Properties

Label 925.2.y.b.532.9
Level $925$
Weight $2$
Character 925.532
Analytic conductor $7.386$
Analytic rank $0$
Dimension $68$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(193,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.193"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.y (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [68] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(68\)
Relative dimension: \(17\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 185)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 532.9
Character \(\chi\) \(=\) 925.532
Dual form 925.2.y.b.193.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.212566 + 0.122725i) q^{2} +(0.491666 - 1.83492i) q^{3} +(-0.969877 - 1.67988i) q^{4} +(0.329702 - 0.329702i) q^{6} +(-1.00868 + 3.76446i) q^{7} -0.967013i q^{8} +(-0.527123 - 0.304334i) q^{9} +4.37395i q^{11} +(-3.55930 + 0.953710i) q^{12} +(-4.43371 + 2.55980i) q^{13} +(-0.676405 + 0.676405i) q^{14} +(-1.82108 + 3.15420i) q^{16} +(-1.24200 + 2.15121i) q^{17} +(-0.0746989 - 0.129382i) q^{18} +(-0.196130 + 0.731966i) q^{19} +(6.41155 + 3.70171i) q^{21} +(-0.536793 + 0.929753i) q^{22} +3.38111i q^{23} +(-1.77439 - 0.475447i) q^{24} -1.25661 q^{26} +(3.21217 - 3.21217i) q^{27} +(7.30213 - 1.95660i) q^{28} +(-4.99116 + 4.99116i) q^{29} +(-5.96470 - 5.96470i) q^{31} +(-2.44911 + 1.41400i) q^{32} +(8.02585 + 2.15052i) q^{33} +(-0.528015 + 0.304850i) q^{34} +1.18067i q^{36} +(3.11652 - 5.22373i) q^{37} +(-0.131521 + 0.131521i) q^{38} +(2.51713 + 9.39407i) q^{39} +(4.18352 - 2.41536i) q^{41} +(0.908585 + 1.57371i) q^{42} -3.40053i q^{43} +(7.34770 - 4.24219i) q^{44} +(-0.414947 + 0.718709i) q^{46} +(-5.91409 - 5.91409i) q^{47} +(4.89234 + 4.89234i) q^{48} +(-7.09153 - 4.09430i) q^{49} +(3.33665 + 3.33665i) q^{51} +(8.60030 + 4.96539i) q^{52} +(0.158224 + 0.590502i) q^{53} +(1.07701 - 0.288584i) q^{54} +(3.64028 + 0.975410i) q^{56} +(1.24667 + 0.719765i) q^{57} +(-1.67349 + 0.448410i) q^{58} +(-9.92739 + 2.66004i) q^{59} +(-2.63598 + 9.83759i) q^{61} +(-0.535874 - 1.99991i) q^{62} +(1.67735 - 1.67735i) q^{63} +6.59018 q^{64} +(1.44210 + 1.44210i) q^{66} +(12.4015 + 3.32297i) q^{67} +4.81836 q^{68} +(6.20407 + 1.66238i) q^{69} +(5.23213 + 9.06231i) q^{71} +(-0.294295 + 0.509734i) q^{72} +(3.10809 + 3.10809i) q^{73} +(1.30355 - 0.727912i) q^{74} +(1.41983 - 0.380443i) q^{76} +(-16.4656 - 4.41193i) q^{77} +(-0.617830 + 2.30577i) q^{78} +(-0.743780 + 2.77583i) q^{79} +(-5.22776 - 9.05475i) q^{81} +1.18570 q^{82} +(-1.55418 - 5.80029i) q^{83} -14.3608i q^{84} +(0.417330 - 0.722837i) q^{86} +(6.70440 + 11.6124i) q^{87} +4.22967 q^{88} +(-0.387792 - 1.44726i) q^{89} +(-5.16406 - 19.2725i) q^{91} +(5.67985 - 3.27926i) q^{92} +(-13.8774 + 8.01211i) q^{93} +(-0.531327 - 1.98294i) q^{94} +(1.39043 + 5.18914i) q^{96} -6.03559 q^{97} +(-1.00495 - 1.74062i) q^{98} +(1.33114 - 2.30561i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 68 q + 6 q^{2} + 4 q^{3} + 30 q^{4} - 8 q^{6} + 2 q^{7} + 10 q^{12} + 6 q^{13} - 26 q^{16} + 10 q^{17} + 8 q^{18} - 4 q^{19} - 12 q^{21} + 14 q^{22} - 24 q^{26} - 68 q^{27} - 14 q^{28} - 14 q^{29} - 24 q^{31}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.212566 + 0.122725i 0.150307 + 0.0867797i 0.573267 0.819369i \(-0.305676\pi\)
−0.422960 + 0.906148i \(0.639009\pi\)
\(3\) 0.491666 1.83492i 0.283863 1.05939i −0.665803 0.746128i \(-0.731911\pi\)
0.949666 0.313264i \(-0.101423\pi\)
\(4\) −0.969877 1.67988i −0.484939 0.839938i
\(5\) 0 0
\(6\) 0.329702 0.329702i 0.134600 0.134600i
\(7\) −1.00868 + 3.76446i −0.381247 + 1.42283i 0.462753 + 0.886487i \(0.346862\pi\)
−0.843999 + 0.536344i \(0.819805\pi\)
\(8\) 0.967013i 0.341891i
\(9\) −0.527123 0.304334i −0.175708 0.101445i
\(10\) 0 0
\(11\) 4.37395i 1.31880i 0.751794 + 0.659398i \(0.229189\pi\)
−0.751794 + 0.659398i \(0.770811\pi\)
\(12\) −3.55930 + 0.953710i −1.02748 + 0.275312i
\(13\) −4.43371 + 2.55980i −1.22969 + 0.709961i −0.966965 0.254909i \(-0.917954\pi\)
−0.262724 + 0.964871i \(0.584621\pi\)
\(14\) −0.676405 + 0.676405i −0.180777 + 0.180777i
\(15\) 0 0
\(16\) −1.82108 + 3.15420i −0.455269 + 0.788550i
\(17\) −1.24200 + 2.15121i −0.301230 + 0.521746i −0.976415 0.215903i \(-0.930731\pi\)
0.675185 + 0.737649i \(0.264064\pi\)
\(18\) −0.0746989 0.129382i −0.0176067 0.0304957i
\(19\) −0.196130 + 0.731966i −0.0449952 + 0.167924i −0.984767 0.173877i \(-0.944370\pi\)
0.939772 + 0.341802i \(0.111037\pi\)
\(20\) 0 0
\(21\) 6.41155 + 3.70171i 1.39911 + 0.807779i
\(22\) −0.536793 + 0.929753i −0.114445 + 0.198224i
\(23\) 3.38111i 0.705010i 0.935810 + 0.352505i \(0.114670\pi\)
−0.935810 + 0.352505i \(0.885330\pi\)
\(24\) −1.77439 0.475447i −0.362196 0.0970502i
\(25\) 0 0
\(26\) −1.25661 −0.246441
\(27\) 3.21217 3.21217i 0.618182 0.618182i
\(28\) 7.30213 1.95660i 1.37997 0.369762i
\(29\) −4.99116 + 4.99116i −0.926835 + 0.926835i −0.997500 0.0706651i \(-0.977488\pi\)
0.0706651 + 0.997500i \(0.477488\pi\)
\(30\) 0 0
\(31\) −5.96470 5.96470i −1.07129 1.07129i −0.997256 0.0740358i \(-0.976412\pi\)
−0.0740358 0.997256i \(-0.523588\pi\)
\(32\) −2.44911 + 1.41400i −0.432946 + 0.249962i
\(33\) 8.02585 + 2.15052i 1.39712 + 0.374358i
\(34\) −0.528015 + 0.304850i −0.0905538 + 0.0522813i
\(35\) 0 0
\(36\) 1.18067i 0.196778i
\(37\) 3.11652 5.22373i 0.512352 0.858775i
\(38\) −0.131521 + 0.131521i −0.0213355 + 0.0213355i
\(39\) 2.51713 + 9.39407i 0.403064 + 1.50425i
\(40\) 0 0
\(41\) 4.18352 2.41536i 0.653357 0.377216i −0.136384 0.990656i \(-0.543548\pi\)
0.789741 + 0.613440i \(0.210215\pi\)
\(42\) 0.908585 + 1.57371i 0.140198 + 0.242829i
\(43\) 3.40053i 0.518576i −0.965800 0.259288i \(-0.916512\pi\)
0.965800 0.259288i \(-0.0834879\pi\)
\(44\) 7.34770 4.24219i 1.10771 0.639535i
\(45\) 0 0
\(46\) −0.414947 + 0.718709i −0.0611806 + 0.105968i
\(47\) −5.91409 5.91409i −0.862659 0.862659i 0.128987 0.991646i \(-0.458827\pi\)
−0.991646 + 0.128987i \(0.958827\pi\)
\(48\) 4.89234 + 4.89234i 0.706149 + 0.706149i
\(49\) −7.09153 4.09430i −1.01308 0.584900i
\(50\) 0 0
\(51\) 3.33665 + 3.33665i 0.467225 + 0.467225i
\(52\) 8.60030 + 4.96539i 1.19265 + 0.688575i
\(53\) 0.158224 + 0.590502i 0.0217338 + 0.0811116i 0.975941 0.218035i \(-0.0699647\pi\)
−0.954207 + 0.299147i \(0.903298\pi\)
\(54\) 1.07701 0.288584i 0.146563 0.0392713i
\(55\) 0 0
\(56\) 3.64028 + 0.975410i 0.486453 + 0.130345i
\(57\) 1.24667 + 0.719765i 0.165125 + 0.0953352i
\(58\) −1.67349 + 0.448410i −0.219740 + 0.0588792i
\(59\) −9.92739 + 2.66004i −1.29244 + 0.346307i −0.838585 0.544771i \(-0.816617\pi\)
−0.453851 + 0.891078i \(0.649950\pi\)
\(60\) 0 0
\(61\) −2.63598 + 9.83759i −0.337502 + 1.25957i 0.563629 + 0.826028i \(0.309405\pi\)
−0.901131 + 0.433547i \(0.857262\pi\)
\(62\) −0.535874 1.99991i −0.0680561 0.253989i
\(63\) 1.67735 1.67735i 0.211327 0.211327i
