702 0.0902190i
\(77\) 0.578809 + 2.16014i 0.0659614 + 0.246171i
\(78\) −4.46993 + 1.19771i −0.506120 + 0.135614i
\(79\) −1.52669 5.69770i −0.171766 0.641041i −0.997080 0.0763662i \(-0.975668\pi\)
0.825313 0.564675i \(-0.190998\pi\)
\(80\) 0 0
\(81\) −3.05987 + 5.29985i −0.339985 + 0.588872i
\(82\) 4.87189i 0.538011i
\(83\) 6.15070 + 1.64807i 0.675127 + 0.180900i 0.580063 0.814571i \(-0.303028\pi\)
0.0950638 + 0.995471i \(0.469695\pi\)
\(84\) 4.91045i 0.535774i
\(85\) 0 0
\(86\) −1.30664 2.26316i −0.140898 0.244043i
\(87\) −7.22487 4.17128i −0.774587 0.447208i
\(88\) 3.82091i 0.407310i
\(89\) 0.569968 2.12715i 0.0604164 0.225477i −0.929116 0.369789i \(-0.879430\pi\)
0.989532 + 0.144311i \(0.0460967\pi\)
\(90\) 0 0
\(91\) −1.01447 + 3.78605i −0.106345 + 0.396886i
\(92\) 2.79393 4.83923i 0.291287 0.504524i
\(93\) 8.19315 14.1909i 0.849590 1.47153i
\(94\) 0.282701 1.05505i 0.0291583 0.108820i
\(95\) 0 0
\(96\) 3.32522 12.4099i 0.339379 1.26658i
\(97\) 0.682762i 0.0693240i 0.999399 + 0.0346620i \(0.0110355\pi\)
−0.999399 + 0.0346620i \(0.988965\pi\)
\(98\) 2.46318 + 1.42212i 0.248818 + 0.143655i
\(99\) 3.93352 + 6.81306i 0.395334 + 0.684738i
\(100\) 0 0
\(101\) 13.2653i 1.31994i 0.751291 + 0.659972i \(0.229432\pi\)
−0.751291 + 0.659972i \(0.770568\pi\)
\(102\) −2.26551 0.607041i −0.224319 0.0601060i
\(103\) 2.82512i 0.278368i −0.990267 0.139184i \(-0.955552\pi\)
0.990267 0.139184i \(-0.0444479\pi\)
\(104\) 3.34842 5.79964i 0.328340 0.568701i
\(105\) 0 0
\(106\) −0.881956 3.29151i −0.0856632 0.319699i
\(107\) 9.59031 2.56972i 0.927131 0.248424i 0.236500 0.971632i \(-0.424000\pi\)
0.690631 + 0.723208i \(0.257333\pi\)
\(108\) 0.908428 + 3.39030i 0.0874135 + 0.326232i
\(109\) −4.78161 1.28123i −0.457995 0.122719i 0.0224428 0.999748i \(-0.492856\pi\)
−0.480438 + 0.877029i \(0.659522\pi\)
\(110\) 0 0
\(111\) 15.6183 + 2.52456i 1.48243 + 0.239620i
\(112\) −1.99763 1.99763i −0.188758 0.188758i
\(113\) −6.98088 + 4.03041i −0.656706 + 0.379149i −0.791021 0.611789i \(-0.790450\pi\)
0.134315 + 0.990939i \(0.457117\pi\)
\(114\) 1.08841 1.88518i 0.101939 0.176563i
\(115\) 0 0
\(116\) 5.46516 1.46439i 0.507427 0.135965i
\(117\) 13.7884i 1.27474i
\(118\) −1.40400 5.23980i −0.129249 0.482363i
\(119\) −1.40473 + 1.40473i −0.128771 + 0.128771i
\(120\) 0 0
\(121\) 6.63393 0.603084
\(122\) 3.91135 3.91135i 0.354117 0.354117i
\(123\) −25.1943 6.75079i −2.27169 0.608698i
\(124\) 2.87632 + 10.7346i 0.258301 + 0.963992i
\(125\) 0 0
\(126\) −1.89094 0.506675i −0.168458 0.0451382i
\(127\) 5.29873 19.7751i 0.470187 1.75476i −0.168907 0.985632i \(-0.554024\pi\)
0.639094 0.769129i \(-0.279309\pi\)
\(128\) 5.63902 + 9.76707i 0.498424 + 0.863296i
\(129\) −13.5142 + 3.62111i −1.18986 + 0.318821i
\(130\) 0 0
\(131\) −9.44396 2.53050i −0.825123 0.221091i −0.178538 0.983933i \(-0.557137\pi\)
−0.646585 + 0.762842i \(0.723803\pi\)
\(132\) −9.26013 2.48125i −0.805991 0.215965i
\(133\) −0.921888 1.59676i −0.0799379 0.138456i
\(134\) 3.63768 3.63768i 0.314248 0.314248i
\(135\) 0 0
\(136\) 2.93944 1.69709i 0.252055 0.145524i
\(137\) −11.1133 11.1133i −0.949474 0.949474i 0.0493096 0.998784i \(-0.484298\pi\)
−0.998784 + 0.0493096i \(0.984298\pi\)
\(138\) 2.83038 + 2.83038i 0.240938 + 0.240938i
\(139\) −4.61807 7.99874i −0.391700 0.678444i 0.600974 0.799269i \(-0.294780\pi\)
−0.992674 + 0.120824i \(0.961446\pi\)
\(140\) 0 0
\(141\) −5.06433 2.92389i −0.426493 0.246236i
\(142\) −0.426681 −0.0358063
\(143\) −6.62713 3.82617i −0.554188 0.319961i
\(144\) −8.60663 4.96904i −0.717219 0.414087i
\(145\) 0 0
\(146\) 0.715149 2.66897i 0.0591862 0.220886i
\(147\) 10.7674 10.7674i 0.888080 0.888080i
\(148\) −8.70063 + 6.27927i −0.715188 + 0.516153i
\(149\) 6.04883i 0.495539i 0.968819 + 0.247770i \(0.0796976\pi\)
−0.968819 + 0.247770i \(0.920302\pi\)
\(150\) 0 0
\(151\) 5.70690 + 3.29488i 0.464421 + 0.268134i 0.713901 0.700246i \(-0.246926\pi\)
−0.249480 + 0.968380i \(0.580260\pi\)
\(152\) 0.815328 + 3.04284i 0.0661318 + 0.246807i
\(153\) −3.49421 + 6.05216i −0.282491 + 0.489288i
\(154\) 0.768241 0.768241i 0.0619066 0.0619066i
\(155\) 0 0
\(156\) −11.8813 11.8813i −0.951262 0.951262i
\(157\) 1.78303 6.65438i 0.142302 0.531077i −0.857559 0.514386i \(-0.828020\pi\)
0.999861 0.0166914i \(-0.00531329\pi\)
\(158\) −2.02635 + 2.02635i −0.161208 + 0.161208i
\(159\) −18.2436 −1.44681
\(160\) 0 0
\(161\) 3.27483 0.877488i 0.258093 0.0691557i
\(162\) 2.97308 0.233587
\(163\) −21.6148 + 12.4793i −1.69300 + 0.977455i −0.740928 + 0.671585i \(0.765614\pi\)
−0.952073 + 0.305870i \(0.901053\pi\)
\(164\) 15.3196 8.84480i 1.19626 0.690663i
\(165\) 0 0
\(166\) −0.800665 2.98812i −0.0621436 0.231923i
\(167\) 4.48968 + 2.59212i 0.347422 + 0.200584i 0.663549 0.748133i \(-0.269049\pi\)
−0.316127 + 0.948717i \(0.602383\pi\)
\(168\) 4.40838 2.54518i 0.340114 0.196365i
\(169\) −0.206075 0.356933i −0.0158520 0.0274564i
\(170\) 0 0
\(171\) −4.58634 4.58634i −0.350726 0.350726i
\(172\) 4.74434 8.21743i 0.361752 0.626573i
\(173\) −5.45131 + 20.3446i −0.414455 + 1.54677i 0.371469 + 0.928445i \(0.378854\pi\)
−0.785924 + 0.618323i \(0.787812\pi\)
\(174\) 4.05297i 0.307255i
\(175\) 0 0
\(176\) 4.77653 2.75773i 0.360045 0.207872i
\(177\) −29.0423 −2.18296
\(178\) −1.03341 + 0.276901i −0.0774571 + 0.0207546i
\(179\) 14.6472 + 14.6472i 1.09478 + 1.09478i 0.995010 + 0.0997713i \(0.0318111\pi\)
0.0997713 + 0.995010i \(0.468189\pi\)
\(180\) 0 0
\(181\) −10.9090 + 18.8950i −0.810862 + 1.40445i 0.101400 + 0.994846i \(0.467668\pi\)
−0.912262 + 0.409608i \(0.865666\pi\)
\(182\) 1.83933 0.492847i 0.136340 0.0365323i
\(183\) −14.8072 25.6468i −1.09458 1.89587i
\(184\) −5.79259 −0.427035
\(185\) 0 0
\(186\) −7.96076 −0.583711
\(187\) −1.93923 3.35884i −0.141810 0.245623i
\(188\) 3.83084 1.02647i 0.279393 0.0748631i
\(189\) −1.06479 + 1.84427i −0.0774520 + 0.134151i
\(190\) 0 0
