Properties

Label 925.2.t.b.643.9
Level $925$
Weight $2$
Character 925.643
Analytic conductor $7.386$
Analytic rank $0$
Dimension $68$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(82,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.82"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([3, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.t (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [68] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(68\)
Relative dimension: \(17\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 185)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 643.9
Character \(\chi\) \(=\) 925.643
Dual form 925.2.t.b.82.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.122725 - 0.212566i) q^{2} +(1.83492 + 0.491666i) q^{3} +(0.969877 + 1.67988i) q^{4} +(0.329702 - 0.329702i) q^{6} +(3.76446 + 1.00868i) q^{7} +0.967013 q^{8} +(0.527123 + 0.304334i) q^{9} +4.37395i q^{11} +(0.953710 + 3.55930i) q^{12} +(-2.55980 - 4.43371i) q^{13} +(0.676405 - 0.676405i) q^{14} +(-1.82108 + 3.15420i) q^{16} +(2.15121 + 1.24200i) q^{17} +(0.129382 - 0.0746989i) q^{18} +(0.196130 - 0.731966i) q^{19} +(6.41155 + 3.70171i) q^{21} +(0.929753 + 0.536793i) q^{22} -3.38111 q^{23} +(1.77439 + 0.475447i) q^{24} -1.25661 q^{26} +(-3.21217 - 3.21217i) q^{27} +(1.95660 + 7.30213i) q^{28} +(4.99116 - 4.99116i) q^{29} +(-5.96470 - 5.96470i) q^{31} +(1.41400 + 2.44911i) q^{32} +(-2.15052 + 8.02585i) q^{33} +(0.528015 - 0.304850i) q^{34} +1.18067i q^{36} +(-5.22373 - 3.11652i) q^{37} +(-0.131521 - 0.131521i) q^{38} +(-2.51713 - 9.39407i) q^{39} +(4.18352 - 2.41536i) q^{41} +(1.57371 - 0.908585i) q^{42} +3.40053 q^{43} +(-7.34770 + 4.24219i) q^{44} +(-0.414947 + 0.718709i) q^{46} +(-5.91409 + 5.91409i) q^{47} +(-4.89234 + 4.89234i) q^{48} +(7.09153 + 4.09430i) q^{49} +(3.33665 + 3.33665i) q^{51} +(4.96539 - 8.60030i) q^{52} +(-0.590502 + 0.158224i) q^{53} +(-1.07701 + 0.288584i) q^{54} +(3.64028 + 0.975410i) q^{56} +(0.719765 - 1.24667i) q^{57} +(-0.448410 - 1.67349i) q^{58} +(9.92739 - 2.66004i) q^{59} +(-2.63598 + 9.83759i) q^{61} +(-1.99991 + 0.535874i) q^{62} +(1.67735 + 1.67735i) q^{63} -6.59018 q^{64} +(1.44210 + 1.44210i) q^{66} +(3.32297 - 12.4015i) q^{67} +4.81836i q^{68} +(-6.20407 - 1.66238i) q^{69} +(5.23213 + 9.06231i) q^{71} +(0.509734 + 0.294295i) q^{72} +(-3.10809 + 3.10809i) q^{73} +(-1.30355 + 0.727912i) q^{74} +(1.41983 - 0.380443i) q^{76} +(-4.41193 + 16.4656i) q^{77} +(-2.30577 - 0.617830i) q^{78} +(0.743780 - 2.77583i) q^{79} +(-5.22776 - 9.05475i) q^{81} -1.18570i q^{82} +(5.80029 - 1.55418i) q^{83} +14.3608i q^{84} +(0.417330 - 0.722837i) q^{86} +(11.6124 - 6.70440i) q^{87} +4.22967i q^{88} +(0.387792 + 1.44726i) q^{89} +(-5.16406 - 19.2725i) q^{91} +(-3.27926 - 5.67985i) q^{92} +(-8.01211 - 13.8774i) q^{93} +(0.531327 + 1.98294i) q^{94} +(1.39043 + 5.18914i) q^{96} +6.03559i q^{97} +(1.74062 - 1.00495i) q^{98} +(-1.33114 + 2.30561i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 68 q + 4 q^{2} + 8 q^{3} - 30 q^{4} - 8 q^{6} + 2 q^{7} - 12 q^{8} - 14 q^{12} + 6 q^{13} - 26 q^{16} - 12 q^{17} - 18 q^{18} + 4 q^{19} - 12 q^{21} - 6 q^{22} + 12 q^{23} - 24 q^{26} + 68 q^{27} + 26 q^{28}+ \cdots + 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.122725 0.212566i 0.0867797 0.150307i −0.819369 0.573267i \(-0.805676\pi\)
0.906148 + 0.422960i \(0.139009\pi\)
\(3\) 1.83492 + 0.491666i 1.05939 + 0.283863i 0.746128 0.665803i \(-0.231911\pi\)
0.313264 + 0.949666i \(0.398577\pi\)
\(4\) 0.969877 + 1.67988i 0.484939 + 0.839938i
\(5\) 0 0
\(6\) 0.329702 0.329702i 0.134600 0.134600i
\(7\) 3.76446 + 1.00868i 1.42283 + 0.381247i 0.886487 0.462753i \(-0.153138\pi\)
0.536344 + 0.843999i \(0.319805\pi\)
\(8\) 0.967013 0.341891
\(9\) 0.527123 + 0.304334i 0.175708 + 0.101445i
\(10\) 0 0
\(11\) 4.37395i 1.31880i 0.751794 + 0.659398i \(0.229189\pi\)
−0.751794 + 0.659398i \(0.770811\pi\)
\(12\) 0.953710 + 3.55930i 0.275312 + 1.02748i
\(13\) −2.55980 4.43371i −0.709961 1.22969i −0.964871 0.262724i \(-0.915379\pi\)
0.254909 0.966965i \(-0.417954\pi\)
\(14\) 0.676405 0.676405i 0.180777 0.180777i
\(15\) 0 0
\(16\) −1.82108 + 3.15420i −0.455269 + 0.788550i
\(17\) 2.15121 + 1.24200i 0.521746 + 0.301230i 0.737649 0.675185i \(-0.235936\pi\)
−0.215903 + 0.976415i \(0.569269\pi\)
\(18\) 0.129382 0.0746989i 0.0304957 0.0176067i
\(19\) 0.196130 0.731966i 0.0449952 0.167924i −0.939772 0.341802i \(-0.888963\pi\)
0.984767 + 0.173877i \(0.0556296\pi\)
\(20\) 0 0
\(21\) 6.41155 + 3.70171i 1.39911 + 0.807779i
\(22\) 0.929753 + 0.536793i 0.198224 + 0.114445i
\(23\) −3.38111 −0.705010 −0.352505 0.935810i \(-0.614670\pi\)
−0.352505 + 0.935810i \(0.614670\pi\)
\(24\) 1.77439 + 0.475447i 0.362196 + 0.0970502i
\(25\) 0 0
\(26\) −1.25661 −0.246441
\(27\) −3.21217 3.21217i −0.618182 0.618182i
\(28\) 1.95660 + 7.30213i 0.369762 + 1.37997i
\(29\) 4.99116 4.99116i 0.926835 0.926835i −0.0706651 0.997500i \(-0.522512\pi\)
0.997500 + 0.0706651i \(0.0225122\pi\)
\(30\) 0 0
\(31\) −5.96470 5.96470i −1.07129 1.07129i −0.997256 0.0740358i \(-0.976412\pi\)
−0.0740358 0.997256i \(-0.523588\pi\)
\(32\) 1.41400 + 2.44911i 0.249962 + 0.432946i
\(33\) −2.15052 + 8.02585i −0.374358 + 1.39712i
\(34\) 0.528015 0.304850i 0.0905538 0.0522813i
\(35\) 0 0
\(36\) 1.18067i 0.196778i
\(37\) −5.22373 3.11652i −0.858775 0.512352i
\(38\) −0.131521 0.131521i −0.0213355 0.0213355i
\(39\) −2.51713 9.39407i −0.403064 1.50425i
\(40\) 0 0
\(41\) 4.18352 2.41536i 0.653357 0.377216i −0.136384 0.990656i \(-0.543548\pi\)
0.789741 + 0.613440i \(0.210215\pi\)
\(42\) 1.57371 0.908585i 0.242829 0.140198i
\(43\) 3.40053 0.518576 0.259288 0.965800i \(-0.416512\pi\)
0.259288 + 0.965800i \(0.416512\pi\)
\(44\) −7.34770 + 4.24219i −1.10771 + 0.639535i
\(45\) 0 0
\(46\) −0.414947 + 0.718709i −0.0611806 + 0.105968i
\(47\) −5.91409 + 5.91409i −0.862659 + 0.862659i −0.991646 0.128987i \(-0.958827\pi\)
0.128987 + 0.991646i \(0.458827\pi\)
\(48\) −4.89234 + 4.89234i −0.706149 + 0.706149i
\(49\) 7.09153 + 4.09430i 1.01308 + 0.584900i
\(50\) 0 0
\(51\) 3.33665 + 3.33665i 0.467225 + 0.467225i
\(52\) 4.96539 8.60030i 0.688575 1.19265i
\(53\) −0.590502 + 0.158224i −0.0811116 + 0.0217338i −0.299147 0.954207i \(-0.596702\pi\)
0.218035 + 0.975941i \(0.430035\pi\)
\(54\) −1.07701 + 0.288584i −0.146563 + 0.0392713i
\(55\) 0 0
\(56\) 3.64028 + 0.975410i 0.486453 + 0.130345i
\(57\) 0.719765 1.24667i 0.0953352 0.165125i
\(58\) −0.448410 1.67349i −0.0588792 0.219740i
\(59\) 9.92739 2.66004i 1.29244 0.346307i 0.453851 0.891078i \(-0.350050\pi\)
0.838585 + 0.544771i \(0.183383\pi\)
\(60\) 0 0
\(61\) −2.63598 + 9.83759i −0.337502 + 1.25957i 0.563629 + 0.826028i \(0.309405\pi\)
−0.901131 + 0.433547i \(0.857262\pi\)
\(62\) −1.99991 + 0.535874i −0.253989 + 0.0680561i
