Properties

Label 925.2.y.b.393.8
Level $925$
Weight $2$
Character 925.393
Analytic conductor $7.386$
Analytic rank $0$
Dimension $68$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(193,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.193"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.y (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [68] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(68\)
Relative dimension: \(17\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 185)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 393.8
Character \(\chi\) \(=\) 925.393
Dual form 925.2.y.b.732.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.317786 - 0.183474i) q^{2} +(0.184590 + 0.0494608i) q^{3} +(-0.932675 - 1.61544i) q^{4} +(-0.0495854 - 0.0495854i) q^{6} +(1.90898 + 0.511509i) q^{7} +1.41838i q^{8} +(-2.56645 - 1.48174i) q^{9} +3.45234i q^{11} +(-0.0922616 - 0.344325i) q^{12} +(-2.68284 + 1.54894i) q^{13} +(-0.512798 - 0.512798i) q^{14} +(-1.60511 + 2.78014i) q^{16} +(-3.72683 + 6.45506i) q^{17} +(0.543721 + 0.941752i) q^{18} +(7.19086 + 1.92679i) q^{19} +(0.327079 + 0.188839i) q^{21} +(0.633414 - 1.09710i) q^{22} -1.31718i q^{23} +(-0.0701542 + 0.261819i) q^{24} +1.13676 q^{26} +(-0.805841 - 0.805841i) q^{27} +(-0.954144 - 3.56091i) q^{28} +(2.20635 + 2.20635i) q^{29} +(4.00610 - 4.00610i) q^{31} +(3.47687 - 2.00737i) q^{32} +(-0.170755 + 0.637268i) q^{33} +(2.36867 - 1.36755i) q^{34} +5.52793i q^{36} +(3.14689 - 5.20549i) q^{37} +(-1.93164 - 1.93164i) q^{38} +(-0.571837 + 0.153223i) q^{39} +(-5.80754 + 3.35298i) q^{41} +(-0.0692941 - 0.120021i) q^{42} +12.5857i q^{43} +(5.57705 - 3.21991i) q^{44} +(-0.241668 + 0.418582i) q^{46} +(1.95542 - 1.95542i) q^{47} +(-0.433796 + 0.433796i) q^{48} +(-2.67962 - 1.54708i) q^{49} +(-1.00721 + 1.00721i) q^{51} +(5.00443 + 2.88931i) q^{52} +(-4.59015 + 1.22993i) q^{53} +(0.108234 + 0.403936i) q^{54} +(-0.725515 + 2.70766i) q^{56} +(1.23206 + 0.711331i) q^{57} +(-0.296339 - 1.10595i) q^{58} +(1.37883 + 5.14585i) q^{59} +(9.38781 + 2.51546i) q^{61} +(-2.00810 + 0.538068i) q^{62} +(-4.14137 - 4.14137i) q^{63} +4.94725 q^{64} +(0.171186 - 0.171186i) q^{66} +(-1.28021 + 4.77781i) q^{67} +13.9037 q^{68} +(0.0651488 - 0.243139i) q^{69} +(2.33213 + 4.03937i) q^{71} +(2.10167 - 3.64020i) q^{72} +(-6.43715 + 6.43715i) q^{73} +(-1.95511 + 1.07686i) q^{74} +(-3.59413 - 13.4135i) q^{76} +(-1.76590 + 6.59044i) q^{77} +(0.209834 + 0.0562249i) q^{78} +(8.42204 + 2.25668i) q^{79} +(4.33633 + 7.51074i) q^{81} +2.46074 q^{82} +(13.1368 - 3.51999i) q^{83} -0.704502i q^{84} +(2.30915 - 3.99956i) q^{86} +(0.298142 + 0.516397i) q^{87} -4.89673 q^{88} +(-14.7909 + 3.96321i) q^{89} +(-5.91378 + 1.58459i) q^{91} +(-2.12783 + 1.22850i) q^{92} +(0.937632 - 0.541342i) q^{93} +(-0.980175 + 0.262637i) q^{94} +(0.741082 - 0.198572i) q^{96} -4.35591 q^{97} +(0.567697 + 0.983280i) q^{98} +(5.11547 - 8.86025i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 68 q + 6 q^{2} + 4 q^{3} + 30 q^{4} - 8 q^{6} + 2 q^{7} + 10 q^{12} + 6 q^{13} - 26 q^{16} + 10 q^{17} + 8 q^{18} - 4 q^{19} - 12 q^{21} + 14 q^{22} - 24 q^{26} - 68 q^{27} - 14 q^{28} - 14 q^{29} - 24 q^{31}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.317786 0.183474i −0.224709 0.129736i 0.383420 0.923574i \(-0.374746\pi\)
−0.608129 + 0.793839i \(0.708080\pi\)
\(3\) 0.184590 + 0.0494608i 0.106573 + 0.0285562i 0.311711 0.950177i \(-0.399098\pi\)
−0.205138 + 0.978733i \(0.565764\pi\)
\(4\) −0.932675 1.61544i −0.466337 0.807720i
\(5\) 0 0
\(6\) −0.0495854 0.0495854i −0.0202431 0.0202431i
\(7\) 1.90898 + 0.511509i 0.721526 + 0.193332i 0.600853 0.799360i \(-0.294828\pi\)
0.120674 + 0.992692i \(0.461495\pi\)
\(8\) 1.41838i 0.501473i
\(9\) −2.56645 1.48174i −0.855483 0.493913i
\(10\) 0 0
\(11\) 3.45234i 1.04092i 0.853886 + 0.520460i \(0.174239\pi\)
−0.853886 + 0.520460i \(0.825761\pi\)
\(12\) −0.0922616 0.344325i −0.0266336 0.0993981i
\(13\) −2.68284 + 1.54894i −0.744086 + 0.429598i −0.823553 0.567239i \(-0.808011\pi\)
0.0794671 + 0.996837i \(0.474678\pi\)
\(14\) −0.512798 0.512798i −0.137051 0.137051i
\(15\) 0 0
\(16\) −1.60511 + 2.78014i −0.401278 + 0.695035i
\(17\) −3.72683 + 6.45506i −0.903889 + 1.56558i −0.0814869 + 0.996674i \(0.525967\pi\)
−0.822402 + 0.568907i \(0.807366\pi\)
\(18\) 0.543721 + 0.941752i 0.128156 + 0.221973i
\(19\) 7.19086 + 1.92679i 1.64970 + 0.442035i 0.959528 0.281614i \(-0.0908696\pi\)
0.690169 + 0.723648i \(0.257536\pi\)
\(20\) 0 0
\(21\) 0.327079 + 0.188839i 0.0713745 + 0.0412081i
\(22\) 0.633414 1.09710i 0.135044 0.233904i
\(23\) 1.31718i 0.274651i −0.990526 0.137326i \(-0.956149\pi\)
0.990526 0.137326i \(-0.0438507\pi\)
\(24\) −0.0701542 + 0.261819i −0.0143202 + 0.0534436i
\(25\) 0 0
\(26\) 1.13676 0.222937
\(27\) −0.805841 0.805841i −0.155084 0.155084i
\(28\) −0.954144 3.56091i −0.180316 0.672949i
\(29\) 2.20635 + 2.20635i 0.409708 + 0.409708i 0.881637 0.471929i \(-0.156442\pi\)
−0.471929 + 0.881637i \(0.656442\pi\)
\(30\) 0 0
\(31\) 4.00610 4.00610i 0.719518 0.719518i −0.248989 0.968506i \(-0.580098\pi\)
0.968506 + 0.248989i \(0.0800982\pi\)
\(32\) 3.47687 2.00737i 0.614630 0.354857i
\(33\) −0.170755 + 0.637268i −0.0297247 + 0.110934i
\(34\) 2.36867 1.36755i 0.406223 0.234533i
\(35\) 0 0
\(36\) 5.52793i 0.921321i
\(37\) 3.14689 5.20549i 0.517345 0.855777i
\(38\) −1.93164 1.93164i −0.313353 0.313353i
\(39\) −0.571837 + 0.153223i −0.0915673 + 0.0245354i
\(40\) 0 0
\(41\) −5.80754 + 3.35298i −0.906985 + 0.523648i −0.879460 0.475973i \(-0.842096\pi\)
−0.0275253 + 0.999621i \(0.508763\pi\)
\(42\) −0.0692941 0.120021i −0.0106923 0.0185196i
\(43\) 12.5857i 1.91930i 0.281191 + 0.959652i \(0.409270\pi\)
−0.281191 + 0.959652i \(0.590730\pi\)
\(44\) 5.57705 3.21991i 0.840772 0.485420i
\(45\) 0 0
\(46\) −0.241668 + 0.418582i −0.0356320 + 0.0617165i
\(47\) 1.95542 1.95542i 0.285228 0.285228i −0.549962 0.835190i \(-0.685358\pi\)
0.835190 + 0.549962i \(0.185358\pi\)
\(48\) −0.433796 + 0.433796i −0.0626131 + 0.0626131i
\(49\) −2.67962 1.54708i −0.382803 0.221011i
\(50\) 0 0
\(51\) −1.00721 + 1.00721i −0.141037 + 0.141037i
\(52\) 5.00443 + 2.88931i 0.693990 + 0.400675i
\(53\) −4.59015 + 1.22993i −0.630506 + 0.168943i −0.559899 0.828561i \(-0.689160\pi\)
−0.0706065 + 0.997504i \(0.522493\pi\)
\(54\) 0.108234 + 0.403936i 0.0147288 + 0.0549687i
\(55\) 0 0
\(56\) −0.725515 + 2.70766i −0.0969510 + 0.361826i
\(57\) 1.23206 + 0.711331i 0.163191 + 0.0942181i
\(58\) −0.296339 1.10595i −0.0389112 0.145219i
\(59\) 1.37883 + 5.14585i 0.179508 + 0.669933i 0.995740 + 0.0922082i \(0.0293925\pi\)
−0.816232 + 0.577725i \(0.803941\pi\)
\(60\) 0 0
\(61\) 9.38781 + 2.51546i 1.20199 + 0.322071i 0.803613 0.595152i \(-0.202908\pi\)
0.398373 + 0.917223i \(0.369575\pi\)
\(62\) −2.00810 + 0.538068i −0.255029 + 0.0683348i
\(63\) −4.14137 4.14137i −0.521764 0.521764i
