Properties

Label 925.2.t.b.843.10
Level $925$
Weight $2$
Character 925.843
Analytic conductor $7.386$
Analytic rank $0$
Dimension $68$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(82,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([3, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.82"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.t (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [68] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(68\)
Relative dimension: \(17\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 185)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 843.10
Character \(\chi\) \(=\) 925.843
Dual form 925.2.t.b.282.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.183474 + 0.317786i) q^{2} +(0.0494608 + 0.184590i) q^{3} +(0.932675 - 1.61544i) q^{4} +(-0.0495854 + 0.0495854i) q^{6} +(-0.511509 - 1.90898i) q^{7} +1.41838 q^{8} +(2.56645 - 1.48174i) q^{9} -3.45234i q^{11} +(0.344325 + 0.0922616i) q^{12} +(1.54894 - 2.68284i) q^{13} +(0.512798 - 0.512798i) q^{14} +(-1.60511 - 2.78014i) q^{16} +(-6.45506 + 3.72683i) q^{17} +(0.941752 + 0.543721i) q^{18} +(-7.19086 + 1.92679i) q^{19} +(0.327079 - 0.188839i) q^{21} +(1.09710 - 0.633414i) q^{22} -1.31718 q^{23} +(0.0701542 + 0.261819i) q^{24} +1.13676 q^{26} +(0.805841 + 0.805841i) q^{27} +(-3.56091 - 0.954144i) q^{28} +(-2.20635 + 2.20635i) q^{29} +(4.00610 + 4.00610i) q^{31} +(2.00737 - 3.47687i) q^{32} +(0.637268 - 0.170755i) q^{33} +(-2.36867 - 1.36755i) q^{34} -5.52793i q^{36} +(5.20549 - 3.14689i) q^{37} +(-1.93164 - 1.93164i) q^{38} +(0.571837 + 0.153223i) q^{39} +(-5.80754 - 3.35298i) q^{41} +(0.120021 + 0.0692941i) q^{42} +12.5857 q^{43} +(-5.57705 - 3.21991i) q^{44} +(-0.241668 - 0.418582i) q^{46} +(1.95542 - 1.95542i) q^{47} +(0.433796 - 0.433796i) q^{48} +(2.67962 - 1.54708i) q^{49} +(-1.00721 - 1.00721i) q^{51} +(-2.88931 - 5.00443i) q^{52} +(1.22993 - 4.59015i) q^{53} +(-0.108234 + 0.403936i) q^{54} +(-0.725515 - 2.70766i) q^{56} +(-0.711331 - 1.23206i) q^{57} +(-1.10595 - 0.296339i) q^{58} +(-1.37883 + 5.14585i) q^{59} +(9.38781 - 2.51546i) q^{61} +(-0.538068 + 2.00810i) q^{62} +(-4.14137 - 4.14137i) q^{63} -4.94725 q^{64} +(0.171186 + 0.171186i) q^{66} +(-4.77781 + 1.28021i) q^{67} +13.9037i q^{68} +(-0.0651488 - 0.243139i) q^{69} +(2.33213 - 4.03937i) q^{71} +(3.64020 - 2.10167i) q^{72} +(6.43715 - 6.43715i) q^{73} +(1.95511 + 1.07686i) q^{74} +(-3.59413 + 13.4135i) q^{76} +(-6.59044 + 1.76590i) q^{77} +(0.0562249 + 0.209834i) q^{78} +(-8.42204 + 2.25668i) q^{79} +(4.33633 - 7.51074i) q^{81} -2.46074i q^{82} +(-3.51999 + 13.1368i) q^{83} -0.704502i q^{84} +(2.30915 + 3.99956i) q^{86} +(-0.516397 - 0.298142i) q^{87} -4.89673i q^{88} +(14.7909 + 3.96321i) q^{89} +(-5.91378 - 1.58459i) q^{91} +(-1.22850 + 2.12783i) q^{92} +(-0.541342 + 0.937632i) q^{93} +(0.980175 + 0.262637i) q^{94} +(0.741082 + 0.198572i) q^{96} +4.35591i q^{97} +(0.983280 + 0.567697i) q^{98} +(-5.11547 - 8.86025i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 68 q + 4 q^{2} + 8 q^{3} - 30 q^{4} - 8 q^{6} + 2 q^{7} - 12 q^{8} - 14 q^{12} + 6 q^{13} - 26 q^{16} - 12 q^{17} - 18 q^{18} + 4 q^{19} - 12 q^{21} - 6 q^{22} + 12 q^{23} - 24 q^{26} + 68 q^{27} + 26 q^{28}+ \cdots + 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.183474 + 0.317786i 0.129736 + 0.224709i 0.923574 0.383420i \(-0.125254\pi\)
−0.793839 + 0.608129i \(0.791920\pi\)
\(3\) 0.0494608 + 0.184590i 0.0285562 + 0.106573i 0.978733 0.205138i \(-0.0657644\pi\)
−0.950177 + 0.311711i \(0.899098\pi\)
\(4\) 0.932675 1.61544i 0.466337 0.807720i
\(5\) 0 0
\(6\) −0.0495854 + 0.0495854i −0.0202431 + 0.0202431i
\(7\) −0.511509 1.90898i −0.193332 0.721526i −0.992692 0.120674i \(-0.961495\pi\)
0.799360 0.600853i \(-0.205172\pi\)
\(8\) 1.41838 0.501473
\(9\) 2.56645 1.48174i 0.855483 0.493913i
\(10\) 0 0
\(11\) 3.45234i 1.04092i −0.853886 0.520460i \(-0.825761\pi\)
0.853886 0.520460i \(-0.174239\pi\)
\(12\) 0.344325 + 0.0922616i 0.0993981 + 0.0266336i
\(13\) 1.54894 2.68284i 0.429598 0.744086i −0.567239 0.823553i \(-0.691989\pi\)
0.996837 + 0.0794671i \(0.0253219\pi\)
\(14\) 0.512798 0.512798i 0.137051 0.137051i
\(15\) 0 0
\(16\) −1.60511 2.78014i −0.401278 0.695035i
\(17\) −6.45506 + 3.72683i −1.56558 + 0.903889i −0.568907 + 0.822402i \(0.692634\pi\)
−0.996674 + 0.0814869i \(0.974033\pi\)
\(18\) 0.941752 + 0.543721i 0.221973 + 0.128156i
\(19\) −7.19086 + 1.92679i −1.64970 + 0.442035i −0.959528 0.281614i \(-0.909130\pi\)
−0.690169 + 0.723648i \(0.742464\pi\)
\(20\) 0 0
\(21\) 0.327079 0.188839i 0.0713745 0.0412081i
\(22\) 1.09710 0.633414i 0.233904 0.135044i
\(23\) −1.31718 −0.274651 −0.137326 0.990526i \(-0.543851\pi\)
−0.137326 + 0.990526i \(0.543851\pi\)
\(24\) 0.0701542 + 0.261819i 0.0143202 + 0.0534436i
\(25\) 0 0
\(26\) 1.13676 0.222937
\(27\) 0.805841 + 0.805841i 0.155084 + 0.155084i
\(28\) −3.56091 0.954144i −0.672949 0.180316i
\(29\) −2.20635 + 2.20635i −0.409708 + 0.409708i −0.881637 0.471929i \(-0.843558\pi\)
0.471929 + 0.881637i \(0.343558\pi\)
\(30\) 0 0
\(31\) 4.00610 + 4.00610i 0.719518 + 0.719518i 0.968506 0.248989i \(-0.0800982\pi\)
−0.248989 + 0.968506i \(0.580098\pi\)
\(32\) 2.00737 3.47687i 0.354857 0.614630i
\(33\) 0.637268 0.170755i 0.110934 0.0297247i
\(34\) −2.36867 1.36755i −0.406223 0.234533i
\(35\) 0 0
\(36\) 5.52793i 0.921321i
\(37\) 5.20549 3.14689i 0.855777 0.517345i
\(38\) −1.93164 1.93164i −0.313353 0.313353i
\(39\) 0.571837 + 0.153223i 0.0915673 + 0.0245354i
\(40\) 0 0
\(41\) −5.80754 3.35298i −0.906985 0.523648i −0.0275253 0.999621i \(-0.508763\pi\)
−0.879460 + 0.475973i \(0.842096\pi\)
\(42\) 0.120021 + 0.0692941i 0.0185196 + 0.0106923i
\(43\) 12.5857 1.91930 0.959652 0.281191i \(-0.0907296\pi\)
0.959652 + 0.281191i \(0.0907296\pi\)
\(44\) −5.57705 3.21991i −0.840772 0.485420i
\(45\) 0 0
\(46\) −0.241668 0.418582i −0.0356320 0.0617165i
\(47\) 1.95542 1.95542i 0.285228 0.285228i −0.549962 0.835190i \(-0.685358\pi\)
0.835190 + 0.549962i \(0.185358\pi\)
\(48\) 0.433796 0.433796i 0.0626131 0.0626131i
\(49\) 2.67962 1.54708i 0.382803 0.221011i
\(50\) 0 0
\(51\) −1.00721 1.00721i −0.141037 0.141037i
\(52\) −2.88931 5.00443i −0.400675 0.693990i
\(53\) 1.22993 4.59015i 0.168943 0.630506i −0.828561 0.559899i \(-0.810840\pi\)
0.997504 0.0706065i \(-0.0224934\pi\)
\(54\) −0.108234 + 0.403936i −0.0147288 + 0.0549687i
\(55\) 0 0
\(56\) −0.725515 2.70766i −0.0969510 0.361826i
\(57\) −0.711331 1.23206i −0.0942181 0.163191i
\(58\) −1.10595 0.296339i −0.145219 0.0389112i
\(59\) −1.37883 + 5.14585i −0.179508 + 0.669933i 0.816232 + 0.577725i \(0.196059\pi\)
−0.995740 + 0.0922082i \(0.970607\pi\)
\(60\) 0 0
\(61\) 9.38781 2.51546i 1.20199 0.322071i 0.398373 0.917223i \(-0.369575\pi\)
0.803613 + 0.595152i \(0.202908\pi\)
\(62\) −0.538068 + 2.00810i −0.0683348 + 0.255029i
\(63\) −4.14137 4.14137i −0.521764 0.521764i