\(63\) 1.67735 + 1.67735i 0.211327 + 0.211327i
\(64\) −6.59018 −0.823773
\(65\) 0 0
\(66\) 1.44210 + 1.44210i 0.177510 + 0.177510i
\(67\) 3.32297 12.4015i 0.405966 1.51508i −0.396302 0.918120i \(-0.629707\pi\)
0.802268 0.596964i \(-0.203627\pi\)
\(68\) 4.81836i 0.584312i
\(69\) −6.20407 1.66238i −0.746882 0.200126i
\(70\) 0 0
\(71\) 5.23213 + 9.06231i 0.620940 + 1.07550i 0.989311 + 0.145820i \(0.0465821\pi\)
−0.368372 + 0.929679i \(0.620085\pi\)
\(72\) 0.509734 + 0.294295i 0.0600727 + 0.0346830i
\(73\) −3.10809 + 3.10809i −0.363775 + 0.363775i −0.865201 0.501426i \(-0.832809\pi\)
0.501426 + 0.865201i \(0.332809\pi\)
\(74\) −1.30355 + 0.727912i −0.151534 + 0.0846180i
\(75\) 0 0
\(76\) 1.41983 0.380443i 0.162866 0.0436398i
\(77\) −4.41193 + 16.4656i −0.502786 + 1.87642i
\(78\) −2.30577 0.617830i −0.261077 0.0699555i
\(79\) 0.743780 2.77583i 0.0836818 0.312305i −0.911379 0.411567i \(-0.864982\pi\)
0.995061 + 0.0992622i \(0.0316483\pi\)
\(80\) 0 0
\(81\) −5.22776 9.05475i −0.580863 1.00608i
\(82\) 1.18570i 0.130939i
\(83\) 5.80029 1.55418i 0.636664 0.170594i 0.0739721 0.997260i \(-0.476432\pi\)
0.562692 + 0.826667i \(0.309766\pi\)
\(84\) 14.3608i 1.56689i
\(85\) 0 0
\(86\) 0.417330 0.722837i 0.0450019 0.0779456i
\(87\) 11.6124 6.70440i 1.24498 0.718787i
\(88\) 4.22967i 0.450884i
\(89\) 0.387792 + 1.44726i 0.0411059 + 0.153409i 0.983428 0.181297i \(-0.0580295\pi\)
−0.942322 + 0.334706i \(0.891363\pi\)
\(90\) 0 0
\(91\) −5.16406 19.2725i −0.541341 2.02031i
\(92\) −3.27926 5.67985i −0.341887 0.592165i
\(93\) −8.01211 13.8774i −0.830817 1.43902i
\(94\) 0.531327 + 1.98294i 0.0548022 + 0.204525i
\(95\) 0 0
\(96\) 1.39043 + 5.18914i 0.141910 + 0.529614i
\(97\) 6.03559i 0.612821i 0.951899 + 0.306411i \(0.0991281\pi\)
−0.951899 + 0.306411i \(0.900872\pi\)
\(98\) 1.74062 1.00495i 0.175829 0.101515i
\(99\) −1.33114 + 2.30561i −0.133785 + 0.231722i
\(100\) 0 0
\(101\) 1.89841i 0.188899i 0.995530 + 0.0944493i \(0.0301090\pi\)
−0.995530 + 0.0944493i \(0.969891\pi\)
\(102\) 1.11875 0.299768i 0.110773 0.0296815i
\(103\) 4.74353i 0.467394i −0.972309 0.233697i \(-0.924918\pi\)
0.972309 0.233697i \(-0.0750824\pi\)
\(104\) −2.47536 4.28745i −0.242729 0.420419i
\(105\) 0 0
\(106\) −0.0388362 + 0.144939i −0.00377210 + 0.0140777i
\(107\) 0.586853 + 0.157247i 0.0567332 + 0.0152016i 0.287074 0.957908i \(-0.407317\pi\)
−0.230341 + 0.973110i \(0.573984\pi\)
\(108\) 2.28064 8.51145i 0.219454 0.819015i
\(109\) −6.60438 + 1.76964i −0.632585 + 0.169501i −0.560842 0.827923i \(-0.689523\pi\)
−0.0717424 + 0.997423i \(0.522856\pi\)
\(110\) 0 0
\(111\) −8.05284 8.28689i −0.764342 0.786556i
\(112\) −10.0370 + 10.0370i −0.948404 + 0.948404i
\(113\) −1.54325 0.890996i −0.145177 0.0838178i 0.425652 0.904887i \(-0.360045\pi\)
−0.570829 + 0.821069i \(0.693378\pi\)
\(114\) −0.176666 0.305995i −0.0165463 0.0286590i
\(115\) 0 0
\(116\) 13.2253 + 3.54372i 1.22794 + 0.329026i
\(117\) 3.11614i 0.288088i
\(118\) 0.652906 2.43668i 0.0601048 0.224314i
\(119\) 6.84536 + 6.84536i 0.627513 + 0.627513i
\(120\) 0 0
\(121\) −8.13144 −0.739222
\(122\) 1.76764 + 1.76764i 0.160034 + 0.160034i
\(123\) 8.86398 2.37510i 0.799238 0.214155i
\(124\) 4.23493 15.8050i 0.380308 1.41933i
\(125\) 0 0
\(126\) 0.562402 0.150695i 0.0501027 0.0134250i
\(127\) −0.982278 3.66591i −0.0871631 0.325297i 0.908552 0.417772i \(-0.137189\pi\)
−0.995715 + 0.0924749i \(0.970522\pi\)
\(128\) −3.63677 + 6.29907i −0.321448 + 0.556765i
\(129\) 6.23971 + 1.67192i 0.549376 + 0.147205i
\(130\) 0 0
\(131\) 15.2542 4.08734i 1.33276 0.357113i 0.479019 0.877805i \(-0.340993\pi\)
0.853745 + 0.520692i \(0.174326\pi\)
\(132\) −15.5682 + 4.17148i −1.35504 + 0.363081i
\(133\) 1.47664 2.55762i 0.128041 0.221774i
\(134\) −2.22832 2.22832i −0.192498 0.192498i
\(135\) 0 0
\(136\) 2.08025 + 1.20103i 0.178380 + 0.102988i
\(137\) 9.67862 9.67862i 0.826900 0.826900i −0.160186 0.987087i \(-0.551210\pi\)
0.987087 + 0.160186i \(0.0512095\pi\)
\(138\) −1.11476 + 1.11476i −0.0948946 + 0.0948946i
\(139\) 8.37582 14.5073i 0.710427 1.23050i −0.254269 0.967133i \(-0.581835\pi\)
0.964697 0.263363i \(-0.0848317\pi\)
\(140\) 0 0
\(141\) −13.7596 + 7.94413i −1.15877 + 0.669017i
\(142\) 2.56845 0.215540
\(143\) 19.3928 11.1964i 1.62171 0.936294i
\(144\) −1.91986 + 1.10843i −0.159989 + 0.0923694i
\(145\) 0 0
\(146\) 0.279234 + 1.04211i 0.0231096 + 0.0862460i
\(147\) 10.9994 + 10.9994i 0.907213 + 0.907213i
\(148\) 0.168989 11.7979i 0.0138908 0.969778i
\(149\) 2.73367i 0.223951i 0.993711 + 0.111976i \(0.0357179\pi\)
−0.993711 + 0.111976i \(0.964282\pi\)
\(150\) 0 0
\(151\) −13.6955 + 7.90713i −1.11453 + 0.643473i −0.939998 0.341179i \(-0.889174\pi\)
−0.174530 + 0.984652i \(0.555840\pi\)
\(152\) 0.189660 0.707820i 0.0153834 0.0574118i
\(153\) 0.755968 + 1.30938i 0.0611164 + 0.105857i
\(154\) 2.95856 + 2.95856i 0.238408 + 0.238408i
\(155\) 0 0
\(156\) 13.3396 13.3396i 1.06802 1.06802i
\(157\) 1.28083 + 4.78011i 0.102221 + 0.381494i 0.998015 0.0629751i \(-0.0200589\pi\)
−0.895794 + 0.444469i \(0.853392\pi\)
\(158\) −0.498766 0.498766i −0.0396797 0.0396797i
\(159\) −1.16132 −0.0920984
\(160\) 0 0
\(161\) −12.7281 3.41047i −1.00311 0.268783i
\(162\) −2.56631 −0.201628
\(163\) −14.1711 8.18168i −1.10996 0.640839i −0.171145 0.985246i \(-0.554747\pi\)
−0.938820 + 0.344407i \(0.888080\pi\)
\(164\) 8.11501 + 4.68520i 0.633676 + 0.365853i
\(165\) 0 0
\(166\) 0.381474 1.42368i 0.0296081 0.110499i
\(167\) −6.76558 + 3.90611i −0.523537 + 0.302264i −0.738380 0.674384i \(-0.764409\pi\)
0.214844 + 0.976648i \(0.431076\pi\)
\(168\) 6.20005 + 3.57960i 0.478344 + 0.276172i
\(169\) −6.60518 + 11.4405i −0.508091 + 0.880039i
\(170\) 0 0
\(171\) 0.326147 0.326147i 0.0249411 0.0249411i
\(172\) 3.29810 + 5.71248i 0.251478 + 0.435572i
\(173\) 5.38695 + 20.1044i 0.409562 + 1.52851i 0.795483 + 0.605976i \(0.207217\pi\)
−0.385921 + 0.922532i \(0.626116\pi\)
\(174\) 3.29119i 0.249504i
\(175\) 0 0
\(176\) −13.7963 7.96530i −1.03994 0.600407i
\(177\) 19.5238 1.46750
\(178\) 0.355230 + 0.0951836i 0.0266256 + 0.00713431i
\(179\) −8.72104 + 8.72104i −0.651841 + 0.651841i −0.953436 0.301595i \(-0.902481\pi\)
0.301595 + 0.953436i \(0.402481\pi\)
\(180\) 0 0
\(181\) −1.85478 3.21258i −0.137865 0.238789i 0.788823 0.614620i \(-0.210691\pi\)
−0.926688 + 0.375831i \(0.877357\pi\)
\(182\) −4.73045 1.26752i −0.350644 0.0939548i
\(183\) −9.67361 + 16.7552i −0.715094 + 1.23858i
\(184\) −3.26958 −0.241036
\(185\) 0 0
\(186\) −3.93314 −0.288392
\(187\) −5.43246 + 9.40930i −0.397261 + 0.688076i
\(188\) −15.6709 4.19900i −1.14292 0.306244i
\(189\) −8.85201 15.3321i −0.643889 1.11525i
\(190\) 0 0
\(191\) 7.04757 7.04757i 0.509945 0.509945i −0.404565 0.914509i \(-0.632577\pi\)
0.914509 + 0.404565i \(0.132577\pi\)
\(192\) −12.0925 3.24016i −0.872698 0.233839i
\(193\) −4.50078 −0.323974 −0.161987 0.986793i \(-0.551790\pi\)