\(191\) −17.9295 17.9295i −1.29733 1.29733i −0.930149 0.367183i \(-0.880322\pi\)
−0.367183 0.930149i \(-0.619678\pi\)
\(192\) 7.23413 1.93838i 0.522078 0.139891i
\(193\) 2.76514 0.199039 0.0995196 0.995036i \(-0.468269\pi\)
0.0995196 + 0.995036i \(0.468269\pi\)
\(194\) 0.287259 0.165849i 0.0206240 0.0119073i
\(195\) 0 0
\(196\) 10.3273i 0.737662i
\(197\) 3.53967 13.2102i 0.252191 0.941189i −0.717441 0.696619i \(-0.754687\pi\)
0.969632 0.244570i \(-0.0786467\pi\)
\(198\) 1.91098 3.30991i 0.135807 0.235225i
\(199\) −2.86901 2.86901i −0.203378 0.203378i 0.598067 0.801446i \(-0.295935\pi\)
−0.801446 + 0.598067i \(0.795935\pi\)
\(200\) 0 0
\(201\) −13.7711 23.8523i −0.971341 1.68241i
\(202\) 5.58111 3.22225i 0.392685 0.226717i
\(203\) 2.97296 + 1.71644i 0.208661 + 0.120470i
\(204\) −2.20413 8.22594i −0.154320 0.575931i
\(205\) 0 0
\(206\) −1.18862 + 0.686248i −0.0828148 + 0.0478132i
\(207\) 10.3288 5.96331i 0.717898 0.414479i
\(208\) 9.66687 0.670277
\(209\) 3.47700 0.931658i 0.240509 0.0644442i
\(210\) 0 0
\(211\) 6.57006 0.452301 0.226151 0.974092i \(-0.427386\pi\)
0.226151 + 0.974092i \(0.427386\pi\)
\(212\) 8.74895 8.74895i 0.600880 0.600880i
\(213\) −0.591235 + 2.20652i −0.0405107 + 0.151188i
\(214\) −3.41073 3.41073i −0.233153 0.233153i
\(215\) 0 0
\(216\) 2.57280 2.57280i 0.175057 0.175057i
\(217\) −3.37140 + 5.83943i −0.228865 + 0.396407i
\(218\) 0.622444 + 2.32299i 0.0421572 + 0.157333i
\(219\) −12.8113 7.39658i −0.865704 0.499815i
\(220\) 0 0
\(221\) 6.79771i 0.457264i
\(222\) −2.73167 7.18435i −0.183338 0.482182i
\(223\) 18.9226 18.9226i 1.26715 1.26715i 0.319593 0.947555i \(-0.396454\pi\)
0.947555 0.319593i \(-0.103546\pi\)
\(224\) −1.36829 + 5.10655i −0.0914230 + 0.341195i
\(225\) 0 0
\(226\) 3.39144 + 1.95805i 0.225595 + 0.130247i
\(227\) 10.0933 + 5.82737i 0.669916 + 0.386776i 0.796045 0.605238i \(-0.206922\pi\)
−0.126129 + 0.992014i \(0.540255\pi\)
\(228\) 7.90393 0.523450
\(229\) −14.4306 8.33150i −0.953600 0.550561i −0.0594025 0.998234i \(-0.518920\pi\)
−0.894197 + 0.447673i \(0.852253\pi\)
\(230\) 0 0
\(231\) −2.90833 5.03737i −0.191354 0.331435i
\(232\) −4.14736 4.14736i −0.272287 0.272287i
\(233\) −2.60164 2.60164i −0.170439 0.170439i 0.616733 0.787172i \(-0.288456\pi\)
−0.787172 + 0.616733i \(0.788456\pi\)
\(234\) 5.80122 3.34934i 0.379238 0.218953i
\(235\) 0 0
\(236\) 13.9276 13.9276i 0.906610 0.906610i
\(237\) 7.67114 + 13.2868i 0.498294 + 0.863071i
\(238\) 0.932233 + 0.249791i 0.0604277 + 0.0161916i
\(239\) −7.01240 1.87897i −0.453594 0.121540i 0.0247864 0.999693i \(-0.492109\pi\)
−0.478381 + 0.878153i \(0.658776\pi\)
\(240\) 0 0
\(241\) −24.1435 + 6.46922i −1.55522 + 0.416719i −0.931145 0.364649i \(-0.881189\pi\)
−0.624071 + 0.781368i \(0.714522\pi\)
\(242\) −1.61144 2.79110i −0.103587 0.179419i
\(243\) 5.66464 21.1407i 0.363387 1.35618i
\(244\) 19.4002 + 5.19827i 1.24197 + 0.332785i
\(245\) 0 0
\(246\) 3.27965 + 12.2398i 0.209103 + 0.780384i
\(247\) 6.09408 + 1.63290i 0.387757 + 0.103899i
\(248\) 8.14615 8.14615i 0.517281 0.517281i
\(249\) −16.5621 −1.04958
\(250\) 0 0
\(251\) 3.06212 3.06212i 0.193279 0.193279i −0.603832 0.797111i \(-0.706360\pi\)
0.797111 + 0.603832i \(0.206360\pi\)
\(252\) −1.83971 6.86589i −0.115891 0.432511i
\(253\) 6.61907i 0.416137i
\(254\) −9.60712 + 2.57422i −0.602804 + 0.161521i
\(255\) 0 0
\(256\) −0.139904 + 0.242321i −0.00874400 + 0.0151450i
\(257\) −26.8141 + 15.4811i −1.67262 + 0.965687i −0.706456 + 0.707757i \(0.749707\pi\)
−0.966163 + 0.257931i \(0.916959\pi\)
\(258\) 4.80623 + 4.80623i 0.299223 + 0.299223i
\(259\) −6.42678 1.03883i −0.399341 0.0645497i
\(260\) 0 0
\(261\) 11.6647 + 3.12556i 0.722029 + 0.193467i
\(262\) 1.22936 + 4.58805i 0.0759503 + 0.283451i
\(263\) −12.2595 + 3.28492i −0.755953 + 0.202557i −0.616157 0.787623i \(-0.711311\pi\)
−0.139796 + 0.990180i \(0.544645\pi\)
\(264\) 2.57215 + 9.59941i 0.158305 + 0.590803i
\(265\) 0 0
\(266\) −0.447870 + 0.775734i −0.0274607 + 0.0475633i
\(267\) 5.72780i 0.350536i
\(268\) 18.0428 + 4.83455i 1.10214 + 0.295317i
\(269\) 16.7531i 1.02145i 0.859744 + 0.510726i \(0.170623\pi\)
−0.859744 + 0.510726i \(0.829377\pi\)
\(270\) 0 0
\(271\) −9.55233 16.5451i −0.580263 1.00504i −0.995448 0.0953075i \(-0.969617\pi\)
0.415185 0.909737i \(-0.363717\pi\)
\(272\) 4.24308 + 2.44974i 0.257274 + 0.148537i
\(273\) 10.1948i 0.617015i
\(274\) −1.97619 + 7.37523i −0.119386 + 0.445554i
\(275\) 0 0
\(276\) −3.76163 + 14.0386i −0.226423 + 0.845024i
\(277\) −8.41266 + 14.5711i −0.505468 + 0.875495i 0.494512 + 0.869171i \(0.335347\pi\)
−0.999980 + 0.00632489i \(0.997987\pi\)
\(278\) −2.24354 + 3.88593i −0.134559 + 0.233063i
\(279\) −6.13916 + 22.9116i −0.367542 + 1.37168i
\(280\) 0 0
\(281\) 5.84495 21.8136i 0.348680 1.30129i −0.539573 0.841939i \(-0.681414\pi\)
0.888253 0.459354i \(-0.151919\pi\)
\(282\) 2.84096i 0.169177i
\(283\) 3.78721 + 2.18654i 0.225126 + 0.129977i 0.608322 0.793691i \(-0.291843\pi\)
−0.383196 + 0.923667i \(0.625176\pi\)
\(284\) −0.774628 1.34170i −0.0459657 0.0796150i
\(285\) 0 0
\(286\) 3.71765i 0.219829i
\(287\) 10.3672 + 2.77788i 0.611956 + 0.163973i
\(288\) 18.5976i 1.09587i
\(289\) −6.77735 + 11.7387i −0.398668 + 0.690513i
\(290\) 0 0
\(291\) −0.459621 1.71533i −0.0269435 0.100554i
\(292\) 9.69091 2.59667i 0.567117 0.151959i
\(293\) 7.39929 + 27.6145i 0.432271 + 1.61326i 0.747513 + 0.664247i \(0.231248\pi\)
−0.315242 + 0.949011i \(0.602086\pi\)
\(294\) −7.14567 1.91468i −0.416744 0.111666i
\(295\) 0 0
\(296\) 10.1470 + 4.55637i 0.589780 + 0.264834i
\(297\) −2.93989 2.93989i −0.170590 0.170590i
\(298\) 2.54493 1.46931i 0.147424 0.0851151i
\(299\) −5.80057 + 10.0469i −0.335456 + 0.581026i
\(300\) 0 0
\(301\) 5.56095 1.49005i 0.320528 0.0858851i
\(302\) 3.20142i 0.184221i
\(303\) −8.92989 33.3268i −0.513009 1.91458i
\(304\) −3.21541 + 3.21541i −0.184416 + 0.184416i
\(305\) 0 0