\(64\) −4.94725 −0.618407
\(65\) 0 0
\(66\) 0.171186 + 0.171186i 0.0210715 + 0.0210715i
\(67\) −4.77781 + 1.28021i −0.583703 + 0.156403i −0.538574 0.842578i \(-0.681037\pi\)
−0.0451292 + 0.998981i \(0.514370\pi\)
\(68\) 13.9037i 1.68607i
\(69\) −0.0651488 0.243139i −0.00784300 0.0292705i
\(70\) 0 0
\(71\) 2.33213 4.03937i 0.276773 0.479385i −0.693808 0.720160i \(-0.744068\pi\)
0.970581 + 0.240775i \(0.0774016\pi\)
\(72\) 3.64020 2.10167i 0.429002 0.247684i
\(73\) 6.43715 6.43715i 0.753412 0.753412i −0.221702 0.975114i \(-0.571161\pi\)
0.975114 + 0.221702i \(0.0711613\pi\)
\(74\) 1.95511 + 1.07686i 0.227276 + 0.125182i
\(75\) 0 0
\(76\) −3.59413 + 13.4135i −0.412275 + 1.53863i
\(77\) −6.59044 + 1.76590i −0.751051 + 0.201243i
\(78\) 0.0562249 + 0.209834i 0.00636622 + 0.0237591i
\(79\) −8.42204 + 2.25668i −0.947554 + 0.253896i −0.699324 0.714805i \(-0.746515\pi\)
−0.248230 + 0.968701i \(0.579849\pi\)
\(80\) 0 0
\(81\) 4.33633 7.51074i 0.481814 0.834527i
\(82\) 2.46074i 0.271743i
\(83\) −3.51999 + 13.1368i −0.386369 + 1.44195i 0.449629 + 0.893215i \(0.351556\pi\)
−0.835998 + 0.548733i \(0.815111\pi\)
\(84\) 0.704502i 0.0768675i
\(85\) 0 0
\(86\) 2.30915 + 3.99956i 0.249002 + 0.431284i
\(87\) −0.516397 0.298142i −0.0553636 0.0319642i
\(88\) 4.89673i 0.521993i
\(89\) 14.7909 + 3.96321i 1.56783 + 0.420100i 0.935133 0.354297i \(-0.115280\pi\)
0.632701 + 0.774397i \(0.281946\pi\)
\(90\) 0 0
\(91\) −5.91378 1.58459i −0.619933 0.166110i
\(92\) −1.22850 + 2.12783i −0.128080 + 0.221841i
\(93\) −0.541342 + 0.937632i −0.0561346 + 0.0972279i
\(94\) 0.980175 + 0.262637i 0.101097 + 0.0270890i
\(95\) 0 0
\(96\) 0.741082 + 0.198572i 0.0756364 + 0.0202667i
\(97\) 4.35591i 0.442276i 0.975243 + 0.221138i \(0.0709770\pi\)
−0.975243 + 0.221138i \(0.929023\pi\)
\(98\) 0.983280 + 0.567697i 0.0993263 + 0.0573461i
\(99\) −5.11547 8.86025i −0.514124 0.890489i
\(100\) 0 0
\(101\) 0.191058i 0.0190110i −0.999955 0.00950548i \(-0.996974\pi\)
0.999955 0.00950548i \(-0.00302573\pi\)
\(102\) 0.135280 0.504873i 0.0133947 0.0499898i
\(103\) 2.11028i 0.207932i −0.994581 0.103966i \(-0.966847\pi\)
0.994581 0.103966i \(-0.0331532\pi\)
\(104\) 2.19698 3.80529i 0.215432 0.373139i
\(105\) 0 0
\(106\) 1.68434 0.451319i 0.163598 0.0438359i
\(107\) 2.54999 + 9.51668i 0.246517 + 0.920012i 0.972615 + 0.232422i \(0.0746650\pi\)
−0.726099 + 0.687591i \(0.758668\pi\)
\(108\) 2.05338 0.550200i 0.197586 0.0529431i
\(109\) 4.09076 15.2669i 0.391824 1.46231i −0.435300 0.900286i \(-0.643358\pi\)
0.827123 0.562020i \(-0.189976\pi\)
\(110\) 0 0
\(111\) 0.838351 + 0.805234i 0.0795728 + 0.0764295i
\(112\) −4.48619 + 4.48619i −0.423906 + 0.423906i
\(113\) 5.40479 3.12046i 0.508440 0.293548i −0.223752 0.974646i \(-0.571831\pi\)
0.732192 + 0.681098i \(0.238497\pi\)
\(114\) 0.261021 0.452102i 0.0244469 0.0423432i
\(115\) 0 0
\(116\) 1.50642 + 5.62203i 0.139867 + 0.521992i
\(117\) 9.18050i 0.848737i
\(118\) −1.88826 + 0.505957i −0.173828 + 0.0465771i
\(119\) 10.4163 + 10.4163i 0.954857 + 0.954857i
\(120\) 0 0
\(121\) −0.918652 −0.0835138
\(122\) 2.52179 + 2.52179i 0.228312 + 0.228312i
\(123\) 0.331682 1.23786i 0.0299068 0.111614i
\(124\) 10.2080 2.73523i 0.916707 0.245631i
\(125\) 0 0
\(126\) 0.556237 2.07590i 0.0495535 0.184936i
\(127\) 3.86342 + 1.03520i 0.342823 + 0.0918592i 0.426123 0.904665i \(-0.359879\pi\)
−0.0832996 + 0.996525i \(0.526546\pi\)
\(128\) −4.92244 8.52591i −0.435086 0.753591i
\(129\) 0.622499 + 2.32320i 0.0548080 + 0.204546i
\(130\) 0 0
\(131\) 0.918927 3.42948i 0.0802870 0.299635i −0.914093 0.405505i \(-0.867096\pi\)
0.994380 + 0.105869i \(0.0337625\pi\)
\(132\) 0.318519 1.18873i 0.0277235 0.103465i
\(133\) 7.35638 + 12.7416i 0.637879 + 1.10484i
\(134\) −1.28344 1.28344i −0.110872 0.110872i
\(135\) 0 0
\(136\) −9.15573 + 5.28606i −0.785097 + 0.453276i
\(137\) 1.62038 1.62038i 0.138438 0.138438i −0.634492 0.772930i \(-0.718790\pi\)
0.772930 + 0.634492i \(0.218790\pi\)
\(138\) 0.0653130 0.0653130i 0.00555981 0.00555981i
\(139\) 3.18045 + 5.50870i 0.269762 + 0.467241i 0.968800 0.247843i \(-0.0797216\pi\)
−0.699038 + 0.715084i \(0.746388\pi\)
\(140\) 0 0
\(141\) 0.457669 + 0.264235i 0.0385427 + 0.0222526i
\(142\) 1.71154 0.143629
\(143\) −9.26208 5.34746i −0.774534 0.447177i
\(144\) −8.23889 4.75672i −0.686574 0.396394i
\(145\) 0 0
\(146\) 3.22669 + 0.864588i 0.267042 + 0.0715538i
\(147\) 0.418112 + 0.418112i 0.0344853 + 0.0344853i
\(148\) −0.228577 11.3442i −0.0187889 0.932485i
\(149\) 18.0198i 1.47624i 0.674668 + 0.738121i \(0.264287\pi\)
−0.674668 + 0.738121i \(0.735713\pi\)
\(150\) 0 0
\(151\) −0.277285 0.160091i −0.0225651 0.0130280i 0.488675 0.872466i \(-0.337480\pi\)
−0.511240 + 0.859438i \(0.670814\pi\)
\(152\) −10.1994 + 2.73291i −0.827279 + 0.221669i
\(153\) −11.0444 + 19.1294i −0.892885 + 1.54652i
\(154\) −1.77035 1.77035i −0.142659 0.142659i
\(155\) 0 0
\(156\) 0.780862 0.780862i 0.0625190 0.0625190i
\(157\) 1.13930 + 0.305275i 0.0909263 + 0.0243636i 0.303995 0.952674i \(-0.401679\pi\)
−0.213069 + 0.977037i \(0.568346\pi\)
\(158\) −2.26236 2.26236i −0.179984 0.179984i
\(159\) 0.908129 0.0720194
\(160\) 0 0
\(161\) 0.673751 + 2.51447i 0.0530990 + 0.198168i
\(162\) 3.18241 0.250034
\(163\) −7.96311 + 4.59750i −0.623719 + 0.360104i −0.778315 0.627873i \(-0.783926\pi\)
0.154597 + 0.987978i \(0.450592\pi\)
\(164\) −10.8331 + 6.25449i −0.845922 + 0.488393i
\(165\) 0 0
\(166\) −4.82051 + 1.29165i −0.374144 + 0.100252i
\(167\) 18.8329 + 10.8732i 1.45733 + 0.841392i 0.998879 0.0473268i \(-0.0150702\pi\)
0.458454 + 0.888718i \(0.348404\pi\)
\(168\) 0.463922 0.267846i 0.0357924 0.0206647i
\(169\) 1.70158 + 2.94722i 0.130891 + 0.226709i
\(170\) 0 0
\(171\) −15.6000 + 15.6000i −1.19296 + 1.19296i
\(172\) 11.7384 20.3315i 0.895043 1.55026i
\(173\) −3.34723 0.896886i −0.254485 0.0681890i 0.129321 0.991603i \(-0.458720\pi\)
−0.383806 + 0.923414i \(0.625387\pi\)
\(174\) 0.218805i 0.0165876i
\(175\) 0 0
\(176\) −9.59798 + 5.54140i −0.723475 + 0.417699i
\(177\) −1.01807 −0.0765229
\(178\) 1.45429 + 5.42749i 0.109004 + 0.406807i
\(179\) 10.5340 10.5340i 0.787350 0.787350i −0.193709 0.981059i \(-0.562052\pi\)
0.981059 + 0.193709i \(0.0620517\pi\)
\(180\) 0 0
\(181\) −0.0475195 + 0.0823062i −0.00353210 + 0.00611777i −0.867786 0.496938i \(-0.834458\pi\)
0.864254 + 0.503056i \(0.167791\pi\)
\(182\) −0.581462 2.17005i −0.0431009 0.160855i
\(183\) 0.928657 + 1.60848i 0.0686483 + 0.118902i
\(184\) −1.86827 −0.137730
\(185\) 0 0
\(186\) −0.397288 −0.0291306
\(187\) 12.8663 + 22.2851i 0.940876 + 1.62964i
\(188\) −1.33510 4.98265i −0.0973719 0.363397i
\(189\) 1.12614 1.95053i 0.0819145 0.141880i
\(190\) 0 0
\(191\) 6.76075 6.76075i 0.489190 0.489190i −0.418860 0.908051i \(-0.637570\pi\)
0.908051 + 0.418860i \(0.137570\pi\)
\(192\) −0.244695 0.913214i −0.0176593 0.0659056i
\(193\) 0.988625 0.0711628 0.0355814 0.999367i \(-0.488672\pi\)