−0.161987 + 0.986793i \(0.551790\pi\)
\(194\) 1.28296 + 0.740718i 0.0921112 + 0.0531804i
\(195\) 0 0
\(196\) 15.8839i 1.13456i
\(197\) −1.24175 4.63427i −0.0884710 0.330178i 0.907478 0.420100i \(-0.138005\pi\)
−0.995949 + 0.0899217i \(0.971338\pi\)
\(198\) 0.326729 + 0.565911i 0.0232196 + 0.0402176i
\(199\) 2.93495 2.93495i 0.208053 0.208053i −0.595386 0.803440i \(-0.703001\pi\)
0.803440 + 0.595386i \(0.203001\pi\)
\(200\) 0 0
\(201\) 12.1948 21.1220i 0.860153 1.48983i
\(202\) 0.403537 + 0.232982i 0.0283927 + 0.0163926i
\(203\) 23.8235 13.7545i 1.67208 0.965378i
\(204\) −2.36902 + 8.84131i −0.165865 + 0.619015i
\(205\) 0 0
\(206\) −1.00831 0.582150i −0.0702525 0.0405603i
\(207\) −1.78226 1.02899i −0.123876 0.0715196i
\(208\) 18.6464 1.29290
\(209\) 3.20158 + 0.857861i 0.221458 + 0.0593395i
\(210\) 0 0
\(211\) −16.2172 −1.11644 −0.558221 0.829692i \(-0.688516\pi\)
−0.558221 + 0.829692i \(0.688516\pi\)
\(212\) −0.838512 0.838512i −0.0575892 0.0575892i
\(213\) 5.14492 + 19.2011i 0.352524 + 1.31564i
\(214\) 0.105447 0.105447i 0.00720819 0.00720819i
\(215\) 0 0
\(216\) −3.10621 3.10621i −0.211351 0.211351i
\(217\) −16.4374 28.4704i −1.11584 1.93269i
\(218\) −0.434358 + 1.62104i −0.0294184 + 0.109791i
\(219\) −7.23124 + 4.17496i −0.488642 + 0.282118i
\(220\) 0 0
\(221\) 12.7171i 0.855447i
\(222\) −2.74979 + 0.694751i −0.184554 + 0.0466287i
\(223\) −12.0819 12.0819i −0.809065 0.809065i 0.175427 0.984492i \(-0.443869\pi\)
−0.984492 + 0.175427i \(0.943869\pi\)
\(224\) 2.85255 + 10.6459i 0.190594 + 0.711307i
\(225\) 0 0
\(226\) −0.378791 + 0.218695i −0.0251968 + 0.0145474i
\(227\) 3.85285 2.22445i 0.255723 0.147642i −0.366659 0.930355i \(-0.619498\pi\)
0.622382 + 0.782714i \(0.286165\pi\)
\(228\) 2.79233 0.184927
\(229\) −7.06526 + 4.07913i −0.466886 + 0.269556i −0.714935 0.699191i \(-0.753544\pi\)
0.248050 + 0.968747i \(0.420210\pi\)
\(230\) 0 0
\(231\) −16.1911 + 28.0438i −1.06530 + 1.84515i
\(232\) 4.82651 4.82651i 0.316876 0.316876i
\(233\) −9.86567 + 9.86567i −0.646322 + 0.646322i −0.952102 0.305780i \(-0.901083\pi\)
0.305780 + 0.952102i \(0.401083\pi\)
\(234\) −0.662386 0.382429i −0.0433015 0.0250001i
\(235\) 0 0
\(236\) 14.0969 + 14.0969i 0.917629 + 0.917629i
\(237\) 2.72956 4.72773i 0.177304 0.307099i
\(238\) 2.29519 0.614994i 0.148775 0.0398641i
\(239\) −15.3216 + 4.10540i −0.991069 + 0.265556i −0.717699 0.696353i \(-0.754805\pi\)
−0.273369 + 0.961909i \(0.588138\pi\)
\(240\) 0 0
\(241\) 15.9979 + 4.28663i 1.03052 + 0.276126i 0.734178 0.678957i \(-0.237568\pi\)
0.296338 + 0.955083i \(0.404235\pi\)
\(242\) −0.997931 + 1.72847i −0.0641495 + 0.111110i
\(243\) −1.61342 6.02136i −0.103501 0.386270i
\(244\) −19.0825 + 5.11314i −1.22163 + 0.327336i
\(245\) 0 0
\(246\) 0.582967 2.17566i 0.0371686 0.138715i
\(247\) −3.74738 + 1.00411i −0.238440 + 0.0638898i
\(248\) −5.76794 5.76794i −0.366264 0.366264i
\(249\) 11.4072 0.722902
\(250\) 0 0
\(251\) 3.53612 + 3.53612i 0.223198 + 0.223198i 0.809844 0.586646i \(-0.199552\pi\)
−0.586646 + 0.809844i \(0.699552\pi\)
\(252\) −1.19092 + 4.44458i −0.0750209 + 0.279982i
\(253\) 14.7888i 0.929765i
\(254\) −0.899798 0.241100i −0.0564583 0.0151280i
\(255\) 0 0
\(256\) −5.69753 9.86842i −0.356096 0.616776i
\(257\) −18.1616 10.4856i −1.13289 0.654073i −0.188229 0.982125i \(-0.560275\pi\)
−0.944660 + 0.328052i \(0.893608\pi\)
\(258\) 1.12116 1.12116i 0.0698005 0.0698005i
\(259\) −16.5209 17.0011i −1.02656 1.05640i
\(260\) 0 0
\(261\) 4.14993 1.11197i 0.256874 0.0688293i
\(262\) 1.00324 3.74414i 0.0619803 0.231314i
\(263\) −11.2253 3.00781i −0.692182 0.185470i −0.104456 0.994530i \(-0.533310\pi\)
−0.587726 + 0.809060i \(0.699977\pi\)
\(264\) −2.07958 + 7.76110i −0.127989 + 0.477663i
\(265\) 0 0
\(266\) −0.362442 0.627768i −0.0222228 0.0384910i
\(267\) 2.84627i 0.174189i
\(268\) 24.0559 6.44575i 1.46945 0.393737i
\(269\) 20.4566i 1.24726i −0.781719 0.623631i \(-0.785657\pi\)
0.781719 0.623631i \(-0.214343\pi\)
\(270\) 0 0
\(271\) 11.4239 19.7867i 0.693951 1.20196i −0.276582 0.960990i \(-0.589202\pi\)
0.970533 0.240968i \(-0.0774650\pi\)
\(272\) −7.83505 + 4.52357i −0.475070 + 0.274282i
\(273\) 37.9026i 2.29397i
\(274\) −0.869536 3.24515i −0.0525306 0.196047i
\(275\) 0 0
\(276\) −3.22460 12.0344i −0.194098 0.724384i
\(277\) 6.88756 + 11.9296i 0.413833 + 0.716780i 0.995305 0.0967861i \(-0.0308563\pi\)
−0.581472 + 0.813567i \(0.697523\pi\)
\(278\) −2.05584 3.56083i −0.123301 0.213564i
\(279\) −1.32886 4.95939i −0.0795570 0.296911i
\(280\) 0 0
\(281\) −6.14362 22.9283i −0.366498 1.36779i −0.865379 0.501118i \(-0.832922\pi\)
0.498881 0.866670i \(-0.333744\pi\)
\(282\) 3.89978i 0.232228i
\(283\) −18.3014 + 10.5663i −1.08790 + 0.628102i −0.933018 0.359830i \(-0.882835\pi\)
−0.154887 + 0.987932i \(0.549501\pi\)
\(284\) −10.1490 + 17.5787i −0.602235 + 1.04310i
\(285\) 0 0
\(286\) 5.49634i 0.325005i
\(287\) 18.1850 4.87267i 1.07343 0.287624i
\(288\) 1.72131i 0.101429i
\(289\) −5.41486 9.37881i −0.318521 0.551695i
\(290\) 0 0
\(291\) −2.96749 + 11.0748i −0.173957 + 0.649218i
\(292\) −8.23568 2.20674i −0.481957 0.129140i
\(293\) −0.127980 + 0.477628i −0.00747667 + 0.0279033i −0.969563 0.244840i \(-0.921264\pi\)
0.962087 + 0.272744i \(0.0879311\pi\)
\(294\) 3.68799 0.988194i 0.215088 0.0576326i
\(295\) 0 0
\(296\) −5.05141 3.01371i −0.293607 0.175168i
\(297\) 14.0499 14.0499i 0.815256 0.815256i
\(298\) 0.581086 + 0.335490i 0.0336614 + 0.0194344i
\(299\) 8.65498 + 14.9909i 0.500530 + 0.866944i
\(300\) 0 0
\(301\) 12.8012 + 3.43006i 0.737847 + 0.197706i
\(302\) 3.88161i 0.223362i
\(303\) −0.933381 + 3.48343i −0.0536214 + 0.200118i
\(304\) 1.95160 + 1.95160i 0.111932 + 0.111932i
\(305\) 0 0
\(306\) 0.371105 0.0212146
\(307\) 13.0911 + 13.0911i 0.747149 + 0.747149i 0.973943 0.226794i \(-0.0728243\pi\)
−0.226794 + 0.973943i \(0.572824\pi\)
\(308\) −31.9391 + 8.55807i −1.81990 + 0.487641i
\(309\) 2.33223 8.70400i 0.132676 0.495153i
\(310\) 0 0
\(311\) −25.2278 + 6.75978i −1.43054 + 0.383312i −0.889210 0.457499i \(-0.848745\pi\)
−0.541329 + 0.840811i \(0.682079\pi\)
\(312\) −2.43410 9.08418i −0.137804 0.514291i
\(313\) −8.41349 + 14.5726i −0.475558 + 0.823691i −0.999608 0.0279965i \(-0.991087\pi\)
0.524050 + 0.851688i \(0.324421\pi\)
\(314\) 1.17328 + 0.314379i 0.0662119 + 0.0177414i
\(315\) 0 0
\(316\) 5.38442 1.44275i 0.302897 0.0811611i
\(317\) −17.3678 + 4.65369i −0.975472 + 0.261377i −0.711137 0.703054i \(-0.751819\pi\)
−0.264336 + 0.964431i \(0.585153\pi\)
\(318\) −0.142523 + 0.246856i −0.00799227 + 0.0138430i
\(319\) 21.8311 + 21.8311i 1.22231 + 1.22231i
\(320\) 0 0
\(321\) 0.999515 + 0.577070i 0.0557875 + 0.0322089i
\(322\) −2.28700 + 2.28700i −0.127450 + 0.127450i
\(323\) 1.33102 1.33102i 0.0740599 0.0740599i
\(324\) 10.1406 17.5640i 0.563365 0.975778i
\(325\) 0 0