\(306\) 3.39510 0.194085
\(307\) −0.859218 + 0.859218i −0.0490382 + 0.0490382i −0.731201 0.682162i \(-0.761040\pi\)
0.682162 + 0.731201i \(0.261040\pi\)
\(308\) 3.81045 + 1.02101i 0.217121 + 0.0581773i
\(309\) 1.90181 + 7.09766i 0.108190 + 0.403772i
\(310\) 0 0
\(311\) 27.8607 + 7.46525i 1.57983 + 0.423315i 0.938875 0.344259i \(-0.111870\pi\)
0.640959 + 0.767575i \(0.278537\pi\)
\(312\) −4.50817 + 16.8247i −0.255225 + 0.952513i
\(313\) 0.671228 + 1.16260i 0.0379400 + 0.0657141i 0.884372 0.466783i \(-0.154587\pi\)
−0.846432 + 0.532497i \(0.821254\pi\)
\(314\) −3.23282 + 0.866230i −0.182438 + 0.0488842i
\(315\) 0 0
\(316\) −10.0506 2.69306i −0.565392 0.151496i
\(317\) 14.2632 + 3.82182i 0.801102 + 0.214655i 0.636068 0.771633i \(-0.280560\pi\)
0.165034 + 0.986288i \(0.447227\pi\)
\(318\) 4.43154 + 7.67566i 0.248509 + 0.430429i
\(319\) −4.73910 + 4.73910i −0.265339 + 0.265339i
\(320\) 0 0
\(321\) −22.3642 + 12.9120i −1.24825 + 0.720677i
\(322\) −1.16467 1.16467i −0.0649046 0.0649046i
\(323\) 2.26107 + 2.26107i 0.125809 + 0.125809i
\(324\) 5.39755 + 9.34883i 0.299864 + 0.519380i
\(325\) 0 0
\(326\) 10.5009 + 6.06267i 0.581589 + 0.335780i
\(327\) 12.8755 0.712017
\(328\) −15.8809 9.16886i −0.876877 0.506265i
\(329\) 2.08392 + 1.20315i 0.114890 + 0.0663319i
\(330\) 0 0
\(331\) −4.83434 + 18.0420i −0.265719 + 0.991678i 0.696089 + 0.717955i \(0.254922\pi\)
−0.961809 + 0.273723i \(0.911745\pi\)
\(332\) 7.94254 7.94254i 0.435904 0.435904i
\(333\) −22.7837 + 2.32155i −1.24854 + 0.127220i
\(334\) 2.51860i 0.137811i
\(335\) 0 0
\(336\) 6.36348 + 3.67396i 0.347156 + 0.200431i
\(337\) 1.58050 + 5.89849i 0.0860951 + 0.321311i 0.995519 0.0945584i \(-0.0301439\pi\)
−0.909424 + 0.415870i \(0.863477\pi\)
\(338\) −0.100115 + 0.173405i −0.00544555 + 0.00943197i
\(339\) 14.8251 14.8251i 0.805191 0.805191i
\(340\) 0 0
\(341\) −9.30844 9.30844i −0.504081 0.504081i
\(342\) −0.815550 + 3.04367i −0.0440999 + 0.164583i
\(343\) −9.72824 + 9.72824i −0.525276 + 0.525276i
\(344\) −9.83632 −0.530339
\(345\) 0 0
\(346\) 9.88376 2.64834i 0.531354 0.142376i
\(347\) −36.4201 −1.95513 −0.977565 0.210632i \(-0.932448\pi\)
−0.977565 + 0.210632i \(0.932448\pi\)
\(348\) −12.7445 + 7.35806i −0.683179 + 0.394433i
\(349\) 5.28579 3.05175i 0.282942 0.163357i −0.351813 0.936070i \(-0.614435\pi\)
0.634754 + 0.772714i \(0.281101\pi\)
\(350\) 0 0
\(351\) −1.88602 7.03871i −0.100668 0.375699i
\(352\) −8.93853 5.16066i −0.476425 0.275064i
\(353\) 20.2094 11.6679i 1.07564 0.621021i 0.145923 0.989296i \(-0.453385\pi\)
0.929717 + 0.368275i \(0.120052\pi\)
\(354\) 7.05465 + 12.2190i 0.374950 + 0.649433i
\(355\) 0 0
\(356\) −2.74684 2.74684i −0.145582 0.145582i
\(357\) 2.58352 4.47478i 0.136734 0.236831i
\(358\) 2.60459 9.72045i 0.137657 0.513742i
\(359\) 13.7535i 0.725881i −0.931812 0.362941i \(-0.881773\pi\)
0.931812 0.362941i \(-0.118227\pi\)
\(360\) 0 0
\(361\) 13.8843 8.01612i 0.730754 0.421901i
\(362\) 10.5996 0.557103
\(363\) −16.6667 + 4.46582i −0.874773 + 0.234395i
\(364\) 4.88902 + 4.88902i 0.256254 + 0.256254i
\(365\) 0 0
\(366\) −7.19360 + 12.4597i −0.376016 + 0.651278i
\(367\) −5.65412 + 1.51502i −0.295143 + 0.0790832i −0.403352 0.915045i \(-0.632155\pi\)
0.108209 + 0.994128i \(0.465488\pi\)
\(368\) −4.18079 7.24134i −0.217939 0.377481i
\(369\) 37.7563 1.96552
\(370\) 0 0
\(371\) 7.50707 0.389748
\(372\) −14.4526 25.0326i −0.749330 1.29788i
\(373\) 26.4467 7.08637i 1.36936 0.366918i 0.502114 0.864802i \(-0.332556\pi\)
0.867244 + 0.497883i \(0.165889\pi\)
\(374\) −0.942113 + 1.63179i −0.0487155 + 0.0843777i
\(375\) 0 0
\(376\) −2.90712 2.90712i −0.149923 0.149923i
\(377\) −11.3464 + 3.04026i −0.584369 + 0.156581i
\(378\) 1.03459 0.0532134
\(379\) 14.5045 8.37420i 0.745048 0.430154i −0.0788540 0.996886i \(-0.525126\pi\)
0.823902 + 0.566733i \(0.191793\pi\)
\(380\) 0 0
\(381\) 53.2488i 2.72802i
\(382\) −3.18825 + 11.8987i −0.163125 + 0.608791i
\(383\) −15.8124 + 27.3880i −0.807978 + 1.39946i 0.106284 + 0.994336i \(0.466105\pi\)
−0.914262 + 0.405123i \(0.867229\pi\)
\(384\) −20.7421 20.7421i −1.05849 1.05849i
\(385\) 0 0
\(386\) −0.671677 1.16338i −0.0341875 0.0592144i
\(387\) 17.5391 10.1262i 0.891564 0.514745i
\(388\) 1.04302 + 0.602190i 0.0529515 + 0.0305716i
\(389\) −9.26758 34.5871i −0.469885 1.75364i −0.640163 0.768239i \(-0.721133\pi\)
0.170278 0.985396i \(-0.445533\pi\)
\(390\) 0 0
\(391\) −5.09209 + 2.93992i −0.257518 + 0.148678i
\(392\) 9.27135 5.35282i 0.468274 0.270358i
\(393\) 25.4299 1.28277
\(394\) −6.41776 + 1.71963i −0.323322 + 0.0866339i
\(395\) 0 0
\(396\) 13.8773 0.697361
\(397\) −15.6873 + 15.6873i −0.787325 + 0.787325i −0.981055 0.193730i \(-0.937941\pi\)
0.193730 + 0.981055i \(0.437941\pi\)
\(398\) −0.510172 + 1.90399i −0.0255726 + 0.0954382i
\(399\) 3.39100 + 3.39100i 0.169762 + 0.169762i
\(400\) 0 0
\(401\) 14.8433 14.8433i 0.741241 0.741241i −0.231576 0.972817i \(-0.574388\pi\)
0.972817 + 0.231576i \(0.0743882\pi\)
\(402\) −6.69027 + 11.5879i −0.333680 + 0.577951i
\(403\) −5.97162 22.2864i −0.297468 1.11016i
\(404\) 20.2647 + 11.6998i 1.00821 + 0.582089i
\(405\) 0 0
\(406\) 1.66776i 0.0827693i
\(407\) 5.20647 11.5947i 0.258075 0.574729i
\(408\) −6.24243 + 6.24243i −0.309046 + 0.309046i
\(409\) 9.15489 34.1665i 0.452680 1.68943i −0.242139 0.970242i \(-0.577849\pi\)
0.694819 0.719185i \(-0.255484\pi\)
\(410\) 0 0
\(411\) 35.4016 + 20.4391i 1.74623 + 1.00819i
\(412\) −4.31581 2.49173i −0.212625 0.122759i
\(413\) 11.9506 0.588052
\(414\) −5.01790 2.89708i −0.246616 0.142384i
\(415\) 0 0
\(416\) −9.04501 15.6664i −0.443468 0.768110i
\(417\) 16.9867 + 16.9867i 0.831844 + 0.831844i
\(418\) −1.23657 1.23657i −0.0604827 0.0604827i
\(419\) 12.8247 7.40437i 0.626530 0.361727i −0.152877 0.988245i \(-0.548854\pi\)
0.779407 + 0.626518i \(0.215521\pi\)
\(420\) 0 0
\(421\) −13.0213 + 13.0213i −0.634620 + 0.634620i −0.949223 0.314603i \(-0.898129\pi\)