0.0355814 + 0.999367i \(0.488672\pi\)
\(194\) −1.38425 + 0.799195i −0.0993831 + 0.0573789i
\(195\) 0 0
\(196\) 5.77169i 0.412263i
\(197\) −7.91972 2.12208i −0.564257 0.151192i −0.0345956 0.999401i \(-0.511014\pi\)
−0.529661 + 0.848209i \(0.677681\pi\)
\(198\) 1.87711 3.25125i 0.133400 0.231056i
\(199\) −0.311060 + 0.311060i −0.0220505 + 0.0220505i −0.718046 0.695996i \(-0.754963\pi\)
0.695996 + 0.718046i \(0.254963\pi\)
\(200\) 0 0
\(201\) −0.472629 0.818617i −0.0333367 0.0577408i
\(202\) 0.0607155 0.0350541i 0.00427192 0.00246640i
\(203\) 5.34044 + 3.08330i 0.374825 + 0.216405i
\(204\) −2.56648 + 0.687687i −0.179690 + 0.0481477i
\(205\) 0 0
\(206\) 0.670616 0.387180i 0.0467240 0.0269761i
\(207\) −3.38048 + 1.95172i −0.234960 + 0.135654i
\(208\) −9.94489 −0.689554
\(209\) 6.65192 + 24.8253i 0.460123 + 1.71720i
\(210\) 0 0
\(211\) 1.21043 0.0833298 0.0416649 0.999132i \(-0.486734\pi\)
0.0416649 + 0.999132i \(0.486734\pi\)
\(212\) −6.26799 6.26799i −0.430487 0.430487i
\(213\) 0.860977 + 0.230698i 0.0589932 + 0.0158072i
\(214\) −2.55641 + 2.55641i −0.174753 + 0.174753i
\(215\) 0 0
\(216\) 1.14299 + 1.14299i 0.0777706 + 0.0777706i
\(217\) 5.59841 9.69673i 0.380045 0.658257i
\(218\) 5.60216 1.50109i 0.379426 0.101667i
\(219\) 1.50662 + 0.869849i 0.101808 + 0.0587789i
\(220\) 0 0
\(221\) 23.0905i 1.55324i
\(222\) −0.102077 + 0.414156i −0.00685094 + 0.0277963i
\(223\) −13.8676 13.8676i −0.928645 0.928645i 0.0689736 0.997618i \(-0.478028\pi\)
−0.997618 + 0.0689736i \(0.978028\pi\)
\(224\) −7.66406 2.05358i −0.512077 0.137211i
\(225\) 0 0
\(226\) 1.98328 + 1.14504i 0.131926 + 0.0761672i
\(227\) −17.3295 10.0052i −1.15020 0.664066i −0.201261 0.979538i \(-0.564504\pi\)
−0.948935 + 0.315471i \(0.897837\pi\)
\(228\) −2.65376 −0.175750
\(229\) 3.19465 + 1.84443i 0.211108 + 0.121883i 0.601826 0.798627i \(-0.294440\pi\)
−0.390718 + 0.920510i \(0.627773\pi\)
\(230\) 0 0
\(231\) −0.651937 1.12919i −0.0428943 0.0742951i
\(232\) −3.12944 + 3.12944i −0.205458 + 0.205458i
\(233\) −9.61670 + 9.61670i −0.630011 + 0.630011i −0.948071 0.318060i \(-0.896969\pi\)
0.318060 + 0.948071i \(0.396969\pi\)
\(234\) 2.91743 1.68438i 0.190719 0.110111i
\(235\) 0 0
\(236\) 7.02682 + 7.02682i 0.457407 + 0.457407i
\(237\) −0.833121 1.44301i −0.0541171 0.0937335i
\(238\) −1.39903 + 5.22125i −0.0906856 + 0.338443i
\(239\) −3.51998 + 13.1367i −0.227689 + 0.849745i 0.753621 + 0.657309i \(0.228305\pi\)
−0.981310 + 0.192436i \(0.938361\pi\)
\(240\) 0 0
\(241\) 6.11044 + 22.8045i 0.393608 + 1.46897i 0.824138 + 0.566389i \(0.191660\pi\)
−0.430530 + 0.902576i \(0.641673\pi\)
\(242\) −0.168548 0.291935i −0.0108347 0.0187663i
\(243\) 4.90329 + 1.31383i 0.314546 + 0.0842823i
\(244\) 4.69221 17.5115i 0.300388 1.12106i
\(245\) 0 0
\(246\) 0.454228 0.121710i 0.0289605 0.00775995i
\(247\) −5.96894 + 22.2764i −0.379795 + 1.41741i
\(248\) 5.68218 + 5.68218i 0.360819 + 0.360819i
\(249\) −2.59902 −0.164706
\(250\) 0 0
\(251\) 0.401654 + 0.401654i 0.0253522 + 0.0253522i 0.719669 0.694317i \(-0.244293\pi\)
−0.694317 + 0.719669i \(0.744293\pi\)
\(252\) −10.5527 + 2.82759i −0.664757 + 0.178121i
\(253\) 4.54736i 0.285890i
\(254\) 0.379864 + 1.41767i 0.0238348 + 0.0889527i
\(255\) 0 0
\(256\) −3.14098 + 5.44033i −0.196311 + 0.340021i
\(257\) −14.1687 + 8.18028i −0.883817 + 0.510272i −0.871915 0.489657i \(-0.837122\pi\)
−0.0119019 + 0.999929i \(0.503789\pi\)
\(258\) −0.624067 + 0.624067i −0.0388527 + 0.0388527i
\(259\) −8.66999 8.32751i −0.538727 0.517446i
\(260\) 0 0
\(261\) −2.39324 + 8.93171i −0.148138 + 0.552859i
\(262\) 1.25844 0.337198i 0.0777467 0.0208322i
\(263\) 4.59860 + 17.1622i 0.283562 + 1.05827i 0.949884 + 0.312603i \(0.101201\pi\)
−0.666322 + 0.745664i \(0.732132\pi\)
\(264\) 0.903888 0.242196i 0.0556305 0.0149061i
\(265\) 0 0
\(266\) −2.69941 + 4.67551i −0.165511 + 0.286674i
\(267\) 2.92628i 0.179085i
\(268\) −2.38804 + 8.91229i −0.145873 + 0.544405i
\(269\) 23.2463i 1.41735i −0.705533 0.708677i \(-0.749292\pi\)
0.705533 0.708677i \(-0.250708\pi\)
\(270\) 0 0
\(271\) −8.50840 14.7370i −0.516848 0.895208i −0.999809 0.0195654i \(-0.993772\pi\)
0.482960 0.875642i \(-0.339562\pi\)
\(272\) 20.7222 + 11.9640i 1.25647 + 0.725422i
\(273\) 1.17000i 0.0708117i
\(274\) 0.812229 + 0.217636i 0.0490686 + 0.0131479i
\(275\) 0 0
\(276\) −0.453539 0.121525i −0.0272998 0.00731497i
\(277\) −0.776108 + 1.34426i −0.0466318 + 0.0807686i −0.888399 0.459072i \(-0.848182\pi\)
0.841767 + 0.539840i \(0.181515\pi\)
\(278\) −1.16706 + 2.02140i −0.0699954 + 0.121236i
\(279\) 16.2175 + 4.34546i 0.970914 + 0.260156i
\(280\) 0 0
\(281\) 9.62089 + 2.57791i 0.573934 + 0.153785i 0.534100 0.845421i \(-0.320650\pi\)
0.0398338 + 0.999206i \(0.487317\pi\)
\(282\) 0.193921i 0.0115478i
\(283\) −21.5075 12.4174i −1.27849 0.738137i −0.301919 0.953333i \(-0.597627\pi\)
−0.976571 + 0.215197i \(0.930961\pi\)
\(284\) −4.35024 7.53484i −0.258139 0.447110i
\(285\) 0 0
\(286\) 3.92448i 0.232059i
\(287\) −3.43016 + 12.8015i −0.202476 + 0.755652i
\(288\) 11.8976i 0.701074i
\(289\) 19.2785 33.3914i 1.13403 1.96420i
\(290\) 0 0
\(291\) −0.804058 + 0.215447i −0.0471347 + 0.0126297i
\(292\) −4.39507 16.4026i −0.257202 0.959890i
\(293\) 6.40278 1.71562i 0.374054 0.100227i −0.0668940 0.997760i \(-0.521309\pi\)
0.440948 + 0.897533i \(0.354642\pi\)
\(294\) −0.0561575 + 0.209583i −0.00327517 + 0.0122231i
\(295\) 0 0
\(296\) 7.38336 4.46348i 0.429149 0.259435i
\(297\) 2.78204 2.78204i 0.161430 0.161430i
\(298\) −5.72645 + 3.30617i −0.331724 + 0.191521i
\(299\) −2.04023 + 3.53379i −0.117990 + 0.204364i
\(300\) 0 0
\(301\) −6.43771 24.0259i −0.371063 1.38483i
\(302\) 0.117490i 0.00676077i
\(303\) 0.0352674 0.00944986i 0.00202606 0.000542881i
\(304\) 16.8989 + 16.8989i 0.969217 + 0.969217i
\(305\) 0 0
\(306\) −8.10542 −0.463356
\(307\) −9.43347 9.43347i −0.538396 0.538396i 0.384661 0.923058i \(-0.374318\pi\)
−0.923058 + 0.384661i \(0.874318\pi\)
\(308\) −3.29403 + 12.2935i −0.187695 + 0.700486i
\(309\) 0.389536 0.104376i 0.0221599 0.00593773i
\(310\) 0 0
\(311\) −2.04001 + 7.61341i −0.115678 + 0.431717i −0.999337 0.0364152i \(-0.988406\pi\)
0.883659 + 0.468132i \(0.155073\pi\)
\(312\) 0.811083 + 0.217329i 0.0459185 + 0.0123038i
\(313\) 1.15066 + 1.99301i 0.0650393 + 0.112651i 0.896711 0.442616i \(-0.145949\pi\)
−0.831672 + 0.555267i \(0.812616\pi\)
\(314\) 0.112020 + 0.418065i 0.00632166 + 0.0235927i
\(315\) 0 0
\(316\) −4.20950 + 15.7101i −0.236803 + 0.883759i
\(317\) 2.10279 7.84772i 0.118104 0.440772i −0.881396 0.472378i \(-0.843396\pi\)
0.999500 + 0.0316064i \(0.0100623\pi\)
\(318\) 0.166618 + 0.288591i 0.00934347 + 0.0161834i
\(319\) 7.61706 + 7.61706i 0.426473 + 0.426473i
\(320\) 0 0
\(321\) −1.63056 + 0.941405i −0.0910091 + 0.0525441i
\(322\) −0.675448 + 0.675448i −0.0376413 + 0.0376413i
\(323\) 39.2366 39.2366i 2.18318 2.18318i
\(324\) −8.08877 14.0102i −0.449376 0.778342i
\(325\) 0 0