\(64\) 4.94725 0.618407
\(65\) 0 0
\(66\) 0.171186 0.171186i 0.0210715 0.0210715i
\(67\) −1.28021 + 4.77781i −0.156403 + 0.583703i 0.842578 + 0.538574i \(0.181037\pi\)
−0.998981 + 0.0451292i \(0.985630\pi\)
\(68\) 13.9037 1.68607
\(69\) 0.0651488 0.243139i 0.00784300 0.0292705i
\(70\) 0 0
\(71\) 2.33213 + 4.03937i 0.276773 + 0.479385i 0.970581 0.240775i \(-0.0774016\pi\)
−0.693808 + 0.720160i \(0.744068\pi\)
\(72\) 2.10167 3.64020i 0.247684 0.429002i
\(73\) −6.43715 + 6.43715i −0.753412 + 0.753412i −0.975114 0.221702i \(-0.928839\pi\)
0.221702 + 0.975114i \(0.428839\pi\)
\(74\) −1.95511 + 1.07686i −0.227276 + 0.125182i
\(75\) 0 0
\(76\) −3.59413 13.4135i −0.412275 1.53863i
\(77\) −1.76590 + 6.59044i −0.201243 + 0.751051i
\(78\) 0.209834 + 0.0562249i 0.0237591 + 0.00636622i
\(79\) 8.42204 + 2.25668i 0.947554 + 0.253896i 0.699324 0.714805i \(-0.253485\pi\)
0.248230 + 0.968701i \(0.420151\pi\)
\(80\) 0 0
\(81\) 4.33633 + 7.51074i 0.481814 + 0.834527i
\(82\) 2.46074 0.271743
\(83\) 13.1368 3.51999i 1.44195 0.386369i 0.548733 0.835998i \(-0.315111\pi\)
0.893215 + 0.449629i \(0.148444\pi\)
\(84\) 0.704502i 0.0768675i
\(85\) 0 0
\(86\) 2.30915 3.99956i 0.249002 0.431284i
\(87\) 0.298142 + 0.516397i 0.0319642 + 0.0553636i
\(88\) −4.89673 −0.521993
\(89\) −14.7909 + 3.96321i −1.56783 + 0.420100i −0.935133 0.354297i \(-0.884720\pi\)
−0.632701 + 0.774397i \(0.718054\pi\)
\(90\) 0 0
\(91\) −5.91378 + 1.58459i −0.619933 + 0.166110i
\(92\) −2.12783 + 1.22850i −0.221841 + 0.128080i
\(93\) 0.937632 0.541342i 0.0972279 0.0561346i
\(94\) −0.980175 + 0.262637i −0.101097 + 0.0270890i
\(95\) 0 0
\(96\) 0.741082 0.198572i 0.0756364 0.0202667i
\(97\) −4.35591 −0.442276 −0.221138 0.975243i \(-0.570977\pi\)
−0.221138 + 0.975243i \(0.570977\pi\)
\(98\) 0.567697 + 0.983280i 0.0573461 + 0.0993263i
\(99\) 5.11547 8.86025i 0.514124 0.890489i
\(100\) 0 0
\(101\) 0.191058i 0.0190110i 0.999955 + 0.00950548i \(0.00302573\pi\)
−0.999955 + 0.00950548i \(0.996974\pi\)
\(102\) 0.504873 0.135280i 0.0499898 0.0133947i
\(103\) −2.11028 −0.207932 −0.103966 0.994581i \(-0.533153\pi\)
−0.103966 + 0.994581i \(0.533153\pi\)
\(104\) −2.19698 3.80529i −0.215432 0.373139i
\(105\) 0 0
\(106\) 1.68434 + 0.451319i 0.163598 + 0.0438359i
\(107\) −9.51668 2.54999i −0.920012 0.246517i −0.232422 0.972615i \(-0.574665\pi\)
−0.687591 + 0.726099i \(0.741332\pi\)
\(108\) −0.550200 + 2.05338i −0.0529431 + 0.197586i
\(109\) −4.09076 15.2669i −0.391824 1.46231i −0.827123 0.562020i \(-0.810024\pi\)
0.435300 0.900286i \(-0.356642\pi\)
\(110\) 0 0
\(111\) 0.838351 0.805234i 0.0795728 0.0764295i
\(112\) −4.48619 + 4.48619i −0.423906 + 0.423906i
\(113\) −3.12046 + 5.40479i −0.293548 + 0.508440i −0.974646 0.223752i \(-0.928169\pi\)
0.681098 + 0.732192i \(0.261503\pi\)
\(114\) −0.261021 0.452102i −0.0244469 0.0423432i
\(115\) 0 0
\(116\) 1.50642 5.62203i 0.139867 0.521992i
\(117\) 9.18050 0.848737
\(118\) 0.505957 1.88826i 0.0465771 0.173828i
\(119\) −10.4163 + 10.4163i −0.954857 + 0.954857i
\(120\) 0 0
\(121\) −0.918652 −0.0835138
\(122\) −2.52179 2.52179i −0.228312 0.228312i
\(123\) −1.23786 + 0.331682i −0.111614 + 0.0299068i
\(124\) −10.2080 2.73523i −0.916707 0.245631i
\(125\) 0 0
\(126\) 0.556237 + 2.07590i 0.0495535 + 0.184936i
\(127\) −1.03520 3.86342i −0.0918592 0.342823i 0.904665 0.426123i \(-0.140121\pi\)
−0.996525 + 0.0832996i \(0.973454\pi\)
\(128\) −8.52591 4.92244i −0.753591 0.435086i
\(129\) −0.622499 + 2.32320i −0.0548080 + 0.204546i
\(130\) 0 0
\(131\) 0.918927 + 3.42948i 0.0802870 + 0.299635i 0.994380 0.105869i \(-0.0337625\pi\)
−0.914093 + 0.405505i \(0.867096\pi\)
\(132\) 1.18873 0.318519i 0.103465 0.0277235i
\(133\) 12.7416 + 7.35638i 1.10484 + 0.637879i
\(134\) 1.28344 1.28344i 0.110872 0.110872i
\(135\) 0 0
\(136\) −9.15573 5.28606i −0.785097 0.453276i
\(137\) 1.62038 1.62038i 0.138438 0.138438i −0.634492 0.772930i \(-0.718790\pi\)
0.772930 + 0.634492i \(0.218790\pi\)
\(138\) −0.0653130 + 0.0653130i −0.00555981 + 0.00555981i
\(139\) −3.18045 + 5.50870i −0.269762 + 0.467241i −0.968800 0.247843i \(-0.920278\pi\)
0.699038 + 0.715084i \(0.253612\pi\)
\(140\) 0 0
\(141\) 0.457669 0.264235i 0.0385427 0.0222526i
\(142\) 1.71154i 0.143629i
\(143\) −5.34746 9.26208i −0.447177 0.774534i
\(144\) 8.23889 4.75672i 0.686574 0.396394i
\(145\) 0 0
\(146\) 3.22669 0.864588i 0.267042 0.0715538i
\(147\) −0.418112 0.418112i −0.0344853 0.0344853i
\(148\) −11.3442 0.228577i −0.932485 0.0187889i
\(149\) 18.0198i 1.47624i 0.674668 + 0.738121i \(0.264287\pi\)
−0.674668 + 0.738121i \(0.735713\pi\)
\(150\) 0 0
\(151\) −0.277285 + 0.160091i −0.0225651 + 0.0130280i −0.511240 0.859438i \(-0.670814\pi\)
0.488675 + 0.872466i \(0.337480\pi\)
\(152\) −2.73291 + 10.1994i −0.221669 + 0.827279i
\(153\) 19.1294 11.0444i 1.54652 0.892885i
\(154\) 1.77035 1.77035i 0.142659 0.142659i
\(155\) 0 0
\(156\) 0.780862 + 0.780862i 0.0625190 + 0.0625190i
\(157\) −0.305275 1.13930i −0.0243636 0.0909263i 0.952674 0.303995i \(-0.0983207\pi\)
−0.977037 + 0.213069i \(0.931654\pi\)
\(158\) −2.26236 2.26236i −0.179984 0.179984i
\(159\) −0.908129 −0.0720194
\(160\) 0 0
\(161\) 0.673751 2.51447i 0.0530990 0.198168i
\(162\) 3.18241i 0.250034i
\(163\) 4.59750 7.96311i 0.360104 0.623719i −0.627873 0.778315i \(-0.716074\pi\)
0.987978 + 0.154597i \(0.0494078\pi\)
\(164\) 10.8331 + 6.25449i 0.845922 + 0.488393i
\(165\) 0 0
\(166\) −4.82051 1.29165i −0.374144 0.100252i
\(167\) −10.8732 18.8329i −0.841392 1.45733i −0.888718 0.458454i \(-0.848404\pi\)
0.0473268 0.998879i \(-0.484930\pi\)
\(168\) −0.267846 + 0.463922i −0.0206647 + 0.0357924i
\(169\) −1.70158 + 2.94722i −0.130891 + 0.226709i
\(170\) 0 0
\(171\) −15.6000 15.6000i −1.19296 1.19296i
\(172\) 20.3315 11.7384i 1.55026 0.895043i
\(173\) −0.896886 3.34723i −0.0681890 0.254485i 0.923414 0.383806i \(-0.125387\pi\)
−0.991603 + 0.129321i \(0.958720\pi\)
\(174\) 0.218805i 0.0165876i
\(175\) 0 0
\(176\) −9.59798 5.54140i −0.723475 0.417699i
\(177\) 1.01807i 0.0765229i
\(178\) 5.42749 + 1.45429i 0.406807 + 0.109004i
\(179\) −10.5340 10.5340i −0.787350 0.787350i 0.193709 0.981059i \(-0.437948\pi\)
−0.981059 + 0.193709i \(0.937948\pi\)
\(180\) 0 0
\(181\) −0.0475195 0.0823062i −0.00353210 0.00611777i 0.864254 0.503056i \(-0.167791\pi\)
−0.867786 + 0.496938i \(0.834458\pi\)
\(182\) 2.17005 + 0.581462i 0.160855 + 0.0431009i
\(183\) 1.60848 + 0.928657i 0.118902 + 0.0686483i
\(184\) 1.86827 0.137730
\(185\) 0 0
\(186\) −0.397288 −0.0291306
\(187\) −22.2851 12.8663i −1.62964 0.940876i
\(188\) −4.98265 1.33510i −0.363397 0.0973719i
\(189\) −1.12614 1.95053i −0.0819145 0.141880i
\(190\) 0 0
\(191\) 6.76075 + 6.76075i 0.489190 + 0.489190i 0.908051 0.418860i \(-0.137570\pi\)
−0.418860 + 0.908051i \(0.637570\pi\)
\(192\) 0.913214 + 0.244695i 0.0659056 + 0.0176593i
\(193\) 0.988625i 0.0711628i 0.999367 + 0.0355814i \(0.0113283\pi\)