0.314603 + 0.949223i \(0.398129\pi\)
\(422\) −1.59593 2.76423i −0.0776885 0.134560i
\(423\) 8.17648 + 2.19088i 0.397554 + 0.106524i
\(424\) −12.3892 3.31967i −0.601671 0.161217i
\(425\) 0 0
\(426\) 1.07197 0.287233i 0.0519369 0.0139165i
\(427\) 6.09301 + 10.5534i 0.294861 + 0.510715i
\(428\) 4.53293 16.9171i 0.219107 0.817720i
\(429\) 19.2253 + 5.15140i 0.928205 + 0.248712i
\(430\) 0 0
\(431\) −9.92884 37.0549i −0.478255 1.78487i −0.608681 0.793415i \(-0.708301\pi\)
0.130425 0.991458i \(-0.458366\pi\)
\(432\) 5.07318 + 1.35936i 0.244084 + 0.0654020i
\(433\) −10.7074 + 10.7074i −0.514566 + 0.514566i −0.915922 0.401356i \(-0.868539\pi\)
0.401356 + 0.915922i \(0.368539\pi\)
\(434\) 3.27577 0.157242
\(435\) 0 0
\(436\) −6.17461 + 6.17461i −0.295710 + 0.295710i
\(437\) −1.41242 5.27121i −0.0675650 0.252156i
\(438\) 7.18678i 0.343398i
\(439\) −5.94424 + 1.59276i −0.283703 + 0.0760181i −0.397865 0.917444i \(-0.630249\pi\)
0.114161 + 0.993462i \(0.463582\pi\)
\(440\) 0 0
\(441\) −11.0212 + 19.0892i −0.524817 + 0.909010i
\(442\) −2.86001 + 1.65123i −0.136037 + 0.0785408i
\(443\) 2.15090 + 2.15090i 0.102192 + 0.102192i 0.756354 0.654162i \(-0.226979\pi\)
−0.654162 + 0.756354i \(0.726979\pi\)
\(444\) 17.6319 21.6327i 0.836771 1.02664i
\(445\) 0 0
\(446\) −12.5578 3.36484i −0.594627 0.159330i
\(447\) −4.07194 15.1967i −0.192596 0.718779i
\(448\) −2.97677 + 0.797624i −0.140639 + 0.0376842i
\(449\) 5.83410 + 21.7731i 0.275328 + 1.02754i 0.955621 + 0.294598i \(0.0951858\pi\)
−0.680293 + 0.732940i \(0.738148\pi\)
\(450\) 0 0
\(451\) −10.4771 + 18.1468i −0.493346 + 0.854500i
\(452\) 14.2191i 0.668812i
\(453\) −16.5557 4.43609i −0.777855 0.208426i
\(454\) 5.66208i 0.265735i
\(455\) 0 0
\(456\) −4.09676 7.09579i −0.191848 0.332291i
\(457\) −5.06014 2.92148i −0.236704 0.136661i 0.376957 0.926231i \(-0.376970\pi\)
−0.613661 + 0.789570i \(0.710304\pi\)
\(458\) 8.09519i 0.378263i
\(459\) 0.955895 3.56745i 0.0446173 0.166514i
\(460\) 0 0
\(461\) 2.21024 8.24872i 0.102941 0.384181i −0.895162 0.445740i \(-0.852941\pi\)
0.998103 + 0.0615588i \(0.0196072\pi\)
\(462\) −1.41292 + 2.44724i −0.0657349 + 0.113856i
\(463\) 2.56935 4.45024i 0.119408 0.206820i −0.800125 0.599833i \(-0.795234\pi\)
0.919533 + 0.393012i \(0.128567\pi\)
\(464\) 2.19128 8.17797i 0.101728 0.379653i
\(465\) 0 0
\(466\) −0.462628 + 1.72655i −0.0214308 + 0.0799810i
\(467\) 10.8145i 0.500436i 0.968189 + 0.250218i \(0.0805023\pi\)
−0.968189 + 0.250218i \(0.919498\pi\)
\(468\) 21.0639 + 12.1613i 0.973681 + 0.562155i
\(469\) 5.66669 + 9.81499i 0.261663 + 0.453214i
\(470\) 0 0
\(471\) 17.9183i 0.825633i
\(472\) −19.7225 5.28463i −0.907802 0.243245i
\(473\) 11.2398i 0.516805i
\(474\) 3.72678 6.45497i 0.171177 0.296487i
\(475\) 0 0
\(476\) 0.906979 + 3.38489i 0.0415713 + 0.155146i
\(477\) 25.5086 6.83501i 1.16796 0.312954i
\(478\) 0.912836 + 3.40675i 0.0417521 + 0.155821i
\(479\) −3.94037 1.05582i −0.180040 0.0482416i 0.167673 0.985843i \(-0.446375\pi\)
−0.347713 + 0.937601i \(0.613042\pi\)
\(480\) 0 0
\(481\) 18.0637 13.0366i 0.823633 0.594418i
\(482\) 8.58646 + 8.58646i 0.391103 + 0.391103i
\(483\) −7.63677 + 4.40909i −0.347485 + 0.200621i
\(484\) 5.85106 10.1343i 0.265957 0.460651i
\(485\) 0 0
\(486\) −10.2705 + 2.75198i −0.465881 + 0.124833i
\(487\) 10.4321i 0.472725i 0.971665 + 0.236363i \(0.0759553\pi\)
−0.971665 + 0.236363i \(0.924045\pi\)
\(488\) −5.38872 20.1110i −0.243936 0.910382i
\(489\) 45.9028 45.9028i 2.07580 2.07580i
\(490\) 0 0
\(491\) −7.43200 −0.335401 −0.167701 0.985838i \(-0.553634\pi\)
−0.167701 + 0.985838i \(0.553634\pi\)
\(492\) −32.5340 + 32.5340i −1.46674 + 1.46674i
\(493\) −5.75073 1.54090i −0.259000 0.0693987i
\(494\) −0.793294 2.96061i −0.0356920 0.133204i
\(495\) 0 0
\(496\) 16.0630 + 4.30407i 0.721250 + 0.193258i
\(497\) 0.243287 0.907960i 0.0109129 0.0407276i
\(498\) 4.02308 + 6.96818i 0.180278 + 0.312251i
\(499\) 24.1425 6.46895i 1.08077 0.289590i 0.325856 0.945419i \(-0.394348\pi\)
0.754909 + 0.655829i \(0.227681\pi\)
\(500\) 0 0
\(501\) −13.0246 3.48992i −0.581894 0.155918i
\(502\) −2.03214 0.544511i −0.0906990 0.0243027i
\(503\) 10.4163 + 18.0415i 0.464438 + 0.804431i 0.999176 0.0405874i \(-0.0129229\pi\)
−0.534738 + 0.845018i \(0.679590\pi\)
\(504\) −5.21033 + 5.21033i −0.232087 + 0.232087i
\(505\) 0 0
\(506\) 2.78485 1.60783i 0.123802 0.0714769i
\(507\) 0.758011 + 0.758011i 0.0336645 + 0.0336645i
\(508\) −25.5361 25.5361i −1.13298 1.13298i
\(509\) 8.54631 + 14.8026i 0.378808 + 0.656115i 0.990889 0.134680i \(-0.0430006\pi\)
−0.612081 + 0.790795i \(0.709667\pi\)
\(510\) 0 0
\(511\) 5.27170 + 3.04362i 0.233206 + 0.134642i
\(512\) 22.6920 1.00286
\(513\) 2.96856 + 1.71390i 0.131065 + 0.0756705i
\(514\) 13.0268 + 7.52102i 0.574587 + 0.331738i
\(515\) 0 0
\(516\) −6.38757 + 23.8387i −0.281197 + 1.04944i
\(517\) −3.32191 + 3.32191i −0.146097 + 0.146097i
\(518\) 1.12406 + 2.95629i 0.0493882 + 0.129892i
\(519\) 54.7821i 2.40467i
\(520\) 0 0
\(521\) 29.6690 + 17.1294i 1.29982 + 0.750453i 0.980373 0.197150i \(-0.0631686\pi\)
0.319450 + 0.947603i \(0.396502\pi\)
\(522\) −1.51845 5.66694i −0.0664608 0.248035i
\(523\) −6.79166 + 11.7635i −0.296979 + 0.514382i −0.975443 0.220251i \(-0.929312\pi\)
0.678465 + 0.734633i \(0.262646\pi\)
\(524\) −12.1952 + 12.1952i −0.532750 + 0.532750i
\(525\) 0 0
\(526\) 4.36001 + 4.36001i 0.190105 + 0.190105i
\(527\) 3.02661 11.2955i 0.131841 0.492038i
\(528\) −10.1438 + 10.1438i −0.441453 + 0.441453i
\(529\) −12.9653 −0.563710
\(530\) 0 0
\(531\) 40.6076 10.8808i 1.76222 0.472185i
\(532\) −3.25239 −0.141009
\(533\) −31.8056 + 18.3630i −1.37765 + 0.795389i
\(534\) 2.40986 1.39134i 0.104285 0.0602090i
\(535\) 0 0
\(536\) −5.01168 18.7038i −0.216471 0.807882i
\(537\) −46.6588 26.9385i −2.01348 1.16248i
\(538\) 7.04853 4.06947i 0.303883 0.175447i