\(326\) −2.92204 1.68704i −0.161837 0.0934366i
\(327\) 3.02046 0.167032
\(328\) −8.23730 4.75581i −0.454829 0.262596i
\(329\) −4.73308 2.73265i −0.260943 0.150656i
\(330\) 0 0
\(331\) −23.6164 6.32799i −1.29807 0.347818i −0.457352 0.889285i \(-0.651202\pi\)
−0.840722 + 0.541468i \(0.817869\pi\)
\(332\) 17.9387 + 17.9387i 0.984512 + 0.984512i
\(333\) 8.69676 15.7895i 0.476579 0.865259i
\(334\) 7.97977i 0.436634i
\(335\) 0 0
\(336\) −1.05000 0.606217i −0.0572821 0.0330718i
\(337\) 18.7623 5.02735i 1.02205 0.273857i 0.291394 0.956603i \(-0.405881\pi\)
0.730656 + 0.682746i \(0.239214\pi\)
\(338\) −0.624391 + 1.08148i −0.0339624 + 0.0588245i
\(339\) 0.843331 + 0.843331i 0.0458035 + 0.0458035i
\(340\) 0 0
\(341\) 13.8304 13.8304i 0.748960 0.748960i
\(342\) −7.81964 2.09527i −0.422838 0.113299i
\(343\) −14.1063 14.1063i −0.761667 0.761667i
\(344\) 17.8513 0.962479
\(345\) 0 0
\(346\) −0.329110 1.22826i −0.0176931 0.0660315i
\(347\) −3.39588 −0.182300 −0.0911501 0.995837i \(-0.529054\pi\)
−0.0911501 + 0.995837i \(0.529054\pi\)
\(348\) −0.963262 + 0.556139i −0.0516363 + 0.0298122i
\(349\) 0.334598 0.193180i 0.0179106 0.0103407i −0.491018 0.871149i \(-0.663375\pi\)
0.508929 + 0.860809i \(0.330042\pi\)
\(350\) 0 0
\(351\) 3.41014 0.913745i 0.182020 0.0487721i
\(352\) −12.0033 6.93013i −0.639780 0.369377i
\(353\) −3.67390 + 2.12113i −0.195542 + 0.112896i −0.594574 0.804041i \(-0.702679\pi\)
0.399032 + 0.916937i \(0.369346\pi\)
\(354\) −0.186789 0.323529i −0.00992774 0.0171954i
\(355\) 0 0
\(356\) 20.1974 20.1974i 1.07046 1.07046i
\(357\) −1.40754 + 2.43793i −0.0744950 + 0.129029i
\(358\) 5.28028 + 1.41485i 0.279072 + 0.0747770i
\(359\) 18.8723i 0.996040i 0.867166 + 0.498020i \(0.165939\pi\)
−0.867166 + 0.498020i \(0.834061\pi\)
\(360\) 0 0
\(361\) 31.5415 18.2105i 1.66008 0.958447i
\(362\) −0.0348743 −0.00183296
\(363\) −0.0454372 0.169574i −0.00238484 0.00890033i
\(364\) −8.07545 + 8.07545i −0.423268 + 0.423268i
\(365\) 0 0
\(366\) −0.340768 + 0.590228i −0.0178122 + 0.0308517i
\(367\) −3.44218 12.8464i −0.179680 0.670576i −0.995707 0.0925616i \(-0.970494\pi\)
0.816027 0.578014i \(-0.196172\pi\)
\(368\) 2.11423 + 3.66195i 0.110212 + 0.190892i
\(369\) −19.8730 −1.03455
\(370\) 0 0
\(371\) −9.39162 −0.487588
\(372\) 1.00979 + 1.74901i 0.0523553 + 0.0906820i
\(373\) 5.10346 + 19.0464i 0.264247 + 0.986183i 0.962710 + 0.270536i \(0.0872011\pi\)
−0.698463 + 0.715646i \(0.746132\pi\)
\(374\) −4.72125 + 8.17745i −0.244130 + 0.422846i
\(375\) 0 0
\(376\) 2.77354 2.77354i 0.143034 0.143034i
\(377\) 2.50178 + 9.33677i 0.128848 + 0.480868i
\(378\) 0.826467 0.0425089
\(379\) −9.48304 + 5.47504i −0.487111 + 0.281234i −0.723375 0.690455i \(-0.757410\pi\)
0.236264 + 0.971689i \(0.424077\pi\)
\(380\) 0 0
\(381\) 0.764351i 0.0391589i
\(382\) 3.38889 + 0.908050i 0.173391 + 0.0464599i
\(383\) −8.51460 + 14.7477i −0.435076 + 0.753574i −0.997302 0.0734101i \(-0.976612\pi\)
0.562226 + 0.826984i \(0.309945\pi\)
\(384\) 1.33033 1.33033i 0.0678882 0.0678882i
\(385\) 0 0
\(386\) 0.181387 + 0.314171i 0.00923234 + 0.0159909i
\(387\) 32.3006 18.6488i 1.64193 0.947970i
\(388\) 7.03671 + 4.06265i 0.357235 + 0.206250i
\(389\) −12.4581 + 3.33813i −0.631649 + 0.169250i −0.560418 0.828210i \(-0.689359\pi\)
−0.0712310 + 0.997460i \(0.522693\pi\)
\(390\) 0 0
\(391\) 8.50248 4.90891i 0.429989 0.248254i
\(392\) 3.80072 2.19435i 0.191965 0.110831i
\(393\) 0.678499 0.0342258
\(394\) −0.778693 2.90612i −0.0392300 0.146408i
\(395\) 0 0
\(396\) −19.0843 −0.959021
\(397\) 21.7674 + 21.7674i 1.09248 + 1.09248i 0.995264 + 0.0972114i \(0.0309923\pi\)
0.0972114 + 0.995264i \(0.469008\pi\)
\(398\) −0.155922 0.0417791i −0.00781566 0.00209420i
\(399\) −1.98813 + 1.98813i −0.0995308 + 0.0995308i
\(400\) 0 0
\(401\) −0.609043 0.609043i −0.0304142 0.0304142i 0.691736 0.722150i \(-0.256846\pi\)
−0.722150 + 0.691736i \(0.756846\pi\)
\(402\) 0.173430 0.300389i 0.00864990 0.0149821i
\(403\) 16.9529 4.54253i 0.844486 0.226279i
\(404\) −0.308642 0.178195i −0.0153555 0.00886552i
\(405\) 0 0
\(406\) 2.26282i 0.112302i
\(407\) −10.8641 17.9711i −0.538514 0.890795i
\(408\) −1.42860 1.42860i −0.0707264 0.0707264i
\(409\) −27.7946 7.44753i −1.37435 0.368257i −0.505286 0.862952i \(-0.668613\pi\)
−0.869067 + 0.494695i \(0.835280\pi\)
\(410\) 0 0
\(411\) 0.379251 + 0.218960i 0.0187071 + 0.0108005i
\(412\) −3.40902 1.96820i −0.167951 0.0969663i
\(413\) 10.5286 0.518079
\(414\) −1.24046 0.716179i −0.0609652 0.0351983i
\(415\) 0 0
\(416\) −6.21859 10.7709i −0.304892 0.528088i
\(417\) −0.859544 + 0.859544i −0.0420920 + 0.0420920i
\(418\) −6.66868 + 6.66868i −0.326176 + 0.326176i
\(419\) −1.88268 + 1.08696i −0.0919747 + 0.0531016i −0.545282 0.838253i \(-0.683577\pi\)
0.453307 + 0.891354i \(0.350244\pi\)
\(420\) 0 0
\(421\) 16.3854 + 16.3854i 0.798575 + 0.798575i 0.982871 0.184296i \(-0.0590004\pi\)
−0.184296 + 0.982871i \(0.559000\pi\)
\(422\) 0.222083 + 0.384659i 0.0108108 + 0.0187249i
\(423\) 2.12107 7.91593i 0.103130 0.384886i
\(424\) 1.74450 6.51058i 0.0847206 0.316182i
\(425\) 0 0
\(426\) 0.0846541 + 0.315933i 0.00410150 + 0.0153070i
\(427\) −9.60390 16.6345i −0.464766 0.804997i
\(428\) 17.7519 + 4.75662i 0.858072 + 0.229920i
\(429\) 0.528979 1.97418i 0.0255394 0.0953142i
\(430\) 0 0
\(431\) −6.06172 + 1.62423i −0.291983 + 0.0782366i −0.401837 0.915711i \(-0.631628\pi\)
0.109854 + 0.993948i \(0.464962\pi\)
\(432\) 0.946883 3.53382i 0.0455570 0.170021i
\(433\) 12.5346 + 12.5346i 0.602376 + 0.602376i 0.940942 0.338567i \(-0.109942\pi\)
−0.338567 + 0.940942i \(0.609942\pi\)
\(434\) 4.10864 0.197221
\(435\) 0 0
\(436\) −20.8474 20.8474i −0.998412 0.998412i
\(437\) 9.47167 2.53793i 0.453091 0.121405i
\(438\) 0.638378i 0.0305029i
\(439\) 7.05673 + 26.3361i 0.336799 + 1.25695i 0.901905 + 0.431934i \(0.142169\pi\)
−0.565106 + 0.825018i \(0.691165\pi\)
\(440\) 0 0
\(441\) 4.58474 7.94100i 0.218321 0.378143i
\(442\) −7.33784 + 4.23650i −0.349025 + 0.201510i
\(443\) 14.0595 14.0595i 0.667985 0.667985i −0.289264 0.957249i \(-0.593411\pi\)
0.957249 + 0.289264i \(0.0934107\pi\)
\(444\) 2.08272 0.603285i 0.0988414 0.0286306i
\(445\) 0 0
\(446\) 1.86259 6.95128i 0.0881962 0.329153i
\(447\) −3.32628 + 0.891275i −0.157328 + 0.0421559i
\(448\) 2.53057 + 9.44420i 0.119558 + 0.446197i
\(449\) −12.8304 + 3.43788i −0.605502 + 0.162244i −0.548528 0.836132i \(-0.684812\pi\)
−0.0569734 + 0.998376i \(0.518145\pi\)
\(450\) 0 0
\(451\) −11.5756 + 20.0496i −0.545076 + 0.944099i
\(452\) 11.6415i 0.547570i
\(453\) 0.0158364 0.0591023i 0.000744059 0.00277687i
\(454\) 7.34274i 0.344612i
\(455\) 0 0
\(456\) −1.00894 1.74753i −0.0472479 0.0818357i
\(457\) −13.0505 7.53471i −0.610477 0.352459i 0.162675 0.986680i \(-0.447988\pi\)
−0.773152 + 0.634221i \(0.781321\pi\)
\(458\) 1.35362i 0.0632504i
\(459\) −8.20498 2.19852i −0.382976 0.102618i
\(460\) 0 0