−0.999367 + 0.0355814i \(0.988672\pi\)
\(194\) 1.38425 + 0.799195i 0.0993831 + 0.0573789i
\(195\) 0 0
\(196\) 5.77169i 0.412263i
\(197\) 2.12208 + 7.91972i 0.151192 + 0.564257i 0.999401 + 0.0345956i \(0.0110143\pi\)
−0.848209 + 0.529661i \(0.822319\pi\)
\(198\) −3.25125 + 1.87711i −0.231056 + 0.133400i
\(199\) 0.311060 + 0.311060i 0.0220505 + 0.0220505i 0.718046 0.695996i \(-0.245037\pi\)
−0.695996 + 0.718046i \(0.745037\pi\)
\(200\) 0 0
\(201\) −0.472629 + 0.818617i −0.0333367 + 0.0577408i
\(202\) 0.0350541 0.0607155i 0.00246640 0.00427192i
\(203\) 3.08330 + 5.34044i 0.216405 + 0.374825i
\(204\) 2.56648 + 0.687687i 0.179690 + 0.0481477i
\(205\) 0 0
\(206\) 0.670616 + 0.387180i 0.0467240 + 0.0269761i
\(207\) −1.95172 + 3.38048i −0.135654 + 0.234960i
\(208\) 9.94489i 0.689554i
\(209\) −6.65192 + 24.8253i −0.460123 + 1.71720i
\(210\) 0 0
\(211\) 1.21043 0.0833298 0.0416649 0.999132i \(-0.486734\pi\)
0.0416649 + 0.999132i \(0.486734\pi\)
\(212\) 6.26799 + 6.26799i 0.430487 + 0.430487i
\(213\) 0.230698 + 0.860977i 0.0158072 + 0.0589932i
\(214\) 2.55641 + 2.55641i 0.174753 + 0.174753i
\(215\) 0 0
\(216\) 1.14299 1.14299i 0.0777706 0.0777706i
\(217\) 9.69673 5.59841i 0.658257 0.380045i
\(218\) −1.50109 + 5.60216i −0.101667 + 0.379426i
\(219\) −1.50662 + 0.869849i −0.101808 + 0.0587789i
\(220\) 0 0
\(221\) 23.0905i 1.55324i
\(222\) −0.414156 + 0.102077i −0.0277963 + 0.00685094i
\(223\) −13.8676 13.8676i −0.928645 0.928645i 0.0689736 0.997618i \(-0.478028\pi\)
−0.997618 + 0.0689736i \(0.978028\pi\)
\(224\) 7.66406 2.05358i 0.512077 0.137211i
\(225\) 0 0
\(226\) 1.98328 1.14504i 0.131926 0.0761672i
\(227\) 10.0052 + 17.3295i 0.664066 + 1.15020i 0.979538 + 0.201261i \(0.0645040\pi\)
−0.315471 + 0.948935i \(0.602163\pi\)
\(228\) 2.65376i 0.175750i
\(229\) −3.19465 + 1.84443i −0.211108 + 0.121883i −0.601826 0.798627i \(-0.705560\pi\)
0.390718 + 0.920510i \(0.372227\pi\)
\(230\) 0 0
\(231\) −0.651937 + 1.12919i −0.0428943 + 0.0742951i
\(232\) −3.12944 + 3.12944i −0.205458 + 0.205458i
\(233\) 9.61670 9.61670i 0.630011 0.630011i −0.318060 0.948071i \(-0.603031\pi\)
0.948071 + 0.318060i \(0.103031\pi\)
\(234\) −2.91743 1.68438i −0.190719 0.110111i
\(235\) 0 0
\(236\) 7.02682 7.02682i 0.457407 0.457407i
\(237\) 1.44301 + 0.833121i 0.0937335 + 0.0541171i
\(238\) 5.22125 1.39903i 0.338443 0.0906856i
\(239\) 3.51998 + 13.1367i 0.227689 + 0.849745i 0.981310 + 0.192436i \(0.0616388\pi\)
−0.753621 + 0.657309i \(0.771695\pi\)
\(240\) 0 0
\(241\) 6.11044 22.8045i 0.393608 1.46897i −0.430530 0.902576i \(-0.641673\pi\)
0.824138 0.566389i \(-0.191660\pi\)
\(242\) 0.291935 + 0.168548i 0.0187663 + 0.0108347i
\(243\) 1.31383 + 4.90329i 0.0842823 + 0.314546i
\(244\) −4.69221 17.5115i −0.300388 1.12106i
\(245\) 0 0
\(246\) 0.454228 + 0.121710i 0.0289605 + 0.00775995i
\(247\) −22.2764 + 5.96894i −1.41741 + 0.379795i
\(248\) 5.68218 + 5.68218i 0.360819 + 0.360819i
\(249\) 2.59902 0.164706
\(250\) 0 0
\(251\) 0.401654 0.401654i 0.0253522 0.0253522i −0.694317 0.719669i \(-0.744293\pi\)
0.719669 + 0.694317i \(0.244293\pi\)
\(252\) −2.82759 + 10.5527i −0.178121 + 0.664757i
\(253\) 4.54736 0.285890
\(254\) −0.379864 + 1.41767i −0.0238348 + 0.0889527i
\(255\) 0 0
\(256\) −3.14098 5.44033i −0.196311 0.340021i
\(257\) −8.18028 + 14.1687i −0.510272 + 0.883817i 0.489657 + 0.871915i \(0.337122\pi\)
−0.999929 + 0.0119019i \(0.996211\pi\)
\(258\) 0.624067 0.624067i 0.0388527 0.0388527i
\(259\) 8.66999 8.32751i 0.538727 0.517446i
\(260\) 0 0
\(261\) −2.39324 8.93171i −0.148138 0.552859i
\(262\) 0.337198 1.25844i 0.0208322 0.0777467i
\(263\) 17.1622 + 4.59860i 1.05827 + 0.283562i 0.745664 0.666322i \(-0.232132\pi\)
0.312603 + 0.949884i \(0.398799\pi\)
\(264\) −0.903888 0.242196i −0.0556305 0.0149061i
\(265\) 0 0
\(266\) −2.69941 4.67551i −0.165511 0.286674i
\(267\) −2.92628 −0.179085
\(268\) 8.91229 2.38804i 0.544405 0.145873i
\(269\) 23.2463i 1.41735i −0.705533 0.708677i \(-0.749292\pi\)
0.705533 0.708677i \(-0.250708\pi\)
\(270\) 0 0
\(271\) −8.50840 + 14.7370i −0.516848 + 0.895208i 0.482960 + 0.875642i \(0.339562\pi\)
−0.999809 + 0.0195654i \(0.993772\pi\)
\(272\) −11.9640 20.7222i −0.725422 1.25647i
\(273\) −1.17000 −0.0708117
\(274\) −0.812229 + 0.217636i −0.0490686 + 0.0131479i
\(275\) 0 0
\(276\) −0.453539 + 0.121525i −0.0272998 + 0.00731497i
\(277\) −1.34426 + 0.776108i −0.0807686 + 0.0466318i −0.539840 0.841767i \(-0.681515\pi\)
0.459072 + 0.888399i \(0.348182\pi\)
\(278\) 2.02140 1.16706i 0.121236 0.0699954i
\(279\) −16.2175 + 4.34546i −0.970914 + 0.260156i
\(280\) 0 0
\(281\) 9.62089 2.57791i 0.573934 0.153785i 0.0398338 0.999206i \(-0.487317\pi\)
0.534100 + 0.845421i \(0.320650\pi\)
\(282\) −0.193921 −0.0115478
\(283\) −12.4174 21.5075i −0.738137 1.27849i −0.953333 0.301919i \(-0.902373\pi\)
0.215197 0.976571i \(-0.430961\pi\)
\(284\) 4.35024 7.53484i 0.258139 0.447110i
\(285\) 0 0
\(286\) 3.92448i 0.232059i
\(287\) −12.8015 + 3.43016i −0.755652 + 0.202476i
\(288\) −11.8976 −0.701074
\(289\) −19.2785 33.3914i −1.13403 1.96420i
\(290\) 0 0
\(291\) −0.804058 0.215447i −0.0471347 0.0126297i
\(292\) 16.4026 + 4.39507i 0.959890 + 0.257202i
\(293\) −1.71562 + 6.40278i −0.100227 + 0.374054i −0.997760 0.0668940i \(-0.978691\pi\)
0.897533 + 0.440948i \(0.145358\pi\)
\(294\) 0.0561575 + 0.209583i 0.00327517 + 0.0122231i
\(295\) 0 0
\(296\) 7.38336 + 4.46348i 0.429149 + 0.259435i
\(297\) 2.78204 2.78204i 0.161430 0.161430i
\(298\) 3.30617 5.72645i 0.191521 0.331724i
\(299\) 2.04023 + 3.53379i 0.117990 + 0.204364i
\(300\) 0 0
\(301\) −6.43771 + 24.0259i −0.371063 + 1.38483i
\(302\) 0.117490 0.00676077
\(303\) −0.00944986 + 0.0352674i −0.000542881 + 0.00202606i
\(304\) −16.8989 + 16.8989i −0.969217 + 0.969217i
\(305\) 0 0
\(306\) −8.10542 −0.463356
\(307\) 9.43347 + 9.43347i 0.538396 + 0.538396i 0.923058 0.384661i \(-0.125682\pi\)
−0.384661 + 0.923058i \(0.625682\pi\)
\(308\) 12.2935 3.29403i 0.700486 0.187695i
\(309\) −0.389536 0.104376i −0.0221599 0.00593773i
\(310\) 0 0
\(311\) −2.04001 7.61341i −0.115678 0.431717i 0.883659 0.468132i \(-0.155073\pi\)
−0.999337 + 0.0364152i \(0.988406\pi\)
\(312\) −0.217329 0.811083i −0.0123038 0.0459185i
\(313\) 1.99301 + 1.15066i 0.112651 + 0.0650393i 0.555267 0.831672i \(-0.312616\pi\)
−0.442616 + 0.896711i \(0.645949\pi\)
\(314\) −0.112020 + 0.418065i −0.00632166 + 0.0235927i
\(315\) 0 0
\(316\) −4.20950 15.7101i −0.236803 0.883759i
\(317\) 7.84772 2.10279i 0.440772 0.118104i −0.0316064 0.999500i \(-0.510062\pi\)
0.472378 + 0.881396i \(0.343396\pi\)
\(318\) 0.288591 + 0.166618i 0.0161834 + 0.00934347i
\(319\) −7.61706 + 7.61706i −0.426473 + 0.426473i
\(320\) 0 0
\(321\) −1.63056 0.941405i −0.0910091 0.0525441i
\(322\) −0.675448 + 0.675448i −0.0376413 + 0.0376413i
\(323\) −39.2366 + 39.2366i −2.18318 + 2.18318i
\(324\) 8.08877 14.0102i 0.449376 0.778342i
\(325\) 0 0