\(539\) −6.11656 10.5942i −0.263459 0.456324i
\(540\) 0 0
\(541\) −14.8341 14.8341i −0.637767 0.637767i 0.312237 0.950004i \(-0.398922\pi\)
−0.950004 + 0.312237i \(0.898922\pi\)
\(542\) −4.64069 + 8.03792i −0.199335 + 0.345258i
\(543\) 14.6874 54.8143i 0.630299 2.35231i
\(544\) 9.16861i 0.393101i
\(545\) 0 0
\(546\) −4.28925 + 2.47640i −0.183563 + 0.105980i
\(547\) 23.4215 1.00143 0.500715 0.865612i \(-0.333070\pi\)
0.500715 + 0.865612i \(0.333070\pi\)
\(548\) −26.7791 + 7.17544i −1.14395 + 0.306520i
\(549\) 30.3123 + 30.3123i 1.29370 + 1.29370i
\(550\) 0 0
\(551\) 2.76280 4.78532i 0.117699 0.203861i
\(552\) 14.5529 3.89945i 0.619414 0.165971i
\(553\) −3.15660 5.46739i −0.134232 0.232497i
\(554\) 8.17404 0.347282
\(555\) 0 0
\(556\) −16.2924 −0.690951
\(557\) −6.13483 10.6258i −0.259941 0.450231i 0.706285 0.707928i \(-0.250370\pi\)
−0.966226 + 0.257697i \(0.917036\pi\)
\(558\) 11.1309 2.98251i 0.471208 0.126260i
\(559\) −9.84988 + 17.0605i −0.416605 + 0.721582i
\(560\) 0 0
\(561\) 7.13310 + 7.13310i 0.301160 + 0.301160i
\(562\) −10.5975 + 2.83958i −0.447027 + 0.119780i
\(563\) 2.53059 0.106652 0.0533258 0.998577i \(-0.483018\pi\)
0.0533258 + 0.998577i \(0.483018\pi\)
\(564\) −8.93337 + 5.15769i −0.376163 + 0.217178i
\(565\) 0 0
\(566\) 2.12453i 0.0893005i
\(567\) −1.69521 + 6.32660i −0.0711920 + 0.265692i
\(568\) −0.803009 + 1.39085i −0.0336935 + 0.0583589i
\(569\) 24.7731 + 24.7731i 1.03854 + 1.03854i 0.999227 + 0.0393138i \(0.0125172\pi\)
0.0393138 + 0.999227i \(0.487483\pi\)
\(570\) 0 0
\(571\) −20.6850 35.8275i −0.865642 1.49934i −0.866408 0.499336i \(-0.833577\pi\)
0.000766004 1.00000i \(-0.499756\pi\)
\(572\) −11.6901 + 6.74930i −0.488789 + 0.282202i
\(573\) 57.1146 + 32.9752i 2.38600 + 1.37756i
\(574\) −1.34954 5.03657i −0.0563289 0.210222i
\(575\) 0 0
\(576\) −9.38869 + 5.42056i −0.391195 + 0.225857i
\(577\) −28.4613 + 16.4321i −1.18486 + 0.684078i −0.957134 0.289647i \(-0.906462\pi\)
−0.227725 + 0.973725i \(0.573129\pi\)
\(578\) 6.58512 0.273905
\(579\) −6.94696 + 1.86143i −0.288706 + 0.0773585i
\(580\) 0 0
\(581\) 6.81513 0.282739
\(582\) −0.610046 + 0.610046i −0.0252872 + 0.0252872i
\(583\) −3.79331 + 14.1568i −0.157103 + 0.586317i
\(584\) −7.35416 7.35416i −0.304317 0.304317i
\(585\) 0 0
\(586\) 9.82093 9.82093i 0.405699 0.405699i
\(587\) 10.2866 17.8170i 0.424574 0.735385i −0.571806 0.820389i \(-0.693757\pi\)
0.996381 + 0.0850042i \(0.0270904\pi\)
\(588\) −6.95209 25.9456i −0.286700 1.06998i
\(589\) 9.39923 + 5.42665i 0.387288 + 0.223601i
\(590\) 0 0
\(591\) 35.5714i 1.46321i
\(592\) 1.62760 + 15.9733i 0.0668941 + 0.656498i
\(593\) 14.5325 14.5325i 0.596779 0.596779i −0.342675 0.939454i \(-0.611333\pi\)
0.939454 + 0.342675i \(0.111333\pi\)
\(594\) −0.522776 + 1.95103i −0.0214498 + 0.0800516i
\(595\) 0 0
\(596\) 9.24050 + 5.33501i 0.378506 + 0.218530i
\(597\) 9.13926 + 5.27656i 0.374045 + 0.215955i
\(598\) 5.63604 0.230475
\(599\) −18.6453 10.7649i −0.761827 0.439841i 0.0681245 0.997677i \(-0.478299\pi\)
−0.829951 + 0.557836i \(0.811632\pi\)
\(600\) 0 0
\(601\) −6.57451 11.3874i −0.268180 0.464501i 0.700212 0.713935i \(-0.253089\pi\)
−0.968392 + 0.249434i \(0.919755\pi\)
\(602\) −1.97771 1.97771i −0.0806056 0.0806056i
\(603\) 28.1914 + 28.1914i 1.14804 + 1.14804i
\(604\) 10.0669 5.81211i 0.409615 0.236491i
\(605\) 0 0
\(606\) −11.8525 + 11.8525i −0.481474 + 0.481474i
\(607\) 0.817317 + 1.41563i 0.0331739 + 0.0574588i 0.882136 0.470995i \(-0.156105\pi\)
−0.848962 + 0.528454i \(0.822772\pi\)
\(608\) 8.21956 + 2.20243i 0.333347 + 0.0893201i
\(609\) −8.62455 2.31094i −0.349484 0.0936441i
\(610\) 0 0
\(611\) −7.95335 + 2.13109i −0.321758 + 0.0862148i
\(612\) 6.16373 + 10.6759i 0.249154 + 0.431547i
\(613\) 8.64586 32.2668i 0.349203 1.30324i −0.538422 0.842676i \(-0.680979\pi\)
0.887625 0.460568i \(-0.152354\pi\)
\(614\) 0.570211 + 0.152788i 0.0230119 + 0.00616601i
\(615\) 0 0
\(616\) −1.05842 3.95006i −0.0426448 0.159152i
\(617\) 8.00465 + 2.14484i 0.322255 + 0.0863480i 0.416320 0.909218i \(-0.363320\pi\)
−0.0940651 + 0.995566i \(0.529986\pi\)
\(618\) 2.52424 2.52424i 0.101540 0.101540i
\(619\) −35.3283 −1.41997 −0.709983 0.704219i \(-0.751297\pi\)
−0.709983 + 0.704219i \(0.751297\pi\)
\(620\) 0 0
\(621\) −4.45694 + 4.45694i −0.178851 + 0.178851i
\(622\) −3.62675 13.5352i −0.145419 0.542713i
\(623\) 2.35693i 0.0944286i
\(624\) −24.2864 + 6.50753i −0.972235 + 0.260510i
\(625\) 0 0
\(626\) 0.326095 0.564812i 0.0130334 0.0225744i
\(627\) −8.10821 + 4.68128i −0.323811 + 0.186952i
\(628\) −8.59295 8.59295i −0.342896 0.342896i
\(629\) 11.2324 1.14453i 0.447864 0.0456352i
\(630\) 0 0
\(631\) 16.9880 + 4.55192i 0.676281 + 0.181209i 0.580583 0.814201i \(-0.302825\pi\)
0.0956987 + 0.995410i \(0.469491\pi\)
\(632\) 2.79173 + 10.4189i 0.111049 + 0.414440i
\(633\) −16.5062 + 4.42282i −0.656062 + 0.175791i
\(634\) −1.85671 6.92933i −0.0737393 0.275199i
\(635\) 0 0
\(636\) −16.0907 + 27.8699i −0.638038 + 1.10511i
\(637\) 21.4408i 0.849515i
\(638\) 3.14505 + 0.842715i 0.124514 + 0.0333634i
\(639\) 3.30671i 0.130811i
\(640\) 0 0
\(641\) −1.89712 3.28591i −0.0749317 0.129785i 0.826125 0.563487i \(-0.190541\pi\)
−0.901057 + 0.433702i \(0.857207\pi\)
\(642\) 10.8649 + 6.27288i 0.428805 + 0.247571i
\(643\) 12.8924i 0.508428i 0.967148 + 0.254214i \(0.0818168\pi\)
−0.967148 + 0.254214i \(0.918183\pi\)
\(644\) 1.54787 5.77674i 0.0609947 0.227635i
\(645\) 0 0
\(646\) 0.402067 1.50053i 0.0158191 0.0590377i
\(647\) −2.15099 + 3.72562i −0.0845640 + 0.146469i −0.905205 0.424974i \(-0.860283\pi\)
0.820641 + 0.571444i \(0.193616\pi\)
\(648\) 5.59531 9.69136i 0.219804 0.380712i
\(649\) −6.03864 + 22.5365i −0.237037 + 0.884636i
\(650\) 0 0
\(651\) 4.53911 16.9402i 0.177902 0.663938i
\(652\) 44.0265i 1.72421i
\(653\) 1.73760 + 1.00320i 0.0679976 + 0.0392584i 0.533613 0.845729i \(-0.320834\pi\)