\(461\) 12.5579 + 3.36489i 0.584882 + 0.156719i 0.539113 0.842233i \(-0.318760\pi\)
0.0457688 + 0.998952i \(0.485426\pi\)
\(462\) 0.239227 0.414353i 0.0111298 0.0192774i
\(463\) −13.9799 + 24.2140i −0.649703 + 1.12532i 0.333491 + 0.942753i \(0.391773\pi\)
−0.983194 + 0.182565i \(0.941560\pi\)
\(464\) 9.67539 + 2.59251i 0.449169 + 0.120354i
\(465\) 0 0
\(466\) −4.82046 1.29164i −0.223304 0.0598340i
\(467\) 1.30129i 0.0602165i −0.999547 0.0301083i \(-0.990415\pi\)
0.999547 0.0301083i \(-0.00958521\pi\)
\(468\) −14.8305 8.56242i −0.685542 0.395798i
\(469\) 4.88779 + 8.46590i 0.225697 + 0.390919i
\(470\) 0 0
\(471\) 0.225403i 0.0103860i
\(472\) −1.95570 + 7.29877i −0.0900184 + 0.335953i
\(473\) 43.4502i 1.99784i
\(474\) 0.305712 0.529508i 0.0140418 0.0243211i
\(475\) 0 0
\(476\) 26.5418 7.11186i 1.21654 0.325972i
\(477\) −3.64486 13.6028i −0.166887 0.622830i
\(478\) −4.82050 + 1.29165i −0.220484 + 0.0590786i
\(479\) −1.00395 + 3.74678i −0.0458715 + 0.171195i −0.985061 0.172203i \(-0.944911\pi\)
0.939190 + 0.343398i \(0.111578\pi\)
\(480\) 0 0
\(481\) −0.379608 18.8398i −0.0173087 0.859022i
\(482\) −6.12584 + 6.12584i −0.279024 + 0.279024i
\(483\) −0.430822 + 0.248735i −0.0196031 + 0.0113179i
\(484\) −0.856803 + 1.48403i −0.0389456 + 0.0674558i
\(485\) 0 0
\(486\) 0.482107 + 1.79925i 0.0218688 + 0.0816156i
\(487\) 17.7036i 0.802228i 0.916028 + 0.401114i \(0.131377\pi\)
−0.916028 + 0.401114i \(0.868623\pi\)
\(488\) 13.3155 3.56787i 0.602764 0.161510i
\(489\) −1.24252 1.24252i −0.0561885 0.0561885i
\(490\) 0 0
\(491\) 28.1151 1.26882 0.634408 0.772998i \(-0.281244\pi\)
0.634408 + 0.772998i \(0.281244\pi\)
\(492\) −1.69033 1.69033i −0.0762059 0.0762059i
\(493\) 6.01942 22.4648i 0.271101 1.01176i
\(494\) −8.17427 + 2.19029i −0.367778 + 0.0985458i
\(495\) 0 0
\(496\) 4.70727 17.5678i 0.211363 0.788817i
\(497\) −8.90398 2.38581i −0.399398 0.107018i
\(498\) −0.476852 0.825932i −0.0213682 0.0370109i
\(499\) −7.95975 29.7062i −0.356327 1.32983i −0.878806 0.477179i \(-0.841659\pi\)
0.522479 0.852652i \(-0.325007\pi\)
\(500\) 0 0
\(501\) −1.07559 + 4.01416i −0.0480539 + 0.179340i
\(502\) −0.0539470 + 0.201333i −0.00240777 + 0.00898593i
\(503\) 10.1676 + 17.6108i 0.453351 + 0.785227i 0.998592 0.0530522i \(-0.0168950\pi\)
−0.545240 + 0.838280i \(0.683562\pi\)
\(504\) −5.87404 5.87404i −0.261651 0.261651i
\(505\) 0 0
\(506\) −1.44509 + 0.834321i −0.0642419 + 0.0370901i
\(507\) −0.459867 + 0.459867i −0.0204234 + 0.0204234i
\(508\) 5.27562 5.27562i 0.234068 0.234068i
\(509\) −3.95875 6.85676i −0.175469 0.303921i 0.764855 0.644203i \(-0.222811\pi\)
−0.940323 + 0.340282i \(0.889477\pi\)
\(510\) 0 0
\(511\) −15.5811 8.99573i −0.689265 0.397948i
\(512\) −21.9949 −0.972046
\(513\) −7.34738 4.24201i −0.324395 0.187289i
\(514\) −5.19916 3.00173i −0.229325 0.132401i
\(515\) 0 0
\(516\) 4.33358 + 1.16118i 0.190775 + 0.0511180i
\(517\) −6.75079 6.75079i −0.296899 0.296899i
\(518\) 1.05565 4.28308i 0.0463825 0.188188i
\(519\) 0.662225i 0.0290685i
\(520\) 0 0
\(521\) −22.5608 13.0255i −0.988406 0.570657i −0.0836089 0.996499i \(-0.526645\pi\)
−0.904798 + 0.425842i \(0.859978\pi\)
\(522\) −3.27747 + 0.878195i −0.143451 + 0.0384376i
\(523\) 1.66547 2.88468i 0.0728259 0.126138i −0.827313 0.561741i \(-0.810132\pi\)
0.900139 + 0.435603i \(0.143465\pi\)
\(524\) −4.68306 4.68306i −0.204581 0.204581i
\(525\) 0 0
\(526\) −4.61019 + 4.61019i −0.201014 + 0.201014i
\(527\) −40.7897 10.9296i −1.77683 0.476099i
\(528\) −1.49761 1.49761i −0.0651752 0.0651752i
\(529\) −21.2650 −0.924567
\(530\) 0 0
\(531\) 4.08613 + 15.2496i 0.177323 + 0.661777i
\(532\) 27.4445 1.18987
\(533\) −17.9910 + 10.3871i −0.779278 + 0.449917i
\(534\) −0.929930 + 0.536896i −0.0402420 + 0.0232337i
\(535\) 0 0
\(536\) −6.77676 + 1.81583i −0.292711 + 0.0784318i
\(537\) 2.46550 + 1.42346i 0.106394 + 0.0614267i
\(538\) 7.38736 4.26509i 0.318492 0.183881i
\(539\) −5.34104 9.25096i −0.230055 0.398467i
\(540\) 0 0
\(541\) −6.36223 + 6.36223i −0.273534 + 0.273534i −0.830521 0.556987i \(-0.811957\pi\)
0.556987 + 0.830521i \(0.311957\pi\)
\(542\) 3.12214 5.40770i 0.134107 0.232281i
\(543\) −0.0175433 0.00470071i −0.000752854 0.000201727i
\(544\) 29.9245i 1.28300i
\(545\) 0 0
\(546\) 0.371810 0.214664i 0.0159120 0.00918679i
\(547\) −10.6102 −0.453658 −0.226829 0.973935i \(-0.572836\pi\)
−0.226829 + 0.973935i \(0.572836\pi\)
\(548\) −1.10634 4.12891i −0.0472604 0.176378i
\(549\) 20.3661 20.3661i 0.869203 0.869203i
\(550\) 0 0
\(551\) 11.6144 20.1167i 0.494789 0.857000i
\(552\) −0.0924058 0.344863i −0.00393305 0.0146784i
\(553\) 8.61591 + 14.9232i 0.366386 + 0.634598i
\(554\) −0.569582 −0.0241992
\(555\) 0 0
\(556\) 11.8653 0.503200
\(557\) 18.0586 + 31.2784i 0.765166 + 1.32531i 0.940159 + 0.340737i \(0.110677\pi\)
−0.174992 + 0.984570i \(0.555990\pi\)
\(558\) 1.59455 + 5.95096i 0.0675029 + 0.251924i
\(559\) 19.4945 33.7655i 0.824529 1.42813i
\(560\) 0 0
\(561\) −3.47722 + 3.47722i −0.146809 + 0.146809i
\(562\) 0.945957 + 3.53036i 0.0399028 + 0.148919i
\(563\) −28.0509 −1.18220 −0.591102 0.806597i \(-0.701307\pi\)
−0.591102 + 0.806597i \(0.701307\pi\)
\(564\) 0.853712 0.492891i 0.0359478 0.0207545i
\(565\) 0 0
\(566\) 9.11305i 0.383050i
\(567\) −16.5559 4.43614i −0.695283 0.186301i
\(568\) 3.30785 5.72936i 0.138794 0.240399i
\(569\) 1.69141 1.69141i 0.0709076 0.0709076i −0.670764 0.741671i \(-0.734033\pi\)
0.741671 + 0.670764i \(0.234033\pi\)
\(570\) 0 0
\(571\) 4.18372 + 7.24641i 0.175083 + 0.303253i 0.940190 0.340650i \(-0.110647\pi\)
−0.765107 + 0.643903i \(0.777314\pi\)
\(572\) −17.2770 + 9.97489i −0.722388 + 0.417071i
\(573\) 1.58236 + 0.913575i 0.0661040 + 0.0381651i
\(574\) −4.69750 + 1.25869i −0.196070 + 0.0525367i
\(575\) 0 0
\(576\) −12.6969 + 7.33054i −0.529037 + 0.305439i
\(577\) 17.7050 10.2220i 0.737067 0.425546i −0.0839349 0.996471i \(-0.526749\pi\)
0.821002 + 0.570925i \(0.193415\pi\)
\(578\) 14.1484 0.588496
\(579\) 0.0488982 + 0.182490i 0.00203214 + 0.00758404i
\(580\) 0 0
\(581\) 26.8783 1.11510
\(582\) −0.215989 0.215989i −0.00895305 0.00895305i
\(583\) −15.8468 4.24613i −0.656306 0.175857i
\(584\) 9.13033 9.13033i 0.377816 0.377816i
\(585\) 0 0
\(586\) 1.71994 + 1.71994i 0.0710501 + 0.0710501i
\(587\) 19.7052 34.1304i 0.813320 1.40871i −0.0972074 0.995264i \(-0.530991\pi\)
0.910528 0.413448i \(-0.135676\pi\)
\(588\) 1.06540 0.285472i 0.0439362 0.0117727i
\(589\) −36.5262 21.0884i −1.50504 0.868934i
\(590\) 0 0
\(591\) 1.56686i 0.0644521i
\(592\) −17.1042 9.42087i −0.702977 0.387195i
\(593\) 29.8968 + 29.8968i 1.22771 + 1.22771i 0.964827 + 0.262886i \(0.0846742\pi\)
0.262886 + 0.964827i \(0.415326\pi\)
\(594\) 1.39452 + 0.373661i 0.0572180 + 0.0153315i
\(595\) 0 0
\(596\) 29.1100 + 16.8066i 1.19239 + 0.688427i
\(597\) −0.0728039 0.0420333i −0.00297966 0.00172031i
\(598\) −1.49732 −0.0612299
\(599\) 20.3437 + 11.7455i 0.831222 + 0.479906i 0.854271 0.519828i \(-0.174004\pi\)