\(64\) 6.59018 0.823773
\(65\) 0 0
\(66\) 1.44210 + 1.44210i 0.177510 + 0.177510i
\(67\) 12.4015 + 3.32297i 1.51508 + 0.405966i 0.918120 0.396302i \(-0.129707\pi\)
0.596964 + 0.802268i \(0.296373\pi\)
\(68\) 4.81836 0.584312
\(69\) 6.20407 + 1.66238i 0.746882 + 0.200126i
\(70\) 0 0
\(71\) 5.23213 + 9.06231i 0.620940 + 1.07550i 0.989311 + 0.145820i \(0.0465821\pi\)
−0.368372 + 0.929679i \(0.620085\pi\)
\(72\) −0.294295 + 0.509734i −0.0346830 + 0.0600727i
\(73\) 3.10809 + 3.10809i 0.363775 + 0.363775i 0.865201 0.501426i \(-0.167191\pi\)
−0.501426 + 0.865201i \(0.667191\pi\)
\(74\) 1.30355 0.727912i 0.151534 0.0846180i
\(75\) 0 0
\(76\) 1.41983 0.380443i 0.162866 0.0436398i
\(77\) −16.4656 4.41193i −1.87642 0.502786i
\(78\) −0.617830 + 2.30577i −0.0699555 + 0.261077i
\(79\) −0.743780 + 2.77583i −0.0836818 + 0.312305i −0.995061 0.0992622i \(-0.968352\pi\)
0.911379 + 0.411567i \(0.135018\pi\)
\(80\) 0 0
\(81\) −5.22776 9.05475i −0.580863 1.00608i
\(82\) 1.18570 0.130939
\(83\) −1.55418 5.80029i −0.170594 0.636664i −0.997260 0.0739721i \(-0.976432\pi\)
0.826667 0.562692i \(-0.190234\pi\)
\(84\) 14.3608i 1.56689i
\(85\) 0 0
\(86\) 0.417330 0.722837i 0.0450019 0.0779456i
\(87\) 6.70440 + 11.6124i 0.718787 + 1.24498i
\(88\) 4.22967 0.450884
\(89\) −0.387792 1.44726i −0.0411059 0.153409i 0.942322 0.334706i \(-0.108637\pi\)
−0.983428 + 0.181297i \(0.941970\pi\)
\(90\) 0 0
\(91\) −5.16406 19.2725i −0.541341 2.02031i
\(92\) 5.67985 3.27926i 0.592165 0.341887i
\(93\) −13.8774 + 8.01211i −1.43902 + 0.830817i
\(94\) −0.531327 1.98294i −0.0548022 0.204525i
\(95\) 0 0
\(96\) 1.39043 + 5.18914i 0.141910 + 0.529614i
\(97\) −6.03559 −0.612821 −0.306411 0.951899i \(-0.599128\pi\)
−0.306411 + 0.951899i \(0.599128\pi\)
\(98\) −1.00495 1.74062i −0.101515 0.175829i
\(99\) 1.33114 2.30561i 0.133785 0.231722i
\(100\) 0 0
\(101\) 1.89841i 0.188899i 0.995530 + 0.0944493i \(0.0301090\pi\)
−0.995530 + 0.0944493i \(0.969891\pi\)
\(102\) 0.299768 + 1.11875i 0.0296815 + 0.110773i
\(103\) −4.74353 −0.467394 −0.233697 0.972309i \(-0.575082\pi\)
−0.233697 + 0.972309i \(0.575082\pi\)
\(104\) 2.47536 + 4.28745i 0.242729 + 0.420419i
\(105\) 0 0
\(106\) −0.0388362 + 0.144939i −0.00377210 + 0.0140777i
\(107\) −0.157247 + 0.586853i −0.0152016 + 0.0567332i −0.973110 0.230341i \(-0.926016\pi\)
0.957908 + 0.287074i \(0.0926826\pi\)
\(108\) −8.51145 2.28064i −0.819015 0.219454i
\(109\) 6.60438 1.76964i 0.632585 0.169501i 0.0717424 0.997423i \(-0.477144\pi\)
0.560842 + 0.827923i \(0.310477\pi\)
\(110\) 0 0
\(111\) −8.05284 8.28689i −0.764342 0.786556i
\(112\) −10.0370 10.0370i −0.948404 0.948404i
\(113\) −0.890996 + 1.54325i −0.0838178 + 0.145177i −0.904887 0.425652i \(-0.860045\pi\)
0.821069 + 0.570829i \(0.193378\pi\)
\(114\) 0.176666 + 0.305995i 0.0165463 + 0.0286590i
\(115\) 0 0
\(116\) 13.2253 + 3.54372i 1.22794 + 0.329026i
\(117\) 3.11614 0.288088
\(118\) −2.43668 0.652906i −0.224314 0.0601048i
\(119\) −6.84536 6.84536i −0.627513 0.627513i
\(120\) 0 0
\(121\) −8.13144 −0.739222
\(122\) −1.76764 + 1.76764i −0.160034 + 0.160034i
\(123\) −2.37510 8.86398i −0.214155 0.799238i
\(124\) −4.23493 + 15.8050i −0.380308 + 1.41933i
\(125\) 0 0
\(126\) 0.562402 0.150695i 0.0501027 0.0134250i
\(127\) 3.66591 0.982278i 0.325297 0.0871631i −0.0924749 0.995715i \(-0.529478\pi\)
0.417772 + 0.908552i \(0.362811\pi\)
\(128\) 6.29907 + 3.63677i 0.556765 + 0.321448i
\(129\) −6.23971 1.67192i −0.549376 0.147205i
\(130\) 0 0
\(131\) 15.2542 4.08734i 1.33276 0.357113i 0.479019 0.877805i \(-0.340993\pi\)
0.853745 + 0.520692i \(0.174326\pi\)
\(132\) −4.17148 15.5682i −0.363081 1.35504i
\(133\) −2.55762 1.47664i −0.221774 0.128041i
\(134\) 2.22832 + 2.22832i 0.192498 + 0.192498i
\(135\) 0 0
\(136\) 2.08025 + 1.20103i 0.178380 + 0.102988i
\(137\) 9.67862 + 9.67862i 0.826900 + 0.826900i 0.987087 0.160186i \(-0.0512095\pi\)
−0.160186 + 0.987087i \(0.551210\pi\)
\(138\) 1.11476 + 1.11476i 0.0948946 + 0.0948946i
\(139\) −8.37582 + 14.5073i −0.710427 + 1.23050i 0.254269 + 0.967133i \(0.418165\pi\)
−0.964697 + 0.263363i \(0.915168\pi\)
\(140\) 0 0
\(141\) −13.7596 + 7.94413i −1.15877 + 0.669017i
\(142\) 2.56845i 0.215540i
\(143\) −11.1964 19.3928i −0.936294 1.62171i
\(144\) 1.91986 1.10843i 0.159989 0.0923694i
\(145\) 0 0
\(146\) 0.279234 + 1.04211i 0.0231096 + 0.0862460i
\(147\) −10.9994 + 10.9994i −0.907213 + 0.907213i
\(148\) −11.7979 0.168989i −0.969778 0.0138908i
\(149\) 2.73367i 0.223951i −0.993711 0.111976i \(-0.964282\pi\)
0.993711 0.111976i \(-0.0357179\pi\)
\(150\) 0 0
\(151\) −13.6955 + 7.90713i −1.11453 + 0.643473i −0.939998 0.341179i \(-0.889174\pi\)
−0.174530 + 0.984652i \(0.555840\pi\)
\(152\) 0.707820 + 0.189660i 0.0574118 + 0.0153834i
\(153\) 1.30938 0.755968i 0.105857 0.0611164i
\(154\) −2.95856 2.95856i −0.238408 0.238408i
\(155\) 0 0
\(156\) 13.3396 13.3396i 1.06802 1.06802i
\(157\) −4.78011 + 1.28083i −0.381494 + 0.102221i −0.444469 0.895794i \(-0.646608\pi\)
0.0629751 + 0.998015i \(0.479941\pi\)
\(158\) −0.498766 + 0.498766i −0.0396797 + 0.0396797i
\(159\) 1.16132 0.0920984
\(160\) 0 0
\(161\) −12.7281 3.41047i −1.00311 0.268783i
\(162\) 2.56631i 0.201628i
\(163\) −8.18168 + 14.1711i −0.640839 + 1.10996i 0.344407 + 0.938820i \(0.388080\pi\)
−0.985246 + 0.171145i \(0.945253\pi\)
\(164\) −8.11501 4.68520i −0.633676 0.365853i
\(165\) 0 0
\(166\) 0.381474 1.42368i 0.0296081 0.110499i
\(167\) −3.90611 6.76558i −0.302264 0.523537i 0.674384 0.738380i \(-0.264409\pi\)
−0.976648 + 0.214844i \(0.931076\pi\)
\(168\) 3.57960 6.20005i 0.276172 0.478344i
\(169\) 6.60518 11.4405i 0.508091 0.880039i
\(170\) 0 0
\(171\) 0.326147 0.326147i 0.0249411 0.0249411i
\(172\) −5.71248 + 3.29810i −0.435572 + 0.251478i
\(173\) 20.1044 5.38695i 1.52851 0.409562i 0.605976 0.795483i \(-0.292783\pi\)
0.922532 + 0.385921i \(0.126116\pi\)
\(174\) 3.29119i 0.249504i
\(175\) 0 0
\(176\) −13.7963 7.96530i −1.03994 0.600407i
\(177\) 19.5238i 1.46750i
\(178\) 0.0951836 0.355230i 0.00713431 0.0266256i
\(179\) 8.72104 8.72104i 0.651841 0.651841i −0.301595 0.953436i \(-0.597519\pi\)
0.953436 + 0.301595i \(0.0975190\pi\)
\(180\) 0 0
\(181\) −1.85478 3.21258i −0.137865 0.238789i 0.788823 0.614620i \(-0.210691\pi\)
−0.926688 + 0.375831i \(0.877357\pi\)
\(182\) 1.26752 4.73045i 0.0939548 0.350644i
\(183\) 16.7552 + 9.67361i 1.23858 + 0.715094i
\(184\) 3.26958 0.241036
\(185\) 0 0
\(186\) −3.93314 −0.288392
\(187\) −9.40930 5.43246i −0.688076 0.397261i
\(188\) −4.19900 + 15.6709i −0.306244 + 1.14292i
\(189\) 8.85201 + 15.3321i 0.643889 + 1.11525i
\(190\) 0 0
\(191\) 7.04757 7.04757i 0.509945 0.509945i −0.404565 0.914509i \(-0.632577\pi\)
0.914509 + 0.404565i \(0.132577\pi\)
\(192\) 3.24016 12.0925i 0.233839 0.872698i
\(193\) 4.50078i 0.323974i 0.986793 + 0.161987i \(0.0517902\pi\)