\(326\) −3.47829 + 2.00819i −0.192645 + 0.111224i
\(327\) −12.9886 −0.718270
\(328\) 4.04552 2.33568i 0.223376 0.128966i
\(329\) −28.2288 + 16.2979i −1.55630 + 0.898533i
\(330\) 0 0
\(331\) −1.17108 4.37053i −0.0643683 0.240226i 0.926245 0.376923i \(-0.123018\pi\)
−0.990613 + 0.136697i \(0.956351\pi\)
\(332\) 8.23640 + 8.23640i 0.452031 + 0.452031i
\(333\) −1.80508 3.23255i −0.0989178 0.177142i
\(334\) 1.91751i 0.104921i
\(335\) 0 0
\(336\) −23.3519 + 13.4822i −1.27395 + 0.735514i
\(337\) −0.129673 + 0.483946i −0.00706374 + 0.0263622i −0.969368 0.245614i \(-0.921010\pi\)
0.962304 + 0.271976i \(0.0876772\pi\)
\(338\) 1.62124 + 2.80807i 0.0881839 + 0.152739i
\(339\) −2.39367 2.39367i −0.130006 0.130006i
\(340\) 0 0
\(341\) 26.0893 26.0893i 1.41281 1.41281i
\(342\) −0.0293013 0.109354i −0.00158443 0.00591319i
\(343\) 3.27551 + 3.27551i 0.176861 + 0.176861i
\(344\) 3.28836 0.177296
\(345\) 0 0
\(346\) 4.93462 + 1.32223i 0.265287 + 0.0710834i
\(347\) −5.86619 −0.314914 −0.157457 0.987526i \(-0.550330\pi\)
−0.157457 + 0.987526i \(0.550330\pi\)
\(348\) 22.5251 + 13.0049i 1.20747 + 0.697135i
\(349\) 18.2252 + 10.5223i 0.975571 + 0.563246i 0.900930 0.433964i \(-0.142886\pi\)
0.0746410 + 0.997210i \(0.476219\pi\)
\(350\) 0 0
\(351\) −6.01930 + 22.4643i −0.321286 + 1.19906i
\(352\) −10.7123 + 6.18475i −0.570967 + 0.329648i
\(353\) 13.3327 + 7.69762i 0.709627 + 0.409703i 0.810923 0.585153i \(-0.198966\pi\)
−0.101296 + 0.994856i \(0.532299\pi\)
\(354\) 2.39606 4.15010i 0.127349 0.220575i
\(355\) 0 0
\(356\) −2.05511 + 2.05511i −0.108920 + 0.108920i
\(357\) 9.19507 + 15.9263i 0.486655 + 0.842910i
\(358\) 0.783507 + 2.92409i 0.0414096 + 0.154543i
\(359\) 28.7191i 1.51574i −0.652407 0.757869i \(-0.726241\pi\)
0.652407 0.757869i \(-0.273759\pi\)
\(360\) 0 0
\(361\) 15.9572 + 9.21288i 0.839851 + 0.484888i
\(362\) −0.910513 −0.0478555
\(363\) −14.9206 3.99795i −0.783126 0.209838i
\(364\) 27.3670 27.3670i 1.43442 1.43442i
\(365\) 0 0
\(366\) 2.37439 + 4.11256i 0.124111 + 0.214967i
\(367\) 11.0742 + 2.96732i 0.578068 + 0.154893i 0.535994 0.844222i \(-0.319937\pi\)
0.0420738 + 0.999115i \(0.486604\pi\)
\(368\) 6.15727 10.6647i 0.320970 0.555936i
\(369\) 2.94031 0.153066
\(370\) 0 0
\(371\) −2.38252 −0.123694
\(372\) 15.5415 26.9187i 0.805791 1.39567i
\(373\) 10.6519 + 2.85417i 0.551535 + 0.147783i 0.523815 0.851832i \(-0.324508\pi\)
0.0277207 + 0.999616i \(0.491175\pi\)
\(374\) 1.33340 + 2.30951i 0.0689483 + 0.119422i
\(375\) 0 0
\(376\) −5.71900 + 5.71900i −0.294935 + 0.294935i
\(377\) −34.9057 9.35296i −1.79774 0.481702i
\(378\) −4.34545 −0.223506
\(379\) 24.3009 + 14.0302i 1.24826 + 0.720681i 0.970761 0.240046i \(-0.0771627\pi\)
0.277494 + 0.960727i \(0.410496\pi\)
\(380\) 0 0
\(381\) 7.20961i 0.369359i
\(382\) −0.633161 2.36299i −0.0323953 0.120901i
\(383\) −4.08788 7.08041i −0.208881 0.361792i 0.742481 0.669867i \(-0.233649\pi\)
−0.951362 + 0.308075i \(0.900315\pi\)
\(384\) −9.77022 + 9.77022i −0.498585 + 0.498585i
\(385\) 0 0
\(386\) −0.552359 + 0.956713i −0.0281143 + 0.0486954i
\(387\) 1.79250 + 1.03490i 0.0911178 + 0.0526069i
\(388\) −10.1390 + 5.85378i −0.514732 + 0.297181i
\(389\) −6.73768 + 25.1454i −0.341614 + 1.27492i 0.554904 + 0.831914i \(0.312755\pi\)
−0.896518 + 0.443007i \(0.853912\pi\)
\(390\) 0 0
\(391\) −7.27349 4.19935i −0.367836 0.212370i
\(392\) 6.85760 + 3.95924i 0.346361 + 0.199972i
\(393\) 29.9998 1.51329
\(394\) −1.13748 0.304787i −0.0573055 0.0153550i
\(395\) 0 0
\(396\) −5.16418 −0.259510
\(397\) 24.8666 + 24.8666i 1.24802 + 1.24802i 0.956594 + 0.291423i \(0.0941287\pi\)
0.291423 + 0.956594i \(0.405871\pi\)
\(398\) −0.263679 0.984063i −0.0132170 0.0493266i
\(399\) 3.96702 3.96702i 0.198599 0.198599i
\(400\) 0 0
\(401\) 21.5174 + 21.5174i 1.07453 + 1.07453i 0.996990 + 0.0775363i \(0.0247054\pi\)
0.0775363 + 0.996990i \(0.475295\pi\)
\(402\) −2.99321 5.18439i −0.149288 0.258574i
\(403\) −11.1773 + 41.7142i −0.556780 + 2.07793i
\(404\) −3.18909 + 1.84122i −0.158663 + 0.0916042i
\(405\) 0 0
\(406\) 6.75209i 0.335101i
\(407\) 13.6315 22.8483i 0.675688 1.13255i
\(408\) 3.22659 + 3.22659i 0.159740 + 0.159740i
\(409\) −4.96725 18.5380i −0.245615 0.916647i −0.973073 0.230495i \(-0.925965\pi\)
0.727459 0.686151i \(-0.240701\pi\)
\(410\) 0 0
\(411\) 22.5181 13.0009i 1.11074 0.641285i
\(412\) 7.96855 4.60064i 0.392582 0.226657i
\(413\) 40.0544 1.97095
\(414\) −0.437456 + 0.252565i −0.0214998 + 0.0124129i
\(415\) 0 0
\(416\) 7.23910 12.5385i 0.354926 0.614750i
\(417\) 22.5017 22.5017i 1.10191 1.10191i
\(418\) 0.575266 0.575266i 0.0281372 0.0281372i
\(419\) 14.4238 + 8.32758i 0.704649 + 0.406829i 0.809076 0.587703i \(-0.199968\pi\)
−0.104428 + 0.994532i \(0.533301\pi\)
\(420\) 0 0
\(421\) −1.63243 1.63243i −0.0795600 0.0795600i 0.666207 0.745767i \(-0.267917\pi\)
−0.745767 + 0.666207i \(0.767917\pi\)
\(422\) −1.99026 + 3.44723i −0.0968844 + 0.167809i
\(423\) −4.91731 + 1.31759i −0.239088 + 0.0640634i
\(424\) −0.571022 + 0.153005i −0.0277313 + 0.00743058i
\(425\) 0 0
\(426\) 4.71291 + 1.26282i 0.228341 + 0.0611838i
\(427\) −19.8460 + 34.3744i −0.960417 + 1.66349i
\(428\) 0.305020 + 1.13835i 0.0147437 + 0.0550242i
\(429\) 41.0892 11.0098i 1.98380 0.531559i
\(430\) 0 0
\(431\) −4.00348 + 14.9412i −0.192841 + 0.719692i 0.799974 + 0.600034i \(0.204846\pi\)
−0.992815 + 0.119658i \(0.961820\pi\)
\(432\) 15.9814 4.28221i 0.768907 0.206028i
\(433\) 25.3131 + 25.3131i 1.21647 + 1.21647i 0.968860 + 0.247609i \(0.0796449\pi\)
0.247609 + 0.968860i \(0.420355\pi\)
\(434\) −8.06910 −0.387329
\(435\) 0 0
\(436\) −9.37821 9.37821i −0.449135 0.449135i
\(437\) −0.663136 + 2.47486i −0.0317221 + 0.118388i
\(438\) 2.04949i 0.0979283i
\(439\) −19.5391 5.23549i −0.932551 0.249876i −0.239609 0.970870i \(-0.577019\pi\)
−0.692942 + 0.720993i \(0.743686\pi\)
\(440\) 0 0
\(441\) 2.49207 + 4.31639i 0.118670 + 0.205543i
\(442\) −2.70323 1.56071i −0.128579 0.0742354i
\(443\) −14.1936 + 14.1936i −0.674357 + 0.674357i −0.958717 0.284360i \(-0.908219\pi\)
0.284360 + 0.958717i \(0.408219\pi\)
\(444\) 6.11068 21.5650i 0.290000 1.02343i
\(445\) 0 0
\(446\) −4.05096 + 1.08545i −0.191818 + 0.0513976i
\(447\) −1.34405 + 5.01607i −0.0635715 + 0.237252i
\(448\) −24.8085 6.64741i −1.17209 0.314061i
\(449\) −0.795805 + 2.96998i −0.0375563 + 0.140162i −0.982158 0.188056i \(-0.939781\pi\)
0.944602 + 0.328218i \(0.106448\pi\)
\(450\) 0 0
\(451\) 10.5647 + 18.2985i 0.497470 + 0.861644i
\(452\) 3.45663i 0.162586i
\(453\) −29.0179 + 7.77533i −1.36338 + 0.365317i
\(454\) 1.09198i 0.0512492i
\(455\) 0 0
\(456\) 0.696022 1.20554i 0.0325942 0.0564548i
\(457\) 3.30575 1.90857i 0.154636 0.0892793i −0.420685 0.907207i \(-0.638210\pi\)
0.575321 + 0.817927i \(0.304877\pi\)
\(458\) 2.00244i 0.0935681i
\(459\) −2.92053 10.8996i −0.136319 0.508749i
\(460\) 0 0