−0.0230489 + 0.999734i \(0.507337\pi\)
\(600\) 0 0
\(601\) −5.10765 8.84671i −0.208345 0.360865i 0.742848 0.669460i \(-0.233474\pi\)
−0.951193 + 0.308595i \(0.900141\pi\)
\(602\) 6.45393 6.45393i 0.263042 0.263042i
\(603\) −10.3651 + 10.3651i −0.422098 + 0.422098i
\(604\) −0.517233 + 0.298625i −0.0210459 + 0.0121509i
\(605\) 0 0
\(606\) 0.00947367 + 0.00947367i 0.000384842 + 0.000384842i
\(607\) −0.780718 1.35224i −0.0316884 0.0548859i 0.849746 0.527192i \(-0.176755\pi\)
−0.881435 + 0.472306i \(0.843422\pi\)
\(608\) −7.73555 + 28.8695i −0.313718 + 1.17081i
\(609\) −0.305005 + 1.13829i −0.0123594 + 0.0461260i
\(610\) 0 0
\(611\) −2.21726 8.27492i −0.0897007 0.334768i
\(612\) 20.6016 + 35.6831i 0.832772 + 1.44240i
\(613\) −1.48419 0.397688i −0.0599460 0.0160625i 0.228721 0.973492i \(-0.426546\pi\)
−0.288667 + 0.957429i \(0.593212\pi\)
\(614\) 1.26703 4.72862i 0.0511331 0.190831i
\(615\) 0 0
\(616\) −9.34776 + 2.50472i −0.376632 + 0.100918i
\(617\) 1.04297 3.89243i 0.0419886 0.156703i −0.941749 0.336318i \(-0.890818\pi\)
0.983737 + 0.179614i \(0.0574850\pi\)
\(618\) 0.104639 + 0.104639i 0.00420919 + 0.00420919i
\(619\) 24.1544 0.970846 0.485423 0.874279i \(-0.338666\pi\)
0.485423 + 0.874279i \(0.338666\pi\)
\(620\) 0 0
\(621\) −1.06144 1.06144i −0.0425941 0.0425941i
\(622\) −2.79372 + 0.748575i −0.112018 + 0.0300151i
\(623\) 30.2628i 1.21245i
\(624\) −0.491882 1.83573i −0.0196910 0.0734880i
\(625\) 0 0
\(626\) −0.422233 + 0.731329i −0.0168758 + 0.0292298i
\(627\) −4.25350 + 2.45576i −0.169868 + 0.0980735i
\(628\) 1.55575 1.55575i 0.0620813 0.0620813i
\(629\) −21.8738 + 39.7133i −0.872166 + 1.58347i
\(630\) 0 0
\(631\) −4.33716 + 16.1865i −0.172660 + 0.644374i 0.824279 + 0.566184i \(0.191581\pi\)
−0.996938 + 0.0781902i \(0.975086\pi\)
\(632\) −11.9457 + 3.20083i −0.475173 + 0.127322i
\(633\) 0.0598690 + 0.223434i 0.00237958 + 0.00888071i
\(634\) 2.87970 0.771614i 0.114368 0.0306447i
\(635\) 0 0
\(636\) 0.846989 1.46703i 0.0335853 0.0581715i
\(637\) 9.58532i 0.379784i
\(638\) −1.02306 + 3.81812i −0.0405035 + 0.151161i
\(639\) 13.8224i 0.546808i
\(640\) 0 0
\(641\) −13.1598 22.7934i −0.519779 0.900283i −0.999736 0.0229913i \(-0.992681\pi\)
0.479957 0.877292i \(-0.340652\pi\)
\(642\) −0.598330 0.345446i −0.0236142 0.0136337i
\(643\) 34.2404i 1.35031i −0.737675 0.675155i \(-0.764077\pi\)
0.737675 0.675155i \(-0.235923\pi\)
\(644\) 4.69037 + 1.25678i 0.184826 + 0.0495241i
\(645\) 0 0
\(646\) 19.6677 + 5.26995i 0.773817 + 0.207344i
\(647\) −16.4706 + 28.5278i −0.647524 + 1.12155i 0.336188 + 0.941795i \(0.390862\pi\)
−0.983712 + 0.179750i \(0.942471\pi\)
\(648\) 6.15056 10.6531i 0.241617 0.418493i
\(649\) 17.7652 + 4.76018i 0.697346 + 0.186853i
\(650\) 0 0
\(651\) 2.06682 + 0.553803i 0.0810051 + 0.0217053i
\(652\) 17.1519i 0.671720i
\(653\) 18.9744 + 10.9549i 0.742526 + 0.428698i 0.822987 0.568060i \(-0.192306\pi\)
−0.0804608 + 0.996758i \(0.525639\pi\)
\(654\) 0.554174 + 0.959858i 0.0216699 + 0.0375334i
\(655\) 0 0
\(656\) 21.5277i 0.840515i
\(657\) 6.98244 26.0588i 0.272411 1.01665i
\(658\) 2.00548i 0.0781816i
\(659\) −4.76225 + 8.24846i −0.185511 + 0.321314i −0.943749 0.330664i \(-0.892727\pi\)
0.758238 + 0.651978i \(0.226061\pi\)
\(660\) 0 0
\(661\) 4.49979 1.20572i 0.175022 0.0468969i −0.170244 0.985402i \(-0.554456\pi\)
0.345265 + 0.938505i \(0.387789\pi\)
\(662\) −2.32204 8.66598i −0.0902487 0.336813i
\(663\) −4.26228 + 1.14207i −0.165533 + 0.0443545i
\(664\) −4.99268 + 18.6329i −0.193754 + 0.723098i
\(665\) 0 0
\(666\) 6.61331 0.133253i 0.256260 0.00516346i
\(667\) 2.90616 2.90616i 0.112527 0.112527i
\(668\) 35.1299 20.2823i 1.35922 0.784745i
\(669\) 1.87392 3.24573i 0.0724501 0.125487i
\(670\) 0 0
\(671\) −8.68421 32.4099i −0.335250 1.25117i
\(672\) 1.51628i 0.0584919i
\(673\) 14.3592 3.84754i 0.553507 0.148312i 0.0287852 0.999586i \(-0.490836\pi\)
0.524722 + 0.851274i \(0.324169\pi\)
\(674\) 5.04002 + 5.04002i 0.194134 + 0.194134i
\(675\) 0 0
\(676\) 6.34808 0.244157
\(677\) −7.15203 7.15203i −0.274875 0.274875i 0.556184 0.831059i \(-0.312265\pi\)
−0.831059 + 0.556184i \(0.812265\pi\)
\(678\) −0.113270 + 0.422728i −0.00435009 + 0.0162348i
\(679\) 8.31534 2.22809i 0.319113 0.0855062i
\(680\) 0 0
\(681\) 0.989727 3.69371i 0.0379264 0.141543i
\(682\) 6.93264 + 1.85759i 0.265464 + 0.0711310i
\(683\) 8.68491 + 15.0427i 0.332319 + 0.575593i 0.982966 0.183787i \(-0.0588357\pi\)
−0.650647 + 0.759380i \(0.725502\pi\)
\(684\) 10.6511 + 39.7505i 0.407256 + 1.51990i
\(685\) 0 0
\(686\) 1.89464 7.07091i 0.0723378 0.269969i
\(687\) −0.182454 + 0.680927i −0.00696105 + 0.0259790i
\(688\) −20.2015 34.9900i −0.770175 1.33398i
\(689\) −10.4096 10.4096i −0.396573 0.396573i
\(690\) 0 0
\(691\) 0.688714 0.397629i 0.0261999 0.0151265i −0.486843 0.873490i \(-0.661852\pi\)
0.513043 + 0.858363i \(0.328518\pi\)
\(692\) −4.57074 + 4.57074i −0.173753 + 0.173753i
\(693\) −14.2974 + 14.2974i −0.543114 + 0.543114i
\(694\) −0.623054 1.07916i −0.0236508 0.0409644i
\(695\) 0 0
\(696\) −0.732448 0.422879i −0.0277634 0.0160292i
\(697\) 49.9840 1.89328
\(698\) 0.122780 + 0.0708869i 0.00464728 + 0.00268311i
\(699\) −2.25080 1.29950i −0.0851329 0.0491515i
\(700\) 0 0
\(701\) −7.03789 1.88580i −0.265817 0.0712255i 0.123449 0.992351i \(-0.460605\pi\)
−0.389266 + 0.921125i \(0.627271\pi\)
\(702\) 0.916047 + 0.916047i 0.0345740 + 0.0345740i
\(703\) −31.3686 + 32.6587i −1.18309 + 1.23175i
\(704\) 17.0796i 0.643712i
\(705\) 0 0
\(706\) −1.34813 0.778343i −0.0507375 0.0292933i
\(707\) −0.364725 + 0.0977278i −0.0137169 + 0.00367543i
\(708\) −0.949529 + 1.64463i −0.0356855 + 0.0618091i
\(709\) −0.492179 0.492179i −0.0184842 0.0184842i 0.697804 0.716288i \(-0.254161\pi\)
−0.716288 + 0.697804i \(0.754161\pi\)
\(710\) 0 0
\(711\) −18.2709 + 18.2709i −0.685213 + 0.685213i
\(712\) 20.9791 + 5.62134i 0.786227 + 0.210669i
\(713\) −5.27677 5.27677i −0.197617 0.197617i
\(714\) −1.03299 −0.0386586
\(715\) 0 0
\(716\) −7.19227 26.8419i −0.268788 1.00313i
\(717\) −2.59901 −0.0970620
\(718\) −5.99734 + 3.46257i −0.223819 + 0.129222i
\(719\) −10.8743 + 6.27829i −0.405543 + 0.234141i −0.688873 0.724882i \(-0.741894\pi\)
0.283330 + 0.959023i \(0.408561\pi\)
\(720\) 0 0
\(721\) −4.02847 + 1.07943i −0.150028 + 0.0401999i
\(722\) 11.5741 + 6.68230i 0.430742 + 0.248689i
\(723\) −3.90725 + 2.25585i −0.145312 + 0.0838961i
\(724\) 0.0886405 + 0.153530i 0.00329430 + 0.00570589i
\(725\) 0 0
\(726\) 0.0455517 0.0455517i 0.00169058 0.00169058i
\(727\) −0.227219 + 0.393556i −0.00842710 + 0.0145962i −0.870208 0.492684i \(-0.836016\pi\)
0.861781 + 0.507280i \(0.169349\pi\)
\(728\) −8.38799 2.24756i −0.310880 0.0832999i
\(729\) 25.0479i 0.927699i
\(730\) 0 0
\(731\) −81.2415 + 46.9048i −3.00483 + 1.73484i
\(732\) 3.46454 0.128053
\(733\) −0.0722495 0.269639i −0.00266859 0.00995933i 0.964579 0.263795i \(-0.0849743\pi\)
−0.967247 + 0.253836i \(0.918308\pi\)