−0.986793 + 0.161987i \(0.948210\pi\)
\(194\) −1.28296 0.740718i −0.0921112 0.0531804i
\(195\) 0 0
\(196\) 15.8839i 1.13456i
\(197\) 4.63427 1.24175i 0.330178 0.0884710i −0.0899217 0.995949i \(-0.528662\pi\)
0.420100 + 0.907478i \(0.361995\pi\)
\(198\) 0.565911 0.326729i 0.0402176 0.0232196i
\(199\) −2.93495 + 2.93495i −0.208053 + 0.208053i −0.803440 0.595386i \(-0.796999\pi\)
0.595386 + 0.803440i \(0.296999\pi\)
\(200\) 0 0
\(201\) 12.1948 21.1220i 0.860153 1.48983i
\(202\) −0.232982 + 0.403537i −0.0163926 + 0.0283927i
\(203\) −13.7545 23.8235i −0.965378 1.67208i
\(204\) 2.36902 8.84131i 0.165865 0.619015i
\(205\) 0 0
\(206\) −1.00831 0.582150i −0.0702525 0.0405603i
\(207\) 1.02899 1.78226i 0.0715196 0.123876i
\(208\) 18.6464i 1.29290i
\(209\) −3.20158 0.857861i −0.221458 0.0593395i
\(210\) 0 0
\(211\) −16.2172 −1.11644 −0.558221 0.829692i \(-0.688516\pi\)
−0.558221 + 0.829692i \(0.688516\pi\)
\(212\) 0.838512 0.838512i 0.0575892 0.0575892i
\(213\) 19.2011 5.14492i 1.31564 0.352524i
\(214\) −0.105447 + 0.105447i −0.00720819 + 0.00720819i
\(215\) 0 0
\(216\) −3.10621 3.10621i −0.211351 0.211351i
\(217\) 28.4704 16.4374i 1.93269 1.11584i
\(218\) 1.62104 + 0.434358i 0.109791 + 0.0294184i
\(219\) 7.23124 4.17496i 0.488642 0.282118i
\(220\) 0 0
\(221\) 12.7171i 0.855447i
\(222\) −0.694751 2.74979i −0.0466287 0.184554i
\(223\) −12.0819 + 12.0819i −0.809065 + 0.809065i −0.984492 0.175427i \(-0.943869\pi\)
0.175427 + 0.984492i \(0.443869\pi\)
\(224\) −2.85255 10.6459i −0.190594 0.711307i
\(225\) 0 0
\(226\) −0.378791 + 0.218695i −0.0251968 + 0.0145474i
\(227\) 2.22445 + 3.85285i 0.147642 + 0.255723i 0.930355 0.366659i \(-0.119498\pi\)
−0.782714 + 0.622382i \(0.786165\pi\)
\(228\) 2.79233i 0.184927i
\(229\) 7.06526 4.07913i 0.466886 0.269556i −0.248050 0.968747i \(-0.579790\pi\)
0.714935 + 0.699191i \(0.246456\pi\)
\(230\) 0 0
\(231\) −16.1911 + 28.0438i −1.06530 + 1.84515i
\(232\) 4.82651 + 4.82651i 0.316876 + 0.316876i
\(233\) 9.86567 + 9.86567i 0.646322 + 0.646322i 0.952102 0.305780i \(-0.0989173\pi\)
−0.305780 + 0.952102i \(0.598917\pi\)
\(234\) 0.662386 + 0.382429i 0.0433015 + 0.0250001i
\(235\) 0 0
\(236\) 14.0969 + 14.0969i 0.917629 + 0.917629i
\(237\) 4.72773 + 2.72956i 0.307099 + 0.177304i
\(238\) −0.614994 2.29519i −0.0398641 0.148775i
\(239\) 15.3216 4.10540i 0.991069 0.265556i 0.273369 0.961909i \(-0.411862\pi\)
0.717699 + 0.696353i \(0.245195\pi\)
\(240\) 0 0
\(241\) 15.9979 + 4.28663i 1.03052 + 0.276126i 0.734178 0.678957i \(-0.237568\pi\)
0.296338 + 0.955083i \(0.404235\pi\)
\(242\) −1.72847 0.997931i −0.111110 0.0641495i
\(243\) −6.02136 + 1.61342i −0.386270 + 0.103501i
\(244\) 19.0825 5.11314i 1.22163 0.327336i
\(245\) 0 0
\(246\) 0.582967 2.17566i 0.0371686 0.138715i
\(247\) −1.00411 3.74738i −0.0638898 0.238440i
\(248\) −5.76794 + 5.76794i −0.366264 + 0.366264i
\(249\) −11.4072 −0.722902
\(250\) 0 0
\(251\) 3.53612 + 3.53612i 0.223198 + 0.223198i 0.809844 0.586646i \(-0.199552\pi\)
−0.586646 + 0.809844i \(0.699552\pi\)
\(252\) −4.44458 1.19092i −0.279982 0.0750209i
\(253\) −14.7888 −0.929765
\(254\) 0.899798 + 0.241100i 0.0564583 + 0.0151280i
\(255\) 0 0
\(256\) −5.69753 9.86842i −0.356096 0.616776i
\(257\) 10.4856 18.1616i 0.654073 1.13289i −0.328052 0.944660i \(-0.606392\pi\)
0.982125 0.188229i \(-0.0602746\pi\)
\(258\) −1.12116 1.12116i −0.0698005 0.0698005i
\(259\) 16.5209 + 17.0011i 1.02656 + 1.05640i
\(260\) 0 0
\(261\) 4.14993 1.11197i 0.256874 0.0688293i
\(262\) 3.74414 + 1.00324i 0.231314 + 0.0619803i
\(263\) −3.00781 + 11.2253i −0.185470 + 0.692182i 0.809060 + 0.587726i \(0.199977\pi\)
−0.994530 + 0.104456i \(0.966690\pi\)
\(264\) 2.07958 7.76110i 0.127989 0.477663i
\(265\) 0 0
\(266\) −0.362442 0.627768i −0.0222228 0.0384910i
\(267\) −2.84627 −0.174189
\(268\) −6.44575 24.0559i −0.393737 1.46945i
\(269\) 20.4566i 1.24726i 0.781719 + 0.623631i \(0.214343\pi\)
−0.781719 + 0.623631i \(0.785657\pi\)
\(270\) 0 0
\(271\) 11.4239 19.7867i 0.693951 1.20196i −0.276582 0.960990i \(-0.589202\pi\)
0.970533 0.240968i \(-0.0774650\pi\)
\(272\) −4.52357 7.83505i −0.274282 0.475070i
\(273\) −37.9026 −2.29397
\(274\) 0.869536 + 3.24515i 0.0525306 + 0.196047i
\(275\) 0 0
\(276\) −3.22460 12.0344i −0.194098 0.724384i
\(277\) −11.9296 + 6.88756i −0.716780 + 0.413833i −0.813567 0.581472i \(-0.802477\pi\)
0.0967861 + 0.995305i \(0.469144\pi\)
\(278\) −3.56083 + 2.05584i −0.213564 + 0.123301i
\(279\) 1.32886 + 4.95939i 0.0795570 + 0.296911i
\(280\) 0 0
\(281\) −6.14362 22.9283i −0.366498 1.36779i −0.865379 0.501118i \(-0.832922\pi\)
0.498881 0.866670i \(-0.333744\pi\)
\(282\) −3.89978 −0.232228
\(283\) 10.5663 + 18.3014i 0.628102 + 1.08790i 0.987932 + 0.154887i \(0.0495013\pi\)
−0.359830 + 0.933018i \(0.617165\pi\)
\(284\) 10.1490 17.5787i 0.602235 1.04310i
\(285\) 0 0
\(286\) 5.49634i 0.325005i
\(287\) 4.87267 + 18.1850i 0.287624 + 1.07343i
\(288\) 1.72131 0.101429
\(289\) 5.41486 + 9.37881i 0.318521 + 0.551695i
\(290\) 0 0
\(291\) −2.96749 + 11.0748i −0.173957 + 0.649218i
\(292\) 2.20674 8.23568i 0.129140 0.481957i
\(293\) 0.477628 + 0.127980i 0.0279033 + 0.00747667i 0.272744 0.962087i \(-0.412069\pi\)
−0.244840 + 0.969563i \(0.578736\pi\)
\(294\) −3.68799 + 0.988194i −0.215088 + 0.0576326i
\(295\) 0 0
\(296\) −5.05141 3.01371i −0.293607 0.175168i
\(297\) 14.0499 + 14.0499i 0.815256 + 0.815256i
\(298\) 0.335490 0.581086i 0.0194344 0.0336614i
\(299\) −8.65498 14.9909i −0.500530 0.866944i
\(300\) 0 0
\(301\) 12.8012 + 3.43006i 0.737847 + 0.197706i
\(302\) −3.88161 −0.223362
\(303\) 3.48343 + 0.933381i 0.200118 + 0.0536214i
\(304\) −1.95160 1.95160i −0.111932 0.111932i
\(305\) 0 0
\(306\) 0.371105 0.0212146
\(307\) −13.0911 + 13.0911i −0.747149 + 0.747149i −0.973943 0.226794i \(-0.927176\pi\)
0.226794 + 0.973943i \(0.427176\pi\)
\(308\) 8.55807 + 31.9391i 0.487641 + 1.81990i
\(309\) −2.33223 + 8.70400i −0.132676 + 0.495153i
\(310\) 0 0
\(311\) −25.2278 + 6.75978i −1.43054 + 0.383312i −0.889210 0.457499i \(-0.848745\pi\)
−0.541329 + 0.840811i \(0.682079\pi\)
\(312\) 9.08418 2.43410i 0.514291 0.137804i
\(313\) 14.5726 + 8.41349i 0.823691 + 0.475558i 0.851688 0.524050i \(-0.175579\pi\)
−0.0279965 + 0.999608i \(0.508913\pi\)
\(314\) −1.17328 0.314379i −0.0662119 0.0177414i
\(315\) 0 0
\(316\) 5.38442 1.44275i 0.302897 0.0811611i
\(317\) −4.65369 17.3678i −0.261377 0.975472i −0.964431 0.264336i \(-0.914847\pi\)
0.703054 0.711137i \(-0.251819\pi\)
\(318\) 0.246856 + 0.142523i 0.0138430 + 0.00799227i
\(319\) −21.8311 21.8311i −1.22231 1.22231i
\(320\) 0 0
\(321\) 0.999515 + 0.577070i 0.0557875 + 0.0322089i
\(322\) −2.28700 2.28700i −0.127450 0.127450i
\(323\) −1.33102 1.33102i −0.0740599 0.0740599i
\(324\) −10.1406 + 17.5640i −0.563365 + 0.975778i
\(325\) 0 0
\(326\) −3.47829 + 2.00819i −0.192645 + 0.111224i