\(461\) 9.05566 + 33.7962i 0.421764 + 1.57404i 0.770890 + 0.636969i \(0.219812\pi\)
−0.349126 + 0.937076i \(0.613521\pi\)
\(462\) 3.97410 + 6.88335i 0.184892 + 0.320242i
\(463\) −14.1107 24.4405i −0.655782 1.13585i −0.981697 0.190449i \(-0.939006\pi\)
0.325915 0.945399i \(-0.394328\pi\)
\(464\) 6.65382 + 24.8324i 0.308896 + 1.15282i
\(465\) 0 0
\(466\) 0.886341 + 3.30787i 0.0410590 + 0.153234i
\(467\) 15.9774i 0.739345i 0.929162 + 0.369672i \(0.120530\pi\)
−0.929162 + 0.369672i \(0.879470\pi\)
\(468\) 5.23474 3.02228i 0.241976 0.139705i
\(469\) 25.0184 43.3331i 1.15524 2.00094i
\(470\) 0 0
\(471\) 9.40086i 0.433169i
\(472\) 9.59991 2.57229i 0.441872 0.118399i
\(473\) 14.8738i 0.683896i
\(474\) −0.669969 1.16042i −0.0307727 0.0532999i
\(475\) 0 0
\(476\) −4.86020 + 18.1385i −0.222767 + 0.831378i
\(477\) −0.359420 0.0963063i −0.0164567 0.00440956i
\(478\) −1.00767 + 3.76067i −0.0460897 + 0.172009i
\(479\) 19.8825 5.32750i 0.908454 0.243420i 0.225811 0.974171i \(-0.427497\pi\)
0.682643 + 0.730752i \(0.260830\pi\)
\(480\) 0 0
\(481\) −0.446015 + 31.1381i −0.0203365 + 1.41978i
\(482\) 2.87453 2.87453i 0.130931 0.130931i
\(483\) −21.6782 12.5159i −0.986390 0.569493i
\(484\) −7.88650 13.6598i −0.358477 0.620901i
\(485\) 0 0
\(486\) −1.47794 0.396013i −0.0670408 0.0179635i
\(487\) 6.61449i 0.299731i −0.988706 0.149866i \(-0.952116\pi\)
0.988706 0.149866i \(-0.0478841\pi\)
\(488\) −2.54902 + 9.51308i −0.115389 + 0.430637i
\(489\) −21.9802 21.9802i −0.993977 0.993977i
\(490\) 0 0
\(491\) −5.57169 −0.251447 −0.125723 0.992065i \(-0.540125\pi\)
−0.125723 + 0.992065i \(0.540125\pi\)
\(492\) 12.5868 + 12.5868i 0.567459 + 0.567459i
\(493\) 16.9361 4.53801i 0.762762 0.204382i
\(494\) −0.246458 + 0.919793i −0.0110887 + 0.0413835i
\(495\) 0 0
\(496\) 29.6760 7.95167i 1.33249 0.357040i
\(497\) 10.5551 + 39.3923i 0.473462 + 1.76699i
\(498\) 1.39995 2.42478i 0.0627332 0.108657i
\(499\) −5.11780 1.37131i −0.229104 0.0613883i 0.142440 0.989803i \(-0.454505\pi\)
−0.371545 + 0.928415i \(0.621172\pi\)
\(500\) 0 0
\(501\) −14.3348 + 3.84100i −0.640432 + 0.171603i
\(502\) 1.18563 0.317689i 0.0529172 0.0141791i
\(503\) 2.89715 5.01801i 0.129178 0.223742i −0.794181 0.607682i \(-0.792100\pi\)
0.923358 + 0.383940i \(0.125433\pi\)
\(504\) 1.62202 + 1.62202i 0.0722506 + 0.0722506i
\(505\) 0 0
\(506\) −3.14360 1.81496i −0.139750 0.0806847i
\(507\) −17.7449 + 17.7449i −0.788078 + 0.788078i
\(508\) 5.20559 5.20559i 0.230961 0.230961i
\(509\) −18.5930 + 32.2040i −0.824118 + 1.42742i 0.0784727 + 0.996916i \(0.474996\pi\)
−0.902591 + 0.430499i \(0.858338\pi\)
\(510\) 0 0
\(511\) −14.8354 + 8.56520i −0.656278 + 0.378902i
\(512\) −17.3440 −0.766504
\(513\) −2.98120 + 1.72120i −0.131623 + 0.0759927i
\(514\) −4.45776 + 2.57369i −0.196623 + 0.113521i
\(515\) 0 0
\(516\) 3.24312 + 12.1035i 0.142771 + 0.532827i
\(517\) −25.8679 25.8679i −1.13767 1.13767i
\(518\) −5.64138 + 1.42533i −0.247868 + 0.0626253i
\(519\) 39.5385i 1.73555i
\(520\) 0 0
\(521\) −29.0910 + 16.7957i −1.27450 + 0.735832i −0.975831 0.218525i \(-0.929876\pi\)
−0.298668 + 0.954357i \(0.596542\pi\)
\(522\) 0.272933 1.01860i 0.0119460 0.0445830i
\(523\) −15.4267 26.7199i −0.674564 1.16838i −0.976596 0.215082i \(-0.930998\pi\)
0.302031 0.953298i \(-0.402335\pi\)
\(524\) 21.6609 + 21.6609i 0.946261 + 0.946261i
\(525\) 0 0
\(526\) −2.01698 + 2.01698i −0.0879447 + 0.0879447i
\(527\) −5.42316 20.2395i −0.236236 0.881647i
\(528\) −21.3989 21.3989i −0.931266 0.931266i
\(529\) −11.5681 −0.502960
\(530\) 0 0
\(531\) 6.04249 + 1.61908i 0.262222 + 0.0702621i
\(532\) 5.72865 0.248369
\(533\) −21.4180 12.3657i −0.927716 0.535617i
\(534\) 0.605020 + 0.349309i 0.0261818 + 0.0151161i
\(535\) 0 0
\(536\) 3.21336 11.9924i 0.138796 0.517993i
\(537\) −20.2903 + 11.7146i −0.875589 + 0.505522i
\(538\) −4.34838 2.51054i −0.187472 0.108237i
\(539\) −17.9083 + 31.0180i −0.771363 + 1.33604i
\(540\) 0 0
\(541\) −11.6465 + 11.6465i −0.500724 + 0.500724i −0.911663 0.410939i \(-0.865201\pi\)
0.410939 + 0.911663i \(0.365201\pi\)
\(542\) −2.80399 4.85665i −0.120442 0.208611i
\(543\) −1.82387 6.80676i −0.0782696 0.292106i
\(544\) 7.02475i 0.301184i
\(545\) 0 0
\(546\) −8.05680 4.65159i −0.344799 0.199070i
\(547\) 18.6903 0.799142 0.399571 0.916702i \(-0.369159\pi\)
0.399571 + 0.916702i \(0.369159\pi\)
\(548\) 25.6460 + 6.87182i 1.09554 + 0.293549i
\(549\) −4.38340 + 4.38340i −0.187079 + 0.187079i
\(550\) 0 0
\(551\) −2.67444 4.63227i −0.113935 0.197341i
\(552\) −5.99941 1.60754i −0.255352 0.0684214i
\(553\) 5.59986 9.69925i 0.238130 0.412454i
\(554\) 3.38110 0.143649
\(555\) 0 0
\(556\) 32.4941 1.37805
\(557\) −3.08244 + 5.33894i −0.130607 + 0.226218i −0.923911 0.382608i \(-0.875026\pi\)
0.793304 + 0.608826i \(0.208359\pi\)
\(558\) −1.21728 0.326170i −0.0515317 0.0138079i
\(559\) −8.70469 15.0770i −0.368169 0.637688i
\(560\) 0 0
\(561\) −14.5944 + 14.5944i −0.616174 + 0.616174i
\(562\) −5.62775 1.50795i −0.237392 0.0636091i
\(563\) 24.5838 1.03609 0.518043 0.855355i \(-0.326661\pi\)
0.518043 + 0.855355i \(0.326661\pi\)
\(564\) −26.6903 15.4097i −1.12387 0.648864i
\(565\) 0 0
\(566\) 5.18700i 0.218026i
\(567\) −10.5463 39.3594i −0.442904 1.65294i
\(568\) 5.05954 + 8.76337i 0.212293 + 0.367703i
\(569\) 24.7919 24.7919i 1.03933 1.03933i 0.0401367 0.999194i \(-0.487221\pi\)
0.999194 0.0401367i \(-0.0127793\pi\)
\(570\) 0 0
\(571\) 10.8132 18.7289i 0.452516 0.783781i −0.546025 0.837769i \(-0.683860\pi\)
0.998542 + 0.0539873i \(0.0171930\pi\)
\(572\) 37.6173 + 21.7184i 1.57286 + 0.908090i
\(573\) 16.3968 9.46669i 0.684986 0.395477i
\(574\) 1.19600 4.46352i 0.0499199 0.186304i
\(575\) 0 0
\(576\) −3.47383 2.00562i −0.144743 0.0835674i
\(577\) 3.05528 + 1.76397i 0.127193 + 0.0734348i 0.562246 0.826970i \(-0.309937\pi\)
−0.435054 + 0.900405i \(0.643271\pi\)
\(578\) −2.65815 −0.110565
\(579\) −8.25858 2.21288i −0.343215 0.0919642i
\(580\) 0 0
\(581\) 23.4026 0.970904
\(582\) 1.98995 + 1.98995i 0.0824859 + 0.0824859i
\(583\) −0.692066 2.58282i −0.0286624 0.106970i
\(584\) −3.00556 + 3.00556i −0.124371 + 0.124371i
\(585\) 0 0
\(586\) 0.0858211 + 0.0858211i 0.00354524 + 0.00354524i
\(587\) 17.6768 + 30.6172i 0.729601 + 1.26371i 0.957052 + 0.289917i \(0.0936276\pi\)
−0.227451 + 0.973790i \(0.573039\pi\)
\(588\) −7.80955 + 29.1456i −0.322060 + 1.20195i
\(589\) −5.53581 + 3.19610i −0.228099 + 0.131693i
\(590\) 0 0
\(591\) 9.11405i 0.374902i
\(592\) 19.3429 10.8013i 0.794989 0.443929i
\(593\) 25.5343 + 25.5343i 1.04857 + 1.04857i 0.998759 + 0.0498107i \(0.0158618\pi\)
0.0498107 + 0.998759i \(0.484138\pi\)
\(594\) −1.26225 4.71079i −0.0517909 0.193286i
\(595\) 0 0
\(596\) −4.59223 + 2.65133i −0.188105 + 0.108603i
\(597\) 6.82842 3.94239i 0.279469 0.161351i
\(598\) 4.24873 0.173743
\(599\) −8.97611 + 5.18236i −0.366754 + 0.211745i −0.672039 0.740515i \(-0.734581\pi\)