\(734\) 3.45085 3.45085i 0.127373 0.127373i
\(735\) 0 0
\(736\) −2.64408 + 4.57967i −0.0974619 + 0.168809i
\(737\) 4.41972 + 16.4946i 0.162803 + 0.607588i
\(738\) −3.64617 6.31536i −0.134218 0.232472i
\(739\) 20.7632 0.763786 0.381893 0.924207i \(-0.375272\pi\)
0.381893 + 0.924207i \(0.375272\pi\)
\(740\) 0 0
\(741\) −4.40723 −0.161904
\(742\) −1.72312 2.98452i −0.0632576 0.109565i
\(743\) −4.93760 18.4274i −0.181143 0.676035i −0.995423 0.0955632i \(-0.969535\pi\)
0.814280 0.580472i \(-0.197132\pi\)
\(744\) −0.767829 + 1.32992i −0.0281500 + 0.0487572i
\(745\) 0 0
\(746\) −5.11631 + 5.11631i −0.187322 + 0.187322i
\(747\) 10.4314 + 38.9306i 0.381665 + 1.42439i
\(748\) 48.0002 1.75506
\(749\) 16.8628 9.73574i 0.616153 0.355736i
\(750\) 0 0
\(751\) 32.9736i 1.20322i 0.798788 + 0.601612i \(0.205475\pi\)
−0.798788 + 0.601612i \(0.794525\pi\)
\(752\) −8.57503 2.29767i −0.312699 0.0837875i
\(753\) −0.0542752 + 0.0940075i −0.00197790 + 0.00342582i
\(754\) −2.50808 + 2.50808i −0.0913390 + 0.0913390i
\(755\) 0 0
\(756\) −2.10064 3.63842i −0.0763996 0.132328i
\(757\) 44.1108 25.4674i 1.60323 0.925628i 0.612399 0.790549i \(-0.290205\pi\)
0.990835 0.135079i \(-0.0431287\pi\)
\(758\) −3.47978 2.00905i −0.126391 0.0729720i
\(759\) −0.839398 + 0.224916i −0.0304682 + 0.00816393i
\(760\) 0 0
\(761\) 3.27486 1.89074i 0.118714 0.0685394i −0.439467 0.898259i \(-0.644833\pi\)
0.558181 + 0.829719i \(0.311499\pi\)
\(762\) −0.242900 + 0.140238i −0.00879934 + 0.00508030i
\(763\) −31.2367 −1.13084
\(764\) −4.61600 17.2272i −0.167001 0.623257i
\(765\) 0 0
\(766\) −6.24883 −0.225779
\(767\) 11.6698 + 11.6698i 0.421371 + 0.421371i
\(768\) −1.15959 0.310710i −0.0418430 0.0112118i
\(769\) 1.69910 1.69910i 0.0612712 0.0612712i −0.675807 0.737078i \(-0.736205\pi\)
0.737078 + 0.675807i \(0.236205\pi\)
\(770\) 0 0
\(771\) −2.21079 2.21079i −0.0796197 0.0796197i
\(772\) 0.922066 1.59706i 0.0331859 0.0574796i
\(773\) −29.0946 + 7.79586i −1.04646 + 0.280398i −0.740787 0.671740i \(-0.765547\pi\)
−0.305671 + 0.952137i \(0.598881\pi\)
\(774\) 11.8526 + 6.84312i 0.426034 + 0.245971i
\(775\) 0 0
\(776\) 6.17834i 0.221789i
\(777\) 1.10835 2.01228i 0.0397619 0.0721901i
\(778\) −3.34654 3.34654i −0.119979 0.119979i
\(779\) 48.2217 + 12.9210i 1.72772 + 0.462941i
\(780\) 0 0
\(781\) −13.9453 8.05131i −0.499001 0.288099i
\(782\) 3.11997 + 1.80131i 0.111570 + 0.0644148i
\(783\) −3.55593 −0.127079
\(784\) −8.60219 4.96648i −0.307221 0.177374i
\(785\) 0 0
\(786\) 0.124487 + 0.215618i 0.00444030 + 0.00769082i
\(787\) 15.3527 15.3527i 0.547265 0.547265i −0.378384 0.925649i \(-0.623520\pi\)
0.925649 + 0.378384i \(0.123520\pi\)
\(788\) −10.8146 + 10.8146i −0.385255 + 0.385255i
\(789\) −2.94052 + 1.69771i −0.104685 + 0.0604402i
\(790\) 0 0
\(791\) −8.72149 8.72149i −0.310101 0.310101i
\(792\) −7.25568 12.5672i −0.257819 0.446556i
\(793\) 7.79257 29.0823i 0.276722 1.03274i
\(794\) −2.92363 + 10.9111i −0.103756 + 0.387221i
\(795\) 0 0
\(796\) 0.212381 + 0.792617i 0.00752765 + 0.0280936i
\(797\) 18.7203 + 32.4245i 0.663106 + 1.14853i 0.979795 + 0.200004i \(0.0640955\pi\)
−0.316689 + 0.948529i \(0.602571\pi\)
\(798\) −0.996568 0.267030i −0.0352781 0.00945274i
\(799\) −5.33484 + 19.9099i −0.188733 + 0.704362i
\(800\) 0 0
\(801\) 43.8326 11.7449i 1.54875 0.414986i
\(802\) 0.0818019 0.305289i 0.00288853 0.0107801i
\(803\) −22.2232 22.2232i −0.784241 0.784241i
\(804\) −1.76324 −0.0621845
\(805\) 0 0
\(806\) 4.55397 + 4.55397i 0.160407 + 0.160407i
\(807\) 4.29104 1.14978i 0.151052 0.0404742i
\(808\) 0.270993i 0.00953349i
\(809\) −11.2061 41.8217i −0.393985 1.47037i −0.823502 0.567313i \(-0.807983\pi\)
0.429517 0.903059i \(-0.358684\pi\)
\(810\) 0 0
\(811\) 6.94395 12.0273i 0.243835 0.422335i −0.717968 0.696076i \(-0.754928\pi\)
0.961803 + 0.273741i \(0.0882611\pi\)
\(812\) 9.96178 5.75144i 0.349590 0.201836i
\(813\) 2.29947 2.29947i 0.0806459 0.0806459i
\(814\) 3.71769 6.74969i 0.130305 0.236577i
\(815\) 0 0
\(816\) −1.18349 + 4.41686i −0.0414306 + 0.154621i
\(817\) −90.5021 + 24.2500i −3.16627 + 0.848399i
\(818\) −2.73285 10.1991i −0.0955520 0.356605i
\(819\) −17.5254 + 4.69591i −0.612386 + 0.164088i
\(820\) 0 0
\(821\) −5.62408 + 9.74120i −0.196282 + 0.339970i −0.947320 0.320289i \(-0.896220\pi\)
0.751038 + 0.660259i \(0.229553\pi\)
\(822\) 0.160694i 0.00560485i
\(823\) −8.48178 + 31.6544i −0.295656 + 1.10340i 0.645038 + 0.764150i \(0.276841\pi\)
−0.940695 + 0.339254i \(0.889825\pi\)
\(824\) 2.99317i 0.104272i
\(825\) 0 0
\(826\) 1.93172 + 3.34584i 0.0672132 + 0.116417i
\(827\) −28.5291 16.4713i −0.992054 0.572763i −0.0861665 0.996281i \(-0.527462\pi\)
−0.905888 + 0.423518i \(0.860795\pi\)
\(828\) 7.28128i 0.253042i
\(829\) −4.10251 1.09926i −0.142486 0.0381790i 0.186871 0.982384i \(-0.440165\pi\)
−0.329357 + 0.944205i \(0.606832\pi\)
\(830\) 0 0
\(831\) −0.286524 0.0767738i −0.00993940 0.00266325i
\(832\) −7.66299 + 13.2727i −0.265666 + 0.460148i
\(833\) −11.5314 + 19.9730i −0.399539 + 0.692023i
\(834\) −0.430854 0.115447i −0.0149193 0.00399761i
\(835\) 0 0
\(836\) 46.3079 + 12.4082i 1.60159 + 0.429145i
\(837\) 6.45657i 0.223172i
\(838\) −0.690843 0.398859i −0.0238648 0.0137783i
\(839\) 1.39115 + 2.40954i 0.0480278 + 0.0831865i 0.889040 0.457830i \(-0.151373\pi\)
−0.841012 + 0.541016i \(0.818040\pi\)
\(840\) 0 0
\(841\) 19.2641i 0.664278i
\(842\) −2.20076 + 8.21333i −0.0758431 + 0.283050i
\(843\) 1.90343i 0.0655575i
\(844\) 1.12894 1.95538i 0.0388598 0.0673071i
\(845\) 0 0
\(846\) 2.90473 0.778320i 0.0998667 0.0267592i
\(847\) 0.469899 + 1.75369i 0.0161459 + 0.0602574i
\(848\) −14.7354 + 3.94835i −0.506017 + 0.135587i
\(849\) 1.22835 4.58425i 0.0421567 0.157331i
\(850\) 0 0
\(851\) −6.85658 + 4.14502i −0.235040 + 0.142089i
\(852\) 1.17569 1.17569i 0.0402785 0.0402785i
\(853\) 18.5940 10.7353i 0.636648 0.367569i −0.146674 0.989185i \(-0.546857\pi\)
0.783322 + 0.621616i \(0.213524\pi\)
\(854\) 3.52413 6.10397i 0.120593 0.208874i
\(855\) 0 0
\(856\) 3.61685 + 13.4983i 0.123621 + 0.461362i
\(857\) 19.7692i 0.675302i −0.941271 0.337651i \(-0.890368\pi\)
0.941271 0.337651i \(-0.109632\pi\)
\(858\) 0.724420 0.194108i 0.0247313 0.00662673i
\(859\) −14.4663 14.4663i −0.493582 0.493582i 0.415851 0.909433i \(-0.363484\pi\)
−0.909433 + 0.415851i \(0.863484\pi\)
\(860\) 0 0
\(861\) −2.53270 −0.0863141
\(862\) −1.62833 1.62833i −0.0554610 0.0554610i
\(863\) −13.9291 + 51.9841i −0.474152 + 1.76956i 0.150450 + 0.988618i \(0.451928\pi\)
−0.624603 + 0.780943i \(0.714739\pi\)
\(864\) 4.41943 1.18418i 0.150352 0.0402867i
\(865\) 0 0
\(866\) −1.68355 + 6.28310i −0.0572094 + 0.213509i
\(867\) 7.11724 + 1.90706i 0.241714 + 0.0647672i
\(868\) −10.4430 18.0878i −0.354458 0.613939i
\(869\) 7.79082 + 29.0758i 0.264286 + 0.986327i
\(870\) 0 0
\(871\) −3.96594 + 14.8011i −0.134381 + 0.501515i
\(872\) 5.80225 21.6543i 0.196489 0.733307i
\(873\) 6.45432 + 11.1792i 0.218446 + 0.378359i