\(326\) −2.92204 + 1.68704i −0.161837 + 0.0934366i
\(327\) 3.02046i 0.167032i
\(328\) −4.75581 8.23730i −0.262596 0.454829i
\(329\) 4.73308 2.73265i 0.260943 0.150656i
\(330\) 0 0
\(331\) −23.6164 + 6.32799i −1.29807 + 0.347818i −0.840722 0.541468i \(-0.817869\pi\)
−0.457352 + 0.889285i \(0.651202\pi\)
\(332\) −17.9387 17.9387i −0.984512 0.984512i
\(333\) −15.7895 + 8.69676i −0.865259 + 0.476579i
\(334\) 7.97977i 0.436634i
\(335\) 0 0
\(336\) −1.05000 + 0.606217i −0.0572821 + 0.0330718i
\(337\) 5.02735 18.7623i 0.273857 1.02205i −0.682746 0.730656i \(-0.739214\pi\)
0.956603 0.291394i \(-0.0941190\pi\)
\(338\) 1.08148 0.624391i 0.0588245 0.0339624i
\(339\) −0.843331 + 0.843331i −0.0458035 + 0.0458035i
\(340\) 0 0
\(341\) 13.8304 + 13.8304i 0.748960 + 0.748960i
\(342\) 2.09527 + 7.81964i 0.113299 + 0.422838i
\(343\) −14.1063 14.1063i −0.761667 0.761667i
\(344\) −17.8513 −0.962479
\(345\) 0 0
\(346\) −0.329110 + 1.22826i −0.0176931 + 0.0660315i
\(347\) 3.39588i 0.182300i 0.995837 + 0.0911501i \(0.0290543\pi\)
−0.995837 + 0.0911501i \(0.970946\pi\)
\(348\) 0.556139 0.963262i 0.0298122 0.0516363i
\(349\) −0.334598 0.193180i −0.0179106 0.0103407i 0.491018 0.871149i \(-0.336625\pi\)
−0.508929 + 0.860809i \(0.669958\pi\)
\(350\) 0 0
\(351\) 3.41014 + 0.913745i 0.182020 + 0.0487721i
\(352\) 6.93013 + 12.0033i 0.369377 + 0.639780i
\(353\) 2.12113 3.67390i 0.112896 0.195542i −0.804041 0.594574i \(-0.797321\pi\)
0.916937 + 0.399032i \(0.130654\pi\)
\(354\) 0.186789 0.323529i 0.00992774 0.0171954i
\(355\) 0 0
\(356\) 20.1974 + 20.1974i 1.07046 + 1.07046i
\(357\) −2.43793 + 1.40754i −0.129029 + 0.0744950i
\(358\) 1.41485 + 5.28028i 0.0747770 + 0.279072i
\(359\) 18.8723i 0.996040i 0.867166 + 0.498020i \(0.165939\pi\)
−0.867166 + 0.498020i \(0.834061\pi\)
\(360\) 0 0
\(361\) 31.5415 + 18.2105i 1.66008 + 0.958447i
\(362\) 0.0348743i 0.00183296i
\(363\) −0.169574 0.0454372i −0.00890033 0.00238484i
\(364\) 8.07545 + 8.07545i 0.423268 + 0.423268i
\(365\) 0 0
\(366\) −0.340768 0.590228i −0.0178122 0.0308517i
\(367\) 12.8464 + 3.44218i 0.670576 + 0.179680i 0.578014 0.816027i \(-0.303828\pi\)
0.0925616 + 0.995707i \(0.470494\pi\)
\(368\) 3.66195 + 2.11423i 0.190892 + 0.110212i
\(369\) 19.8730 1.03455
\(370\) 0 0
\(371\) −9.39162 −0.487588
\(372\) −1.74901 1.00979i −0.0906820 0.0523553i
\(373\) 19.0464 + 5.10346i 0.986183 + 0.264247i 0.715646 0.698463i \(-0.246132\pi\)
0.270536 + 0.962710i \(0.412799\pi\)
\(374\) 4.72125 + 8.17745i 0.244130 + 0.422846i
\(375\) 0 0
\(376\) 2.77354 + 2.77354i 0.143034 + 0.143034i
\(377\) −9.33677 2.50178i −0.480868 0.128848i
\(378\) 0.826467i 0.0425089i
\(379\) 9.48304 + 5.47504i 0.487111 + 0.281234i 0.723375 0.690455i \(-0.242590\pi\)
−0.236264 + 0.971689i \(0.575923\pi\)
\(380\) 0 0
\(381\) 0.764351i 0.0391589i
\(382\) −0.908050 3.38889i −0.0464599 0.173391i
\(383\) 14.7477 8.51460i 0.753574 0.435076i −0.0734101 0.997302i \(-0.523388\pi\)
0.826984 + 0.562226i \(0.190055\pi\)
\(384\) −1.33033 1.33033i −0.0678882 0.0678882i
\(385\) 0 0
\(386\) 0.181387 0.314171i 0.00923234 0.0159909i
\(387\) 18.6488 32.3006i 0.947970 1.64193i
\(388\) 4.06265 + 7.03671i 0.206250 + 0.357235i
\(389\) 12.4581 + 3.33813i 0.631649 + 0.169250i 0.560418 0.828210i \(-0.310641\pi\)
0.0712310 + 0.997460i \(0.477307\pi\)
\(390\) 0 0
\(391\) 8.50248 + 4.90891i 0.429989 + 0.248254i
\(392\) 2.19435 3.80072i 0.110831 0.191965i
\(393\) 0.678499i 0.0342258i
\(394\) 0.778693 2.90612i 0.0392300 0.146408i
\(395\) 0 0
\(396\) −19.0843 −0.959021
\(397\) −21.7674 21.7674i −1.09248 1.09248i −0.995264 0.0972114i \(-0.969008\pi\)
−0.0972114 0.995264i \(-0.530992\pi\)
\(398\) −0.0417791 0.155922i −0.00209420 0.00781566i
\(399\) 1.98813 + 1.98813i 0.0995308 + 0.0995308i
\(400\) 0 0
\(401\) −0.609043 + 0.609043i −0.0304142 + 0.0304142i −0.722150 0.691736i \(-0.756846\pi\)
0.691736 + 0.722150i \(0.256846\pi\)
\(402\) 0.300389 0.173430i 0.0149821 0.00864990i
\(403\) −4.54253 + 16.9529i −0.226279 + 0.844486i
\(404\) 0.308642 0.178195i 0.0153555 0.00886552i
\(405\) 0 0
\(406\) 2.26282i 0.112302i
\(407\) 17.9711 + 10.8641i 0.890795 + 0.538514i
\(408\) −1.42860 1.42860i −0.0707264 0.0707264i
\(409\) 27.7946 7.44753i 1.37435 0.368257i 0.505286 0.862952i \(-0.331387\pi\)
0.869067 + 0.494695i \(0.164720\pi\)
\(410\) 0 0
\(411\) 0.379251 0.218960i 0.0187071 0.0108005i
\(412\) 1.96820 + 3.40902i 0.0969663 + 0.167951i
\(413\) 10.5286i 0.518079i
\(414\) 1.24046 0.716179i 0.0609652 0.0351983i
\(415\) 0 0
\(416\) −6.21859 + 10.7709i −0.304892 + 0.528088i
\(417\) −0.859544 + 0.859544i −0.0420920 + 0.0420920i
\(418\) 6.66868 6.66868i 0.326176 0.326176i
\(419\) 1.88268 + 1.08696i 0.0919747 + 0.0531016i 0.545282 0.838253i \(-0.316423\pi\)
−0.453307 + 0.891354i \(0.649756\pi\)
\(420\) 0 0
\(421\) 16.3854 16.3854i 0.798575 0.798575i −0.184296 0.982871i \(-0.559000\pi\)
0.982871 + 0.184296i \(0.0590004\pi\)
\(422\) −0.384659 0.222083i −0.0187249 0.0108108i
\(423\) −7.91593 + 2.12107i −0.384886 + 0.103130i
\(424\) −1.74450 6.51058i −0.0847206 0.316182i
\(425\) 0 0
\(426\) 0.0846541 0.315933i 0.00410150 0.0153070i
\(427\) 16.6345 + 9.60390i 0.804997 + 0.464766i
\(428\) 4.75662 + 17.7519i 0.229920 + 0.858072i
\(429\) −0.528979 1.97418i −0.0255394 0.0953142i
\(430\) 0 0
\(431\) −6.06172 1.62423i −0.291983 0.0782366i 0.109854 0.993948i \(-0.464962\pi\)
−0.401837 + 0.915711i \(0.631628\pi\)
\(432\) 3.53382 0.946883i 0.170021 0.0455570i
\(433\) 12.5346 + 12.5346i 0.602376 + 0.602376i 0.940942 0.338567i \(-0.109942\pi\)
−0.338567 + 0.940942i \(0.609942\pi\)
\(434\) −4.10864 −0.197221
\(435\) 0 0
\(436\) −20.8474 + 20.8474i −0.998412 + 0.998412i
\(437\) 2.53793 9.47167i 0.121405 0.453091i
\(438\) 0.638378 0.0305029
\(439\) −7.05673 + 26.3361i −0.336799 + 1.25695i 0.565106 + 0.825018i \(0.308835\pi\)
−0.901905 + 0.431934i \(0.857831\pi\)
\(440\) 0 0
\(441\) 4.58474 + 7.94100i 0.218321 + 0.378143i
\(442\) −4.23650 + 7.33784i −0.201510 + 0.349025i
\(443\) −14.0595 + 14.0595i −0.667985 + 0.667985i −0.957249 0.289264i \(-0.906589\pi\)
0.289264 + 0.957249i \(0.406589\pi\)
\(444\) −2.08272 0.603285i −0.0988414 0.0286306i
\(445\) 0 0
\(446\) 1.86259 + 6.95128i 0.0881962 + 0.329153i
\(447\) −0.891275 + 3.32628i −0.0421559 + 0.157328i
\(448\) 9.44420 + 2.53057i 0.446197 + 0.119558i
\(449\) 12.8304 + 3.43788i 0.605502 + 0.162244i 0.548528 0.836132i \(-0.315188\pi\)
0.0569734 + 0.998376i \(0.481855\pi\)
\(450\) 0 0
\(451\) −11.5756 20.0496i −0.545076 0.944099i
\(452\) 11.6415 0.547570
\(453\) −0.0591023 + 0.0158364i −0.00277687 + 0.000744059i
\(454\) 7.34274i 0.344612i
\(455\) 0 0
\(456\) −1.00894 + 1.74753i −0.0472479 + 0.0818357i
\(457\) 7.53471 + 13.0505i 0.352459 + 0.610477i 0.986680 0.162675i \(-0.0520123\pi\)
−0.634221 + 0.773152i \(0.718679\pi\)
\(458\) 1.35362 0.0632504
\(459\) 8.20498 2.19852i 0.382976 0.102618i
\(460\) 0 0