0.305286 + 0.952261i \(0.401248\pi\)
\(600\) 0 0
\(601\) 18.8695 32.6829i 0.769702 1.33316i −0.168023 0.985783i \(-0.553738\pi\)
0.937725 0.347379i \(-0.112928\pi\)
\(602\) 2.30014 2.30014i 0.0937466 0.0937466i
\(603\) 5.52582 5.52582i 0.225029 0.225029i
\(604\) −26.5660 15.3379i −1.08096 0.624090i
\(605\) 0 0
\(606\) 0.625909 + 0.625909i 0.0254258 + 0.0254258i
\(607\) 16.4454 28.4843i 0.667500 1.15614i −0.311101 0.950377i \(-0.600698\pi\)
0.978601 0.205767i \(-0.0659689\pi\)
\(608\) 2.06999 0.554653i 0.0839493 0.0224942i
\(609\) 50.4769 13.5252i 2.04543 0.548070i
\(610\) 0 0
\(611\) 41.3603 + 11.0824i 1.67326 + 0.448348i
\(612\) −1.46639 + 2.53987i −0.0592754 + 0.102668i
\(613\) 6.43944 + 24.0323i 0.260087 + 0.970657i 0.965190 + 0.261552i \(0.0842341\pi\)
−0.705103 + 0.709105i \(0.749099\pi\)
\(614\) 4.38933 1.17612i 0.177139 0.0474642i
\(615\) 0 0
\(616\) −4.26639 + 15.9224i −0.171898 + 0.641532i
\(617\) −14.8844 + 3.98826i −0.599223 + 0.160561i −0.545665 0.838003i \(-0.683723\pi\)
−0.0535581 + 0.998565i \(0.517056\pi\)
\(618\) −1.56395 1.56395i −0.0629113 0.0629113i
\(619\) −9.03986 −0.363343 −0.181671 0.983359i \(-0.558151\pi\)
−0.181671 + 0.983359i \(0.558151\pi\)
\(620\) 0 0
\(621\) 10.8607 + 10.8607i 0.435825 + 0.435825i
\(622\) −1.65919 + 6.19217i −0.0665274 + 0.248283i
\(623\) 5.83931i 0.233947i
\(624\) 34.2147 + 9.16779i 1.36968 + 0.367005i
\(625\) 0 0
\(626\) 2.06509 + 3.57684i 0.0825376 + 0.142959i
\(627\) 5.45287 + 3.14822i 0.217767 + 0.125728i
\(628\) −6.78775 + 6.78775i −0.270861 + 0.270861i
\(629\) −7.36662 13.1922i −0.293726 0.526006i
\(630\) 0 0
\(631\) 0.852346 0.228386i 0.0339314 0.00909188i −0.241813 0.970323i \(-0.577742\pi\)
0.275745 + 0.961231i \(0.411076\pi\)
\(632\) 0.719245 2.68426i 0.0286100 0.106774i
\(633\) −29.7574 7.97346i −1.18275 0.316917i
\(634\) −1.14225 + 4.26292i −0.0453644 + 0.169302i
\(635\) 0 0
\(636\) −1.12633 1.95087i −0.0446621 0.0773570i
\(637\) 41.9224i 1.66103i
\(638\) 7.31976 1.96132i 0.289792 0.0776496i
\(639\) 6.36927i 0.251964i
\(640\) 0 0
\(641\) 23.9371 41.4602i 0.945458 1.63758i 0.190626 0.981663i \(-0.438948\pi\)
0.754832 0.655918i \(-0.227718\pi\)
\(642\) 0.245331 0.141642i 0.00968244 0.00559016i
\(643\) 2.96948i 0.117105i −0.998284 0.0585523i \(-0.981352\pi\)
0.998284 0.0585523i \(-0.0186485\pi\)
\(644\) −6.61548 24.6893i −0.260686 0.972895i
\(645\) 0 0
\(646\) −0.119580 0.446279i −0.00470482 0.0175586i
\(647\) −1.83889 3.18505i −0.0722941 0.125217i 0.827612 0.561300i \(-0.189699\pi\)
−0.899906 + 0.436083i \(0.856365\pi\)
\(648\) −5.05531 8.75606i −0.198591 0.343971i
\(649\) 11.6349 + 43.4219i 0.456708 + 1.70446i
\(650\) 0 0
\(651\) −16.1634 60.3225i −0.633493 2.36423i
\(652\) 31.7409i 1.24307i
\(653\) −5.95590 + 3.43864i −0.233072 + 0.134564i −0.611989 0.790867i \(-0.709630\pi\)
0.378916 + 0.925431i \(0.376297\pi\)
\(654\) −1.59402 + 2.76093i −0.0623312 + 0.107961i
\(655\) 0 0
\(656\) 17.5942i 0.686939i
\(657\) −2.58424 + 0.692446i −0.100821 + 0.0270149i
\(658\) 8.00064i 0.311898i
\(659\) 9.37543 + 16.2387i 0.365215 + 0.632571i 0.988811 0.149176i \(-0.0476622\pi\)
−0.623596 + 0.781747i \(0.714329\pi\)
\(660\) 0 0
\(661\) −7.54321 + 28.1516i −0.293397 + 1.09497i 0.649086 + 0.760715i \(0.275152\pi\)
−0.942482 + 0.334256i \(0.891515\pi\)
\(662\) −1.07275 0.287441i −0.0416934 0.0111717i
\(663\) 6.25257 23.3349i 0.242830 0.906253i
\(664\) 5.60895 1.50291i 0.217669 0.0583243i
\(665\) 0 0
\(666\) −0.908658 0.0130154i −0.0352098 0.000504336i
\(667\) −16.8757 + 16.8757i −0.653428 + 0.653428i
\(668\) −13.1236 7.57690i −0.507766 0.293159i
\(669\) −16.2291 28.1096i −0.627453 1.08678i
\(670\) 0 0
\(671\) −43.0292 11.5296i −1.66112 0.445096i
\(672\) 20.9368i 0.807655i
\(673\) −7.31994 + 27.3184i −0.282163 + 1.05305i 0.668725 + 0.743510i \(0.266840\pi\)
−0.950888 + 0.309536i \(0.899826\pi\)
\(674\) 0.0869564 + 0.0869564i 0.00334943 + 0.00334943i
\(675\) 0 0
\(676\) −25.6248 −0.985571
\(677\) −11.9853 11.9853i −0.460633 0.460633i 0.438230 0.898863i \(-0.355605\pi\)
−0.898863 + 0.438230i \(0.855605\pi\)
\(678\) −0.802575 + 0.215049i −0.0308227 + 0.00825892i
\(679\) −6.08800 + 22.7207i −0.233636 + 0.871942i
\(680\) 0 0
\(681\) 8.16336 2.18737i 0.312821 0.0838201i
\(682\) −2.34389 8.74750i −0.0897520 0.334959i
\(683\) −6.84107 + 11.8491i −0.261766 + 0.453393i −0.966711 0.255869i \(-0.917638\pi\)
0.704945 + 0.709262i \(0.250972\pi\)
\(684\) 0.864208 + 0.231564i 0.0330438 + 0.00885407i
\(685\) 0 0
\(686\) 1.09825 0.294275i 0.0419313 0.0112355i
\(687\) −14.9698 + 4.01113i −0.571132 + 0.153034i
\(688\) −6.19263 + 10.7260i −0.236092 + 0.408923i
\(689\) 2.21309 + 2.21309i 0.0843120 + 0.0843120i
\(690\) 0 0
\(691\) −12.5733 7.25918i −0.478310 0.276152i 0.241402 0.970425i \(-0.422393\pi\)
−0.719712 + 0.694273i \(0.755726\pi\)
\(692\) −28.5482 + 28.5482i −1.08524 + 1.08524i
\(693\) −7.33666 + 7.33666i −0.278697 + 0.278697i
\(694\) −0.719928 + 1.24695i −0.0273281 + 0.0473337i
\(695\) 0 0
\(696\) 11.2293 6.48324i 0.425646 0.245747i
\(697\) 11.9995 0.454515
\(698\) 4.47337 2.58270i 0.169319 0.0977566i
\(699\) −22.9533 + 13.2521i −0.868175 + 0.501241i
\(700\) 0 0
\(701\) −6.61099 24.6725i −0.249693 0.931869i −0.970966 0.239217i \(-0.923109\pi\)
0.721273 0.692651i \(-0.243558\pi\)
\(702\) 4.03643 + 4.03643i 0.152345 + 0.152345i
\(703\) −3.30571 + 3.21235i −0.124677 + 0.121156i
\(704\) 28.8251i 1.08639i
\(705\) 0 0
\(706\) 3.27251 1.88938i 0.123162 0.0711078i
\(707\) −1.91489 + 7.14648i −0.0720170 + 0.268771i
\(708\) 18.9357 + 32.7976i 0.711647 + 1.23261i
\(709\) 0.827189 + 0.827189i 0.0310657 + 0.0310657i 0.722469 0.691403i \(-0.243007\pi\)
−0.691403 + 0.722469i \(0.743007\pi\)
\(710\) 0 0
\(711\) 1.23684 1.23684i 0.0463852 0.0463852i
\(712\) 0.375000 + 1.39952i 0.0140537 + 0.0524492i
\(713\) 20.1673 + 20.1673i 0.755271 + 0.755271i
\(714\) 4.51386 0.168927
\(715\) 0 0
\(716\) −23.1086 6.19193i −0.863610 0.231403i
\(717\) −30.1323 −1.12531
\(718\) −6.10471 3.52456i −0.227826 0.131535i
\(719\) 5.80482 + 3.35141i 0.216483 + 0.124987i 0.604321 0.796741i \(-0.293445\pi\)
−0.387838 + 0.921728i \(0.626778\pi\)
\(720\) 0 0
\(721\) 4.78472 17.8568i 0.178192 0.665023i
\(722\) 3.91669 2.26130i 0.145764 0.0841569i
\(723\) 27.2473 + 15.7312i 1.01334 + 0.585051i
\(724\) 3.59782 6.23161i 0.133712 0.231596i
\(725\) 0 0
\(726\) −2.68095 + 2.68095i −0.0994995 + 0.0994995i
\(727\) 10.5202 + 18.2215i 0.390171 + 0.675797i 0.992472 0.122473i \(-0.0390824\pi\)
−0.602300 + 0.798270i \(0.705749\pi\)
\(728\) −4.99371 18.6368i −0.185079 0.690726i
\(729\) 19.5246i 0.723134i
\(730\) 0 0
\(731\) 7.31527 + 4.22347i 0.270565 + 0.156211i
\(732\) −37.5289 −1.38711
\(733\) −25.3437 6.79083i −0.936092 0.250825i −0.241641 0.970366i \(-0.577686\pi\)
−0.694450 + 0.719541i \(0.744352\pi\)
\(734\) 1.98983 1.98983i 0.0734460 0.0734460i