\(327\) 12.9886i 0.718270i
\(328\) −2.33568 4.04552i −0.128966 0.223376i
\(329\) 28.2288 16.2979i 1.55630 0.898533i
\(330\) 0 0
\(331\) −1.17108 4.37053i −0.0643683 0.240226i 0.926245 0.376923i \(-0.123018\pi\)
−0.990613 + 0.136697i \(0.956351\pi\)
\(332\) −8.23640 + 8.23640i −0.452031 + 0.452031i
\(333\) −3.23255 + 1.80508i −0.177142 + 0.0989178i
\(334\) 1.91751i 0.104921i
\(335\) 0 0
\(336\) −23.3519 + 13.4822i −1.27395 + 0.735514i
\(337\) −0.483946 0.129673i −0.0263622 0.00706374i 0.245614 0.969368i \(-0.421010\pi\)
−0.271976 + 0.962304i \(0.587677\pi\)
\(338\) 2.80807 1.62124i 0.152739 0.0881839i
\(339\) 2.39367 + 2.39367i 0.130006 + 0.130006i
\(340\) 0 0
\(341\) 26.0893 26.0893i 1.41281 1.41281i
\(342\) 0.109354 0.0293013i 0.00591319 0.00158443i
\(343\) 3.27551 3.27551i 0.176861 0.176861i
\(344\) −3.28836 −0.177296
\(345\) 0 0
\(346\) 4.93462 + 1.32223i 0.265287 + 0.0710834i
\(347\) 5.86619i 0.314914i −0.987526 0.157457i \(-0.949670\pi\)
0.987526 0.157457i \(-0.0503295\pi\)
\(348\) 13.0049 22.5251i 0.697135 1.20747i
\(349\) −18.2252 10.5223i −0.975571 0.563246i −0.0746410 0.997210i \(-0.523781\pi\)
−0.900930 + 0.433964i \(0.857114\pi\)
\(350\) 0 0
\(351\) −6.01930 + 22.4643i −0.321286 + 1.19906i
\(352\) −6.18475 10.7123i −0.329648 0.570967i
\(353\) 7.69762 13.3327i 0.409703 0.709627i −0.585153 0.810923i \(-0.698966\pi\)
0.994856 + 0.101296i \(0.0322989\pi\)
\(354\) −2.39606 + 4.15010i −0.127349 + 0.220575i
\(355\) 0 0
\(356\) −2.05511 + 2.05511i −0.108920 + 0.108920i
\(357\) −15.9263 + 9.19507i −0.842910 + 0.486655i
\(358\) 2.92409 0.783507i 0.154543 0.0414096i
\(359\) 28.7191i 1.51574i 0.652407 + 0.757869i \(0.273759\pi\)
−0.652407 + 0.757869i \(0.726241\pi\)
\(360\) 0 0
\(361\) 15.9572 + 9.21288i 0.839851 + 0.484888i
\(362\) 0.910513i 0.0478555i
\(363\) −3.99795 + 14.9206i −0.209838 + 0.783126i
\(364\) −27.3670 + 27.3670i −1.43442 + 1.43442i
\(365\) 0 0
\(366\) 2.37439 + 4.11256i 0.124111 + 0.214967i
\(367\) −2.96732 + 11.0742i −0.154893 + 0.578068i 0.844222 + 0.535994i \(0.180063\pi\)
−0.999115 + 0.0420738i \(0.986604\pi\)
\(368\) −10.6647 6.15727i −0.555936 0.320970i
\(369\) −2.94031 −0.153066
\(370\) 0 0
\(371\) −2.38252 −0.123694
\(372\) 26.9187 + 15.5415i 1.39567 + 0.805791i
\(373\) 2.85417 10.6519i 0.147783 0.551535i −0.851832 0.523815i \(-0.824508\pi\)
0.999616 0.0277207i \(-0.00882491\pi\)
\(374\) −1.33340 2.30951i −0.0689483 0.119422i
\(375\) 0 0
\(376\) −5.71900 + 5.71900i −0.294935 + 0.294935i
\(377\) 9.35296 34.9057i 0.481702 1.79774i
\(378\) 4.34545i 0.223506i
\(379\) −24.3009 14.0302i −1.24826 0.720681i −0.277494 0.960727i \(-0.589504\pi\)
−0.970761 + 0.240046i \(0.922837\pi\)
\(380\) 0 0
\(381\) 7.20961i 0.369359i
\(382\) 2.36299 0.633161i 0.120901 0.0323953i
\(383\) −7.08041 + 4.08788i −0.361792 + 0.208881i −0.669867 0.742481i \(-0.733649\pi\)
0.308075 + 0.951362i \(0.400315\pi\)
\(384\) 9.77022 9.77022i 0.498585 0.498585i
\(385\) 0 0
\(386\) −0.552359 + 0.956713i −0.0281143 + 0.0486954i
\(387\) −1.03490 + 1.79250i −0.0526069 + 0.0911178i
\(388\) 5.85378 + 10.1390i 0.297181 + 0.514732i
\(389\) 6.73768 25.1454i 0.341614 1.27492i −0.554904 0.831914i \(-0.687245\pi\)
0.896518 0.443007i \(-0.146088\pi\)
\(390\) 0 0
\(391\) −7.27349 4.19935i −0.367836 0.212370i
\(392\) −3.95924 + 6.85760i −0.199972 + 0.346361i
\(393\) 29.9998i 1.51329i
\(394\) 1.13748 + 0.304787i 0.0573055 + 0.0153550i
\(395\) 0 0
\(396\) −5.16418 −0.259510
\(397\) −24.8666 + 24.8666i −1.24802 + 1.24802i −0.291423 + 0.956594i \(0.594129\pi\)
−0.956594 + 0.291423i \(0.905871\pi\)
\(398\) −0.984063 + 0.263679i −0.0493266 + 0.0132170i
\(399\) −3.96702 + 3.96702i −0.198599 + 0.198599i
\(400\) 0 0
\(401\) 21.5174 + 21.5174i 1.07453 + 1.07453i 0.996990 + 0.0775363i \(0.0247054\pi\)
0.0775363 + 0.996990i \(0.475295\pi\)
\(402\) 5.18439 2.99321i 0.258574 0.149288i
\(403\) 41.7142 + 11.1773i 2.07793 + 0.556780i
\(404\) 3.18909 1.84122i 0.158663 0.0916042i
\(405\) 0 0
\(406\) 6.75209i 0.335101i
\(407\) 22.8483 + 13.6315i 1.13255 + 0.675688i
\(408\) 3.22659 3.22659i 0.159740 0.159740i
\(409\) 4.96725 + 18.5380i 0.245615 + 0.916647i 0.973073 + 0.230495i \(0.0740346\pi\)
−0.727459 + 0.686151i \(0.759299\pi\)
\(410\) 0 0
\(411\) 22.5181 13.0009i 1.11074 0.641285i
\(412\) 4.60064 + 7.96855i 0.226657 + 0.392582i
\(413\) 40.0544i 1.97095i
\(414\) 0.437456 0.252565i 0.0214998 0.0124129i
\(415\) 0 0
\(416\) 7.23910 12.5385i 0.354926 0.614750i
\(417\) 22.5017 + 22.5017i 1.10191 + 1.10191i
\(418\) −0.575266 0.575266i −0.0281372 0.0281372i
\(419\) −14.4238 8.32758i −0.704649 0.406829i 0.104428 0.994532i \(-0.466699\pi\)
−0.809076 + 0.587703i \(0.800032\pi\)
\(420\) 0 0
\(421\) −1.63243 1.63243i −0.0795600 0.0795600i 0.666207 0.745767i \(-0.267917\pi\)
−0.745767 + 0.666207i \(0.767917\pi\)
\(422\) −3.44723 1.99026i −0.167809 0.0968844i
\(423\) 1.31759 + 4.91731i 0.0640634 + 0.239088i
\(424\) 0.571022 0.153005i 0.0277313 0.00743058i
\(425\) 0 0
\(426\) 4.71291 + 1.26282i 0.228341 + 0.0611838i
\(427\) −34.3744 19.8460i −1.66349 0.960417i
\(428\) 1.13835 0.305020i 0.0550242 0.0147437i
\(429\) −41.0892 + 11.0098i −1.98380 + 0.531559i
\(430\) 0 0
\(431\) −4.00348 + 14.9412i −0.192841 + 0.719692i 0.799974 + 0.600034i \(0.204846\pi\)
−0.992815 + 0.119658i \(0.961820\pi\)
\(432\) 4.28221 + 15.9814i 0.206028 + 0.768907i
\(433\) 25.3131 25.3131i 1.21647 1.21647i 0.247609 0.968860i \(-0.420355\pi\)
0.968860 0.247609i \(-0.0796449\pi\)
\(434\) 8.06910 0.387329
\(435\) 0 0
\(436\) −9.37821 9.37821i −0.449135 0.449135i
\(437\) −2.47486 0.663136i −0.118388 0.0317221i
\(438\) 2.04949 0.0979283
\(439\) 19.5391 + 5.23549i 0.932551 + 0.249876i 0.692942 0.720993i \(-0.256314\pi\)
0.239609 + 0.970870i \(0.422981\pi\)
\(440\) 0 0
\(441\) 2.49207 + 4.31639i 0.118670 + 0.205543i
\(442\) 1.56071 2.70323i 0.0742354 0.128579i
\(443\) 14.1936 + 14.1936i 0.674357 + 0.674357i 0.958717 0.284360i \(-0.0917813\pi\)
−0.284360 + 0.958717i \(0.591781\pi\)
\(444\) −6.11068 + 21.5650i −0.290000 + 1.02343i
\(445\) 0 0
\(446\) −4.05096 + 1.08545i −0.191818 + 0.0513976i
\(447\) −5.01607 1.34405i −0.237252 0.0635715i
\(448\) −6.64741 + 24.8085i −0.314061 + 1.17209i
\(449\) 0.795805 2.96998i 0.0375563 0.140162i −0.944602 0.328218i \(-0.893552\pi\)
0.982158 + 0.188056i \(0.0602186\pi\)
\(450\) 0 0
\(451\) 10.5647 + 18.2985i 0.497470 + 0.861644i
\(452\) 3.45663 0.162586
\(453\) 7.77533 + 29.0179i 0.365317 + 1.36338i
\(454\) 1.09198i 0.0512492i
\(455\) 0 0
\(456\) 0.696022 1.20554i 0.0325942 0.0564548i
\(457\) 1.90857 + 3.30575i 0.0892793 + 0.154636i 0.907207 0.420685i \(-0.138210\pi\)
−0.817927 + 0.575321i \(0.804877\pi\)
\(458\) 2.00244 0.0935681
\(459\) 2.92053 + 10.8996i 0.136319 + 0.508749i
\(460\) 0 0
\(461\) 9.05566 + 33.7962i 0.421764 + 1.57404i 0.770890 + 0.636969i \(0.219812\pi\)