\(461\) 12.5579 3.36489i 0.584882 0.156719i 0.0457688 0.998952i \(-0.485426\pi\)
0.539113 + 0.842233i \(0.318760\pi\)
\(462\) 0.414353 0.239227i 0.0192774 0.0111298i
\(463\) 24.2140 13.9799i 1.12532 0.649703i 0.182565 0.983194i \(-0.441560\pi\)
0.942753 + 0.333491i \(0.108227\pi\)
\(464\) −9.67539 + 2.59251i −0.449169 + 0.120354i
\(465\) 0 0
\(466\) −4.82046 + 1.29164i −0.223304 + 0.0598340i
\(467\) 1.30129 0.0602165 0.0301083 0.999547i \(-0.490415\pi\)
0.0301083 + 0.999547i \(0.490415\pi\)
\(468\) −8.56242 14.8305i −0.395798 0.685542i
\(469\) −4.88779 + 8.46590i −0.225697 + 0.390919i
\(470\) 0 0
\(471\) 0.225403i 0.0103860i
\(472\) −7.29877 + 1.95570i −0.335953 + 0.0900184i
\(473\) −43.4502 −1.99784
\(474\) −0.305712 0.529508i −0.0140418 0.0243211i
\(475\) 0 0
\(476\) 26.5418 + 7.11186i 1.21654 + 0.325972i
\(477\) 13.6028 + 3.64486i 0.622830 + 0.166887i
\(478\) 1.29165 4.82050i 0.0590786 0.220484i
\(479\) 1.00395 + 3.74678i 0.0458715 + 0.171195i 0.985061 0.172203i \(-0.0550887\pi\)
−0.939190 + 0.343398i \(0.888422\pi\)
\(480\) 0 0
\(481\) −0.379608 + 18.8398i −0.0173087 + 0.859022i
\(482\) −6.12584 + 6.12584i −0.279024 + 0.279024i
\(483\) 0.248735 0.430822i 0.0113179 0.0196031i
\(484\) 0.856803 + 1.48403i 0.0389456 + 0.0674558i
\(485\) 0 0
\(486\) 0.482107 1.79925i 0.0218688 0.0816156i
\(487\) −17.7036 −0.802228 −0.401114 0.916028i \(-0.631377\pi\)
−0.401114 + 0.916028i \(0.631377\pi\)
\(488\) −3.56787 + 13.3155i −0.161510 + 0.602764i
\(489\) 1.24252 1.24252i 0.0561885 0.0561885i
\(490\) 0 0
\(491\) 28.1151 1.26882 0.634408 0.772998i \(-0.281244\pi\)
0.634408 + 0.772998i \(0.281244\pi\)
\(492\) 1.69033 + 1.69033i 0.0762059 + 0.0762059i
\(493\) −22.4648 + 6.01942i −1.01176 + 0.271101i
\(494\) 8.17427 + 2.19029i 0.367778 + 0.0985458i
\(495\) 0 0
\(496\) 4.70727 + 17.5678i 0.211363 + 0.788817i
\(497\) 2.38581 + 8.90398i 0.107018 + 0.399398i
\(498\) −0.825932 0.476852i −0.0370109 0.0213682i
\(499\) 7.95975 29.7062i 0.356327 1.32983i −0.522479 0.852652i \(-0.674993\pi\)
0.878806 0.477179i \(-0.158341\pi\)
\(500\) 0 0
\(501\) −1.07559 4.01416i −0.0480539 0.179340i
\(502\) −0.201333 + 0.0539470i −0.00898593 + 0.00240777i
\(503\) 17.6108 + 10.1676i 0.785227 + 0.453351i 0.838280 0.545240i \(-0.183562\pi\)
−0.0530522 + 0.998592i \(0.516895\pi\)
\(504\) 5.87404 5.87404i 0.261651 0.261651i
\(505\) 0 0
\(506\) −1.44509 0.834321i −0.0642419 0.0370901i
\(507\) −0.459867 + 0.459867i −0.0204234 + 0.0204234i
\(508\) −5.27562 + 5.27562i −0.234068 + 0.234068i
\(509\) 3.95875 6.85676i 0.175469 0.303921i −0.764855 0.644203i \(-0.777189\pi\)
0.940323 + 0.340282i \(0.110523\pi\)
\(510\) 0 0
\(511\) −15.5811 + 8.99573i −0.689265 + 0.397948i
\(512\) 21.9949i 0.972046i
\(513\) −4.24201 7.34738i −0.187289 0.324395i
\(514\) 5.19916 3.00173i 0.229325 0.132401i
\(515\) 0 0
\(516\) 4.33358 1.16118i 0.190775 0.0511180i
\(517\) 6.75079 + 6.75079i 0.296899 + 0.296899i
\(518\) −4.28308 + 1.05565i −0.188188 + 0.0463825i
\(519\) 0.662225i 0.0290685i
\(520\) 0 0
\(521\) −22.5608 + 13.0255i −0.988406 + 0.570657i −0.904798 0.425842i \(-0.859978\pi\)
−0.0836089 + 0.996499i \(0.526645\pi\)
\(522\) −0.878195 + 3.27747i −0.0384376 + 0.143451i
\(523\) −2.88468 + 1.66547i −0.126138 + 0.0728259i −0.561741 0.827313i \(-0.689868\pi\)
0.435603 + 0.900139i \(0.356535\pi\)
\(524\) 4.68306 4.68306i 0.204581 0.204581i
\(525\) 0 0
\(526\) −4.61019 4.61019i −0.201014 0.201014i
\(527\) 10.9296 + 40.7897i 0.476099 + 1.77683i
\(528\) −1.49761 1.49761i −0.0651752 0.0651752i
\(529\) 21.2650 0.924567
\(530\) 0 0
\(531\) 4.08613 15.2496i 0.177323 0.661777i
\(532\) 27.4445i 1.18987i
\(533\) 10.3871 17.9910i 0.449917 0.779278i
\(534\) 0.929930 + 0.536896i 0.0402420 + 0.0232337i
\(535\) 0 0
\(536\) −6.77676 1.81583i −0.292711 0.0784318i
\(537\) −1.42346 2.46550i −0.0614267 0.106394i
\(538\) −4.26509 + 7.38736i −0.183881 + 0.318492i
\(539\) 5.34104 9.25096i 0.230055 0.398467i
\(540\) 0 0
\(541\) −6.36223 6.36223i −0.273534 0.273534i 0.556987 0.830521i \(-0.311957\pi\)
−0.830521 + 0.556987i \(0.811957\pi\)
\(542\) 5.40770 3.12214i 0.232281 0.134107i
\(543\) −0.00470071 0.0175433i −0.000201727 0.000752854i
\(544\) 29.9245i 1.28300i
\(545\) 0 0
\(546\) 0.371810 + 0.214664i 0.0159120 + 0.00918679i
\(547\) 10.6102i 0.453658i 0.973935 + 0.226829i \(0.0728359\pi\)
−0.973935 + 0.226829i \(0.927164\pi\)
\(548\) −4.12891 1.10634i −0.176378 0.0472604i
\(549\) −20.3661 20.3661i −0.869203 0.869203i
\(550\) 0 0
\(551\) 11.6144 + 20.1167i 0.494789 + 0.857000i
\(552\) 0.344863 + 0.0924058i 0.0146784 + 0.00393305i
\(553\) 14.9232 + 8.61591i 0.634598 + 0.366386i
\(554\) 0.569582 0.0241992
\(555\) 0 0
\(556\) 11.8653 0.503200
\(557\) −31.2784 18.0586i −1.32531 0.765166i −0.340737 0.940159i \(-0.610677\pi\)
−0.984570 + 0.174992i \(0.944010\pi\)
\(558\) 5.95096 + 1.59455i 0.251924 + 0.0675029i
\(559\) −19.4945 33.7655i −0.824529 1.42813i
\(560\) 0 0
\(561\) −3.47722 3.47722i −0.146809 0.146809i
\(562\) −3.53036 0.945957i −0.148919 0.0399028i
\(563\) 28.0509i 1.18220i −0.806597 0.591102i \(-0.798693\pi\)
0.806597 0.591102i \(-0.201307\pi\)
\(564\) −0.853712 0.492891i −0.0359478 0.0207545i
\(565\) 0 0
\(566\) 9.11305i 0.383050i
\(567\) 4.43614 + 16.5559i 0.186301 + 0.695283i
\(568\) −5.72936 + 3.30785i −0.240399 + 0.138794i
\(569\) −1.69141 1.69141i −0.0709076 0.0709076i 0.670764 0.741671i \(-0.265967\pi\)
−0.741671 + 0.670764i \(0.765967\pi\)
\(570\) 0 0
\(571\) 4.18372 7.24641i 0.175083 0.303253i −0.765107 0.643903i \(-0.777314\pi\)
0.940190 + 0.340650i \(0.110647\pi\)
\(572\) −9.97489 + 17.2770i −0.417071 + 0.722388i
\(573\) 0.913575 + 1.58236i 0.0381651 + 0.0661040i
\(574\) 4.69750 + 1.25869i 0.196070 + 0.0525367i
\(575\) 0 0
\(576\) −12.6969 7.33054i −0.529037 0.305439i
\(577\) 10.2220 17.7050i 0.425546 0.737067i −0.570925 0.821002i \(-0.693415\pi\)
0.996471 + 0.0839349i \(0.0267488\pi\)
\(578\) 14.1484i 0.588496i
\(579\) −0.0488982 + 0.182490i −0.00203214 + 0.00758404i
\(580\) 0 0
\(581\) 26.8783 1.11510
\(582\) 0.215989 + 0.215989i 0.00895305 + 0.00895305i
\(583\) −4.24613 15.8468i −0.175857 0.656306i
\(584\) −9.13033 9.13033i −0.377816 0.377816i
\(585\) 0 0
\(586\) 1.71994 1.71994i 0.0710501 0.0710501i
\(587\) 34.1304 19.7052i 1.40871 0.813320i 0.413448 0.910528i \(-0.364324\pi\)
0.995264 + 0.0972074i \(0.0309910\pi\)
\(588\) −0.285472 + 1.06540i −0.0117727 + 0.0439362i
\(589\) 36.5262 21.0884i 1.50504 0.868934i
\(590\) 0 0
\(591\) 1.56686i 0.0644521i
\(592\) 9.42087 + 17.1042i 0.387195 + 0.702977i
\(593\) 29.8968 + 29.8968i 1.22771 + 1.22771i 0.964827 + 0.262886i \(0.0846742\pi\)
0.262886 + 0.964827i \(0.415326\pi\)
\(594\) −1.39452 + 0.373661i −0.0572180 + 0.0153315i
\(595\) 0 0
\(596\) 29.1100 16.8066i 1.19239 0.688427i
\(597\) 0.0420333 + 0.0728039i 0.00172031 + 0.00297966i
\(598\) 1.49732i 0.0612299i
\(599\) −20.3437 + 11.7455i −0.831222 + 0.479906i −0.854271 0.519828i \(-0.825996\pi\)