−0.465616 + 0.884987i \(0.654167\pi\)
\(654\) −3.12758 5.41712i −0.122298 0.211826i
\(655\) 0 0
\(656\) 26.4704i 1.03350i
\(657\) 20.6841 + 5.54229i 0.806963 + 0.216225i
\(658\) 1.16903i 0.0455733i
\(659\) −20.0335 + 34.6990i −0.780394 + 1.35168i 0.151319 + 0.988485i \(0.451648\pi\)
−0.931713 + 0.363197i \(0.881685\pi\)
\(660\) 0 0
\(661\) 8.62310 + 32.1818i 0.335400 + 1.25173i 0.903435 + 0.428725i \(0.141037\pi\)
−0.568036 + 0.823004i \(0.692296\pi\)
\(662\) 8.76513 2.34861i 0.340666 0.0912813i
\(663\) 4.57608 + 17.0781i 0.177720 + 0.663260i
\(664\) −11.2472 3.01369i −0.436477 0.116954i
\(665\) 0 0
\(666\) 6.51111 + 9.02187i 0.252300 + 0.349590i
\(667\) 7.18459 + 7.18459i 0.278188 + 0.278188i
\(668\) 7.91971 4.57245i 0.306423 0.176913i
\(669\) −34.8016 + 60.2781i −1.34551 + 2.33049i
\(670\) 0 0
\(671\) −22.9804 + 6.15758i −0.887149 + 0.237711i
\(672\) 13.7505i 0.530436i
\(673\) −10.5436 39.3491i −0.406424 1.51680i −0.801414 0.598111i \(-0.795918\pi\)
0.394989 0.918686i \(-0.370748\pi\)
\(674\) 2.09776 2.09776i 0.0808027 0.0808027i
\(675\) 0 0
\(676\) −0.727026 −0.0279626
\(677\) −11.1292 + 11.1292i −0.427732 + 0.427732i −0.887855 0.460123i \(-0.847805\pi\)
0.460123 + 0.887855i \(0.347805\pi\)
\(678\) −9.83855 2.63623i −0.377847 0.101244i
\(679\) 0.189129 + 0.705841i 0.00725812 + 0.0270877i
\(680\) 0 0
\(681\) −29.2806 7.84572i −1.12204 0.300649i
\(682\) −1.65524 + 6.17745i −0.0633826 + 0.236547i
\(683\) 11.7592 + 20.3675i 0.449952 + 0.779340i 0.998382 0.0568564i \(-0.0181077\pi\)
−0.548430 + 0.836196i \(0.684774\pi\)
\(684\) −11.0514 + 2.96122i −0.422562 + 0.113225i
\(685\) 0 0
\(686\) 6.45605 + 1.72989i 0.246493 + 0.0660476i
\(687\) 41.8631 + 11.2172i 1.59718 + 0.427962i
\(688\) −7.09934 12.2964i −0.270660 0.468797i
\(689\) −18.1640 + 18.1640i −0.691993 + 0.691993i
\(690\) 0 0
\(691\) 34.9969 20.2055i 1.33135 0.768653i 0.345840 0.938294i \(-0.387594\pi\)
0.985506 + 0.169641i \(0.0542607\pi\)
\(692\) 26.2714 + 26.2714i 0.998689 + 0.998689i
\(693\) 5.95374 + 5.95374i 0.226164 + 0.226164i
\(694\) 8.84676 + 15.3230i 0.335818 + 0.581655i
\(695\) 0 0
\(696\) 13.2115 + 7.62764i 0.500779 + 0.289125i
\(697\) −18.6139 −0.705052
\(698\) −2.56793 1.48260i −0.0971977 0.0561171i
\(699\) 8.28757 + 4.78483i 0.313465 + 0.180979i
\(700\) 0 0
\(701\) −1.40325 + 5.23699i −0.0529999 + 0.197798i −0.987349 0.158560i \(-0.949315\pi\)
0.934350 + 0.356358i \(0.115982\pi\)
\(702\) −2.50327 + 2.50327i −0.0944799 + 0.0944799i
\(703\) −1.67211 + 10.3446i −0.0630649 + 0.390155i
\(704\) 6.01664i 0.226761i
\(705\) 0 0
\(706\) −9.81811 5.66849i −0.369509 0.213336i
\(707\) 3.67456 + 13.7137i 0.138196 + 0.515755i
\(708\) −25.6151 + 44.3666i −0.962673 + 1.66740i
\(709\) 27.6470 27.6470i 1.03830 1.03830i 0.0390675 0.999237i \(-0.487561\pi\)
0.999237 0.0390675i \(-0.0124387\pi\)
\(710\) 0 0
\(711\) −15.7039 15.7039i −0.588941 0.588941i
\(712\) −1.04225 + 3.88972i −0.0390599 + 0.145774i
\(713\) −14.1118 + 14.1118i −0.528492 + 0.528492i
\(714\) −2.51024 −0.0939433
\(715\) 0 0
\(716\) 35.2945 9.45712i 1.31902 0.353429i
\(717\) 18.8824 0.705176
\(718\) −5.78652 + 3.34085i −0.215951 + 0.124679i
\(719\) 17.5989 10.1607i 0.656328 0.378931i −0.134548 0.990907i \(-0.542958\pi\)
0.790877 + 0.611976i \(0.209625\pi\)
\(720\) 0 0
\(721\) −0.782577 2.92062i −0.0291447 0.108769i
\(722\) −6.74525 3.89437i −0.251032 0.144934i
\(723\) 56.3016 32.5057i 2.09388 1.20890i
\(724\) 19.2433 + 33.3304i 0.715172 + 1.23871i
\(725\) 0 0
\(726\) 5.92739 + 5.92739i 0.219986 + 0.219986i
\(727\) 17.0686 29.5637i 0.633039 1.09646i −0.353888 0.935288i \(-0.615140\pi\)
0.986927 0.161168i \(-0.0515262\pi\)
\(728\) 1.85507 6.92321i 0.0687534 0.256591i
\(729\) 38.5667i 1.42840i
\(730\) 0 0
\(731\) −8.64681 + 4.99224i −0.319814 + 0.184645i
\(732\) −52.2392 −1.93082
\(733\) −19.7857 + 5.30156i −0.730802 + 0.195818i −0.604986 0.796236i \(-0.706821\pi\)
−0.125815 + 0.992054i \(0.540155\pi\)
\(734\) 2.01085 + 2.01085i 0.0742218 + 0.0742218i
\(735\) 0 0
\(736\) −7.82369 + 13.5510i −0.288385 + 0.499497i
\(737\) −21.3725 + 5.72674i −0.787266 + 0.210947i
\(738\) −9.17136 15.8853i −0.337602 0.584744i
\(739\) −36.2323 −1.33283 −0.666414 0.745582i \(-0.732172\pi\)
−0.666414 + 0.745582i \(0.732172\pi\)
\(740\) 0 0
\(741\) −16.4096 −0.602822
\(742\) −1.82354 3.15846i −0.0669441 0.115951i
\(743\) 32.4293 8.68941i 1.18972 0.318784i 0.390943 0.920415i \(-0.372149\pi\)
0.798774 + 0.601631i \(0.205482\pi\)
\(744\) −14.9821 + 25.9497i −0.549269 + 0.951362i
\(745\) 0 0
\(746\) −9.40559 9.40559i −0.344363 0.344363i
\(747\) 23.1574 6.20502i 0.847286 0.227030i
\(748\) −6.84153 −0.250151
\(749\) 9.20265 5.31315i 0.336258 0.194138i
\(750\) 0 0
\(751\) 33.4106i 1.21917i 0.792721 + 0.609585i \(0.208664\pi\)
−0.792721 + 0.609585i \(0.791336\pi\)
\(752\) 1.53599 5.73241i 0.0560119 0.209039i
\(753\) −5.63172 + 9.75443i −0.205231 + 0.355471i
\(754\) 4.03527 + 4.03527i 0.146956 + 0.146956i
\(755\) 0 0
\(756\) 1.87827 + 3.25325i 0.0683119 + 0.118320i
\(757\) 12.5431 7.24176i 0.455886 0.263206i −0.254427 0.967092i \(-0.581887\pi\)
0.710313 + 0.703886i \(0.248553\pi\)
\(758\) −7.04656 4.06834i −0.255943 0.147769i
\(759\) −4.45582 16.6293i −0.161736 0.603607i
\(760\) 0 0
\(761\) 18.3530 10.5961i 0.665296 0.384109i −0.128996 0.991645i \(-0.541175\pi\)
0.794292 + 0.607536i \(0.207842\pi\)
\(762\) 22.4034 12.9346i 0.811590 0.468572i
\(763\) −5.29814 −0.191806
\(764\) −43.2036 + 11.5764i −1.56305 + 0.418819i
\(765\) 0 0
\(766\) 15.3639 0.555122
\(767\) −28.9156 + 28.9156i −1.04408 + 1.04408i
\(768\) 0.188361 0.702972i 0.00679688 0.0253663i
\(769\) −27.0019 27.0019i −0.973712 0.973712i 0.0259516 0.999663i \(-0.491738\pi\)
−0.999663 + 0.0259516i \(0.991738\pi\)
\(770\) 0 0
\(771\) 56.9446 56.9446i 2.05081 2.05081i
\(772\) 2.43883 4.22417i 0.0877753 0.152031i
\(773\) −2.37183 8.85179i −0.0853088 0.318377i 0.910064 0.414468i \(-0.136032\pi\)