\(735\) 0 0
\(736\) −4.78088 8.28072i −0.176225 0.305231i
\(737\) 54.2435 + 14.5345i 1.99809 + 0.535386i
\(738\) 0.360849 0.625009i 0.0132830 0.0230069i
\(739\) 33.7980 1.24328 0.621640 0.783303i \(-0.286467\pi\)
0.621640 + 0.783303i \(0.286467\pi\)
\(740\) 0 0
\(741\) −7.36982 −0.270737
\(742\) −0.292394 + 0.506442i −0.0107341 + 0.0185921i
\(743\) 0.485894 + 0.130195i 0.0178257 + 0.00477639i 0.267721 0.963497i \(-0.413729\pi\)
−0.249895 + 0.968273i \(0.580396\pi\)
\(744\) −7.74781 13.4196i −0.284049 0.491987i
\(745\) 0 0
\(746\) 1.91396 1.91396i 0.0700749 0.0700749i
\(747\) 3.53045 + 0.945982i 0.129172 + 0.0346117i
\(748\) −21.0753 −0.770588
\(749\) 2.05057 + 1.18390i 0.0749262 + 0.0432587i
\(750\) 0 0
\(751\) 16.9759i 0.619459i 0.950825 + 0.309730i \(0.100239\pi\)
−0.950825 + 0.309730i \(0.899761\pi\)
\(752\) −7.88420 29.4242i −0.287507 1.07299i
\(753\) 4.74991 + 8.22709i 0.173097 + 0.299812i
\(754\) −6.27192 + 6.27192i −0.228410 + 0.228410i
\(755\) 0 0
\(756\) 17.1707 29.7406i 0.624494 1.08165i
\(757\) 18.6230 + 10.7520i 0.676866 + 0.390789i 0.798673 0.601765i \(-0.205536\pi\)
−0.121807 + 0.992554i \(0.538869\pi\)
\(758\) 5.96467 3.44370i 0.216646 0.125081i
\(759\) 7.27115 27.1363i 0.263926 0.984985i
\(760\) 0 0
\(761\) 5.87890 + 3.39418i 0.213110 + 0.123039i 0.602756 0.797926i \(-0.294069\pi\)
−0.389646 + 0.920965i \(0.627403\pi\)
\(762\) −1.53252 0.884799i −0.0555172 0.0320529i
\(763\) −26.6469 −0.964683
\(764\) 18.6743 + 5.00377i 0.675614 + 0.181030i
\(765\) 0 0
\(766\) −2.00674 −0.0725064
\(767\) −37.2060 37.2060i −1.34343 1.34343i
\(768\) −5.60256 20.9090i −0.202165 0.754490i
\(769\) −7.17556 + 7.17556i −0.258757 + 0.258757i −0.824549 0.565791i \(-0.808571\pi\)
0.565791 + 0.824549i \(0.308571\pi\)
\(770\) 0 0
\(771\) −28.1697 28.1697i −1.01451 1.01451i
\(772\) −4.36521 7.56076i −0.157107 0.272118i
\(773\) 7.27088 27.1353i 0.261515 0.975988i −0.702834 0.711354i \(-0.748082\pi\)
0.964349 0.264634i \(-0.0852512\pi\)
\(774\) 0.439968 0.254016i 0.0158143 0.00913041i
\(775\) 0 0
\(776\) 5.83649i 0.209518i
\(777\) −21.9557 39.3184i −0.787658 1.41054i
\(778\) 4.51817 + 4.51817i 0.161984 + 0.161984i
\(779\) −0.947447 3.53592i −0.0339458 0.126687i
\(780\) 0 0
\(781\) −39.6381 + 22.8851i −1.41836 + 0.818892i
\(782\) −1.78528 + 1.03073i −0.0638414 + 0.0368588i
\(783\) −32.0649 −1.14591
\(784\) −25.8285 + 14.9121i −0.922445 + 0.532574i
\(785\) 0 0
\(786\) 3.68173 6.37694i 0.131323 0.227458i
\(787\) −9.47199 + 9.47199i −0.337640 + 0.337640i −0.855478 0.517838i \(-0.826737\pi\)
0.517838 + 0.855478i \(0.326737\pi\)
\(788\) 6.58066 6.58066i 0.234426 0.234426i
\(789\) −19.1187 11.0382i −0.680644 0.392970i
\(790\) 0 0
\(791\) −4.91077 4.91077i −0.174607 0.174607i
\(792\) −1.28723 + 2.22955i −0.0457398 + 0.0792237i
\(793\) 50.3646 13.4952i 1.78850 0.479227i
\(794\) 8.33753 2.23404i 0.295888 0.0792829i
\(795\) 0 0
\(796\) 7.77690 + 2.08381i 0.275645 + 0.0738588i
\(797\) −17.2891 + 29.9455i −0.612410 + 1.06072i 0.378423 + 0.925633i \(0.376466\pi\)
−0.990833 + 0.135092i \(0.956867\pi\)
\(798\) −0.356401 1.33011i −0.0126164 0.0470852i
\(799\) −20.0678 + 5.37715i −0.709947 + 0.190230i
\(800\) 0 0
\(801\) −0.236037 + 0.880902i −0.00833996 + 0.0311251i
\(802\) 7.21458 1.93314i 0.254756 0.0682615i
\(803\) −13.5946 13.5946i −0.479744 0.479744i
\(804\) 47.3097 1.66849
\(805\) 0 0
\(806\) 7.49528 + 7.49528i 0.264010 + 0.264010i
\(807\) 10.0578 37.5363i 0.354052 1.32134i
\(808\) 1.83578i 0.0645826i
\(809\) −28.4366 7.61955i −0.999776 0.267889i −0.278424 0.960458i \(-0.589812\pi\)
−0.721352 + 0.692569i \(0.756479\pi\)
\(810\) 0 0
\(811\) −3.59932 6.23420i −0.126389 0.218912i 0.795886 0.605447i \(-0.207005\pi\)
−0.922275 + 0.386534i \(0.873672\pi\)
\(812\) 46.2118 + 26.6804i 1.62172 + 0.936298i
\(813\) 30.6904 30.6904i 1.07636 1.07636i
\(814\) −3.18385 5.70165i −0.111594 0.199843i
\(815\) 0 0
\(816\) −16.6008 + 4.44816i −0.581143 + 0.155717i
\(817\) 0.666945 2.48907i 0.0233335 0.0870817i
\(818\) −4.55016 1.21921i −0.159093 0.0426287i
\(819\) 3.14320 11.7306i 0.109832 0.409900i
\(820\) 0 0
\(821\) −10.3931 18.0014i −0.362721 0.628252i 0.625686 0.780075i \(-0.284819\pi\)
−0.988408 + 0.151823i \(0.951486\pi\)
\(822\) 6.38212i 0.222602i
\(823\) 19.8259 5.31233i 0.691087 0.185176i 0.103852 0.994593i \(-0.466883\pi\)
0.587235 + 0.809417i \(0.300216\pi\)
\(824\) 4.58705i 0.159798i
\(825\) 0 0
\(826\) 4.91567 8.51420i 0.171038 0.296247i
\(827\) −17.8279 + 10.2930i −0.619937 + 0.357921i −0.776845 0.629692i \(-0.783181\pi\)
0.156907 + 0.987613i \(0.449848\pi\)
\(828\) 3.99197i 0.138730i
\(829\) −0.0273552 0.102091i −0.000950086 0.00354577i 0.965449 0.260591i \(-0.0839176\pi\)
−0.966399 + 0.257046i \(0.917251\pi\)
\(830\) 0 0
\(831\) 6.77275 + 25.2763i 0.234944 + 0.876823i
\(832\) 16.8696 + 29.2189i 0.584847 + 1.01298i
\(833\) 10.1703 + 17.6154i 0.352379 + 0.610338i
\(834\) −2.02157 7.54462i −0.0700014 0.261249i
\(835\) 0 0
\(836\) 1.66404 + 6.21028i 0.0575520 + 0.214787i
\(837\) 38.3192i 1.32451i
\(838\) 3.54032 2.04400i 0.122298 0.0706090i
\(839\) −25.4547 + 44.0888i −0.878793 + 1.52211i −0.0261266 + 0.999659i \(0.508317\pi\)
−0.852666 + 0.522456i \(0.825016\pi\)
\(840\) 0 0
\(841\) 20.8233i 0.718046i
\(842\) −0.547340 + 0.146659i −0.0188626 + 0.00505422i
\(843\) 45.0922i 1.55306i
\(844\) −15.7287 27.2430i −0.541406 0.937742i
\(845\) 0 0
\(846\) −0.323402 + 1.20695i −0.0111188 + 0.0414959i
\(847\) −30.6105 8.20206i −1.05179 0.281826i
\(848\) 0.576278 2.15070i 0.0197895 0.0738553i
\(849\) −38.7767 + 10.3902i −1.33081 + 0.356590i
\(850\) 0 0
\(851\) 17.6620 + 10.5373i 0.605446 + 0.361214i
\(852\) −27.2655 + 27.2655i −0.934101 + 0.934101i
\(853\) −18.7508 10.8258i −0.642014 0.370667i 0.143376 0.989668i \(-0.454204\pi\)
−0.785390 + 0.619001i \(0.787538\pi\)
\(854\) 4.87121 + 8.43718i 0.166689 + 0.288715i
\(855\) 0 0
\(856\) 0.567494 + 0.152059i 0.0193965 + 0.00519729i
\(857\) 8.91910i 0.304670i 0.988329 + 0.152335i \(0.0486793\pi\)
−0.988329 + 0.152335i \(0.951321\pi\)
\(858\) 2.70236 10.0853i 0.0922570 0.344308i
\(859\) 34.0010 + 34.0010i 1.16010 + 1.16010i 0.984453 + 0.175647i \(0.0562018\pi\)
0.175647 + 0.984453i \(0.443798\pi\)
\(860\) 0 0
\(861\) 35.7638 1.21883
\(862\) 2.68466 + 2.68466i 0.0914399 + 0.0914399i
\(863\) −45.8461 + 12.2844i −1.56062 + 0.418166i −0.932859 0.360241i \(-0.882694\pi\)
−0.627759 + 0.778408i \(0.716028\pi\)
\(864\) 3.32497 12.4090i 0.113118 0.422161i
\(865\) 0 0
\(866\) 8.48725 2.27415i 0.288408 0.0772788i
\(867\) −5.32460 19.8717i −0.180833 0.674877i
\(868\) 31.8845 55.2255i 1.08223 1.87448i
\(869\) 12.1413 + 3.25326i 0.411866 + 0.110359i
\(870\) 0 0
\(871\) −63.4908 + 17.0123i −2.15130 + 0.576440i
\(872\) −6.38652 + 1.71126i −0.216275 + 0.0579507i
\(873\) −1.83684 + 3.18150i −0.0621675 + 0.107677i