\(874\) 2.54432 + 2.54432i 0.0860629 + 0.0860629i
\(875\) 0 0
\(876\) 2.81038 1.62257i 0.0949538 0.0548216i
\(877\) −12.5701 + 12.5701i −0.424462 + 0.424462i −0.886737 0.462275i \(-0.847033\pi\)
0.462275 + 0.886737i \(0.347033\pi\)
\(878\) −7.07451 + 7.07451i −0.238753 + 0.238753i
\(879\) 0.633372 + 1.09703i 0.0213631 + 0.0370020i
\(880\) 0 0
\(881\) 45.1002 + 26.0386i 1.51946 + 0.877263i 0.999737 + 0.0229301i \(0.00729951\pi\)
0.519727 + 0.854333i \(0.326034\pi\)
\(882\) 3.36472 0.113296
\(883\) 27.5003 + 15.8773i 0.925459 + 0.534314i 0.885372 0.464882i \(-0.153903\pi\)
0.0400864 + 0.999196i \(0.487237\pi\)
\(884\) 37.3013 + 21.5359i 1.25458 + 0.724332i
\(885\) 0 0
\(886\) 7.04744 + 1.88835i 0.236763 + 0.0634405i
\(887\) 8.37990 + 8.37990i 0.281370 + 0.281370i 0.833655 0.552285i \(-0.186244\pi\)
−0.552285 + 0.833655i \(0.686244\pi\)
\(888\) 1.18910 + 1.14213i 0.0399036 + 0.0383273i
\(889\) 7.90470i 0.265115i
\(890\) 0 0
\(891\) −25.9296 14.9705i −0.868675 0.501530i
\(892\) −35.3363 + 9.46833i −1.18315 + 0.317023i
\(893\) −10.2935 + 17.8289i −0.344459 + 0.596620i
\(894\) −0.893520 0.893520i −0.0298838 0.0298838i
\(895\) 0 0
\(896\) −13.7579 + 13.7579i −0.459620 + 0.459620i
\(897\) −0.753214 0.201823i −0.0251491 0.00673868i
\(898\) −3.44654 3.44654i −0.115013 0.115013i
\(899\) −17.6777 −0.589585
\(900\) 0 0
\(901\) 9.16745 + 34.2134i 0.305412 + 1.13981i
\(902\) −8.49531 −0.282863
\(903\) 4.11652 2.37668i 0.136989 0.0790908i
\(904\) 7.66605 4.42600i 0.254969 0.147207i
\(905\) 0 0
\(906\) 0.0216874 0.00581113i 0.000720517 0.000193062i
\(907\) −42.9187 24.7791i −1.42509 0.822777i −0.428364 0.903606i \(-0.640910\pi\)
−0.996728 + 0.0808295i \(0.974243\pi\)
\(908\) −32.3255 + 18.6631i −1.07276 + 0.619358i
\(909\) −0.283098 0.490340i −0.00938977 0.0162636i
\(910\) 0 0
\(911\) −31.0017 + 31.0017i −1.02713 + 1.02713i −0.0275118 + 0.999621i \(0.508758\pi\)
−0.999621 + 0.0275118i \(0.991242\pi\)
\(912\) −2.28353 + 3.95520i −0.0756154 + 0.130970i
\(913\) 45.3526 + 12.1522i 1.50095 + 0.402179i
\(914\) 5.52969i 0.182906i
\(915\) 0 0
\(916\) 5.95913 3.44051i 0.196895 0.113678i
\(917\) −7.01685 −0.231717
\(918\) −0.806741 3.01080i −0.0266264 0.0993712i
\(919\) −25.3860 + 25.3860i −0.837407 + 0.837407i −0.988517 0.151110i \(-0.951715\pi\)
0.151110 + 0.988517i \(0.451715\pi\)
\(920\) 0 0
\(921\) 1.27474 2.20791i 0.0420041 0.0727532i
\(922\) 1.23474 + 4.60811i 0.0406639 + 0.151760i
\(923\) −7.22466 12.5135i −0.237802 0.411886i
\(924\) −2.43218 −0.0800129
\(925\) 0 0
\(926\) −10.2598 −0.337158
\(927\) −3.12688 5.41591i −0.102700 0.177882i
\(928\) 3.24222 + 12.1001i 0.106431 + 0.397207i
\(929\) −9.74401 + 16.8771i −0.319691 + 0.553720i −0.980423 0.196901i \(-0.936912\pi\)
0.660733 + 0.750621i \(0.270246\pi\)
\(930\) 0 0
\(931\) −16.2879 + 16.2879i −0.533814 + 0.533814i
\(932\) 6.56595 + 24.5044i 0.215075 + 0.802670i
\(933\) −1.50626 −0.0493127
\(934\) 0.413532 0.238753i 0.0135312 0.00781223i
\(935\) 0 0
\(936\) 13.0214i 0.425619i
\(937\) −41.8686 11.2187i −1.36779 0.366498i −0.501118 0.865379i \(-0.667078\pi\)
−0.866670 + 0.498881i \(0.833744\pi\)
\(938\) −1.79356 + 3.10654i −0.0585619 + 0.101432i
\(939\) −0.310977 + 0.310977i −0.0101483 + 0.0101483i
\(940\) 0 0
\(941\) −1.14543 1.98394i −0.0373398 0.0646745i 0.846752 0.531989i \(-0.178555\pi\)
−0.884091 + 0.467314i \(0.845222\pi\)
\(942\) −0.0716300 + 0.0413556i −0.00233383 + 0.00134744i
\(943\) 7.64958 + 4.41649i 0.249105 + 0.143821i
\(944\) 16.5194 4.42635i 0.537659 0.144065i
\(945\) 0 0
\(946\) 13.8078 7.97197i 0.448932 0.259191i
\(947\) 52.1263 30.0952i 1.69388 0.977961i 0.742545 0.669796i \(-0.233618\pi\)
0.951333 0.308165i \(-0.0997149\pi\)
\(948\) −3.10813 −0.100947
\(949\) −7.29910 27.2406i −0.236939 0.884268i
\(950\) 0 0
\(951\) 1.55262 0.0503471
\(952\) 14.7742 + 14.7742i 0.478835 + 0.478835i
\(953\) −16.8063 4.50324i −0.544410 0.145874i −0.0238757 0.999715i \(-0.507601\pi\)
−0.520534 + 0.853841i \(0.674267\pi\)
\(954\) 3.65405 3.65405i 0.118304 0.118304i
\(955\) 0 0
\(956\) 17.9386 + 17.9386i 0.580177 + 0.580177i
\(957\) −1.02929 + 1.78278i −0.0332722 + 0.0576291i
\(958\) −1.37487 + 0.368395i −0.0444201 + 0.0119023i
\(959\) −3.92210 2.26443i −0.126651 0.0731221i
\(960\) 0 0
\(961\) 1.09774i 0.0354111i
\(962\) 5.91738 3.57725i 0.190784 0.115335i
\(963\) 20.6457 + 20.6457i 0.665297 + 0.665297i
\(964\) 42.5383 + 11.3981i 1.37007 + 0.367108i
\(965\) 0 0
\(966\) −0.158089 0.0912729i −0.00508644 0.00293666i
\(967\) −41.2531 23.8175i −1.32661 0.765918i −0.341836 0.939760i \(-0.611049\pi\)
−0.984774 + 0.173841i \(0.944382\pi\)
\(968\) −1.30300 −0.0418799
\(969\) 9.18337 + 5.30202i 0.295012 + 0.170325i
\(970\) 0 0
\(971\) 17.9256 + 31.0481i 0.575261 + 0.996382i 0.996013 + 0.0892060i \(0.0284329\pi\)
−0.420752 + 0.907176i \(0.638234\pi\)
\(972\) 6.69559 6.69559i 0.214761 0.214761i
\(973\) 8.88915 8.88915i 0.284973 0.284973i
\(974\) −5.62597 + 3.24815i −0.180268 + 0.104078i
\(975\) 0 0
\(976\) −22.0618 22.0618i −0.706182 0.706182i
\(977\) 9.90840 + 17.1619i 0.316998 + 0.549056i 0.979860 0.199685i \(-0.0639919\pi\)
−0.662862 + 0.748741i \(0.730659\pi\)
\(978\) 0.166885 0.622823i 0.00533639 0.0199157i
\(979\) 13.6824 51.0633i 0.437290 1.63199i
\(980\) 0 0
\(981\) −12.1229 45.2432i −0.387054 1.44450i
\(982\) 5.15838 + 8.93458i 0.164611 + 0.285114i
\(983\) −48.9652 13.1202i −1.56175 0.418469i −0.628532 0.777784i \(-0.716344\pi\)
−0.933216 + 0.359315i \(0.883010\pi\)
\(984\) 0.470452 1.75575i 0.0149975 0.0559713i
\(985\) 0 0
\(986\) 8.24339 2.20881i 0.262523 0.0703429i
\(987\) 0.270318 1.00884i 0.00860430 0.0321117i
\(988\) 30.4191 + 30.4191i 0.967761 + 0.967761i
\(989\) −16.5777 −0.527139
\(990\) 0 0
\(991\) 24.1350 + 24.1350i 0.766673 + 0.766673i 0.977519 0.210846i \(-0.0676220\pi\)
−0.210846 + 0.977519i \(0.567622\pi\)
\(992\) 21.9705 5.88697i 0.697563 0.186911i
\(993\) 4.67234i 0.148272i
\(994\) −0.875468 3.26729i −0.0277682 0.103632i
\(995\) 0 0
\(996\) −2.42404 + 4.19856i −0.0768086 + 0.133036i
\(997\) 45.2668 26.1348i 1.43361 0.827697i 0.436219 0.899840i \(-0.356317\pi\)
0.997394 + 0.0721432i \(0.0229839\pi\)
\(998\) 7.97980 7.97980i 0.252596 0.252596i
\(999\) 6.73069 + 1.65891i 0.212950 + 0.0524855i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.t.b.843.10 68
5.2 odd 4 925.2.y.b.732.8 68
5.3 odd 4 185.2.u.a.177.10 yes 68
5.4 even 2 185.2.p.a.103.8 yes 68
37.23 odd 12 925.2.y.b.393.8 68
185.23 even 12 185.2.p.a.97.8 68
185.97 even 12 inner 925.2.t.b.282.10 68
185.134 odd 12 185.2.u.a.23.10 yes 68
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.p.a.97.8 68 185.23 even 12
185.2.p.a.103.8 yes 68 5.4 even 2
185.2.u.a.23.10 yes 68 185.134 odd 12
185.2.u.a.177.10 yes 68 5.3 odd 4
925.2.t.b.282.10 68 185.97 even 12 inner
925.2.t.b.843.10 68 1.1 even 1 trivial
925.2.y.b.393.8 68 37.23 odd 12
925.2.y.b.732.8 68 5.2 odd 4