−0.995372 + 0.0960916i \(0.969366\pi\)
\(774\) −8.52083 4.91950i −0.306275 0.176828i
\(775\) 0 0
\(776\) 1.24851i 0.0448187i
\(777\) 16.8456 1.71648i 0.604331 0.0615785i
\(778\) −12.3007 + 12.3007i −0.441001 + 0.441001i
\(779\) 4.47131 16.6872i 0.160201 0.597880i
\(780\) 0 0
\(781\) 1.58930 + 0.917582i 0.0568696 + 0.0328337i
\(782\) 2.47383 + 1.42827i 0.0884639 + 0.0510747i
\(783\) −6.38213 −0.228079
\(784\) 13.3832 + 7.72677i 0.477970 + 0.275956i
\(785\) 0 0
\(786\) −6.17715 10.6991i −0.220332 0.381626i
\(787\) −2.37899 2.37899i −0.0848017 0.0848017i 0.663434 0.748235i \(-0.269099\pi\)
−0.748235 + 0.663434i \(0.769099\pi\)
\(788\) −17.0587 17.0587i −0.607690 0.607690i
\(789\) 28.5886 16.5057i 1.01778 0.587617i
\(790\) 0 0
\(791\) −6.10040 + 6.10040i −0.216905 + 0.216905i
\(792\) −7.19287 12.4584i −0.255588 0.442691i
\(793\) −40.2774 10.7923i −1.43029 0.383246i
\(794\) 10.4107 + 2.78955i 0.369463 + 0.0989974i
\(795\) 0 0
\(796\) −6.91328 + 1.85241i −0.245035 + 0.0656568i
\(797\) −27.4458 47.5375i −0.972179 1.68386i −0.688947 0.724811i \(-0.741927\pi\)
−0.283231 0.959052i \(-0.591406\pi\)
\(798\) 0.602993 2.25040i 0.0213457 0.0796633i
\(799\) −4.03101 1.08011i −0.142607 0.0382114i
\(800\) 0 0
\(801\) −2.14593 8.00873i −0.0758228 0.282975i
\(802\) −9.85063 2.63947i −0.347838 0.0932028i
\(803\) −8.40344 + 8.40344i −0.296551 + 0.296551i
\(804\) −48.5841 −1.71343
\(805\) 0 0
\(806\) −7.92601 + 7.92601i −0.279182 + 0.279182i
\(807\) −11.2778 42.0893i −0.396997 1.48161i
\(808\) 24.2570i 0.853358i
\(809\) 1.18348 0.317113i 0.0416090 0.0111491i −0.237955 0.971276i \(-0.576477\pi\)
0.279563 + 0.960127i \(0.409810\pi\)
\(810\) 0 0
\(811\) 16.2208 28.0952i 0.569588 0.986556i −0.427018 0.904243i \(-0.640436\pi\)
0.996607 0.0823128i \(-0.0262307\pi\)
\(812\) 5.24425 3.02777i 0.184037 0.106254i
\(813\) 35.1365 + 35.1365i 1.23229 + 1.23229i
\(814\) −6.14295 + 0.625938i −0.215310 + 0.0219391i
\(815\) 0 0
\(816\) −12.3091 3.29823i −0.430906 0.115461i
\(817\) −2.39841 8.95097i −0.0839096 0.313155i
\(818\) −16.5987 + 4.44761i −0.580361 + 0.155507i
\(819\) 3.81948 + 14.2545i 0.133464 + 0.498093i
\(820\) 0 0
\(821\) −15.4623 + 26.7814i −0.539637 + 0.934678i 0.459287 + 0.888288i \(0.348105\pi\)
−0.998923 + 0.0463901i \(0.985228\pi\)
\(822\) 19.8594i 0.692676i
\(823\) 20.3920 + 5.46402i 0.710820 + 0.190464i 0.596072 0.802931i \(-0.296727\pi\)
0.114748 + 0.993395i \(0.463394\pi\)
\(824\) 5.16605i 0.179968i
\(825\) 0 0
\(826\) −2.90292 5.02800i −0.101005 0.174946i
\(827\) −8.36201 4.82781i −0.290776 0.167879i 0.347516 0.937674i \(-0.387025\pi\)
−0.638292 + 0.769795i \(0.720359\pi\)
\(828\) 21.0383i 0.731133i
\(829\) −3.28514 + 12.2603i −0.114097 + 0.425818i −0.999218 0.0395446i \(-0.987409\pi\)
0.885120 + 0.465362i \(0.154076\pi\)
\(830\) 0 0
\(831\) 11.3264 42.2709i 0.392910 1.46636i
\(832\) 5.27263 9.13247i 0.182796 0.316611i
\(833\) 5.43344 9.41100i 0.188258 0.326072i
\(834\) 3.02061 11.2731i 0.104595 0.390355i
\(835\) 0 0
\(836\) 1.64343 6.13335i 0.0568391 0.212127i
\(837\) 12.5356i 0.433295i
\(838\) −6.23049 3.59718i −0.215229 0.124262i
\(839\) 9.34812 + 16.1914i 0.322733 + 0.558990i 0.981051 0.193750i \(-0.0620651\pi\)
−0.658318 + 0.752740i \(0.728732\pi\)
\(840\) 0 0
\(841\) 18.7120i 0.645242i
\(842\) 8.64147 + 2.31547i 0.297805 + 0.0797965i
\(843\) 58.7379i 2.02304i
\(844\) 5.79473 10.0368i 0.199463 0.345480i
\(845\) 0 0
\(846\) −1.06437 3.97228i −0.0365938 0.136570i
\(847\) 6.85816 1.83764i 0.235649 0.0631420i
\(848\) −4.79192 17.8837i −0.164555 0.614129i
\(849\) −10.9867 2.94387i −0.377062 0.101033i
\(850\) 0 0
\(851\) −17.5779 7.89313i −0.602561 0.270573i
\(852\) 2.84933 + 2.84933i 0.0976164 + 0.0976164i
\(853\) 7.07448 4.08446i 0.242226 0.139849i −0.373974 0.927439i \(-0.622005\pi\)
0.616199 + 0.787590i \(0.288672\pi\)
\(854\) 2.96009 5.12703i 0.101292 0.175444i
\(855\) 0 0
\(856\) −17.5369 + 4.69901i −0.599400 + 0.160609i
\(857\) 1.03295i 0.0352847i 0.999844 + 0.0176424i \(0.00561603\pi\)
−0.999844 + 0.0176424i \(0.994384\pi\)
\(858\) −2.50264 9.33999i −0.0854388 0.318862i
\(859\) 20.1427 20.1427i 0.687259 0.687259i −0.274367 0.961625i \(-0.588468\pi\)
0.961625 + 0.274367i \(0.0884682\pi\)
\(860\) 0 0
\(861\) −27.9159 −0.951371
\(862\) −13.1783 + 13.1783i −0.448856 + 0.448856i
\(863\) −25.4613 6.82233i −0.866712 0.232235i −0.202046 0.979376i \(-0.564759\pi\)
−0.664665 + 0.747141i \(0.731426\pi\)
\(864\) −2.54382 9.49367i −0.0865425 0.322981i
\(865\) 0 0
\(866\) 7.10587 + 1.90401i 0.241467 + 0.0647010i
\(867\) 9.12473 34.0540i 0.309892 1.15653i
\(868\) 5.94708 + 10.3006i 0.201857 + 0.349627i
\(869\) 11.9054 3.19005i 0.403864 0.108215i
\(870\) 0 0
\(871\) −37.4592 10.0372i −1.26926 0.340096i
\(872\) 8.74370 + 2.34287i 0.296099 + 0.0793395i
\(873\) 1.28530 + 2.22621i 0.0435009 + 0.0753458i
\(874\) −1.87467 + 1.87467i −0.0634117 + 0.0634117i
\(875\) 0 0
\(876\) −22.5988 + 13.0474i −0.763543 + 0.440832i
\(877\) 34.9927 + 34.9927i 1.18162 + 1.18162i 0.979325 + 0.202294i \(0.0648395\pi\)
0.202294 + 0.979325i \(0.435160\pi\)
\(878\) 2.11403 + 2.11403i 0.0713451 + 0.0713451i
\(879\) −37.1790 64.3960i −1.25402 2.17202i
\(880\) 0 0
\(881\) 17.4478 + 10.0735i 0.587831 + 0.339384i 0.764239 0.644933i \(-0.223115\pi\)
−0.176408 + 0.984317i \(0.556448\pi\)
\(882\) 10.7086 0.360576
\(883\) 19.6558 + 11.3483i 0.661471 + 0.381901i 0.792837 0.609433i \(-0.208603\pi\)
−0.131366 + 0.991334i \(0.541936\pi\)
\(884\) −10.3845 5.99552i −0.349270 0.201651i
\(885\) 0 0
\(886\) 0.382476 1.42742i 0.0128495 0.0479552i
\(887\) −11.4898 + 11.4898i −0.385791 + 0.385791i −0.873183 0.487392i \(-0.837948\pi\)
0.487392 + 0.873183i \(0.337948\pi\)
\(888\) −28.5598 4.61643i −0.958405 0.154917i
\(889\) 21.9114i 0.734883i
\(890\) 0 0
\(891\) −11.0741 6.39364i −0.370997 0.214195i