−0.349126 + 0.937076i \(0.613521\pi\)
\(462\) −6.88335 + 3.97410i −0.320242 + 0.184892i
\(463\) −24.4405 + 14.1107i −1.13585 + 0.655782i −0.945399 0.325915i \(-0.894328\pi\)
−0.190449 + 0.981697i \(0.560994\pi\)
\(464\) −6.65382 24.8324i −0.308896 1.15282i
\(465\) 0 0
\(466\) 0.886341 + 3.30787i 0.0410590 + 0.153234i
\(467\) −15.9774 −0.739345 −0.369672 0.929162i \(-0.620530\pi\)
−0.369672 + 0.929162i \(0.620530\pi\)
\(468\) −3.02228 5.23474i −0.139705 0.241976i
\(469\) −25.0184 + 43.3331i −1.15524 + 2.00094i
\(470\) 0 0
\(471\) 9.40086i 0.433169i
\(472\) 2.57229 + 9.59991i 0.118399 + 0.441872i
\(473\) 14.8738 0.683896
\(474\) 0.669969 + 1.16042i 0.0307727 + 0.0532999i
\(475\) 0 0
\(476\) −4.86020 + 18.1385i −0.222767 + 0.831378i
\(477\) 0.0963063 0.359420i 0.00440956 0.0164567i
\(478\) 3.76067 + 1.00767i 0.172009 + 0.0460897i
\(479\) −19.8825 + 5.32750i −0.908454 + 0.243420i −0.682643 0.730752i \(-0.739170\pi\)
−0.225811 + 0.974171i \(0.572503\pi\)
\(480\) 0 0
\(481\) −0.446015 + 31.1381i −0.0203365 + 1.41978i
\(482\) 2.87453 + 2.87453i 0.130931 + 0.130931i
\(483\) −12.5159 + 21.6782i −0.569493 + 0.986390i
\(484\) 7.88650 + 13.6598i 0.358477 + 0.620901i
\(485\) 0 0
\(486\) −1.47794 0.396013i −0.0670408 0.0179635i
\(487\) 6.61449 0.299731 0.149866 0.988706i \(-0.452116\pi\)
0.149866 + 0.988706i \(0.452116\pi\)
\(488\) 9.51308 + 2.54902i 0.430637 + 0.115389i
\(489\) 21.9802 + 21.9802i 0.993977 + 0.993977i
\(490\) 0 0
\(491\) −5.57169 −0.251447 −0.125723 0.992065i \(-0.540125\pi\)
−0.125723 + 0.992065i \(0.540125\pi\)
\(492\) −12.5868 + 12.5868i −0.567459 + 0.567459i
\(493\) −4.53801 16.9361i −0.204382 0.762762i
\(494\) 0.246458 0.919793i 0.0110887 0.0413835i
\(495\) 0 0
\(496\) 29.6760 7.95167i 1.33249 0.357040i
\(497\) −39.3923 + 10.5551i −1.76699 + 0.473462i
\(498\) −2.42478 1.39995i −0.108657 0.0627332i
\(499\) 5.11780 + 1.37131i 0.229104 + 0.0613883i 0.371545 0.928415i \(-0.378828\pi\)
−0.142440 + 0.989803i \(0.545495\pi\)
\(500\) 0 0
\(501\) −14.3348 + 3.84100i −0.640432 + 0.171603i
\(502\) 0.317689 + 1.18563i 0.0141791 + 0.0529172i
\(503\) −5.01801 2.89715i −0.223742 0.129178i 0.383940 0.923358i \(-0.374567\pi\)
−0.607682 + 0.794181i \(0.707900\pi\)
\(504\) −1.62202 1.62202i −0.0722506 0.0722506i
\(505\) 0 0
\(506\) −3.14360 1.81496i −0.139750 0.0806847i
\(507\) −17.7449 17.7449i −0.788078 0.788078i
\(508\) −5.20559 5.20559i −0.230961 0.230961i
\(509\) 18.5930 32.2040i 0.824118 1.42742i −0.0784727 0.996916i \(-0.525004\pi\)
0.902591 0.430499i \(-0.141662\pi\)
\(510\) 0 0
\(511\) −14.8354 + 8.56520i −0.656278 + 0.378902i
\(512\) 17.3440i 0.766504i
\(513\) 1.72120 + 2.98120i 0.0759927 + 0.131623i
\(514\) 4.45776 2.57369i 0.196623 0.113521i
\(515\) 0 0
\(516\) 3.24312 + 12.1035i 0.142771 + 0.532827i
\(517\) 25.8679 25.8679i 1.13767 1.13767i
\(518\) 1.42533 + 5.64138i 0.0626253 + 0.247868i
\(519\) 39.5385i 1.73555i
\(520\) 0 0
\(521\) −29.0910 + 16.7957i −1.27450 + 0.735832i −0.975831 0.218525i \(-0.929876\pi\)
−0.298668 + 0.954357i \(0.596542\pi\)
\(522\) 1.01860 + 0.272933i 0.0445830 + 0.0119460i
\(523\) −26.7199 + 15.4267i −1.16838 + 0.674564i −0.953298 0.302031i \(-0.902335\pi\)
−0.215082 + 0.976596i \(0.569002\pi\)
\(524\) −21.6609 21.6609i −0.946261 0.946261i
\(525\) 0 0
\(526\) −2.01698 + 2.01698i −0.0879447 + 0.0879447i
\(527\) 20.2395 5.42316i 0.881647 0.236236i
\(528\) −21.3989 + 21.3989i −0.931266 + 0.931266i
\(529\) 11.5681 0.502960
\(530\) 0 0
\(531\) 6.04249 + 1.61908i 0.262222 + 0.0702621i
\(532\) 5.72865i 0.248369i
\(533\) −12.3657 + 21.4180i −0.535617 + 0.927716i
\(534\) −0.605020 0.349309i −0.0261818 0.0151161i
\(535\) 0 0
\(536\) 3.21336 11.9924i 0.138796 0.517993i
\(537\) −11.7146 20.2903i −0.505522 0.875589i
\(538\) −2.51054 + 4.34838i −0.108237 + 0.187472i
\(539\) 17.9083 31.0180i 0.771363 1.33604i
\(540\) 0 0
\(541\) −11.6465 + 11.6465i −0.500724 + 0.500724i −0.911663 0.410939i \(-0.865201\pi\)
0.410939 + 0.911663i \(0.365201\pi\)
\(542\) 4.85665 2.80399i 0.208611 0.120442i
\(543\) −6.80676 + 1.82387i −0.292106 + 0.0782696i
\(544\) 7.02475i 0.301184i
\(545\) 0 0
\(546\) −8.05680 4.65159i −0.344799 0.199070i
\(547\) 18.6903i 0.799142i 0.916702 + 0.399571i \(0.130841\pi\)
−0.916702 + 0.399571i \(0.869159\pi\)
\(548\) 6.87182 25.6460i 0.293549 1.09554i
\(549\) 4.38340 4.38340i 0.187079 0.187079i
\(550\) 0 0
\(551\) −2.67444 4.63227i −0.113935 0.197341i
\(552\) 1.60754 5.99941i 0.0684214 0.255352i
\(553\) −9.69925 5.59986i −0.412454 0.238130i
\(554\) −3.38110 −0.143649
\(555\) 0 0
\(556\) 32.4941 1.37805
\(557\) −5.33894 3.08244i −0.226218 0.130607i 0.382608 0.923911i \(-0.375026\pi\)
−0.608826 + 0.793304i \(0.708359\pi\)
\(558\) −0.326170 + 1.21728i −0.0138079 + 0.0515317i
\(559\) 8.70469 + 15.0770i 0.368169 + 0.637688i
\(560\) 0 0
\(561\) −14.5944 + 14.5944i −0.616174 + 0.616174i
\(562\) 1.50795 5.62775i 0.0636091 0.237392i
\(563\) 24.5838i 1.03609i −0.855355 0.518043i \(-0.826661\pi\)
0.855355 0.518043i \(-0.173339\pi\)
\(564\) 26.6903 + 15.4097i 1.12387 + 0.648864i
\(565\) 0 0
\(566\) 5.18700i 0.218026i
\(567\) 39.3594 10.5463i 1.65294 0.442904i
\(568\) 8.76337 5.05954i 0.367703 0.212293i
\(569\) −24.7919 + 24.7919i −1.03933 + 1.03933i −0.0401367 + 0.999194i \(0.512779\pi\)
−0.999194 + 0.0401367i \(0.987221\pi\)
\(570\) 0 0
\(571\) 10.8132 18.7289i 0.452516 0.783781i −0.546025 0.837769i \(-0.683860\pi\)
0.998542 + 0.0539873i \(0.0171930\pi\)
\(572\) −21.7184 + 37.6173i −0.908090 + 1.57286i
\(573\) −9.46669 16.3968i −0.395477 0.684986i
\(574\) −1.19600 + 4.46352i −0.0499199 + 0.186304i
\(575\) 0 0
\(576\) −3.47383 2.00562i −0.144743 0.0835674i
\(577\) −1.76397 + 3.05528i −0.0734348 + 0.127193i −0.900405 0.435054i \(-0.856729\pi\)
0.826970 + 0.562246i \(0.190063\pi\)
\(578\) 2.65815i 0.110565i
\(579\) 8.25858 + 2.21288i 0.343215 + 0.0919642i
\(580\) 0 0
\(581\) 23.4026 0.970904
\(582\) −1.98995 + 1.98995i −0.0824859 + 0.0824859i
\(583\) −2.58282 + 0.692066i −0.106970 + 0.0286624i
\(584\) 3.00556 3.00556i 0.124371 0.124371i
\(585\) 0 0
\(586\) 0.0858211 + 0.0858211i 0.00354524 + 0.00354524i
\(587\) −30.6172 + 17.6768i −1.26371 + 0.729601i −0.973790 0.227451i \(-0.926961\pi\)
−0.289917 + 0.957052i \(0.593628\pi\)
\(588\) 29.1456 + 7.80955i 1.20195 + 0.322060i
\(589\) 5.53581 3.19610i 0.228099 0.131693i
\(590\) 0 0
\(591\) 9.11405i 0.374902i
\(592\) 10.8013 + 19.3429i 0.443929 + 0.794989i
\(593\) 25.5343 25.5343i 1.04857 1.04857i 0.0498107 0.998759i \(-0.484138\pi\)
0.998759 0.0498107i \(-0.0158618\pi\)
\(594\) 1.26225 + 4.71079i 0.0517909 + 0.193286i
\(595\) 0 0
\(596\) −4.59223 + 2.65133i −0.188105 + 0.108603i
\(597\) 3.94239 + 6.82842i 0.161351 + 0.279469i
\(598\) 4.24873i 0.173743i
\(599\) 8.97611 5.18236i 0.366754 0.211745i −0.305286 0.952261i \(-0.598752\pi\)