\(874\) 0.444687 + 0.444687i 0.0150418 + 0.0150418i
\(875\) 0 0
\(876\) −14.0268 8.09840i −0.473923 0.273619i
\(877\) 34.2418 34.2418i 1.15626 1.15626i 0.170989 0.985273i \(-0.445304\pi\)
0.985273 0.170989i \(-0.0546963\pi\)
\(878\) −3.51082 + 3.51082i −0.118485 + 0.118485i
\(879\) −0.469666 + 0.813486i −0.0158415 + 0.0274382i
\(880\) 0 0
\(881\) 28.3215 16.3514i 0.954175 0.550893i 0.0597995 0.998210i \(-0.480954\pi\)
0.894375 + 0.447317i \(0.147621\pi\)
\(882\) 1.22336 0.0411926
\(883\) −2.72693 + 1.57439i −0.0917684 + 0.0529825i −0.545182 0.838318i \(-0.683539\pi\)
0.453414 + 0.891300i \(0.350206\pi\)
\(884\) 21.3632 12.3341i 0.718522 0.414839i
\(885\) 0 0
\(886\) 1.27516 + 4.75898i 0.0428400 + 0.159881i
\(887\) 1.64239 + 1.64239i 0.0551461 + 0.0551461i 0.734142 0.678996i \(-0.237585\pi\)
−0.678996 + 0.734142i \(0.737585\pi\)
\(888\) −7.78720 8.01352i −0.261321 0.268916i
\(889\) 14.7910i 0.496074i
\(890\) 0 0
\(891\) 39.6050 22.8660i 1.32682 0.766039i
\(892\) 8.57815 32.0141i 0.287218 1.07191i
\(893\) 3.16898 + 5.48884i 0.106046 + 0.183677i
\(894\) 0.901297 + 0.901297i 0.0301439 + 0.0301439i
\(895\) 0 0
\(896\) −20.0443 + 20.0443i −0.669632 + 0.669632i
\(897\) 8.51071 + 31.7624i 0.284164 + 1.06052i
\(898\) 0.533652 + 0.533652i 0.0178082 + 0.0178082i
\(899\) −59.5415 −1.98582
\(900\) 0 0
\(901\) −1.46681 0.393030i −0.0488665 0.0130937i
\(902\) 5.18619 0.172681
\(903\) 21.8027 + 12.5878i 0.725548 + 0.418895i
\(904\) −1.49234 0.861604i −0.0496346 0.0286565i
\(905\) 0 0
\(906\) −1.90845 + 7.12244i −0.0634041 + 0.236627i
\(907\) 7.21849 4.16760i 0.239686 0.138383i −0.375346 0.926885i \(-0.622476\pi\)
0.615032 + 0.788502i \(0.289143\pi\)
\(908\) 7.47359 + 4.31488i 0.248020 + 0.143194i
\(909\) −0.577751 + 1.00069i −0.0191628 + 0.0331909i
\(910\) 0 0
\(911\) 26.7018 26.7018i 0.884669 0.884669i −0.109336 0.994005i \(-0.534872\pi\)
0.994005 + 0.109336i \(0.0348725\pi\)
\(912\) 2.62149 + 4.54056i 0.0868064 + 0.150353i
\(913\) 6.79791 + 25.3702i 0.224978 + 0.839630i
\(914\) 0.936919i 0.0309905i
\(915\) 0 0
\(916\) −13.7049 7.91251i −0.452822 0.261437i
\(917\) 61.5466 2.03245
\(918\) −2.67530 0.716845i −0.0882981 0.0236594i
\(919\) −41.4518 + 41.4518i −1.36737 + 1.36737i −0.503195 + 0.864173i \(0.667842\pi\)
−0.864173 + 0.503195i \(0.832158\pi\)
\(920\) 0 0
\(921\) 17.5847 + 30.4576i 0.579436 + 1.00361i
\(922\) 8.29527 + 2.22271i 0.273190 + 0.0732011i
\(923\) 26.7864 46.3955i 0.881686 1.52713i
\(924\) −62.8135 −2.06641
\(925\) 0 0
\(926\) −6.92697 −0.227634
\(927\) 1.44362 2.50042i 0.0474147 0.0821246i
\(928\) 19.2814 + 5.16643i 0.632943 + 0.169596i
\(929\) −17.9777 31.1383i −0.589830 1.02162i −0.994254 0.107044i \(-0.965861\pi\)
0.404424 0.914571i \(-0.367472\pi\)
\(930\) 0 0
\(931\) 4.38775 4.38775i 0.143803 0.143803i
\(932\) −26.1416 7.00462i −0.856297 0.229444i
\(933\) −49.6146 −1.62431
\(934\) 3.39624 + 1.96082i 0.111129 + 0.0641601i
\(935\) 0 0
\(936\) 3.01335i 0.0984944i
\(937\) −7.21273 26.9183i −0.235629 0.879381i −0.977864 0.209241i \(-0.932901\pi\)
0.742235 0.670140i \(-0.233766\pi\)
\(938\) −6.14076 10.6361i −0.200503 0.347281i
\(939\) −22.6029 + 22.6029i −0.737618 + 0.737618i
\(940\) 0 0
\(941\) −21.5873 + 37.3903i −0.703725 + 1.21889i 0.263425 + 0.964680i \(0.415148\pi\)
−0.967150 + 0.254208i \(0.918185\pi\)
\(942\) 1.99830 + 1.15372i 0.0651082 + 0.0375902i
\(943\) −14.1450 + 8.16659i −0.460623 + 0.265941i
\(944\) −9.68826 + 36.1571i −0.315326 + 1.17681i
\(945\) 0 0
\(946\) 3.16165 + 1.82538i 0.102794 + 0.0593483i
\(947\) −23.4937 13.5641i −0.763442 0.440773i 0.0670885 0.997747i \(-0.478629\pi\)
−0.830530 + 0.556974i \(0.811962\pi\)
\(948\) 10.5893 0.343926
\(949\) 21.7365 + 5.82427i 0.705596 + 0.189064i
\(950\) 0 0
\(951\) −34.1566 −1.10760
\(952\) 6.61955 + 6.61955i 0.214541 + 0.214541i
\(953\) −3.43270 12.8110i −0.111196 0.414989i 0.887778 0.460271i \(-0.152248\pi\)
−0.998974 + 0.0452823i \(0.985581\pi\)
\(954\) −0.0645812 + 0.0645812i −0.00209089 + 0.00209089i
\(955\) 0 0
\(956\) −21.7566 21.7566i −0.703658 0.703658i
\(957\) 29.3247 + 50.7919i 0.947933 + 1.64187i
\(958\) 1.30763 4.88016i 0.0422477 0.157671i
\(959\) 46.1974 26.6721i 1.49179 0.861287i
\(960\) 0 0
\(961\) 40.1552i 1.29533i
\(962\) 6.56417 + 3.91624i 0.211637 + 0.126265i
\(963\) 0.261488 + 0.261488i 0.00842632 + 0.00842632i
\(964\) 8.31500 + 31.0320i 0.267808 + 0.999474i
\(965\) 0 0
\(966\) −5.32090 + 3.07202i −0.171197 + 0.0988408i
\(967\) −35.5714 + 20.5372i −1.14390 + 0.660431i −0.947393 0.320072i \(-0.896293\pi\)
−0.196506 + 0.980503i \(0.562960\pi\)
\(968\) −7.86321 −0.252733
\(969\) 3.09673 1.78790i 0.0994814 0.0574356i
\(970\) 0 0
\(971\) −10.9286 + 18.9288i −0.350714 + 0.607455i −0.986375 0.164514i \(-0.947395\pi\)
0.635660 + 0.771969i \(0.280728\pi\)
\(972\) 8.55032 8.55032i 0.274252 0.274252i
\(973\) 46.1637 46.1637i 1.47994 1.47994i
\(974\) −1.40602 0.811763i −0.0450516 0.0260106i
\(975\) 0 0
\(976\) −26.2294 26.2294i −0.839583 0.839583i
\(977\) 18.9875 32.8873i 0.607464 1.05216i −0.384192 0.923253i \(-0.625520\pi\)
0.991657 0.128906i \(-0.0411466\pi\)
\(978\) −7.36975 + 1.97472i −0.235659 + 0.0631445i
\(979\) −6.33024 + 1.69618i −0.202316 + 0.0542103i
\(980\) 0 0
\(981\) −4.01988 1.07712i −0.128345 0.0343899i
\(982\) −0.683786 + 1.18435i −0.0218205 + 0.0377942i
\(983\) 10.6310 + 39.6755i 0.339077 + 1.26545i 0.899381 + 0.437166i \(0.144018\pi\)
−0.560304 + 0.828287i \(0.689316\pi\)
\(984\) 8.57158 2.29675i 0.273252 0.0732177i
\(985\) 0 0
\(986\) 1.11385 4.15696i 0.0354723 0.132385i
\(987\) −59.8107 + 16.0262i −1.90380 + 0.510121i
\(988\) −5.32127 5.32127i −0.169292 0.169292i
\(989\) −11.4976 −0.365602
\(990\) 0 0
\(991\) 9.05454 + 9.05454i 0.287627 + 0.287627i 0.836141 0.548514i \(-0.184806\pi\)
−0.548514 + 0.836141i \(0.684806\pi\)
\(992\) 6.17416 23.0423i 0.196030 0.731593i
\(993\) 8.59535i 0.272765i
\(994\) 9.66883 + 2.59076i 0.306677 + 0.0821738i
\(995\) 0 0
\(996\) 11.0636 + 19.1627i 0.350563 + 0.607193i
\(997\) −49.3216 28.4758i −1.56203 0.901838i −0.997052 0.0767317i \(-0.975551\pi\)
−0.564978 0.825106i \(-0.691115\pi\)
\(998\) −0.919576 + 0.919576i −0.0291087 + 0.0291087i
\(999\) 6.76871 + 26.7903i 0.214153 + 0.847606i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.t.b.643.9 68
5.2 odd 4 925.2.y.b.532.9 68
5.3 odd 4 185.2.u.a.162.9 yes 68
5.4 even 2 185.2.p.a.88.9 yes 68
37.8 odd 12 925.2.y.b.193.9 68
185.8 even 12 185.2.p.a.82.9 68
185.82 even 12 inner 925.2.t.b.82.9 68
185.119 odd 12 185.2.u.a.8.9 yes 68
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.p.a.82.9 68 185.8 even 12
185.2.p.a.88.9 yes 68 5.4 even 2
185.2.u.a.8.9 yes 68 185.119 odd 12
185.2.u.a.162.9 yes 68 5.3 odd 4
925.2.t.b.82.9 68 185.82 even 12 inner
925.2.t.b.643.9 68 1.1 even 1 trivial
925.2.y.b.193.9 68 37.8 odd 12
925.2.y.b.532.9 68 5.2 odd 4