0.0230489 + 0.999734i \(0.492663\pi\)
\(600\) 0 0
\(601\) −5.10765 + 8.84671i −0.208345 + 0.360865i −0.951193 0.308595i \(-0.900141\pi\)
0.742848 + 0.669460i \(0.233474\pi\)
\(602\) 6.45393 6.45393i 0.263042 0.263042i
\(603\) 10.3651 10.3651i 0.422098 0.422098i
\(604\) 0.517233 + 0.298625i 0.0210459 + 0.0121509i
\(605\) 0 0
\(606\) 0.00947367 0.00947367i 0.000384842 0.000384842i
\(607\) 1.35224 + 0.780718i 0.0548859 + 0.0316884i 0.527192 0.849746i \(-0.323245\pi\)
−0.472306 + 0.881435i \(0.656578\pi\)
\(608\) 28.8695 7.73555i 1.17081 0.313718i
\(609\) 0.305005 + 1.13829i 0.0123594 + 0.0461260i
\(610\) 0 0
\(611\) −2.21726 + 8.27492i −0.0897007 + 0.334768i
\(612\) −35.6831 20.6016i −1.44240 0.832772i
\(613\) −0.397688 1.48419i −0.0160625 0.0599460i 0.957429 0.288667i \(-0.0932122\pi\)
−0.973492 + 0.228721i \(0.926546\pi\)
\(614\) −1.26703 4.72862i −0.0511331 0.190831i
\(615\) 0 0
\(616\) −9.34776 2.50472i −0.376632 0.100918i
\(617\) 3.89243 1.04297i 0.156703 0.0419886i −0.179614 0.983737i \(-0.557485\pi\)
0.336318 + 0.941749i \(0.390818\pi\)
\(618\) 0.104639 + 0.104639i 0.00420919 + 0.00420919i
\(619\) −24.1544 −0.970846 −0.485423 0.874279i \(-0.661334\pi\)
−0.485423 + 0.874279i \(0.661334\pi\)
\(620\) 0 0
\(621\) −1.06144 + 1.06144i −0.0425941 + 0.0425941i
\(622\) −0.748575 + 2.79372i −0.0300151 + 0.112018i
\(623\) −30.2628 −1.21245
\(624\) 0.491882 1.83573i 0.0196910 0.0734880i
\(625\) 0 0
\(626\) −0.422233 0.731329i −0.0168758 0.0292298i
\(627\) −2.45576 + 4.25350i −0.0980735 + 0.169868i
\(628\) −1.55575 + 1.55575i −0.0620813 + 0.0620813i
\(629\) 21.8738 + 39.7133i 0.872166 + 1.58347i
\(630\) 0 0
\(631\) −4.33716 16.1865i −0.172660 0.644374i −0.996938 0.0781902i \(-0.975086\pi\)
0.824279 0.566184i \(-0.191581\pi\)
\(632\) −3.20083 + 11.9457i −0.127322 + 0.475173i
\(633\) 0.223434 + 0.0598690i 0.00888071 + 0.00237958i
\(634\) −2.87970 0.771614i −0.114368 0.0306447i
\(635\) 0 0
\(636\) 0.846989 + 1.46703i 0.0335853 + 0.0581715i
\(637\) 9.58532 0.379784
\(638\) 3.81812 1.02306i 0.151161 0.0405035i
\(639\) 13.8224i 0.546808i
\(640\) 0 0
\(641\) −13.1598 + 22.7934i −0.519779 + 0.900283i 0.479957 + 0.877292i \(0.340652\pi\)
−0.999736 + 0.0229913i \(0.992681\pi\)
\(642\) 0.345446 + 0.598330i 0.0136337 + 0.0236142i
\(643\) −34.2404 −1.35031 −0.675155 0.737675i \(-0.735923\pi\)
−0.675155 + 0.737675i \(0.735923\pi\)
\(644\) −4.69037 + 1.25678i −0.184826 + 0.0495241i
\(645\) 0 0
\(646\) 19.6677 5.26995i 0.773817 0.207344i
\(647\) −28.5278 + 16.4706i −1.12155 + 0.647524i −0.941795 0.336188i \(-0.890862\pi\)
−0.179750 + 0.983712i \(0.557529\pi\)
\(648\) −10.6531 + 6.15056i −0.418493 + 0.241617i
\(649\) −17.7652 + 4.76018i −0.697346 + 0.186853i
\(650\) 0 0
\(651\) 2.06682 0.553803i 0.0810051 0.0217053i
\(652\) −17.1519 −0.671720
\(653\) 10.9549 + 18.9744i 0.428698 + 0.742526i 0.996758 0.0804608i \(-0.0256392\pi\)
−0.568060 + 0.822987i \(0.692306\pi\)
\(654\) −0.554174 + 0.959858i −0.0216699 + 0.0375334i
\(655\) 0 0
\(656\) 21.5277i 0.840515i
\(657\) 26.0588 6.98244i 1.01665 0.272411i
\(658\) −2.00548 −0.0781816
\(659\) 4.76225 + 8.24846i 0.185511 + 0.321314i 0.943749 0.330664i \(-0.107273\pi\)
−0.758238 + 0.651978i \(0.773939\pi\)
\(660\) 0 0
\(661\) 4.49979 + 1.20572i 0.175022 + 0.0468969i 0.345265 0.938505i \(-0.387789\pi\)
−0.170244 + 0.985402i \(0.554456\pi\)
\(662\) 8.66598 + 2.32204i 0.336813 + 0.0902487i
\(663\) 1.14207 4.26228i 0.0443545 0.165533i
\(664\) 4.99268 + 18.6329i 0.193754 + 0.723098i
\(665\) 0 0
\(666\) 6.61331 + 0.133253i 0.256260 + 0.00516346i
\(667\) 2.90616 2.90616i 0.112527 0.112527i
\(668\) −20.2823 + 35.1299i −0.784745 + 1.35922i
\(669\) −1.87392 3.24573i −0.0724501 0.125487i
\(670\) 0 0
\(671\) −8.68421 + 32.4099i −0.335250 + 1.25117i
\(672\) 1.51628 0.0584919
\(673\) −3.84754 + 14.3592i −0.148312 + 0.553507i 0.851274 + 0.524722i \(0.175831\pi\)
−0.999586 + 0.0287852i \(0.990836\pi\)
\(674\) −5.04002 + 5.04002i −0.194134 + 0.194134i
\(675\) 0 0
\(676\) 6.34808 0.244157
\(677\) 7.15203 + 7.15203i 0.274875 + 0.274875i 0.831059 0.556184i \(-0.187735\pi\)
−0.556184 + 0.831059i \(0.687735\pi\)
\(678\) 0.422728 0.113270i 0.0162348 0.00435009i
\(679\) −8.31534 2.22809i −0.319113 0.0855062i
\(680\) 0 0
\(681\) 0.989727 + 3.69371i 0.0379264 + 0.141543i
\(682\) −1.85759 6.93264i −0.0711310 0.265464i
\(683\) 15.0427 + 8.68491i 0.575593 + 0.332319i 0.759380 0.650647i \(-0.225502\pi\)
−0.183787 + 0.982966i \(0.558836\pi\)
\(684\) −10.6511 + 39.7505i −0.407256 + 1.51990i
\(685\) 0 0
\(686\) 1.89464 + 7.07091i 0.0723378 + 0.269969i
\(687\) −0.680927 + 0.182454i −0.0259790 + 0.00696105i
\(688\) −34.9900 20.2015i −1.33398 0.770175i
\(689\) 10.4096 10.4096i 0.396573 0.396573i
\(690\) 0 0
\(691\) 0.688714 + 0.397629i 0.0261999 + 0.0151265i 0.513043 0.858363i \(-0.328518\pi\)
−0.486843 + 0.873490i \(0.661852\pi\)
\(692\) −4.57074 + 4.57074i −0.173753 + 0.173753i
\(693\) 14.2974 14.2974i 0.543114 0.543114i
\(694\) 0.623054 1.07916i 0.0236508 0.0409644i
\(695\) 0 0
\(696\) −0.732448 + 0.422879i −0.0277634 + 0.0160292i
\(697\) 49.9840i 1.89328i
\(698\) 0.0708869 + 0.122780i 0.00268311 + 0.00464728i
\(699\) 2.25080 1.29950i 0.0851329 0.0491515i
\(700\) 0 0
\(701\) −7.03789 + 1.88580i −0.265817 + 0.0712255i −0.389266 0.921125i \(-0.627271\pi\)
0.123449 + 0.992351i \(0.460605\pi\)
\(702\) −0.916047 0.916047i −0.0345740 0.0345740i
\(703\) 32.6587 31.3686i 1.23175 1.18309i
\(704\) 17.0796i 0.643712i
\(705\) 0 0
\(706\) −1.34813 + 0.778343i −0.0507375 + 0.0292933i
\(707\) −0.0977278 + 0.364725i −0.00367543 + 0.0137169i
\(708\) 1.64463 0.949529i 0.0618091 0.0356855i
\(709\) 0.492179 0.492179i 0.0184842 0.0184842i −0.697804 0.716288i \(-0.745839\pi\)
0.716288 + 0.697804i \(0.245839\pi\)
\(710\) 0 0
\(711\) −18.2709 18.2709i −0.685213 0.685213i
\(712\) −5.62134 20.9791i −0.210669 0.786227i
\(713\) −5.27677 5.27677i −0.197617 0.197617i
\(714\) 1.03299 0.0386586
\(715\) 0 0
\(716\) −7.19227 + 26.8419i −0.268788 + 1.00313i
\(717\) 2.59901i 0.0970620i
\(718\) 3.46257 5.99734i 0.129222 0.223819i
\(719\) 10.8743 + 6.27829i 0.405543 + 0.234141i 0.688873 0.724882i \(-0.258106\pi\)
−0.283330 + 0.959023i \(0.591439\pi\)
\(720\) 0 0
\(721\) −4.02847 1.07943i −0.150028 0.0401999i
\(722\) −6.68230 11.5741i −0.248689 0.430742i
\(723\) 2.25585 3.90725i 0.0838961 0.145312i
\(724\) −0.0886405 + 0.153530i −0.00329430 + 0.00570589i
\(725\) 0 0
\(726\) 0.0455517 + 0.0455517i 0.00169058 + 0.00169058i
\(727\) −0.393556 + 0.227219i −0.0145962 + 0.00842710i −0.507280 0.861781i \(-0.669349\pi\)
0.492684 + 0.870208i \(0.336016\pi\)
\(728\) −2.24756 8.38799i −0.0832999 0.310880i
\(729\) 25.0479i 0.927699i
\(730\) 0 0
\(731\) −81.2415 46.9048i −3.00483 1.73484i
\(732\) 3.46454i 0.128053i
\(733\) −0.269639 0.0722495i −0.00995933 0.00266859i 0.253836 0.967247i \(-0.418308\pi\)