0.672039 + 0.740515i \(0.265419\pi\)
\(600\) 0 0
\(601\) 18.8695 32.6829i 0.769702 1.33316i −0.168023 0.985783i \(-0.553738\pi\)
0.937725 0.347379i \(-0.112928\pi\)
\(602\) 2.30014 + 2.30014i 0.0937466 + 0.0937466i
\(603\) −5.52582 5.52582i −0.225029 0.225029i
\(604\) 26.5660 + 15.3379i 1.08096 + 0.624090i
\(605\) 0 0
\(606\) 0.625909 + 0.625909i 0.0254258 + 0.0254258i
\(607\) 28.4843 + 16.4454i 1.15614 + 0.667500i 0.950377 0.311101i \(-0.100698\pi\)
0.205767 + 0.978601i \(0.434031\pi\)
\(608\) −0.554653 2.06999i −0.0224942 0.0839493i
\(609\) −50.4769 + 13.5252i −2.04543 + 0.548070i
\(610\) 0 0
\(611\) 41.3603 + 11.0824i 1.67326 + 0.448348i
\(612\) −2.53987 1.46639i −0.102668 0.0592754i
\(613\) 24.0323 6.43944i 0.970657 0.260087i 0.261552 0.965190i \(-0.415766\pi\)
0.709105 + 0.705103i \(0.249099\pi\)
\(614\) −4.38933 + 1.17612i −0.177139 + 0.0474642i
\(615\) 0 0
\(616\) −4.26639 + 15.9224i −0.171898 + 0.641532i
\(617\) −3.98826 14.8844i −0.160561 0.599223i −0.998565 0.0535581i \(-0.982944\pi\)
0.838003 0.545665i \(-0.183723\pi\)
\(618\) −1.56395 + 1.56395i −0.0629113 + 0.0629113i
\(619\) 9.03986 0.363343 0.181671 0.983359i \(-0.441849\pi\)
0.181671 + 0.983359i \(0.441849\pi\)
\(620\) 0 0
\(621\) 10.8607 + 10.8607i 0.435825 + 0.435825i
\(622\) −6.19217 1.65919i −0.248283 0.0665274i
\(623\) 5.83931 0.233947
\(624\) −34.2147 9.16779i −1.36968 0.367005i
\(625\) 0 0
\(626\) 2.06509 + 3.57684i 0.0825376 + 0.142959i
\(627\) −3.14822 + 5.45287i −0.125728 + 0.217767i
\(628\) 6.78775 + 6.78775i 0.270861 + 0.270861i
\(629\) 7.36662 + 13.1922i 0.293726 + 0.526006i
\(630\) 0 0
\(631\) 0.852346 0.228386i 0.0339314 0.00909188i −0.241813 0.970323i \(-0.577742\pi\)
0.275745 + 0.961231i \(0.411076\pi\)
\(632\) 2.68426 + 0.719245i 0.106774 + 0.0286100i
\(633\) −7.97346 + 29.7574i −0.316917 + 1.18275i
\(634\) 1.14225 4.26292i 0.0453644 0.169302i
\(635\) 0 0
\(636\) −1.12633 1.95087i −0.0446621 0.0773570i
\(637\) 41.9224 1.66103
\(638\) −1.96132 7.31976i −0.0776496 0.289792i
\(639\) 6.36927i 0.251964i
\(640\) 0 0
\(641\) 23.9371 41.4602i 0.945458 1.63758i 0.190626 0.981663i \(-0.438948\pi\)
0.754832 0.655918i \(-0.227718\pi\)
\(642\) 0.141642 + 0.245331i 0.00559016 + 0.00968244i
\(643\) −2.96948 −0.117105 −0.0585523 0.998284i \(-0.518648\pi\)
−0.0585523 + 0.998284i \(0.518648\pi\)
\(644\) 6.61548 + 24.6893i 0.260686 + 0.972895i
\(645\) 0 0
\(646\) −0.119580 0.446279i −0.00470482 0.0175586i
\(647\) 3.18505 1.83889i 0.125217 0.0722941i −0.436083 0.899906i \(-0.643635\pi\)
0.561300 + 0.827612i \(0.310301\pi\)
\(648\) −8.75606 + 5.05531i −0.343971 + 0.198591i
\(649\) −11.6349 43.4219i −0.456708 1.70446i
\(650\) 0 0
\(651\) −16.1634 60.3225i −0.633493 2.36423i
\(652\) 31.7409 1.24307
\(653\) 3.43864 + 5.95590i 0.134564 + 0.233072i 0.925431 0.378916i \(-0.123703\pi\)
−0.790867 + 0.611989i \(0.790370\pi\)
\(654\) 1.59402 2.76093i 0.0623312 0.107961i
\(655\) 0 0
\(656\) 17.5942i 0.686939i
\(657\) −0.692446 2.58424i −0.0270149 0.100821i
\(658\) 8.00064 0.311898
\(659\) −9.37543 16.2387i −0.365215 0.632571i 0.623596 0.781747i \(-0.285671\pi\)
−0.988811 + 0.149176i \(0.952338\pi\)
\(660\) 0 0
\(661\) −7.54321 + 28.1516i −0.293397 + 1.09497i 0.649086 + 0.760715i \(0.275152\pi\)
−0.942482 + 0.334256i \(0.891515\pi\)
\(662\) 0.287441 1.07275i 0.0111717 0.0416934i
\(663\) −23.3349 6.25257i −0.906253 0.242830i
\(664\) −5.60895 + 1.50291i −0.217669 + 0.0583243i
\(665\) 0 0
\(666\) −0.908658 0.0130154i −0.0352098 0.000504336i
\(667\) −16.8757 16.8757i −0.653428 0.653428i
\(668\) −7.57690 + 13.1236i −0.293159 + 0.507766i
\(669\) 16.2291 + 28.1096i 0.627453 + 1.08678i
\(670\) 0 0
\(671\) −43.0292 11.5296i −1.66112 0.445096i
\(672\) −20.9368 −0.807655
\(673\) 27.3184 + 7.31994i 1.05305 + 0.282163i 0.743510 0.668725i \(-0.233160\pi\)
0.309536 + 0.950888i \(0.399826\pi\)
\(674\) −0.0869564 0.0869564i −0.00334943 0.00334943i
\(675\) 0 0
\(676\) −25.6248 −0.985571
\(677\) 11.9853 11.9853i 0.460633 0.460633i −0.438230 0.898863i \(-0.644395\pi\)
0.898863 + 0.438230i \(0.144395\pi\)
\(678\) 0.215049 + 0.802575i 0.00825892 + 0.0308227i
\(679\) 6.08800 22.7207i 0.233636 0.871942i
\(680\) 0 0
\(681\) 8.16336 2.18737i 0.312821 0.0838201i
\(682\) 8.74750 2.34389i 0.334959 0.0897520i
\(683\) 11.8491 + 6.84107i 0.453393 + 0.261766i 0.709262 0.704945i \(-0.249028\pi\)
−0.255869 + 0.966711i \(0.582362\pi\)
\(684\) −0.864208 0.231564i −0.0330438 0.00885407i
\(685\) 0 0
\(686\) 1.09825 0.294275i 0.0419313 0.0112355i
\(687\) −4.01113 14.9698i −0.153034 0.571132i
\(688\) 10.7260 + 6.19263i 0.408923 + 0.236092i
\(689\) −2.21309 2.21309i −0.0843120 0.0843120i
\(690\) 0 0
\(691\) −12.5733 7.25918i −0.478310 0.276152i 0.241402 0.970425i \(-0.422393\pi\)
−0.719712 + 0.694273i \(0.755726\pi\)
\(692\) −28.5482 28.5482i −1.08524 1.08524i
\(693\) 7.33666 + 7.33666i 0.278697 + 0.278697i
\(694\) 0.719928 1.24695i 0.0273281 0.0473337i
\(695\) 0 0
\(696\) 11.2293 6.48324i 0.425646 0.245747i
\(697\) 11.9995i 0.454515i
\(698\) −2.58270 4.47337i −0.0977566 0.169319i
\(699\) 22.9533 13.2521i 0.868175 0.501241i
\(700\) 0 0
\(701\) −6.61099 24.6725i −0.249693 0.931869i −0.970966 0.239217i \(-0.923109\pi\)
0.721273 0.692651i \(-0.243558\pi\)
\(702\) −4.03643 + 4.03643i −0.152345 + 0.152345i
\(703\) 3.21235 + 3.30571i 0.121156 + 0.124677i
\(704\) 28.8251i 1.08639i
\(705\) 0 0
\(706\) 3.27251 1.88938i 0.123162 0.0711078i
\(707\) −7.14648 1.91489i −0.268771 0.0720170i
\(708\) 32.7976 18.9357i 1.23261 0.711647i
\(709\) −0.827189 0.827189i −0.0310657 0.0310657i 0.691403 0.722469i \(-0.256993\pi\)
−0.722469 + 0.691403i \(0.756993\pi\)
\(710\) 0 0
\(711\) 1.23684 1.23684i 0.0463852 0.0463852i
\(712\) −1.39952 + 0.375000i −0.0524492 + 0.0140537i
\(713\) 20.1673 20.1673i 0.755271 0.755271i
\(714\) −4.51386 −0.168927
\(715\) 0 0
\(716\) −23.1086 6.19193i −0.863610 0.231403i
\(717\) 30.1323i 1.12531i
\(718\) −3.52456 + 6.10471i −0.131535 + 0.227826i
\(719\) −5.80482 3.35141i −0.216483 0.124987i 0.387838 0.921728i \(-0.373222\pi\)
−0.604321 + 0.796741i \(0.706555\pi\)
\(720\) 0 0
\(721\) 4.78472 17.8568i 0.178192 0.665023i
\(722\) 2.26130 + 3.91669i 0.0841569 + 0.145764i
\(723\) 15.7312 27.2473i 0.585051 1.01334i
\(724\) −3.59782 + 6.23161i −0.133712 + 0.231596i
\(725\) 0 0
\(726\) −2.68095 + 2.68095i −0.0994995 + 0.0994995i
\(727\) −18.2215 + 10.5202i −0.675797 + 0.390171i −0.798270 0.602300i \(-0.794251\pi\)
0.122473 + 0.992472i \(0.460918\pi\)
\(728\) −18.6368 + 4.99371i −0.690726 + 0.185079i
\(729\) 19.5246i 0.723134i
\(730\) 0 0
\(731\) 7.31527 + 4.22347i 0.270565 + 0.156211i
\(732\) 37.5289i 1.38711i
\(733\) −6.79083 + 25.3437i −0.250825 + 0.936092i 0.719541 + 0.694450i \(0.244352\pi\)
−0.970366 + 0.241641i \(0.922314\pi\)
\(734\) −1.98983 + 1.98983i −0.0734460 + 0.0734460i