\(892\) −12.2176 45.5966i −0.409074 1.52669i
\(893\) 1.93661 3.35430i 0.0648061 0.112247i
\(894\) −5.40460 + 5.40460i −0.180757 + 0.180757i
\(895\) 0 0
\(896\) 8.53517 + 8.53517i 0.285140 + 0.285140i
\(897\) 7.80964 29.1460i 0.260756 0.973156i
\(898\) 7.74348 7.74348i 0.258403 0.258403i
\(899\) −20.2075 −0.673957
\(900\) 0 0
\(901\) −12.5758 + 3.36967i −0.418960 + 0.112260i
\(902\) 10.1799 0.338953
\(903\) −12.9679 + 7.48702i −0.431545 + 0.249153i
\(904\) 12.7653 7.37005i 0.424568 0.245124i
\(905\) 0 0
\(906\) 2.15513 + 8.04306i 0.0715994 + 0.267213i
\(907\) −16.8581 9.73301i −0.559763 0.323179i 0.193287 0.981142i \(-0.438085\pi\)
−0.753050 + 0.657963i \(0.771418\pi\)
\(908\) 17.8044 10.2794i 0.590859 0.341133i
\(909\) 24.9719 + 43.2526i 0.828266 + 1.43460i
\(910\) 0 0
\(911\) −10.7957 10.7957i −0.357678 0.357678i 0.505279 0.862956i \(-0.331390\pi\)
−0.862956 + 0.505279i \(0.831390\pi\)
\(912\) 5.91365 10.2427i 0.195820 0.339171i
\(913\) −3.44368 + 12.8520i −0.113969 + 0.425338i
\(914\) 2.83861i 0.0938929i
\(915\) 0 0
\(916\) −25.4553 + 14.6966i −0.841066 + 0.485590i
\(917\) −10.4642 −0.345557
\(918\) −1.73313 + 0.464391i −0.0572018 + 0.0153272i
\(919\) −0.633274 0.633274i −0.0208898 0.0208898i 0.696585 0.717475i \(-0.254702\pi\)
−0.717475 + 0.696585i \(0.754702\pi\)
\(920\) 0 0
\(921\) 1.58024 2.73705i 0.0520706 0.0901890i
\(922\) −4.00738 + 1.07377i −0.131976 + 0.0353629i
\(923\) 1.60823 + 2.78554i 0.0529356 + 0.0916872i
\(924\) −10.2605 −0.337544
\(925\) 0 0
\(926\) −2.49647 −0.0820392
\(927\) −5.31831 9.21158i −0.174676 0.302548i
\(928\) −15.3038 + 4.10064i −0.502372 + 0.134610i
\(929\) 23.7899 41.2053i 0.780521 1.35190i −0.151118 0.988516i \(-0.548287\pi\)
0.931639 0.363386i \(-0.118379\pi\)
\(930\) 0 0
\(931\) 7.13167 + 7.13167i 0.233731 + 0.233731i
\(932\) −6.26903 + 1.67978i −0.205349 + 0.0550230i
\(933\) −75.0209 −2.45607
\(934\) 4.55000 2.62694i 0.148881 0.0859563i
\(935\) 0 0
\(936\) 25.2137i 0.824135i
\(937\) 12.3173 45.9687i 0.402388 1.50173i −0.406435 0.913680i \(-0.633228\pi\)
0.808823 0.588052i \(-0.200105\pi\)
\(938\) 2.75298 4.76830i 0.0898879 0.155690i
\(939\) −2.46899 2.46899i −0.0805724 0.0805724i
\(940\) 0 0
\(941\) −16.4063 28.4165i −0.534829 0.926351i −0.999172 0.0406953i \(-0.987043\pi\)
0.464343 0.885656i \(-0.346291\pi\)
\(942\) 7.53880 4.35253i 0.245627 0.141813i
\(943\) 27.5110 + 15.8835i 0.895881 + 0.517237i
\(944\) −7.62834 28.4694i −0.248281 0.926599i
\(945\) 0 0
\(946\) 4.72891 2.73024i 0.153750 0.0887677i
\(947\) 3.81592 2.20312i 0.124001 0.0715918i −0.436717 0.899599i \(-0.643859\pi\)
0.560717 + 0.828007i \(0.310525\pi\)
\(948\) 27.0635 0.878981
\(949\) −20.1196 + 5.39104i −0.653111 + 0.175000i
\(950\) 0 0
\(951\) −38.4068 −1.24543
\(952\) 2.56870 2.56870i 0.0832520 0.0832520i
\(953\) −4.86825 + 18.1686i −0.157698 + 0.588538i 0.841161 + 0.540785i \(0.181873\pi\)
−0.998859 + 0.0477530i \(0.984794\pi\)
\(954\) −9.07197 9.07197i −0.293716 0.293716i
\(955\) 0 0
\(956\) −9.05527 + 9.05527i −0.292868 + 0.292868i
\(957\) 8.71595 15.0965i 0.281747 0.488000i
\(958\) 0.512936 + 1.91430i 0.0165722 + 0.0618483i
\(959\) −14.5674 8.41050i −0.470406 0.271589i
\(960\) 0 0
\(961\) 8.69111i 0.280358i
\(962\) −9.87273 4.43324i −0.318310 0.142933i
\(963\) 26.4326 26.4326i 0.851779 0.851779i
\(964\) −11.4116 + 42.5886i −0.367542 + 1.37169i
\(965\) 0 0
\(966\) 3.71008 + 2.14202i 0.119370 + 0.0689182i
\(967\) 24.0118 + 13.8632i 0.772167 + 0.445811i 0.833647 0.552297i \(-0.186249\pi\)
−0.0614801 + 0.998108i \(0.519582\pi\)
\(968\) −12.1309 −0.389901
\(969\) −7.20267 4.15846i −0.231383 0.133589i
\(970\) 0 0
\(971\) −17.5325 30.3673i −0.562646 0.974532i −0.997264 0.0739171i \(-0.976450\pi\)
0.434618 0.900615i \(-0.356883\pi\)
\(972\) −27.2995 27.2995i −0.875632 0.875632i
\(973\) −6.98987 6.98987i −0.224085 0.224085i
\(974\) 4.38912 2.53406i 0.140637 0.0811965i
\(975\) 0 0
\(976\) 21.2515 21.2515i 0.680245 0.680245i
\(977\) −6.22537 10.7827i −0.199167 0.344968i 0.749091 0.662467i \(-0.230490\pi\)
−0.948259 + 0.317499i \(0.897157\pi\)
\(978\) −30.4630 8.16252i −0.974098 0.261009i
\(979\) 4.44471 + 1.19096i 0.142053 + 0.0380631i
\(980\) 0 0
\(981\) −18.0028 + 4.82384i −0.574785 + 0.154013i
\(982\) 1.80530 + 3.12687i 0.0576094 + 0.0997825i
\(983\) 5.16785 19.2867i 0.164829 0.615150i −0.833233 0.552922i \(-0.813513\pi\)
0.998062 0.0622280i \(-0.0198206\pi\)
\(984\) 46.0705 + 12.3446i 1.46867 + 0.393530i
\(985\) 0 0
\(986\) 0.748598 + 2.79381i 0.0238402 + 0.0889729i
\(987\) −6.04544 1.61987i −0.192429 0.0515611i
\(988\) 7.86942 7.86942i 0.250360 0.250360i
\(989\) 17.0397 0.541832
\(990\) 0 0
\(991\) 0.0857771 0.0857771i 0.00272480 0.00272480i −0.705743 0.708468i \(-0.749387\pi\)
0.708468 + 0.705743i \(0.249387\pi\)
\(992\) −8.05439 30.0594i −0.255727 0.954387i
\(993\) 48.5820i 1.54170i
\(994\) −0.441103 + 0.118193i −0.0139910 + 0.00374886i
\(995\) 0 0
\(996\) −14.6076 + 25.3011i −0.462859 + 0.801696i
\(997\) 25.1030 14.4932i 0.795021 0.459006i −0.0467059 0.998909i \(-0.514872\pi\)
0.841727 + 0.539903i \(0.181539\pi\)
\(998\) −8.58611 8.58611i −0.271789 0.271789i
\(999\) 11.3130 4.30151i 0.357929 0.136094i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.t.c.82.10 96
5.2 odd 4 925.2.y.c.193.15 yes 96
5.3 odd 4 925.2.y.c.193.10 yes 96
5.4 even 2 inner 925.2.t.c.82.15 yes 96
37.14 odd 12 925.2.y.c.532.10 yes 96
185.14 odd 12 925.2.y.c.532.15 yes 96
185.88 even 12 inner 925.2.t.c.643.10 yes 96
185.162 even 12 inner 925.2.t.c.643.15 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
925.2.t.c.82.10 96 1.1 even 1 trivial
925.2.t.c.82.15 yes 96 5.4 even 2 inner
925.2.t.c.643.10 yes 96 185.88 even 12 inner
925.2.t.c.643.15 yes 96 185.162 even 12 inner
925.2.y.c.193.10 yes 96 5.3 odd 4
925.2.y.c.193.15 yes 96 5.2 odd 4
925.2.y.c.532.10 yes 96 37.14 odd 12
925.2.y.c.532.15 yes 96 185.14 odd 12