−0.263795 + 0.964579i \(0.584974\pi\)
\(734\) −3.45085 3.45085i −0.127373 0.127373i
\(735\) 0 0
\(736\) −2.64408 4.57967i −0.0974619 0.168809i
\(737\) −16.4946 4.41972i −0.607588 0.162803i
\(738\) −6.31536 3.64617i −0.232472 0.134218i
\(739\) −20.7632 −0.763786 −0.381893 0.924207i \(-0.624728\pi\)
−0.381893 + 0.924207i \(0.624728\pi\)
\(740\) 0 0
\(741\) −4.40723 −0.161904
\(742\) 2.98452 + 1.72312i 0.109565 + 0.0632576i
\(743\) −18.4274 4.93760i −0.676035 0.181143i −0.0955632 0.995423i \(-0.530465\pi\)
−0.580472 + 0.814280i \(0.697132\pi\)
\(744\) 0.767829 + 1.32992i 0.0281500 + 0.0487572i
\(745\) 0 0
\(746\) −5.11631 5.11631i −0.187322 0.187322i
\(747\) −38.9306 10.4314i −1.42439 0.381665i
\(748\) 48.0002i 1.75506i
\(749\) −16.8628 9.73574i −0.616153 0.355736i
\(750\) 0 0
\(751\) 32.9736i 1.20322i −0.798788 0.601612i \(-0.794525\pi\)
0.798788 0.601612i \(-0.205475\pi\)
\(752\) 2.29767 + 8.57503i 0.0837875 + 0.312699i
\(753\) 0.0940075 0.0542752i 0.00342582 0.00197790i
\(754\) 2.50808 + 2.50808i 0.0913390 + 0.0913390i
\(755\) 0 0
\(756\) −2.10064 + 3.63842i −0.0763996 + 0.132328i
\(757\) 25.4674 44.1108i 0.925628 1.60323i 0.135079 0.990835i \(-0.456871\pi\)
0.790549 0.612399i \(-0.209795\pi\)
\(758\) −2.00905 3.47978i −0.0729720 0.126391i
\(759\) 0.839398 + 0.224916i 0.0304682 + 0.00816393i
\(760\) 0 0
\(761\) 3.27486 + 1.89074i 0.118714 + 0.0685394i 0.558181 0.829719i \(-0.311499\pi\)
−0.439467 + 0.898259i \(0.644833\pi\)
\(762\) −0.140238 + 0.242900i −0.00508030 + 0.00879934i
\(763\) 31.2367i 1.13084i
\(764\) 4.61600 17.2272i 0.167001 0.623257i
\(765\) 0 0
\(766\) −6.24883 −0.225779
\(767\) −11.6698 11.6698i −0.421371 0.421371i
\(768\) −0.310710 1.15959i −0.0112118 0.0418430i
\(769\) −1.69910 1.69910i −0.0612712 0.0612712i 0.675807 0.737078i \(-0.263795\pi\)
−0.737078 + 0.675807i \(0.763795\pi\)
\(770\) 0 0
\(771\) −2.21079 + 2.21079i −0.0796197 + 0.0796197i
\(772\) 1.59706 0.922066i 0.0574796 0.0331859i
\(773\) 7.79586 29.0946i 0.280398 1.04646i −0.671740 0.740787i \(-0.734453\pi\)
0.952137 0.305671i \(-0.0988807\pi\)
\(774\) −11.8526 + 6.84312i −0.426034 + 0.245971i
\(775\) 0 0
\(776\) 6.17834i 0.221789i
\(777\) 2.01228 1.10835i 0.0721901 0.0397619i
\(778\) −3.34654 3.34654i −0.119979 0.119979i
\(779\) −48.2217 + 12.9210i −1.72772 + 0.462941i
\(780\) 0 0
\(781\) −13.9453 + 8.05131i −0.499001 + 0.288099i
\(782\) −1.80131 3.11997i −0.0644148 0.111570i
\(783\) 3.55593i 0.127079i
\(784\) 8.60219 4.96648i 0.307221 0.177374i
\(785\) 0 0
\(786\) 0.124487 0.215618i 0.00444030 0.00769082i
\(787\) 15.3527 15.3527i 0.547265 0.547265i −0.378384 0.925649i \(-0.623520\pi\)
0.925649 + 0.378384i \(0.123520\pi\)
\(788\) 10.8146 10.8146i 0.385255 0.385255i
\(789\) 2.94052 + 1.69771i 0.104685 + 0.0604402i
\(790\) 0 0
\(791\) −8.72149 + 8.72149i −0.310101 + 0.310101i
\(792\) 12.5672 + 7.25568i 0.446556 + 0.257819i
\(793\) −29.0823 + 7.79257i −1.03274 + 0.276722i
\(794\) 2.92363 + 10.9111i 0.103756 + 0.387221i
\(795\) 0 0
\(796\) 0.212381 0.792617i 0.00752765 0.0280936i
\(797\) −32.4245 18.7203i −1.14853 0.663106i −0.200004 0.979795i \(-0.564096\pi\)
−0.948529 + 0.316689i \(0.897429\pi\)
\(798\) −0.267030 0.996568i −0.00945274 0.0352781i
\(799\) 5.33484 + 19.9099i 0.188733 + 0.704362i
\(800\) 0 0
\(801\) 43.8326 + 11.7449i 1.54875 + 0.414986i
\(802\) 0.305289 0.0818019i 0.0107801 0.00288853i
\(803\) −22.2232 22.2232i −0.784241 0.784241i
\(804\) 1.76324 0.0621845
\(805\) 0 0
\(806\) 4.55397 4.55397i 0.160407 0.160407i
\(807\) 1.14978 4.29104i 0.0404742 0.151052i
\(808\) −0.270993 −0.00953349
\(809\) 11.2061 41.8217i 0.393985 1.47037i −0.429517 0.903059i \(-0.641316\pi\)
0.823502 0.567313i \(-0.192017\pi\)
\(810\) 0 0
\(811\) 6.94395 + 12.0273i 0.243835 + 0.422335i 0.961803 0.273741i \(-0.0882611\pi\)
−0.717968 + 0.696076i \(0.754928\pi\)
\(812\) 5.75144 9.96178i 0.201836 0.349590i
\(813\) −2.29947 + 2.29947i −0.0806459 + 0.0806459i
\(814\) −3.71769 6.74969i −0.130305 0.236577i
\(815\) 0 0
\(816\) −1.18349 4.41686i −0.0414306 0.154621i
\(817\) −24.2500 + 90.5021i −0.848399 + 3.16627i
\(818\) −10.1991 2.73285i −0.356605 0.0955520i
\(819\) 17.5254 + 4.69591i 0.612386 + 0.164088i
\(820\) 0 0
\(821\) −5.62408 9.74120i −0.196282 0.339970i 0.751038 0.660259i \(-0.229553\pi\)
−0.947320 + 0.320289i \(0.896220\pi\)
\(822\) −0.160694 −0.00560485
\(823\) 31.6544 8.48178i 1.10340 0.295656i 0.339254 0.940695i \(-0.389825\pi\)
0.764150 + 0.645038i \(0.223159\pi\)
\(824\) 2.99317i 0.104272i
\(825\) 0 0
\(826\) 1.93172 3.34584i 0.0672132 0.116417i
\(827\) 16.4713 + 28.5291i 0.572763 + 0.992054i 0.996281 + 0.0861665i \(0.0274617\pi\)
−0.423518 + 0.905888i \(0.639205\pi\)
\(828\) 7.28128 0.253042
\(829\) 4.10251 1.09926i 0.142486 0.0381790i −0.186871 0.982384i \(-0.559835\pi\)
0.329357 + 0.944205i \(0.393168\pi\)
\(830\) 0 0
\(831\) −0.286524 + 0.0767738i −0.00993940 + 0.00266325i
\(832\) −13.2727 + 7.66299i −0.460148 + 0.265666i
\(833\) 19.9730 11.5314i 0.692023 0.399539i
\(834\) 0.430854 0.115447i 0.0149193 0.00399761i
\(835\) 0 0
\(836\) 46.3079 12.4082i 1.60159 0.429145i
\(837\) −6.45657 −0.223172
\(838\) −0.398859 0.690843i −0.0137783 0.0238648i
\(839\) −1.39115 + 2.40954i −0.0480278 + 0.0831865i −0.889040 0.457830i \(-0.848627\pi\)
0.841012 + 0.541016i \(0.181960\pi\)
\(840\) 0 0
\(841\) 19.2641i 0.664278i
\(842\) −8.21333 + 2.20076i −0.283050 + 0.0758431i
\(843\) 1.90343 0.0655575
\(844\) −1.12894 1.95538i −0.0388598 0.0673071i
\(845\) 0 0
\(846\) 2.90473 + 0.778320i 0.0998667 + 0.0267592i
\(847\) −1.75369 0.469899i −0.0602574 0.0161459i
\(848\) 3.94835 14.7354i 0.135587 0.506017i
\(849\) −1.22835 4.58425i −0.0421567 0.157331i
\(850\) 0 0
\(851\) −6.85658 4.14502i −0.235040 0.142089i
\(852\) 1.17569 1.17569i 0.0402785 0.0402785i
\(853\) −10.7353 + 18.5940i −0.367569 + 0.636648i −0.989185 0.146674i \(-0.953143\pi\)
0.621616 + 0.783322i \(0.286476\pi\)
\(854\) −3.52413 6.10397i −0.120593 0.208874i
\(855\) 0 0
\(856\) 3.61685 13.4983i 0.123621 0.461362i
\(857\) 19.7692 0.675302 0.337651 0.941271i \(-0.390368\pi\)
0.337651 + 0.941271i \(0.390368\pi\)
\(858\) −0.194108 + 0.724420i −0.00662673 + 0.0247313i
\(859\) 14.4663 14.4663i 0.493582 0.493582i −0.415851 0.909433i \(-0.636516\pi\)
0.909433 + 0.415851i \(0.136516\pi\)
\(860\) 0 0
\(861\) −2.53270 −0.0863141
\(862\) 1.62833 + 1.62833i 0.0554610 + 0.0554610i
\(863\) 51.9841 13.9291i 1.76956 0.474152i 0.780943 0.624603i \(-0.214739\pi\)
0.988618 + 0.150450i \(0.0480724\pi\)
\(864\) −4.41943 1.18418i −0.150352 0.0402867i
\(865\) 0 0
\(866\) −1.68355 6.28310i −0.0572094 0.213509i
\(867\) −1.90706 7.11724i −0.0647672 0.241714i
\(868\) −18.0878 10.4430i −0.613939 0.354458i
\(869\) −7.79082 + 29.0758i −0.264286 + 0.986327i
\(870\) 0 0
\(871\) −3.96594 14.8011i −0.134381 0.501515i
\(872\) 21.6543 5.80225i 0.733307 0.196489i
\(873\) 11.1792 + 6.45432i 0.378359 + 0.218446i