\(735\) 0 0
\(736\) −4.78088 8.28072i −0.176225 0.305231i
\(737\) −14.5345 + 54.2435i −0.535386 + 1.99809i
\(738\) −0.625009 0.360849i −0.0230069 0.0132830i
\(739\) −33.7980 −1.24328 −0.621640 0.783303i \(-0.713533\pi\)
−0.621640 + 0.783303i \(0.713533\pi\)
\(740\) 0 0
\(741\) −7.36982 −0.270737
\(742\) −0.506442 0.292394i −0.0185921 0.0107341i
\(743\) 0.130195 0.485894i 0.00477639 0.0178257i −0.963497 0.267721i \(-0.913729\pi\)
0.968273 + 0.249895i \(0.0803962\pi\)
\(744\) 7.74781 + 13.4196i 0.284049 + 0.491987i
\(745\) 0 0
\(746\) 1.91396 1.91396i 0.0700749 0.0700749i
\(747\) −0.945982 + 3.53045i −0.0346117 + 0.129172i
\(748\) 21.0753i 0.770588i
\(749\) −2.05057 1.18390i −0.0749262 0.0432587i
\(750\) 0 0
\(751\) 16.9759i 0.619459i 0.950825 + 0.309730i \(0.100239\pi\)
−0.950825 + 0.309730i \(0.899761\pi\)
\(752\) 29.4242 7.88420i 1.07299 0.287507i
\(753\) 8.22709 4.74991i 0.299812 0.173097i
\(754\) 6.27192 6.27192i 0.228410 0.228410i
\(755\) 0 0
\(756\) 17.1707 29.7406i 0.624494 1.08165i
\(757\) −10.7520 + 18.6230i −0.390789 + 0.676866i −0.992554 0.121807i \(-0.961131\pi\)
0.601765 + 0.798673i \(0.294464\pi\)
\(758\) −3.44370 5.96467i −0.125081 0.216646i
\(759\) −7.27115 + 27.1363i −0.263926 + 0.984985i
\(760\) 0 0
\(761\) 5.87890 + 3.39418i 0.213110 + 0.123039i 0.602756 0.797926i \(-0.294069\pi\)
−0.389646 + 0.920965i \(0.627403\pi\)
\(762\) 0.884799 1.53252i 0.0320529 0.0555172i
\(763\) 26.6469i 0.964683i
\(764\) −18.6743 5.00377i −0.675614 0.181030i
\(765\) 0 0
\(766\) −2.00674 −0.0725064
\(767\) 37.2060 37.2060i 1.34343 1.34343i
\(768\) −20.9090 + 5.60256i −0.754490 + 0.202165i
\(769\) 7.17556 7.17556i 0.258757 0.258757i −0.565791 0.824549i \(-0.691429\pi\)
0.824549 + 0.565791i \(0.191429\pi\)
\(770\) 0 0
\(771\) −28.1697 28.1697i −1.01451 1.01451i
\(772\) 7.56076 4.36521i 0.272118 0.157107i
\(773\) −27.1353 7.27088i −0.975988 0.261515i −0.264634 0.964349i \(-0.585251\pi\)
−0.711354 + 0.702834i \(0.751918\pi\)
\(774\) −0.439968 + 0.254016i −0.0158143 + 0.00913041i
\(775\) 0 0
\(776\) 5.83649i 0.209518i
\(777\) 39.3184 21.9557i 1.41054 0.787658i
\(778\) 4.51817 4.51817i 0.161984 0.161984i
\(779\) 0.947447 + 3.53592i 0.0339458 + 0.126687i
\(780\) 0 0
\(781\) −39.6381 + 22.8851i −1.41836 + 0.818892i
\(782\) −1.03073 1.78528i −0.0368588 0.0638414i
\(783\) 32.0649i 1.14591i
\(784\) 25.8285 14.9121i 0.922445 0.532574i
\(785\) 0 0
\(786\) 3.68173 6.37694i 0.131323 0.227458i
\(787\) −9.47199 9.47199i −0.337640 0.337640i 0.517838 0.855478i \(-0.326737\pi\)
−0.855478 + 0.517838i \(0.826737\pi\)
\(788\) −6.58066 6.58066i −0.234426 0.234426i
\(789\) 19.1187 + 11.0382i 0.680644 + 0.392970i
\(790\) 0 0
\(791\) −4.91077 4.91077i −0.174607 0.174607i
\(792\) −2.22955 1.28723i −0.0792237 0.0457398i
\(793\) −13.4952 50.3646i −0.479227 1.78850i
\(794\) −8.33753 + 2.23404i −0.295888 + 0.0792829i
\(795\) 0 0
\(796\) 7.77690 + 2.08381i 0.275645 + 0.0738588i
\(797\) −29.9455 17.2891i −1.06072 0.612410i −0.135092 0.990833i \(-0.543133\pi\)
−0.925633 + 0.378423i \(0.876466\pi\)
\(798\) −1.33011 + 0.356401i −0.0470852 + 0.0126164i
\(799\) 20.0678 5.37715i 0.709947 0.190230i
\(800\) 0 0
\(801\) −0.236037 + 0.880902i −0.00833996 + 0.0311251i
\(802\) 1.93314 + 7.21458i 0.0682615 + 0.254756i
\(803\) −13.5946 + 13.5946i −0.479744 + 0.479744i
\(804\) −47.3097 −1.66849
\(805\) 0 0
\(806\) 7.49528 + 7.49528i 0.264010 + 0.264010i
\(807\) 37.5363 + 10.0578i 1.32134 + 0.354052i
\(808\) 1.83578 0.0645826
\(809\) 28.4366 + 7.61955i 0.999776 + 0.267889i 0.721352 0.692569i \(-0.243521\pi\)
0.278424 + 0.960458i \(0.410188\pi\)
\(810\) 0 0
\(811\) −3.59932 6.23420i −0.126389 0.218912i 0.795886 0.605447i \(-0.207005\pi\)
−0.922275 + 0.386534i \(0.873672\pi\)
\(812\) −26.6804 + 46.2118i −0.936298 + 1.62172i
\(813\) −30.6904 30.6904i −1.07636 1.07636i
\(814\) 3.18385 + 5.70165i 0.111594 + 0.199843i
\(815\) 0 0
\(816\) −16.6008 + 4.44816i −0.581143 + 0.155717i
\(817\) 2.48907 + 0.666945i 0.0870817 + 0.0233335i
\(818\) −1.21921 + 4.55016i −0.0426287 + 0.159093i
\(819\) −3.14320 + 11.7306i −0.109832 + 0.409900i
\(820\) 0 0
\(821\) −10.3931 18.0014i −0.362721 0.628252i 0.625686 0.780075i \(-0.284819\pi\)
−0.988408 + 0.151823i \(0.951486\pi\)
\(822\) 6.38212 0.222602
\(823\) −5.31233 19.8259i −0.185176 0.691087i −0.994593 0.103852i \(-0.966883\pi\)
0.809417 0.587235i \(-0.199784\pi\)
\(824\) 4.58705i 0.159798i
\(825\) 0 0
\(826\) 4.91567 8.51420i 0.171038 0.296247i
\(827\) −10.2930 17.8279i −0.357921 0.619937i 0.629692 0.776845i \(-0.283181\pi\)
−0.987613 + 0.156907i \(0.949848\pi\)
\(828\) −3.99197 −0.138730
\(829\) 0.0273552 + 0.102091i 0.000950086 + 0.00354577i 0.966399 0.257046i \(-0.0827491\pi\)
−0.965449 + 0.260591i \(0.916082\pi\)
\(830\) 0 0
\(831\) 6.77275 + 25.2763i 0.234944 + 0.876823i
\(832\) −29.2189 + 16.8696i −1.01298 + 0.584847i
\(833\) 17.6154 10.1703i 0.610338 0.352379i
\(834\) 2.02157 + 7.54462i 0.0700014 + 0.261249i
\(835\) 0 0
\(836\) 1.66404 + 6.21028i 0.0575520 + 0.214787i
\(837\) −38.3192 −1.32451
\(838\) −2.04400 3.54032i −0.0706090 0.122298i
\(839\) 25.4547 44.0888i 0.878793 1.52211i 0.0261266 0.999659i \(-0.491683\pi\)
0.852666 0.522456i \(-0.174984\pi\)
\(840\) 0 0
\(841\) 20.8233i 0.718046i
\(842\) −0.146659 0.547340i −0.00505422 0.0188626i
\(843\) −45.0922 −1.55306
\(844\) 15.7287 + 27.2430i 0.541406 + 0.937742i
\(845\) 0 0
\(846\) −0.323402 + 1.20695i −0.0111188 + 0.0414959i
\(847\) 8.20206 30.6105i 0.281826 1.05179i
\(848\) −2.15070 0.576278i −0.0738553 0.0197895i
\(849\) 38.7767 10.3902i 1.33081 0.356590i
\(850\) 0 0
\(851\) 17.6620 + 10.5373i 0.605446 + 0.361214i
\(852\) −27.2655 27.2655i −0.934101 0.934101i
\(853\) −10.8258 + 18.7508i −0.370667 + 0.642014i −0.989668 0.143376i \(-0.954204\pi\)
0.619001 + 0.785390i \(0.287538\pi\)
\(854\) −4.87121 8.43718i −0.166689 0.288715i
\(855\) 0 0
\(856\) 0.567494 + 0.152059i 0.0193965 + 0.00519729i
\(857\) −8.91910 −0.304670 −0.152335 0.988329i \(-0.548679\pi\)
−0.152335 + 0.988329i \(0.548679\pi\)
\(858\) −10.0853 2.70236i −0.344308 0.0922570i
\(859\) −34.0010 34.0010i −1.16010 1.16010i −0.984453 0.175647i \(-0.943798\pi\)
−0.175647 0.984453i \(-0.556202\pi\)
\(860\) 0 0
\(861\) 35.7638 1.21883
\(862\) −2.68466 + 2.68466i −0.0914399 + 0.0914399i
\(863\) 12.2844 + 45.8461i 0.418166 + 1.56062i 0.778408 + 0.627759i \(0.216028\pi\)
−0.360241 + 0.932859i \(0.617306\pi\)
\(864\) −3.32497 + 12.4090i −0.113118 + 0.422161i
\(865\) 0 0
\(866\) 8.48725 2.27415i 0.288408 0.0772788i
\(867\) 19.8717 5.32460i 0.674877 0.180833i
\(868\) −55.2255 31.8845i −1.87448 1.08223i
\(869\) −12.1413 3.25326i −0.411866 0.110359i
\(870\) 0 0
\(871\) −63.4908 + 17.0123i −2.15130 + 0.576440i
\(872\) −1.71126 6.38652i −0.0579507 0.216275i
\(873\) 3.18150 + 1.83684i 0.107677 + 0.0621675i
\(874\) −0.444687 0.444687i −0.0150418 0.0150418i
\(875\) 0 0
\(876\) −14.0268 8.09840i −0.473923 0.273619i
\(877\) 34.2418 + 34.2418i 1.15626 + 1.15626i 0.985273 + 0.170989i \(0.0546963\pi\)
0.170989 + 0.985273i \(0.445304\pi\)
\(878\) 3.51082 + 3.51082i 0.118485 + 0.118485i
\(879\) 0.469666 0.813486i 0.0158415 0.0274382i
\(880\) 0 0
\(881\) 28.3215 16.3514i 0.954175 0.550893i 0.0597995 0.998210i \(-0.480954\pi\)
0.894375 + 0.447317i \(0.147621\pi\)
\(882\) 1.22336i 0.0411926i
\(883\) 1.57439 + 2.72693i 0.0529825 + 0.0917684i 0.891300 0.453414i \(-0.149794\pi\)
−0.838318 + 0.545182i \(0.816461\pi\)
\(884\) −21.3632 + 12.3341i −0.718522 + 0.414839i
\(885\) 0 0
\(886\) 1.27516 + 4.75898i 0.0428400 + 0.159881i
\(887\) −1.64239 + 1.64239i −0.0551461 + 0.0551461i −0.734142 0.678996i \(-0.762415\pi\)
0.678996 + 0.734142i \(0.262415\pi\)
\(888\) −8.01352 + 7.78720i −0.268916 + 0.261321i
\(889\) 14.7910i 0.496074i
\(890\) 0 0
\(891\) 39.6050 22.8660i 1.32682 0.766039i
\(892\) 32.0141 + 8.57815i 1.07191 + 0.287218i
\(893\) 5.48884 3.16898i 0.183677 0.106046i
\(894\) −0.901297 0.901297i −0.0301439 0.0301439i
\(895\) 0 0
\(896\) −20.0443 + 20.0443i −0.669632 + 0.669632i
\(897\) −31.7624 + 8.51071i −1.06052 + 0.284164i
\(898\) 0.533652 0.533652i 0.0178082 0.0178082i
\(899\) 59.5415 1.98582
\(900\) 0 0
\(901\) −1.46681 0.393030i −0.0488665 0.0130937i
\(902\) 5.18619i 0.172681i
\(903\) 12.5878 21.8027i 0.418895 0.725548i
\(904\) 1.49234 + 0.861604i 0.0496346 + 0.0286565i
\(905\) 0 0
\(906\) −1.90845 + 7.12244i −0.0634041 + 0.236627i
\(907\) 4.16760 + 7.21849i 0.138383 + 0.239686i 0.926885 0.375346i \(-0.122476\pi\)
−0.788502 + 0.615032i \(0.789143\pi\)
\(908\) 4.31488 7.47359i 0.143194 0.248020i
\(909\) 0.577751 1.00069i 0.0191628 0.0331909i
\(910\) 0 0
\(911\) 26.7018 26.7018i 0.884669 0.884669i −0.109336 0.994005i \(-0.534872\pi\)
0.994005 + 0.109336i \(0.0348725\pi\)
\(912\) −4.54056 + 2.62149i −0.150353 + 0.0868064i
\(913\) 25.3702 6.79791i 0.839630 0.224978i
\(914\) 0.936919i 0.0309905i
\(915\) 0 0
\(916\) −13.7049 7.91251i −0.452822 0.261437i
\(917\) 61.5466i 2.03245i
\(918\) −0.716845 + 2.67530i −0.0236594 + 0.0882981i
\(919\) 41.4518 41.4518i 1.36737 1.36737i 0.503195 0.864173i \(-0.332158\pi\)
0.864173 0.503195i \(-0.167842\pi\)
\(920\) 0 0
\(921\) 17.5847 + 30.4576i 0.579436 + 1.00361i
\(922\) −2.22271 + 8.29527i −0.0732011 + 0.273190i
\(923\) −46.3955 26.7864i −1.52713 0.881686i
\(924\) 62.8135 2.06641
\(925\) 0 0
\(926\) −6.92697 −0.227634
\(927\) 2.50042 + 1.44362i 0.0821246 + 0.0474147i
\(928\) 5.16643 19.2814i 0.169596 0.632943i
\(929\) 17.9777 + 31.1383i 0.589830 + 1.02162i 0.994254 + 0.107044i \(0.0341386\pi\)
−0.404424 + 0.914571i \(0.632528\pi\)
\(930\) 0 0
\(931\) 4.38775 4.38775i 0.143803 0.143803i
\(932\) 7.00462 26.1416i 0.229444 0.856297i
\(933\) 49.6146i 1.62431i
\(934\) −3.39624 1.96082i −0.111129 0.0641601i
\(935\) 0 0
\(936\) 3.01335i 0.0984944i
\(937\) 26.9183 7.21273i 0.879381 0.235629i 0.209241 0.977864i \(-0.432901\pi\)
0.670140 + 0.742235i \(0.266234\pi\)
\(938\) −10.6361 + 6.14076i −0.347281 + 0.200503i
\(939\) 22.6029 22.6029i 0.737618 0.737618i
\(940\) 0 0
\(941\) −21.5873 + 37.3903i −0.703725 + 1.21889i 0.263425 + 0.964680i \(0.415148\pi\)
−0.967150 + 0.254208i \(0.918185\pi\)
\(942\) −1.15372 + 1.99830i −0.0375902 + 0.0651082i
\(943\) 8.16659 + 14.1450i 0.265941 + 0.460623i
\(944\) 9.68826 36.1571i 0.315326 1.17681i
\(945\) 0 0
\(946\) 3.16165 + 1.82538i 0.102794 + 0.0593483i
\(947\) 13.5641 23.4937i 0.440773 0.763442i −0.556974 0.830530i \(-0.688038\pi\)
0.997747 + 0.0670885i \(0.0213710\pi\)
\(948\) 10.5893i 0.343926i
\(949\) −21.7365 5.82427i −0.705596 0.189064i
\(950\) 0 0
\(951\) −34.1566 −1.10760
\(952\) −6.61955 + 6.61955i −0.214541 + 0.214541i
\(953\) −12.8110 + 3.43270i −0.414989 + 0.111196i −0.460271 0.887778i \(-0.652248\pi\)
0.0452823 + 0.998974i \(0.485581\pi\)
\(954\) 0.0645812 0.0645812i 0.00209089 0.00209089i
\(955\) 0 0
\(956\) −21.7566 21.7566i −0.703658 0.703658i
\(957\) −50.7919 + 29.3247i −1.64187 + 0.947933i
\(958\) −4.88016 1.30763i −0.157671 0.0422477i
\(959\) −46.1974 + 26.6721i −1.49179 + 0.861287i
\(960\) 0 0
\(961\) 40.1552i 1.29533i
\(962\) −3.91624 + 6.56417i −0.126265 + 0.211637i
\(963\) 0.261488 0.261488i 0.00842632 0.00842632i
\(964\) −8.31500 31.0320i −0.267808 0.999474i
\(965\) 0 0
\(966\) −5.32090 + 3.07202i −0.171197 + 0.0988408i
\(967\) −20.5372 35.5714i −0.660431 1.14390i −0.980503 0.196506i \(-0.937040\pi\)
0.320072 0.947393i \(-0.396293\pi\)
\(968\) 7.86321i 0.252733i
\(969\) −3.09673 + 1.78790i −0.0994814 + 0.0574356i
\(970\) 0 0
\(971\) −10.9286 + 18.9288i −0.350714 + 0.607455i −0.986375 0.164514i \(-0.947395\pi\)
0.635660 + 0.771969i \(0.280728\pi\)
\(972\) 8.55032 + 8.55032i 0.274252 + 0.274252i
\(973\) −46.1637 46.1637i −1.47994 1.47994i
\(974\) 1.40602 + 0.811763i 0.0450516 + 0.0260106i
\(975\) 0 0
\(976\) −26.2294 26.2294i −0.839583 0.839583i
\(977\) 32.8873 + 18.9875i 1.05216 + 0.607464i 0.923253 0.384192i \(-0.125520\pi\)
0.128906 + 0.991657i \(0.458853\pi\)
\(978\) 1.97472 + 7.36975i 0.0631445 + 0.235659i
\(979\) 6.33024 1.69618i 0.202316 0.0542103i
\(980\) 0 0
\(981\) −4.01988 1.07712i −0.128345 0.0343899i
\(982\) −1.18435 0.683786i −0.0377942 0.0218205i
\(983\) 39.6755 10.6310i 1.26545 0.339077i 0.437166 0.899381i \(-0.355982\pi\)
0.828287 + 0.560304i \(0.189316\pi\)
\(984\) −8.57158 + 2.29675i −0.273252 + 0.0732177i
\(985\) 0 0
\(986\) 1.11385 4.15696i 0.0354723 0.132385i
\(987\) −16.0262 59.8107i −0.510121 1.90380i
\(988\) −5.32127 + 5.32127i −0.169292 + 0.169292i
\(989\) 11.4976 0.365602
\(990\) 0 0
\(991\) 9.05454 + 9.05454i 0.287627 + 0.287627i 0.836141 0.548514i \(-0.184806\pi\)
−0.548514 + 0.836141i \(0.684806\pi\)
\(992\) 23.0423 + 6.17416i 0.731593 + 0.196030i
\(993\) −8.59535 −0.272765
\(994\) −9.66883 2.59076i −0.306677 0.0821738i
\(995\) 0 0
\(996\) 11.0636 + 19.1627i 0.350563 + 0.607193i
\(997\) 28.4758 49.3216i 0.901838 1.56203i 0.0767317 0.997052i \(-0.475551\pi\)
0.825106 0.564978i \(-0.191115\pi\)
\(998\) 0.919576 + 0.919576i 0.0291087 + 0.0291087i
\(999\) −6.76871 26.7903i −0.214153 0.847606i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.y.b.532.9 68
5.2 odd 4 185.2.p.a.88.9 yes 68
5.3 odd 4 925.2.t.b.643.9 68
5.4 even 2 185.2.u.a.162.9 yes 68
37.8 odd 12 925.2.t.b.82.9 68
185.8 even 12 inner 925.2.y.b.193.9 68
185.82 even 12 185.2.u.a.8.9 yes 68
185.119 odd 12 185.2.p.a.82.9 68
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.p.a.82.9 68 185.119 odd 12
185.2.p.a.88.9 yes 68 5.2 odd 4
185.2.u.a.8.9 yes 68 185.82 even 12
185.2.u.a.162.9 yes 68 5.4 even 2
925.2.t.b.82.9 68 37.8 odd 12
925.2.t.b.643.9 68 5.3 odd 4
925.2.y.b.193.9 68 185.8 even 12 inner
925.2.y.b.532.9 68 1.1 even 1 trivial