\(874\) −2.54432 + 2.54432i −0.0860629 + 0.0860629i
\(875\) 0 0
\(876\) 2.81038 + 1.62257i 0.0949538 + 0.0548216i
\(877\) −12.5701 + 12.5701i −0.424462 + 0.424462i −0.886737 0.462275i \(-0.847033\pi\)
0.462275 + 0.886737i \(0.347033\pi\)
\(878\) 7.07451 7.07451i 0.238753 0.238753i
\(879\) −0.633372 + 1.09703i −0.0213631 + 0.0370020i
\(880\) 0 0
\(881\) 45.1002 26.0386i 1.51946 0.877263i 0.519727 0.854333i \(-0.326034\pi\)
0.999737 0.0229301i \(-0.00729951\pi\)
\(882\) 3.36472i 0.113296i
\(883\) 15.8773 + 27.5003i 0.534314 + 0.925459i 0.999196 + 0.0400864i \(0.0127633\pi\)
−0.464882 + 0.885372i \(0.653903\pi\)
\(884\) −37.3013 + 21.5359i −1.25458 + 0.724332i
\(885\) 0 0
\(886\) 7.04744 1.88835i 0.236763 0.0634405i
\(887\) −8.37990 8.37990i −0.281370 0.281370i 0.552285 0.833655i \(-0.313756\pi\)
−0.833655 + 0.552285i \(0.813756\pi\)
\(888\) 1.14213 + 1.18910i 0.0383273 + 0.0399036i
\(889\) 7.90470i 0.265115i
\(890\) 0 0
\(891\) −25.9296 + 14.9705i −0.868675 + 0.501530i
\(892\) −9.46833 + 35.3363i −0.317023 + 1.18315i
\(893\) 17.8289 10.2935i 0.596620 0.344459i
\(894\) 0.893520 0.893520i 0.0298838 0.0298838i
\(895\) 0 0
\(896\) −13.7579 13.7579i −0.459620 0.459620i
\(897\) 0.201823 + 0.753214i 0.00673868 + 0.0251491i
\(898\) −3.44654 3.44654i −0.115013 0.115013i
\(899\) 17.6777 0.589585
\(900\) 0 0
\(901\) 9.16745 34.2134i 0.305412 1.13981i
\(902\) 8.49531i 0.282863i
\(903\) −2.37668 + 4.11652i −0.0790908 + 0.136989i
\(904\) −7.66605 4.42600i −0.254969 0.147207i
\(905\) 0 0
\(906\) 0.0216874 + 0.00581113i 0.000720517 + 0.000193062i
\(907\) 24.7791 + 42.9187i 0.822777 + 1.42509i 0.903606 + 0.428364i \(0.140910\pi\)
−0.0808295 + 0.996728i \(0.525757\pi\)
\(908\) 18.6631 32.3255i 0.619358 1.07276i
\(909\) 0.283098 0.490340i 0.00938977 0.0162636i
\(910\) 0 0
\(911\) −31.0017 31.0017i −1.02713 1.02713i −0.999621 0.0275118i \(-0.991242\pi\)
−0.0275118 0.999621i \(-0.508758\pi\)
\(912\) −3.95520 + 2.28353i −0.130970 + 0.0756154i
\(913\) 12.1522 + 45.3526i 0.402179 + 1.50095i
\(914\) 5.52969i 0.182906i
\(915\) 0 0
\(916\) 5.95913 + 3.44051i 0.196895 + 0.113678i
\(917\) 7.01685i 0.231717i
\(918\) −3.01080 0.806741i −0.0993712 0.0266264i
\(919\) 25.3860 + 25.3860i 0.837407 + 0.837407i 0.988517 0.151110i \(-0.0482847\pi\)
−0.151110 + 0.988517i \(0.548285\pi\)
\(920\) 0 0
\(921\) 1.27474 + 2.20791i 0.0420041 + 0.0727532i
\(922\) −4.60811 1.23474i −0.151760 0.0406639i
\(923\) −12.5135 7.22466i −0.411886 0.237802i
\(924\) 2.43218 0.0800129
\(925\) 0 0
\(926\) −10.2598 −0.337158
\(927\) 5.41591 + 3.12688i 0.177882 + 0.102700i
\(928\) 12.1001 + 3.24222i 0.397207 + 0.106431i
\(929\) 9.74401 + 16.8771i 0.319691 + 0.553720i 0.980423 0.196901i \(-0.0630877\pi\)
−0.660733 + 0.750621i \(0.729754\pi\)
\(930\) 0 0
\(931\) −16.2879 16.2879i −0.533814 0.533814i
\(932\) −24.5044 6.56595i −0.802670 0.215075i
\(933\) 1.50626i 0.0493127i
\(934\) −0.413532 0.238753i −0.0135312 0.00781223i
\(935\) 0 0
\(936\) 13.0214i 0.425619i
\(937\) 11.2187 + 41.8686i 0.366498 + 1.36779i 0.865379 + 0.501118i \(0.167078\pi\)
−0.498881 + 0.866670i \(0.666256\pi\)
\(938\) 3.10654 1.79356i 0.101432 0.0585619i
\(939\) 0.310977 + 0.310977i 0.0101483 + 0.0101483i
\(940\) 0 0
\(941\) −1.14543 + 1.98394i −0.0373398 + 0.0646745i −0.884091 0.467314i \(-0.845222\pi\)
0.846752 + 0.531989i \(0.178555\pi\)
\(942\) −0.0413556 + 0.0716300i −0.00134744 + 0.00233383i
\(943\) 4.41649 + 7.64958i 0.143821 + 0.249105i
\(944\) −16.5194 4.42635i −0.537659 0.144065i
\(945\) 0 0
\(946\) 13.8078 + 7.97197i 0.448932 + 0.259191i
\(947\) 30.0952 52.1263i 0.977961 1.69388i 0.308165 0.951333i \(-0.400285\pi\)
0.669796 0.742545i \(-0.266382\pi\)
\(948\) 3.10813i 0.100947i
\(949\) 7.29910 27.2406i 0.236939 0.884268i
\(950\) 0 0
\(951\) 1.55262 0.0503471
\(952\) −14.7742 14.7742i −0.478835 0.478835i
\(953\) −4.50324 16.8063i −0.145874 0.544410i −0.999715 0.0238757i \(-0.992399\pi\)
0.853841 0.520534i \(-0.174267\pi\)
\(954\) −3.65405 3.65405i −0.118304 0.118304i
\(955\) 0 0
\(956\) 17.9386 17.9386i 0.580177 0.580177i
\(957\) −1.78278 + 1.02929i −0.0576291 + 0.0332722i
\(958\) 0.368395 1.37487i 0.0119023 0.0444201i
\(959\) 3.92210 2.26443i 0.126651 0.0731221i
\(960\) 0 0
\(961\) 1.09774i 0.0354111i
\(962\) 3.57725 5.91738i 0.115335 0.190784i
\(963\) 20.6457 + 20.6457i 0.665297 + 0.665297i
\(964\) −42.5383 + 11.3981i −1.37007 + 0.367108i
\(965\) 0 0
\(966\) −0.158089 + 0.0912729i −0.00508644 + 0.00293666i
\(967\) 23.8175 + 41.2531i 0.765918 + 1.32661i 0.939760 + 0.341836i \(0.111049\pi\)
−0.173841 + 0.984774i \(0.555618\pi\)
\(968\) 1.30300i 0.0418799i
\(969\) −9.18337 + 5.30202i −0.295012 + 0.170325i
\(970\) 0 0
\(971\) 17.9256 31.0481i 0.575261 0.996382i −0.420752 0.907176i \(-0.638234\pi\)
0.996013 0.0892060i \(-0.0284329\pi\)
\(972\) 6.69559 6.69559i 0.214761 0.214761i
\(973\) −8.88915 + 8.88915i −0.284973 + 0.284973i
\(974\) 5.62597 + 3.24815i 0.180268 + 0.104078i
\(975\) 0 0
\(976\) −22.0618 + 22.0618i −0.706182 + 0.706182i
\(977\) −17.1619 9.90840i −0.549056 0.316998i 0.199685 0.979860i \(-0.436008\pi\)
−0.748741 + 0.662862i \(0.769341\pi\)
\(978\) −0.622823 + 0.166885i −0.0199157 + 0.00533639i
\(979\) −13.6824 51.0633i −0.437290 1.63199i
\(980\) 0 0
\(981\) −12.1229 + 45.2432i −0.387054 + 1.44450i
\(982\) −8.93458 5.15838i −0.285114 0.164611i
\(983\) −13.1202 48.9652i −0.418469 1.56175i −0.777784 0.628532i \(-0.783656\pi\)
0.359315 0.933216i \(-0.383010\pi\)
\(984\) −0.470452 1.75575i −0.0149975 0.0559713i
\(985\) 0 0
\(986\) 8.24339 + 2.20881i 0.262523 + 0.0703429i
\(987\) 1.00884 0.270318i 0.0321117 0.00860430i
\(988\) 30.4191 + 30.4191i 0.967761 + 0.967761i
\(989\) 16.5777 0.527139
\(990\) 0 0
\(991\) 24.1350 24.1350i 0.766673 0.766673i −0.210846 0.977519i \(-0.567622\pi\)
0.977519 + 0.210846i \(0.0676220\pi\)
\(992\) 5.88697 21.9705i 0.186911 0.697563i
\(993\) −4.67234 −0.148272
\(994\) 0.875468 3.26729i 0.0277682 0.103632i
\(995\) 0 0
\(996\) −2.42404 4.19856i −0.0768086 0.133036i
\(997\) 26.1348 45.2668i 0.827697 1.43361i −0.0721432 0.997394i \(-0.522984\pi\)
0.899840 0.436219i \(-0.143683\pi\)
\(998\) −7.97980 + 7.97980i −0.252596 + 0.252596i
\(999\) −6.73069 + 1.65891i −0.212950 + 0.0524855i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.y.b.393.8 68
5.2 odd 4 925.2.t.b.282.10 68
5.3 odd 4 185.2.p.a.97.8 68
5.4 even 2 185.2.u.a.23.10 yes 68
37.29 odd 12 925.2.t.b.843.10 68
185.29 odd 12 185.2.p.a.103.8 yes 68
185.103 even 12 185.2.u.a.177.10 yes 68
185.177 even 12 inner 925.2.y.b.732.8 68
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.p.a.97.8 68 5.3 odd 4
185.2.p.a.103.8 yes 68 185.29 odd 12
185.2.u.a.23.10 yes 68 5.4 even 2
185.2.u.a.177.10 yes 68 185.103 even 12
925.2.t.b.282.10 68 5.2 odd 4
925.2.t.b.843.10 68 37.29 odd 12
925.2.y.b.393.8 68 1.1 even 1 trivial
925.2.y.b.732.8 68 185.177 even 12 inner